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In-Service Monitoring for Cell Loss Quality -
of Service Violations in ATM Networks

Hongbo Zhu, Student Member, IEEE, and Victor S. Frost, Senior Member, IEEE

Abstract— A new method for in-service cell loss ratio (CLR)
QoS estimation for asynchronous trasfer mode (ATM) networks
has been developed. For a typical CLR, a large number of cells
must be observed before statistically meaningful results can be
achieved. These results may be obsolete resulting in ineffective
network management reactions. For a variety of arrival pro-
cesses, many analyses have shown there exists a relationship
between the logarithm of the cell loss probability and buffer
-size. For models that do not possess long-range dependence, this
relationship is often linear. On the other hand, for the fractional
Brownian motion model that captures long-range dependent
traffic behavior, this relationship has a polynomial form. The
proposed method uses these relationships and observations of
cell loss for several small pseudo-buffers to characterize the
behavior of the actual system. Specifically, a real-time technique
to dynamically detect the failure of meeting a cell loss quality of
service (QoS) objective has been developed. The method requires
a short observation period and is suitable for in-service mon-
itoring of CLR QoS. Simulation studies show the effectiveness
of this method for both modeled traffic and measured network
trace data.

1. INTRODUCTION

N ASYNCHRONOUS Transfer Mode (ATM)-based net-

works, quality of service (QoS) requirements are very
stringent. A prime concern is to ensure that there are adequate
resources to meet the traffic demand or to prioritize the
use of resources when short falls are unavoidable. Network
monitoring and estimation have to be performed in order to
keep abreast of demand and are essential in network traffic
control.

To provide dynamic network control and management,
in-service monitoring and estimation (ISME) have been em-
ployed as opposed to the conventional out-of-service testing
(OOST) techniques [3]. One potential problem for ISME
is that some QoS indicators are specified in terms of the
probability of occurrence of certain rare events, e.g., in ATM-
based networks, cell loss probability is often specified to be
less than 10~°. Monitoring using direct statistical methods
is impracticable for estimating such small probabilities. In
the above' example, at least 10 billion cells have to be
monitored before any statistically meaningful information can
be collected. Assuming a link rate of 155 Mb/s and a cell
arrival probability of 0.6 in each time slot, monitoring 10
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billion cells would take 12 h. The statistical information
obtained after such a long monitoring period may be obsolete
and the network management system reaction may be too late.

Here, an ISME method is developed to quickly detect CLR
QoS violation for a single buffer in an ATM system. Once a
CLR QoS violation is detected, an alarm can be sent to the
network management system. The purposes of usmg ISME .
for CLR QoS assurance are to:

* Monitor the CLR performance under in-service condi-
tions and verify that the performance meets the QoS
requirements.

* Identify the location and causes for the CLR performance
degradation without affecting customers. ‘ ,

» Conduct reactive and preventive maintenance by contin-
uously investigating performance trénds.

Some potential techniques for accelerating the monitoring
and estimation speed have been described in the literature
[6], [9]. These techniques involve complex-analysis and are
applicable only to particular cases. The new method proposed
in this paper employs simple linear regression and hypothesis
testing techniques, requires a short monitoring period, and is
shown to be effective for a variety of traffic types, including
fractional Brownian motion, used to characterize long-range
dependence of traffic [8].

This paper is organized as follows: Section II will review
the basis for the proposed technique, that is, the relationship
between buffer size and log(CLR). Section ITI.will present
the ISME procedure for the detection of CLR QoS violation.
Section IV will conduct a performance evaluation of the
detection scheme. Section V presents our conclusions.

II. RELATIONSHIP BETWEEN CLR
AND BUFFER SIZE IN ATM SYSTEMS

This section is dedicated to establishing the validity of using
a generalized relationship between buffer size and log (CLR)
for ISME. Analytical results from previous works will be
reviewed and summarized to demonstrate this relationship for
both Markovian-type arrival processes and a recently -pro-
posed long-range dependent traffic model, namely, fractional
Brownian motion [8]. i

A. Markovian Arrival Process

For Markovian-type queueing systems, the log(CLR) is
known to decrease proportionally with increasing buffer size.
This linear relationship is also a natural outgrowth of the
fluid flow analysis of ATM systems [12]. Furthermore, in

1063-6692/96$05.00 © 1996 IEEE
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Fig. 1. log(CLR) versus buffer size, Geom/Geom/1/N model, s = 1.0/11.0.

[14], the equivalent capacity concept developed for bandwidth
allocation also assumes a linear relationship between buffer
size and log(CLR).

Here, we present some previous analytical results showing
the relationship between buffer size and log(CLR). Both the
Geom/Geon/1/K queueing model and the N-state Markovian
arrival process are considered.

For a single server queue with a buffer size of K cells,
assume both the cell arrival and the cell departure processes
are identically and independently distributed (i.i.d.) Bernoulli
processes. Also assume p is the arrival probability of a cell dur-
ing a time slot and s is the departure probability of a cell during
a time slot. The cell interarrival time and interdeparture time
~ are both geometrically distributed (Geom/Geom/1/K model).
The Geom/Geom/1/K model can be used to characterize the
queueing behavior in an ATM switch using input queueing. In
this case, a customer arriving to an empty queue must wait at
least until the next slot for service (noncut-through). It can be
shown the CLR has the following expression [4]:

(L=p)p"(1-s)
—pEH —(1-p)s

CLR =P, = T 1)
where P, denotes the cell blocking probability, K is the buffer
size, and p = [p(1—s)]/[s(1—p)]. Fig. 1 shows the log(CLR)
versus buffer size for three different values of p. It is obvious
that these curves are all asymptotically straight lines.

In general, when the input bit rate is characterized by an N-
state Markov chain, the queue fill distribution is of the form
[14], 12]

N
F(.T) = Z a; aiqﬁi e, (2)

i=1
z; and ¢; are, respectively, the generalized eigenvalues and
eigenvectors associated with the solution of the differential
equation satisfied by the stationary probabilities of the system,
and a; are coefficients determined from boundary conditions.
The CLR is estimated by truncating the queue length distri-
bution and computing the probability that the queue length

exceeds the real buffer size. Specifically, an asymptotic CLR
estimation is obtained as follows:

N—|c|-1

Zi
H Zi+1"

i=1

e—'f‘(l!

G(z) ~ pV 3

where G(z) represents the probability that queue fill exceeds
x. Also, ¢ and p are normalized link capacity and normal-
ized offered load, respectively. The value r is the dominant
eigenvalue zp, and can be calculated as

1-p)+A)

1-¢/N @

r=2zp=

Other eigenvalues z; are the negative roots of the following
quadratics by setting & = 4

A(k)2® + B(k)z 4+ C(k) = 0,

where

B(k) =2(1 — A)(Q—Jf—k)z = N(1+ A)(g%)

Ok = - <1+A>2{(§)2— ({f—k)z}

Note, (3) indicates an asymptotically linear relationship
between buffer size and log(CLR). Recently, this linear rela-
tionship has been proven to hold within a much more general
context [18], [22]. In fact, based on the derived fundamental
bounds and experience with numerical experiments, the au-
thors of [22] proposed the following model for systems with
general Markovian sources:

log (CLR) ~ —a — 6B ©6)
where B is buffer size, and § and « are both positive constants.
This generalized result has been used in many situations to
develop various algorithms for control and routing of ATM
networks [14], [17], [22].

B. Long-Range Dependent Traffic Model

Recently, by investigating Ethernet traffic and variable bit
rate (VBR) video trace data, the authors of [7] and [8]
propose that network traffic arrival processes may possess
self-similarity and long-range dependence that cannot be char-
acterized by conventional Markovian-type traffic models. A
wide-sense stationary stochastic process exhibits long-range
dependence if its auto-correlation function decays hyperboli-
cally as the lag increases. In turn, a new traffic model, namely,
fractional Brownian motion is proposed in [7] and [8] to model
self-similarity and long-range dependence.

For long-range dependent traffic processes, the linear rela-
tionship between buffer size and log (CLR) no longer exists.
Fig. 2 shows the result of an extensive simulation we con-
ducted to observe the buffer size versus log(CLR) using
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Fig. 2. log (CLR) versus buffer size for Bellcore trace data.

Bellcore trace data [7]. This simulation result illustrates a non-
linear relationship between buffer size and log (CLR)(CLR).

In contrast to the Markovian model (6), buffer size and
log (CLR) for the fractional Brownian motion model results
in the following generalized relationship:

log (CLR) ~ —6B” @)

where § and 3 are constants determined by traffic processes
under consideration (see [19]-[21]). In this paper, we treat
6 and 3 as unknown parameters and an on-line regression
method was developed to estimate these two parameters.
Taking the logarithm in both sides of (7), we obtain

log [—log (CLR)] ~ log (6) + B log (B). ®)

Note the' relationship in (7) is intrinsically linear, if
log [-log (CLR)] and log (B)-are both viewed as variables.

It is important to note that the existence of long-range de-
pendence in actual traffic is a controversial issue. For example,
the authors of [22] show that buffer size versus log(CLR)
exhibits a linear relationship through extensive simulation
using video teleconferencing trace data. They further claim
that their simulation study does not conform to the long-range

.dependence observed in [7] and [8].

Despite the existing controversy, the log(CLR) versus buffer
size relationship for both Markovian and fractional Brownian
motion source models are taken into account in the develop-
ment of the on-line ISME algorithm in the next section.

II. A CLR QoS VIOLATION DETECTION ALGORITHM

A. General Description

Using both the Markovian and the long-range dependent
models, a fast CLR QoS violation scheme has been 'developed
using ordinary least square and hypothesis testing techniques.
The basic idea is to employ several pseudo-buffers whose
sizes are much smaller than the physical buffer size [15], [17].
Fig. 3 shows a system model using pseudo-buffers. Notice
the pseudo-buffers can be implemented as simple counters,
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incrementing on each cell arrival when not at its limit, and
decreasing on each departure. )

Although the desired value of CLR QoS is very small
(1079 at the physical buffer size, the corresponding CLR is
much higher (e.g., 1072) at these pseudo-buffer sizes. The cell
overflow events associated with these small pseudo-buffers can
be observed and counted in a background mode on-line, and a
linear regression algorithm is applied to obtain an estimation
of CLR at the physical buffer size. To obtain statistically
meaningful CLR information associated with these pseudo-
buffers, fewer arriving cells need to be observed compared
to those needed for a large physical buffer size. As will
be shown, the monitoring period can thus be significantly
reduced. For example, assume a certain QoS requires the CLR
at the physical buffer size to be less than 107°. To achieve
this performance, the physical buffer size is designed to be 200
cells. To monitor CLR associated with this physical buffer, one
would have to observe at least 10'° incoming cells to get a
statistically meaningful estimate for CLR. With the proposed
method, three pseudo-buffers whose sizes are seven, 10, and
13 can be used. One can expect that under the same traffic
that causes the physical buffer to have a CLR of 10~?, those
small pseudo-buffers will have much higher CLR’s, say, the
order of 10~2. Therefore, the monijtoring period can be reduced
to an order of (10°-10%) cells. The idea of tail extrapolation
introduced here is not new; it has been successfully applied
to estimate very low data link level bit error probabilities
[16].

B. CLR Estimation

For further evaluation and analysis, the following definitions
and notation will be used:

n Number of cells to be observed to get one
~sample log(CLR). ’

N Number of log(CLR) samples.

N xn Total number of cells observed during one mon-

itoring period.
C; Number of overflows counted during one n-cell
period.
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l; =

log (C;/n) This is the observed log (CLR) at éth pseudo-

buffer for one n-cell period.

Estimated log (CLR) at physical buffer during

one n-cell period.

T Sample mean of estimated log (CLR) at physi-
cal buffer. This is the decision variable used in
hypothesis testing.

Q Desired QoS log (CLR) value at physical
buffer.

Note, (6) and (8) do not represent the same regression
model. In order to take both models into account when per-
forming linear regression, we use the well-known goodness-of-
fit R? [2] test to test their validity. The procedure that selects
the appropriate regression model based on the observed traffic
is described as follows:

1) Whenever n observed samples' arrive, perform linear

regressions separately based on both regression models
[(6) and (8)]. Both regression results are stored.

2) Perform R? tests on both regressions, and compare
the R? results. Keep two running counters, Cy; and
Cy,. If the R? result associated with the Markovian
model is greater than that associated with the long-
range dependent model, then C}, is incremented by one;
otherwise, counter Cp, is incremented by one. Cys and
C represent the number of times when the R? test
chooses the Markovian model and long-range dependent
model, respectively.

3) Perform steps 1) and 2) until N n-cell periods have
been observed. Then compare the counter results. If
Chr is greater than O, then choose the Markovian
model as the valid model and abandon regression results
from the long-range dependent model; otherwise, choose
the long-range dependent model as the valid model
and abandon the regression results from the Markovian
model.

4) Extrapolate to get N sample estimation at the physi-
cal buffer size based on the chosen regression model.
Note, if the long-range dependent model is the cho-
sen model, then the extrapolation results would be
log [—log (CLR)]; in this case the results will be im-
mediately converted to log (CLR) for further detection
purposes.

Both regression models have the form of Y = by + b; X X,
where Y and X are regression variables. Let b and b7 denote
the best estimates of by and by, respectively. The by and b7
are obtained as

Ly

Z(XixY,-—YXV)

B e ¢ ¥
b=V - b X. (10)
The R? is defined as
b+ b xY; —Y)?
R > (b5 + b ) . an

Y (Yi-Y)
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In the current application, [; or [log (1;)] and B; (or log (B;))
are the regression variables under the Markovian model (or
the long-range dependent model). Note, since all pseudo-
buffers are fed by the same traffic source, the errors between
the observed and the regressed values may be correlated.
Furthermore, simulation results indicate that the variance of
l;’s are different for different pseudo-buffer sizes as expected.
Using the ordinary least square method in these situations
may cause a regression error. We claim the regression error
is small. To further reduce the regression error, we choose to
monitor pseudo-buffers for N n-cell periods and to conduct N
regressions by using the ordinary least square method. Then
the N independent samples obtained at the physical buffer are
averaged to obtain the decision variable L = 1/N Zj\f__l L;.
This averaging reduces the variance at each pseudo-buffer by
a factor of N. Later simulations with both traced and modeled
traffic will verify the effectiveness of this method.

Note, L represents an estimate of the expected value of
L, denoted by pr. The variance of L denoted by o can
also be estimated from samples. An estimation for a% is §2,
expressed as

N
1 .
2 _ . 2
‘%—thix% L) (12)

C. The QoS Violation Detection Algorithm

Assume the cell arrival process during the short monitoring
period is stationary. According to the central limit theorem,
when N is large (>30), T has a Gaussian distribution with
mean pz, and variance o7 /N (again assuming independent
samples). Using the known characteristics of the distribution
of T, a hypothesis testing can be formed to determine if
a violation of CLR QoS has occurred during the current
monitoring period. Define two hypotheses:

1) Hp: CLR QoS is satisfied,

2) H;i: CLR QoS is violated.

If Hj is selected, an alarm is sent out immediately. On the
other hand, if, based on the current monitoring period, Hy
is selected, no alarm is sent and the network simply keeps
on monitoring. A Neyman—Pearson detection algorithm [2] is
used to make selections between the two hypotheses.

Let D; denote the decision in favor of H;. Also, let Py
denote the miss probability P(Dg|H1), and Pr denote the
false alarm probability P(D1|Hy). Note, the probability of
detect Pp is 1 — Pys. To evaluate Py; and Pr, the conditional
probability density functions ffl Ho and ffl 7, are required.
Once ffl 1, and ffl g, are specified, a threshold T can be set
to satisfy a predetermined value of Pr and, consequently, Py
can be computed from 7'. The detection scheme should be
designed such that both Pr and Py, are small. The decision
rule is as follows:

o If L > T, accept Hy, or decide CLR QoS is satisfied.

o If L < T, decide CLR QoS violated, and send an alarm.

Since L has a Gaussian distribution, the conditional mean
and variance are the only information needed to complete the
knowledge of ffl u, and ffl 1, We shall denote the variance



244

0.22

0.2

Variance
e o o
2 2 g
o 223 o0

o
>

01

" ; i ; ; i i i i i
08 08 084 08 088 09 092 094 096 098 1

Load

Fig. 4. S% versus load.

7, 4nd UL|H ’

this scheme, L tepresents an estimation of the mean under
ffl g7, and the mean under ffl H, is simply (). From extensive
simulation studies, it was found that o2 decreases when
traffic load increases. For example, Fig. 4 shows the SZ for
a 32 homogeneous on/off source as a function of load. This
behavior is expected because as load increases, the system
observes more cell losses. Therefore, it is expected that o2

for le z, and fL‘ g, as o2 respectively. In

L|H,

is smaller than Ufl , and they should be estimated separately.

Equation (12) can be used as an empirical estimate of o2

L|H,"
The value of J_l Tig, can be found from network management

experience, because for most of time, CLR QoS is satisfied,
i.e., during' normal network operations, the load is no larger
than the load that causes (). Also, because 0% decreases when
load increases, the o2 obtained from normal network opération
should be no smaller than O%I o Thus, the o% obtained during
normal network operation represents a worst-case value in the
sense of assigning a desired Pr and calculating T'.

Once ffl 1, and ffl g, are identified, the threshold 7' can
be found by using ffl 1, and the desired value of Pp. In fact,
T should be chosen such that

Prob (L > T|Hy) = Pp. (13)
Since le o, 18 normally distributed with a mean of @ and

variance of o2, the probability in (13) can be expressed as

T|Ho’
-0)_o(1=2) o
OL\H, 9L Ho '

Prob (Z >

where Z = (I, — @)/0%)5,» and Q(z) is the Q-function. The
value of Z corresponding to Pr. can be found from the Q-
function table, and T can be solved accordingly. After T is
obtained, Pyr, Pp, and Pr can also be easily computed:
The ISME for CLR QoS is summarized in Fig. 5. Note in

Fig. 5, the values of a_.l FiH, T, and Pr are determined off-line.
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IV. PERFORMANCE EVALUATION OF THE
QoS VIOLATION DETECTION ALGORITHM

A. Description of Simulation Environment

In this section, the performaﬂce of the CLR QoS violation
detection scheme is evaluated using simulations with modeled
and ftraced traffic data. The goals of simulation study are to:

+ validate the effectiveness of the detectlon scheme for a

variety of traffic types, and

¢ evaluate total number of cells needed for detection for

adequate performance.

Two standard queueing models and two traces of real
traffic data are used here. The standard queueing models are
the Geom/Geom/1/K model and 32 aggregated homogeneous
on/off sources with single server queue and fixed service time
for each cell. The real traffic sources are Bellcore video source
and Bellcore LAN trace data [7], [8].

Simulations are designed using three different trafﬁc loads
p1, p2, and p3, where p; is assumed to be the load under which
the CLR QoS is just satisfied, i.e., p; creates the targeted QoS
log(CLR). Notice the physical buffer is assumed to be of a
size that causes the QoS CLR to be in the range of (1079,
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TABLE I
TRAFFIC TYPES USED IN SIMULATIONS
Traffic Type Pl o 3 CLR Phy. Buff.
QoS size

Geom/Geom/1/K]| 0.6 0.65 | 0.7 107 40
32 0.55 0.6 065 | 10—° 200
On/Off Sources
(Burstiness In-
dex 6)
Bellcore Video || 3 1.1p1] 1.2p1| 10~ 300
Trace sources )
Bellcore LAN [[ —— T.1p | 1.2p1| 10 259%| 280
Trace

TABLE II

PERCENTAGE OF TIMES MARKOVIAN MODEL WAS CHOSEN FOR REGRESSION

% of times Markovian model is chosen
Traffic Type P | [
" Bellcore Video 7% 15% 19%
Bellcore LAN 25% 20% 23%
32 On/OT Sources 85% 83% 90%
Geom/Geom/1/K 80% 84% 82%

10~11), ‘and p, and p3 are loads that cause the CLR QoS
to be violated. The relationship between these three loads is
p1 > pa2 > p3. Pseudo-buffer sizes of seven, 10, and 13 are
used for simulations for Geom/Geom/1/K and on-off models,
while pseudo-buffer sizes of seven, 10, 13, and 16 are used
for simulations for Bellcore Ethernet and video trace data.
Note, using more pseudo-buffers would have the advantage of
reducing the regression error and would assist in characterizing
the nonlinear relationship of log (CLR) versus buffer size
for the fractional Brownian motion model. However, using
‘more pseudo-buffers may result in a longer observation period
because CLR decreases at larger pseudo-buffer sizes.

First, for each traffic type, a simulation under p; is per-
formed using n = 10000 and N = 100 which provides 100
samples at each pseudo-buffer. Then, linear regressions (based
on the chosen model) are performed to obtain 100 samples of
log (CLR) at the physical buffer size. The @ value is set to
be the sample mean of these 100 samples, and a%l , a0 also
be obtained from these 100 samples. The extrapolated value
of Q is close to the simulated value. For example, using the
results presented in Fig. 2, for Bellcore video trace data, an
extrapolated CLR at buffer size of 60 is 4.98 x 10~°, while
the simulated CLR at the same buffer size is 5.2 x 1075;
for Bellcore Ethernet trace, an extrapolated CLR at buffer
size of 60 is 2.3566 x 10~°, while the simulated CLR at
the same buffer size is 1.7 x 107°. The alarm threshold T is
found according to the detection algorithm. Table I summarizes
the traffic types used in simulations and the corresponding
parameters associated with these traffic types.

Then, for each traffic type, simulations under p, and p3 are
performed. The T value is used to decide if p2 and p3 cause
CLR QoS violation based on the decision rule described in
the last section. )

A question may arise about which of the two regression
models was chosen by the R? test for each simulation. Table
II presents the percentage of times in N regressions the
Markovian model was chosen to be the valid regression model.

Prob(Detect)

i i ; i ;
o 0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9
Probifalse alarm)

Fig. 6. ROC for Geom/Geom/1/K queueing model.

From these results, it is obvious that the long-range dependent
model was chosen to be the valid model for all simulations
associated with Bellcore video and Ethernet trace data while
the Markovian model was chosen to be the valid model for
all simulations associated with on/off and Geom/Geom/1/K
sources.

B. Validation of Effectiveness of the Detection Algorithm

We evaluate the effectiveness of the detection scheme by
presenting the receiver operating characteristic (ROC) for each
traffic type. The ROC is a plot of Pp versus Pr. As described
above, all simulations are conducted using fixed n = 10000,
and a%’s are estimated using simulated data. For all ROC’s
shown here, N = 1 is used. Notice N = 1 would present a
worst-case performance for the detection algorithm. In the real
situation, N must be large (>30) in order to make a Gaussian
assumption for L as well as to obtain a good estimation of
o2. More realistic values of N and the corresponding Pr and
Pp will be considered later.

Figures 6-9 show the ROC curves for four traffic types. All
ROC curves are plotted using N = 1. Large N can be expected
to significantly improve the detector performance as will be
shown later. During simulation, the Bellcore video source was
segmented to form several homogeneous video sources. Each
video source was then segmented into ATM cells. In Fig. 8,
p1 is the traffic load of three video sources which causes the
QoS CLR to be 10795437 Bellcore LAN trace data is also
segmented into ATM cells, and p; is the load that causes the
QoS CLR to be 10~10:0044 In both Bellcore video and LAN
trace data simulations, ps and p3 are achieved by scaling the
service time used in p1. pg is 1.1 X p1, and p3 is 1.2 X p;.

C. Evaluation of Monitoring Period Requirement

The total number of cells needed for the detection algorithm
is n x N. Generally speaking, increasing N will increase
Pp. Since Pp is upperbounded by one, it can be expected
that beyond a certain N, Pp will not increase significantly.
Because of this fact, one would be willing to specify a desired



246

QoS load-=0.55

Qb et A R0 o8 R .
QoS leg(CLR)=-856

03 ......... 4

0.2 : ......... -

0.1 L i L I i I ; H

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

Prob(false alarm)

Fig. 7. ROC for 32 Homogeneous on/off sources. Burstiness index is six.

07| d R RIS S n T e SR
: : : + load = 1.1 * (CoS load)

Prob(Detect)
o
(2]

i H
32 0.25 03 0.35 0.4 0.45 0.8
Prob({false alarm)
Fig. 8. ROC using Bellcore video source.

0.9

Prob(Detect)
o e o
@ Y o

b
o

Y U

03

02 0.3 0.4 05 0.6 0.7 0.8 )
Prob(false alarm)

Fig. 9. ROC using Bellcore LAN trace source.

Pp and find the N needed to achieve this Pp. The general
approach for studying the required value of N is to plot Pp
versus total cells observed with several fixed values of Pp.
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Figures 10-13 show the relationship between Pp and total
cells observed for the traffic types considered here. These
figures clearly show the effectiveness of the proposed algo-
rithm, i.e., a small increment in load can be quickly detected
(small N x n) with a high Pp and low Pr. These figures
also show the trade-off between observation period and Pp.
In Fig. 10, for example, for Pr = 0.0001, when (n x N)
increases from 30 x 10* to 40 x 10%, the Pp increases from
0.8 to 0.95. However, increasing (n x N) from 50 x 10% to
60 x 10" increases Pp from 0.99 to 0.991 which is only
0.1% of an increment. In this case, one would not hesitate to
sacrifice a very small improvement in Pp in order to reduce
the monitoring period. Therefore, one would determine desired
Pp to be 0.99 and use a monitoring period of 50 x 10% cells.

Figures 10-13 -all contain three curves, for Pp = 0.0001,
Pr = 0.0005, and Pr = 0.001, respectively. For
Geom/Geom/1/K and on/off traffic sources, 5 x 105 cell
arrivals must be observed to detect a load increment of 0.05
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Fig. 13. Pp versus total cells observed, Bellcore LAN trace source.

with Pp > 0.99. Also, as can be seen from Fig. 12, to detect
a 10% load increment for the Bellcore VBR video trace
data with Pp > 0.98 and Pr < 0.0001, a total number of
10 x 10° cells need to be observed. In Fig. 13, to detect a
10% load increment for the Bellcore LAN trace source, with
Pp > 0.95 and Pr < 0.0001, a total number of 30 x 106 cells
are needed. Table IIT illustrates the savings in total number
of cells needed by using our ISME scheme. In Table III, the
total number of cells needed when not using the scheme is
approximated by using the value of Q. For example, if @
is 1079, then the total number of cells needed without the
scheme is assumed to be 1010, i.e., at least 10 loss events
are required. Notice that 10 independent loss events will
only produce an estimate valid within a factor of two, thus,
the monitoring period approximated in this way may not
guarantee a Pr of 0.0001 and a Pp of 0.95. These numbers
represent the minimum feasible observation interval when
not using the ISME scheme.

TABLE III
COMPARISON STUDY, P = 0.0001, Pp > 0.95
Total Cells Observed
Load Increase | Without Sch With Sch
Geom/Geom/1/K Ap = 0.05 1019 5x10°
Geom/D/1/K Ap = 0.05 101! 4 x 10°
On/Off Source Ap = 0.05 10° Sx10°
Video Source x1.1 10 10 x 10°
LAN Trace Source x1.1 10%° 30 x 105
TABLE IV
32 HomoGENEOUS ON/OFF SOURCES
Pp Pp, Pp,
Predicted | Simulatiory Predicted | Simulation] Predicted | Simulation
0.1 0.09 0.27 0.27 0.65 0.66
0.2 0.2 0.47 0.48 0.82 0.83
0.3 0.31 0.65 0.65 0.91 0.92
0.4 0.43 0.75 0.77 0.95 0.94
0.5 0.51 0.82 0.83 0.98 0.96
TABLE V
Geom/Geom/1/K MODEL
Pp Pp, Pp,
Predicted | Simulationy Predicted | Simulationf Predicted | Simulation
0.1 0.08 033 033 0.75 0.77
03 0.38 0.65 0.67 0.97 0.96
0.5 0.48 0.82 0.80 0.99 1.0
0.7 0.68 0.93 090 0.993 1.0
0.9 0.9 0.99 0.98 0.995 1.0

The saving factors of total number of cells needed are in the
order of 105-107. For example, a @ = 109 and a link rate
of 155 Mb/s with an arrival probability of 0.6 in each time
slot requires about 12 h while the ISME technique needs only
2-35 (2-3 s). However, without the scheme, the monitoring
period takes more than 12 h. The saving on monitoring period
is tremendous.

D. Validation of the Gaussian Assumptions

In the detection algorithm, a key assumption is that L is
normally distributed. It has been claimed, based on the central
limit theorem, that when N > 30, this assumption should
be quite good. It is of interest to validate this assumption by
comparing the simulated Pp and Pp with the Pp and Pp
predicted from Gaussian distribution. To simulate the Pp and
Py, alarge number of monitoring periods should be observed.
A reliable simulation would require an observation of a very
large number of cells. Unfortunately, when N > 30, the time
required to simulate is too long, and therefore, N = 1 was
used. Notice when N = 1, I reduces to L and the distribution
of L may not be normal. However, if the simulated Pp and
Pr using N =1 are close to those predicted from Gaussian
assumption, then the Gaussian assumption for L is expected
to be valid for large V.

Tables IV-VII show the comparison of predicted results
to the simulated results for Geom/Geom/1/K, Geom/D/1/K,
on/off models, and Bellcore video sources. From the results
presented here, we are confident that when N is large (> 30),
the Gaussian approximations will be valid.
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TABLE VI
BELLCORE VIDEO SOURCE

Pp Pp, Pp,
Predicted | Simulation] Predicted | Simulation Predicted | Simulation
0.1 0.08 0.21 0.18 0.78 0.88
0.2 0.23 0.42 0.38 0.92 1.0
0.3 0.32 0.64 0.69 0.98 1.0
0.4 0.45 0.78 0.82 0.99 1.0
0.5 0.6 0.90 0.92 0.992 1.0

TABLE VII
BELLCORE LaN TRACE DaTA

Pp Pp, Pp,
Predicted | Simulation] Predicted | Simulatiol Predicted | Simulation
0.1 0.08 0.09 0.10 0.08 0.10
0.3 0.25 0.33 0.36 0.36 0.40
0.5 0.47 0.55 0.58 0.61 0.65
0.7 0.65 0.76 0.79 0.82 0.82
0.9 0.85 0.93 0.96 0.96 1.0

V. CONCLUSION _

In this paper, a CLR QoS violation detection scheme has

been developed and shown to be effective for both measured
trace and modeled traffic data. As long as a curve can
be fit to the buffer size versus log (CLR) characteristic,
the approach proposed here can be applied. In this paper,
the relationship between buffer size and CLR for both the
conventional Markovian traffic models and the recently pro-
posed fractional Brownian motion model were taken into
account. The performance of the scheme and its underlying
approximations have been validated. It has been shown that
the scheme is sensitive to small increments in load.

The scheme aims to be implemented in a real-time envi-
ronment where telecommunication services will not be inter-
rupted by monitoring procedures. Real-time monitoring can
be achieved using this scheme, because the implementation is
simple, sensitive, and the monitoring period is short; and en-
abling network management systems to be promptly informed
of impending CLR QoS violations.

(1]

[2]
(3]

{41
(5]
(6]

REFERENCES

H. Bruneel, E. Desmet, B. Steyaert, and G. H. Petit, “Tail distribution
of queue length and delay in discrete-time multiserver queueing models,
applicable in ATM networks,” ITC-13, 1991.

A. M. Breipohl and K. S. Shanmugan, Random Signals Detection,
Estimation and Data Analysis. New York: Wiley, 1992.

H. Murakami, R. E. Mallon, S. R. Hughes, N. Sato, K. Asatani, and T.
L. Graff, “In-service monitoring methods-better ways to assure quality
of digital transmission,” IEEE J. Select. Areas Commun., Feb. 1994,

T. G. Robertazzi, Computer Networks and Systems, 2nd ed. New York:
Springer-Verlag, 1994. ‘

K. Sam Shanmugan, BONeS Designer, Introductory Overview,
Comdisco Systems Inc., 1992.

Q. Wang, “New solution techniques for performance analysis of ATM
networks,” Ph.D. dissertation, Univ. Kansas, 1992.

J. Beran, R. Sherman, and W. Willinger, “Long range dependence in
variable-bit-rate video traffic,” IEEE Trans. Commun., vol. 43, no. 2/3/4,
1995.

W. Willinger, W. E. Leland, M. S. Tagqu, and D. V. Wilson, “On the
self-similar nature of ethernet traffic (extended version),” IEEE/ACM
Trans. Networking, 1994. ,

H. Yamada and S. Sunita, “A traffic measurement method and its
applications for cell loss probability estimation in ATM networks,” IEEE
J. Select. Areas Commun., vol. 9, no. 3, pp. 315-326, 1991.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 4, NO. 2, APRIL 1996

[10]
[11]
[12]

[13]

[14]

[15]

(16]

[17]

[18]

(191

(201

(21]

[22]

H. Ahmadi and W. Denzel, “A survey of modern high performance
switch techniques,” IEEE J. Select. Areas Commun., vol. 7, no. 7, 1989.
M. Hluchyj and M. J. Karol, “Queueing in high performance packet
switching,” IEEE J. Select. Areas Commun., vol. 6, no. 9, 1988.

D. Anick, D. Mitra, and M. M. Sondhi, “Stochastic theory of a data-
handling system with multiple sources,” Bell Syst. Tech. J., vol. 61, no.
8, 1992. )

A. Bhargava and M. Hluchyi, “Frame losses due to buffer overflows in
fast packet networks,” in Proc. IEEE INFOCOM June 1990.

R. Guérin, H. Ahmadi, and M. Naghshineh, “Equivalent capacity and
its application to bandwidth allocation in high-speed networks,” IEEE
J. Select. Areas Commun., vol. 9, no. 7, Sept. 1991.

H. Zhu and V. S. Frost, “A new method for in-service estimation of cell
loss QoS in ATM networks,” presented at IEEE Symp. Planning Design
Broadband Networks, Montebello, Quebec, Canada, Oct. 21-23, 1994.
M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of
Communication Systems. New York: Plenum, 1992.

C. Courcoubetis, G. Kesidis, A. Ridder, J. Walrand, and R. Weber
“Admission control and routing in ATM networks using inferences from
measured buffer occupancy,” IEEE Trans. Commun., vol. 43, p. 1778,
1995. .

N. G. Duffield, J. T. Lewis, N. O’Connell, R. Russell, and F. Toomey,
“Statistical issues raised by the Bellcore data,” presented in 1/th UK
Teletraffic Symp., 1994.

N. G. Duffield and N. O’Connell, “Large deviations and overflow"
probabilities for the general single-server queue, with applications,” in
Proc. Cambridge Phil. Soc., 1995.

R. Dahlhauvs, “Efficient parameter estimation for self-similar processes,”
Ann. Statist., vol. 17, pp. 1747-1766, 1989.

M. Nomura, T. Fujii, and N. Ohta, “Basic characteristics of variable bit
rate video coding in ATM environment,” IEEE J. Select. Areas Commun.,
vol. 7, no. 5, pp. 752-760, 1989. ‘

A. Elwalid, D. Heyman, T. V. Lakshman, D. Mitra, and A. Weiss,
“Fundermental bounds and approximation for ATM muitiplexers with
applications to video teleconferencing,” JEEE J. Select. Areas Commun.,
Aug. 1995.

Hongbo Zhu (S'94) received the B.S.E.E. and
M.S.EE. degrees from the University of Kansas, -
Lawrence, in December 1993 and May 1995, re-
spectively.

Since May 1994, he has been a Research As-
sistant in the Telecommunications and Informa-
tion Sciences Laboratory, the Electrical Engineer-
ing and Computer Science Department, University
of Kansas, working on Sprint, BNR, and ARPA
projects related to ATM technology. His current
research interests are in the general areas of com-

[

munications networks with an emphasis on congestion control and resource
allocation in B-ISDN/ATM.

Victor S. Frost (S'75-M’82-SM’90) .was born in
Kansas City, MO, on March 6, 1954. He received
the B.S., M.S,, and Ph.D. degrees from the Univer-
sity of Kansas, Lawrence, in 1977, 1978, and 1982,
respectively. .

He joined the faculty of the University of Kansas
in 1982, where he is currently a Professor of Elec+
trical Engineering and Computer Science. He has
been the Director of the Telecommunications and
Information Sciences Laboratory at the University
of Kansas since 1987. His current research interest

is in the areas of integrated communication networks, high speed networks,
communications system analysis, and simulation. He is currently involved
in research on the MAGIC, ACTS ATM Internetwork, and SPARTAN ATM
WAN testbeds. ’

Dr. Frost received the Presidential Young Investigator Award from the
National Science Foundation in 1984, the Air Force Summer Faculty Fellow-
ship, the Ralph R. Teetor Educational Award from the Society of Automotive
Engineers, and the Miller Professional Development Awards for Engineering
Research and Service in 1986 and 1991 respectively. He is.a member of Eta
Kappa Nu and Tau Beta Pi. He served as Chairman of the Kansas City Section
of the IEEE Communications Society from June 1991-Dec. 1992.



