
 Automated RF Testing of the

KU Agile Radio 2.0 Using LabView

Brian Cordill

ITTC-FY2008-TR-31620-07

February 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
National Science Foundation

Computer and Information Science and
Engineering Directorate

Technical Report

The University of Kansas

December 18, 2006

FROM: Brian Cordill

TO: Dr. Minden

SUBJECT: Automated RF Testing of the Agile Radio 2.0 using LabView

1. Statement of Purpose

The objective of this project is to define, construct and carryout testing of the RF front
end of the Agile Radio ver. 2.0. In this initial stage the focus will be on characterizing
the gain ripple across the transmitter bandwidth. This bandwidth stretches from 5.25
GHz to 5.85 GHz with channels spaced every 4 MHz. With approximately 150 channels
and 6 bits of variable gain, the need for an automated testing regimen is readily apparent.
National Instrument’s LabVIEW is a natural choice with its capability to configure test
equipment and capture data.

2. Theory and Design
 2.1 Theory –The two major subsystems within the transmitter that the current
stage of testing must configure are the transmitter gain, and frequency. The gain for the
transmitter is set by issuing commands to an MC68HC08 microcontroller which in turn
sets the control voltage for a variable gain amplifier, VGA, using a 6-bit DAC. The
relevant section of the radio block diagram is shown in Figure 1, the micro controller
inputs can be seen as blue lines entering the top of the diagram. The 6-bit DAC produces
a voltage between 0 and +3.3 volts based on its SPI interface with the microcontroller.
This voltage is then used as the control voltage for the variable gain amplifier. A typical
gain vs. control voltage plot, taken from the data sheet for this amplifier is given in
Figure 2. An important note here is that this amplifier is located in the IF section of the
transmitter chain and is operating at approximately 2 GHz. It is primarily this amplifiers
frequency response that will dictate the total output gain of the transmitter.

Figure 1: Tx Gain Control

Figure 2: Control Voltage vs. Gain of the

Tx Variable Gain Amplifier

The transmitter’s frequency is set by issuing commands to the same
microcontroller used to configure the transmitter gain. In this case one of two local
oscillators is powered on and set to the desired IF frequency. LOA operates from 1.85 -
2.15 GHz while LOB operates from 2.15 - 2.45 GHz, the IF frequency is latter mixed up
an additional 3.4 GHz to its final transmit frequency. The block diagram of this section
of the radio is shown in Figure 3.

Figure 3: Tx Frequency Control

 2.2 Design – Automated testing must be able to do the following:

1) Issues commands to configure the transmitter’s frequency & gain.
2) Configure the digital board’s FPGA to generate a sine wave to act as the baseband data

signal.
3) Configure lab test equipment & capture data points
4) Process raw data points into more practical test data

Communication with the Agile Radio is performed though a secure shell terminal, and
the rfControl configuration command. The rfControl command interfaces with the
microcontroller on the RF board to configure the board’s settings. The process of
sending a command begins by assembling the command line in LabVIEW, writing it to
an external command file, and then calling an external ssh client, in this case Putty, to
send the command file. Th virtual instrument, vi, build to accomplish this is shown in
Figure 4.

Figure 4: SSH Command VI

Configuration of the FPGA is accomplished by a combination of the fpgaCnfg and
fpgaRW commands. These commands are sent in an identical manner to the RF
configuration commands. The fpgaCnfg command loads the
kuar_test_multicarrier_01.bit file into the FPGA. This configuration can generate up to
four unmodulated sign waves. The properties of each sign wave are contained in a
control register established by the multicarrier bit-file. The fpgaRW command can
access these control registers and modify the content.

LabVIEW has build-in modules for connection to, configuration of, and take
measurement from a large number of lab instruments. In this stage of testing an HP
8593E spectrum analyzer is used to measure the power spectrum density of the
transmitter from the Agile Radio. LabVIEW has an existing module to control this
instrument and no additional programming was needed. Each data capture consists of
401 power spectrum density values, expressed in dB. Each capture appears on a separate
line of the output data file. After all the measurements at a given frequency are taken an
information line is inserted into the data file providing frequency indexing, and control

voltage level information, this also serves to separate data block for one frequency from
one another.

Each line of the output file created by LabVIEW is a space-separated list containing 401
points representing the power spectrum density captured by the spectrum analyzer.
Before this file can be imported into Matlab its syntax must be amended. Matlab can
read space-separated list but it needs to of the form:
<variable> = [<data1> <data2> … <dataX>];

A simple Unix awk script provides the necessary text manipulation to add the required
boiler plate. The script reads in the raw data file, adds a unique variable name, inserts the
necessary brackets and prints the new line to a new output file. The full scrip can be fond
in the appendix. The raw data is now ready to be imported into Matlab for further
processing.

The first task Matlab performs is correlate captures from each frequency into a single
matrix with an identifiable name. This matrix contains a row for every capture made at
that frequency, and are ordered from the lowest gain-voltage setting to the highest. This
process of naming and correlating is accomplished by the Rename.m Matlab script, see
appendix. Rename.m starts by generating a list of unique variable names based on the IF
frequency, and then copying the data capture for that frequency into each row of the new
variable name. Rename.m also generates a set of information variables that hold the
transmitter frequency, and control voltage. With the data correlated into easier to
understand variable matrixes a whole range of processing can be performed with much
greater ease then before.

3. Laboratory Evaluation
3.1 Configuration –

Figure 5: Test Equipment Setup

3.2 Procedure – Connect the test equipment as seen above. Fill in the require fields in the
configuration screen, Figure 6. It may also be necessary to fill in the Radio Init Scrip

Tx SMA Port

Rx SMA Port

Computer
running
LabVIEW

Agile
Radio

HP8593E
Spectrum
Analyzer

Filepath, and the Gain Script Filepath in the “Front End.vi”, depending on what test
version is being used. Once the LabVIEW test is complete run the awk script and then
the Matlab script.

Figure 6: LabVIEW configuration Screen

4. Evaluation of Test Data
4.1 Data – Figures 7 & 8 are different cuts of the same data. In Figure 7 each line
represents the output power across control voltage at a give frequency. In Figure 8 each
line represents the output power of a given control voltage across the transmitter
bandwidth.

Figure 7: Output Power v. Voltage-Gain
Amplifier Control Voltage

Figure 8: Output Power v. Output
Frequency

4.2 Interpretation – There is a strong similarity between the measured results in Figure 7
and the VGA data sheet plot seen in Figure 2. While the test data is for a higher
frequency then that shown in the data sheet, this gives a strong indication that the VGA is
operating as intended.

Figure 8 shows the ripple in the output power across the transmitter’s bandwidth. From
this it is apparent that the VGA’s gain falls off in the upper half of the radio’s range. This
fall off is as much as 10 dB in some cases. This can also be seen in Figure 7, the 5.82
GHz signal is almost 10 dB lower then the 5.28 & 5.62 GHz signal.

4.3 Conclusions – National Instruments LabVIEW adapts well the automated testing of
the Agile Radio’s transmitter. And with the output power curves at individual
frequencies closely matching gain curves provided in the amplifiers data sheet, the
correlated data across the transmitters bandwidth can be read with a measure of
confidence. The output ripple across the transmitter’s bandwidth varied with the VGA’s
control voltage, but in some cases reached as much as 15 dB.

5. Appendix (code)

#!/bin/sh

Author: Brian Cordill
Date: May 25, 2006

This script uses awk to process data into a mablab readable format.
Raw data must be space seporated, and may be of any length.
Processed data will have a variable name assignement of the
form x#=[<DATA>];
Where x# is x1, x2, x3,... depending on which line the data
comes from.

if [$# -ne 2]
then
 echo "Error in $0 - Invalid Argument Count"
 echo "Syntax: $0 input_file output_file:"
 exit
fi

awk '{print "x" NR "=[",$0,"];"}' < $1 > $2

% Renames resulting variables from the "Frequency Walker.vi" agile radio Tx
% test. Results in two variables for each tested frequency:
% freq_xxxx_data, and freq_xxxx_info. Data contains the gain test results
% for that frequency. Info contains frequency and indexing information in
% the format: [<starting freq.> <freq. incrament> <IF freq.> <starting voltage>
% <voltage incrament> <ending voltage>]
number_of_variables=length(who('x*'));
real_names=char(who('x*')); % Character string list of variable names
N=size(real_names); % will need to know the length of name string

variable_index=[]; %real_names index of info variables
freq_list=[];
array_list=[];
for i=2:number_of_variables % Generate new names for the info variable,
 % freq_####_info and setup new array names.
 if(length(eval(real_names(i,[1:N(2)])))==6)
 variable_index=[variable_index,i]; % Save the index for later
 P=eval(real_names(i,[1:N(2)])); % Grab the values from the old name
 new_name=genvarname(['freq_',num2str(P(3)),'_info']); %Create a new info name
 new_array=genvarname(['freq_',num2str(P(3)),'_data']);%Create a new data name
 freq_list=[freq_list;new_name]; % Store that info name in a list for later
 array_list=[array_list;new_array];% Store the data name in a list for later
 eval([new_name '=P;']); % Asign new name the old value,
 eval([new_array '=[];']);
% eval(['clear ' real_names(i,[1:N(2)])]) % Clear the old name from workspace
 end
end
% Copy values from old "x" names to new "freq_####_data" names
for i=1:length(variable_index)

 current_array=array_list(i,[1:14]) %Get next new var name
 if i==1 %First Case
 for k=2:variable_index(i)-1
 source_array=real_names(k,[1:N(2)]); %Get next old name
 eval([current_array '=[' current_array ';' source_array '];']) %Copy
values
 end
 elseif i~=length(variable_index) %Middle Cases
 for k=variable_index(i-1)+1:variable_index(i)-1
 source_array=real_names(k,[1:N(2)]);
 eval([current_array '=[' current_array ';' source_array '];']);
 end
 else %End Case
 for k=variable_index(i-1)+1:variable_index(length(variable_index))-1
 source_array=real_names(k,[1:N(2)]);
 eval([current_array '=[' current_array ';' source_array '];']);
 end
 end
end

