
MPEG-4 for Interactive Low-delay Real-time
 Communication

Olaf Landsiedel and Gary Minden

ITTC-FY2004-TR-23150-10

December 2003

Copyright © 2003:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Technical Report

The University of Kansas

ii

Abstract
Internet broadcasting techniques are wide spread and have been the focus off many
research projects. Due to high transmission delays these systems often lack
interactivity.

This thesis introduces a new streaming system to deliver real-time video and audio
data with low-delays across the Internet. Packet loss, jitter and changing bandwidth
availability describe the challenges that have to be handled by the system, since the
Internet is a best effort network and does not guarantee quality of service.

To lower bit-rates audio and video data are usually compressed in formats like
MPEG-4. The high compression nearly eliminates redundancy in the audio and video
data. A resultant loss of transmitted data and transmission errors can have big impact
on the quality of the received stream. MPEG-4 video uses inter frame prediction, so
errors propagate between frames. We will argue that retransmission of lost or invalid
data is not feasible for low-delay communication due to high control loop delays.

The changing conditions of the internet make adaptation to the available bandwidth
necessary. The traditional approach of buffering data to smoothen bandwidth
oscillations is not usable due to the real-time constraints of the interactive
communication. In addition TCP like congestion control cannot be applied, because it
results in extreme transmission rate oscillations.

We introduce and evaluate two techniques - adaptive key frame addition and
binominal congestion control for RTP - to reduce the impact of the changing
conditions and lost frames. A MPEG-4 low-delay real-time streaming system for low
bit-rates is implemented to incorporate and evaluate the new techniques.

iii

Acknowledgements

I want to thank many people for making my time in the US here at the University of

Kansas possible and for the chance to do my research at the Information and

Technology Center ITTC.

• Prof. Dr. Minden for being my academic advisor and allowing me to be a

member of his research team. Prof. Minden allowed me to go my own ways

for my research and his technical knowledge made working with him a

privilege.

• My Committee for taking the time to read and grade my work.

• Leon Searl for his advice and help with all big and small problems I

encountered during my work. Leon was always patient with any questions I

asked him, it was a pleasure to work with him.

• The same I have to say about my lab- and team-mate James Mauro. He was

always willing to answer all kinds of questions. James also helped me with the

integration of my research into the ACE framework.

• The Department of State, Fulbright and IIE for the Fulbright Travel Grant.

• The “Christian Albrechts Universität zu Kiel“, Germany, and the “University

of Kansas”, Kansas, for providing me twice with a “Direct Exchange

Scholarship”. Without this grant, my studies in the US would not have been

possible in the way they were.

• DARPA, NSF, Sprint and the University of Kansas for funding ACE.

iv

CONTENTS

1 INTRODUCTION..1

1.1 Motivation.. 2

1.2 Challenges.. 3

1.3 Overview .. 4

2 RELATED WORK ..6

2.1 Media Transport ... 6

2.2 MPEG-4 ... 7

2.3 RTP and MPEG-4... 8

2.4 Quality Control ... 9

2.5 Congestion Control ... 9

2.6 Ambient Computing Environment (ACE).. 9

3 AN ADAPTIVE INTRA-FRAME INSERTION ALGORITHM11

3.1 MPEG-4 frame types .. 12

3.2 Error Resilience in MPEG-4 Video ... 14

3.3 Effects of errors on Video Quality ... 16
3.3.1 Custom RTP header addition ... 20
3.3.2 Immediate RTP feedback ... 20
3.3.3 Sender behavior.. 21
3.3.4 Intra-frame recovery... 22

3.4 Error Resilience in MPEG-4 Audio... 23

3.5 Effects of errors on Audio Quality... 23

3.6 Summary.. 24

4 BANDWIDTH ADAPTATION...25

4.1 Congestion Control ... 26

4.2 Variable bit rate encoding .. 27

v

4.3 TCP friendliness.. 27

4.4 Binominal congestion controls ... 28

4.5 Congestion control in RTP ... 30

4.6 Summary.. 32

5 SECURITY ...33

5.1 Security Requirements ... 33

5.2 Suitable Algorithms .. 34

5.3 Encryption and RTP... 35

5.4 Summary.. 36

6 IMPLEMENTATION ...38

6.1 Platform ... 38
6.1.1 Java Media Framework .. 38
6.1.2 Sound in Java and JMF .. 40

6.2 System block diagram... 41

6.3 MPEG-4 Codecs .. 42
6.3.1 MPEG-4 Video Codec ... 43
6.3.2 MPEG-4 Audio Codec ... 45

6.4 Low performance codecs .. 47

6.5 RTP .. 47
6.5.1 RTP and MPEG-4 .. 48

6.6 Files .. 50
6.6.1 Synchronization.. 50

7 EVALUATION..52

7.1 Selective intra-frame addition.. 52

7.2 Bandwidth Adaptation ... 56

7.3 Security Overhead... 56

8 FUTURE WORK ..59

vi

APPENDIX A H.263 VS. MPEG-4 VIDEO ..60

APPENDIX B THIS WORK VS. MICROSOFT NETMEETING......................61

APPENDIX C BINOMINAL CONGESTION CONTROL ANALYSIS.............62

LISTS ..66

List of Figures .. 66

List of Tables.. 67

List of Formulas .. 68

BIBLIOGRAPHY...69

1

1 Introduction

Internet broadcasting techniques are wide spread and have been the focus off many

research projects. Due to high transmission and coding delays these systems often

lack interactivity. In addition security, bandwidth adaptation and transmission error

recovery are not fully addressed in most of today’s systems.

This thesis introduces a new streaming system to deliver real-time video and audio

data with low-delays across the Internet suitable for interactive conversation. Packet

loss, jitter and changing bandwidth availability describe the challenges that have to be

handled by the system, since the Internet is a best effort network and does not

guarantee quality of service. Furthermore security, error recovery, bandwidth

adaptation and high compression are needed, to deploy a full functional system.

We introduce and evaluate two techniques - adaptive key frame addition and

binominal congestion control for RTP - to reduce the impact of the changing

conditions. A MPEG-4 low-delay real-time streaming system for low bit-rates was

implemented to incorporate and evaluate the introduced techniques.

2

1.1 Motivation

Many applications can benefit from high interactive streaming:

• Video Conferencing

• E-learning

• Remote control, example: robot control via an on-board camera or supervising

laboratory experiments

For them interactivity is essential, but most of today’s systems only allow limited

interactivity due to high transmission delays. Moreover most systems incorporate no

secure transmission and use low compression coding, resulting in blocky and staccato

video. The consequence is a reduced acceptance by users, although a more interactive

version of these applications would offer high benefits to them. To achieve a high

acceptance of video conferencing and e-learning by the community, these three key

issues have to be solved:

• Bandwidth:

The bandwidth today’s systems require is high and so their use is limited.

• Delay:

The transmission delay is too high to allow satisfying interactivity

• Security:

Today’s systems to do not incorporate secure transmissions

This thesis evaluates possible approaches to accomplish more interactivity while

reducing the required bandwidth and incorporating secure sessions. New coding

3

techniques allow higher compression of audio and video data, thereby reducing the

required bandwidth. We introduce a system that - in interaction with these coding

techniques - increases the interactivity and ensures privacy.

Figure 1-1 Basic block diagram of a video conference system

1.2 Challenges

User studies [1] indicate that users consider delays larger than 300ms not suitable for

interactive conversation. Since the Internet is a best-effort network and does not

guarantee quality of service, several problems have to be solved before low delay

streaming, suitable for interactive communication, via the Internet can be widely

deployed:

• Bandwidth variation:

Available bandwidth varies with time, the stream has to be adjusted to these

changing conditions to prevent packet loss.

Capture /
Playback

encoding

Transmission

decoding

Playback /
Capture

decoding encoding

4

• Packet loss:

Due to the changing conditions packets can be lost. Lost packets can severely

influence the quality of received streams.

• Packet errors:

Due to interference the data of packets can be changed. The receiver has to

reduce the impact of invalid packets.

• Delay variation:

Transmission delays vary with time due to changing link conditions. The

receiver has to handle this and try to playback the data at a constant rate.

Hereby it is important to keep multiple streams (for example audio and video)

synchronized.

We address these problems and a develop solutions. We present a complete system

that provides high interactivity while adapting to changing network conditions, we

achieves this by adjusting transmission rate and controlling the quality of the received

streams.

1.3 Overview

The next chapter gives an overview over the work our project is based on. We

introduce video and audio compression, focusing on MPEG-4 [9,10]. We will also

discuss transport protocols, error concealment and control schemes for streaming

media.

5

In chapter 3 we evaluate the effect of transmission errors on the video and audio

quality of a MPEG-4 bit stream and present a technique to reduce the effects of lost

video frames, thereby focusing on environments with real-time concerns.

Next we argue (chapter 4) that adjusting to the changing conditions of an internet link

is necessary to guarantee high transmission quality while sharing the links with other

applications fair. We introduce binominal congestion controls and combined one of

its algorithms (SQRT) with the RTCP feedback to allow smooth bandwidth

adjustment

In chapter 5 we propose an approach for secure transmission of RTP sessions. We

encrypt both RTP and RTCP packets. This allows hiding the complete

communication in the traffic of the internet.

The implementation is described in chapter 6, while chapter 7 evaluates our proposed

models and approaches.

6

2 Related Work

This chapter gives an overview over the work our project is based on. We introduce

video and audio compression, focusing on MPEG-4 [9,10]. We will also discuss

transport protocols, error concealment and control schemes for streaming media.

2.1 Media Transport

The Real-Time Transport Protocol (RTP) [2,3] provides functionality to transport

real-time data, including audio and video. The control of streams is handled by a

control protocol called Real-Time Transport Control Protocol (RTCP) which is a part

of RTP.

Real-Time Application

Real-Time Protocol (RTP)

Real-Time Control Protocol (RTCP)
UDP TCP Other networks

(ATM …) IP
Figure 2-1: RTP architecture

RTP is a low-overhead protocol adding support for streaming applications with real-

time constraints to networks. It allows the continuous delivery of media and provides

mechanisms to control its timing, detect data loss, secure the transmission and

7

identify the content of a particular stream. This is achieved by an additional header,

consisiting of timestamps, sequence numbers and source identification.

The control protocol RTCP allows the management of real-time session consisting of

multiple participants and streams, participants can join and leave a transmission and

identify each other. Furthermore it provides quality of service feedback from

receivers (indicating packet loss, jitter and round trip time) and supports for

synchronization of different streams. RTCP introduces two new packets, sender and

receiver feedback packets, these are sent in regular intervals by the participants to

provide the above described information.

2.2 MPEG-4

The aim of the MPEG (Moving Picture Experts Group) [4] video and audio

compression standards is to provide generic coding methods for moving images and

voice for various applications such as digital storage and communication.

So unlike the H.261 [5] and H.263 [6] standards which are specifically designed for

the compression of moving images for video conferencing systems at bit rates of p *

64Kbps, MPEG is considering a wider scope of applications. For example it aims at

storage as well as transmission. So it also defines transportation, file formats and

synchronization of audio and video. The MPEG-1 [7] and MPEG-2 [8] standards

describe high bit rate video and audio (MPEG-2 is used to compress data for DVD

and HDTV); while MPEG-4 [9,10] has the goal to produce low bit-rate streams of

8

audio and video data. Furthermore MPEG-4 has error resilience capabilities to reduce

the impact of a lost frame or bit errors caused by transport across a lossy connection.

A MPEG-4 video frame is coded as a Video Object Plane (VOP). For easier

understanding and without loss of accuracy or generality we will use the words frame

and VOP interchangeably.

MPEG-4 audio is called AAC (Advanced Audio Coding) [9,11]. MPEG-4 AAC is

based on MPEG-2 AAC with additions to improve error resilience and reduce coding

delay.

2.3 RTP and MPEG-4

RFC 3016 [12] describes the direct mapping of video and audio streams on RTP-

packets, while a RFC draft [13] introduces a new RTCP packet for immediate

feedback. We use it to utilize the resynchronization feature of MPEG-4 streams.

Usually a predictive frame bases its prediction on the previous frame; in addition

MPEG-4 allows basing the prediction on any frame. To signal this, a special

resynchronization marker is used.

The features described above make MPEG-4 an ideal candidate for streaming.

To support even higher compression, new layers [14,15] have been recently (late

2002) added to MPEG-4; they allow even lower bit rates without reducing quality and

are currently under heavy development.

9

2.4 Quality Control

Current research has focused on techniques for (selective) retransmission of corrupted

or lost data [16,17,18,19]. We will show (chapter 3) that retransmission cannot be

applied when high interactivity is needed.

Other research has been done on error concealment and resilience [20,21] of real-time

audio and video transmissions. MPEG-4 has build in error concealment features

[9,10,22], that limit the propagation of errors resulting from bit errors or lost frames.

2.5 Congestion Control

As congestion control is needed for TCP connections to use the bandwidth in an

optimal and fair way, it is needed for real-time streaming. Early research

[23,24,25,26,27] on multimedia congestion control proposed models similar to TCP.

They were like the TCP congestion control, just without reliability and in-order

delivery. Newer ones also focus on reducing the high oscillations of the transmission

rate caused by TCP congestion control schemes [28,29,30].

2.6 Ambient Computing Environment (ACE)

“The ACE project involves the design and implementation of an environment where

embedded resources are at our finger tips. Ambient Computational Environment

represents a computer architecture in which computational resources, sensors, and

10

actuators, in their widest sense, are available in our offices, conference rooms,

hallways, and other places. Users must be able to control, with authorization, these

computational resources within their proximate area, and access computational

services that are long-lived and extremely robust. These users must also be able to

interact in multiple ways with ACEs. We are developing prototype Ambient

Computational Environments with these features, and are exploring the related

architectural and deployment issues.” [31]

ACE has been developed here at the Information and Telecommunication Technology

Center (ITTC) [32] at the University of Kansas [33].

11

3 An adaptive intra-frame insertion algorithm

The loss of video packets during transmission has big impact on the bit-stream

quality, since the amount of redundant information in the encoded bit stream is

limited. Internet Protocols like TCP guarantee delivery. They allow recovery from

packet loss by packet retransmission, were retransmission requires buffering and so

increases the transmission delay. These protocols also use congestion control

algorithms to reduce the possibility of packet loss. A congestion control algorithm

reduces the transmission rate after the loss of a packet and probes for available

bandwidth by increasing the transmission rate, when a packet has been successfully

delivered.

RTP transmission is usually encapsulated in an UDP-protocol, which does not

guarantee the delivery of packets. However, RTP provides features to signal the loss

of a packet based on sequence numbers. Another problem is the validation of the

received packets. The UDP checksum can be used to signal the flipping of bits, but is

not useful for recovery.

Retransmission of lost or invalid packets is an appropriate solution [16,17,18,19] for

streaming applications that use long buffers. But for real-time streaming with the goal

of high interactivity (example video conferencing), the retransmission would add high

delays and is not useful. To allow high interactivity, the end-to-end delay should be

below 300ms. Since the communication is bidirectional, each direction should have

an average delay below 150ms. Assume an average 80ms network transmission

12

delay, the delay after retransmission would be 240ms. In addition the other direction

would add another 80ms delay, summing up to 320ms. Since also capture, encoding,

encryption and their counterparts on the receiver side cause delays (on fast systems

about 100ms); our average delay would be 120ms above the acceptable maximum.

Buffers to compensate for network transmission jitter further increase the delay; even

without retransmission the goal of high interactivity is a challenge. In this chapter we

evaluate a solution for this problem.

3.1 MPEG-4 frame types

MPEG-4 video uses inter frame prediction. This means, the decoding of some frames

is based on previous or succeeding ones.

Figure 3-1 Dependencies between frames of a MPEG-4 bitstream

The forward prediction frame (P-frame) is based on the previous non B-frame. A B-

frame is bidirectional predictive frame; its decoding is based on both the previous and

I-frame I-frame P-frame P-frame B-frame P-frame I-frame

13

succeeding non B-frame. The intra-frame (I-frame) is used as reference frame and

does not depend on any previous or succeeding frame. Figure 3-1 shows these

dependencies. Since the encoding and decoding of B-frames depends on data of

succeeding frames, this frame type is not suitable for low-delay real-time

transmission.

In inter-frame prediction, as it is used in MPEG-4, errors caused by lost or corrupted

frames propagate between frames. Recovery is guaranteed at reference frames (so

called I- or intra-frames). In the current research the words reference-frame, key-

frame and intra-frame are used interchangeably to describe such a recovering frame

type.

Reference-frames contain a fully encoded image and do not depend on previous or

later frame. Since reference-frames are significantly bigger than predictive frames, a

frequent use of reference frames would result in a higher bit rate. The typical interval

between reference-frames depends on the video to encode. When the current video

scene contains much motion, a cut or fades, the encoder adds a reference-frame,

whenever the size of a predictive-frame is bigger than the size of a reference-frame.

This will especially be after a cut or fade. A typical upper bound for the reference-

frame interval is 10 to 20 seconds.

bit-rate (kbps) frame type avg. frame
size (bytes)

min frame
size (bytes)

max frame
size (bytes)

prediction 239 57 1705 60
intra 1998 1249 7108
prediction 1228 319 4076 300
intra 4012 2835 8350
Table 3-1 frame size for different frame types and bit-rates

14

Table 3-1 shows the average frame sizes of the frame types intra and predictive; the

frame-rate of both tests was 30 fps. For the tests we encoded a typical video

conference sequence (Figure 3-2), so this sequence does not contain much motion or

any cuts or fades. As a result the prediction sequences are long; we set an upper

bound between two intra-frames of 10 seconds. In the test the average time between

two intra frames was 9.4 seconds. The difference is based on the fact, that sometimes

the hand of the speaker in the conference came close to the camera and so forced, like

a cut in a movie, an intra-frame.

Figure 3-2 typical video conference situation

3.2 Error Resilience in MPEG-4 Video

The MPEG-4 standard specifies techniques to improve robustness of the video stream

[9]. It provides built-in error resilience capabilities to detect and localize errors,

recover after errors and to visually conceal the effect of errors.

15

Flexible re-synchronization markers help the decoder to ignore invalid or identify lost

data. The encoder can use data partitioning and header protection to organize the

stream to make it more robust to transmission errors by providing redundancy for

important fields of the bit stream.

The long predictive sequences used by MPEG-4 cause propagation and persistence of

errors to increase. The addition of a reference-frame would cause resynchronization

and stop the propagation effects.

MPEG uses variable length coding; this coding allows high compression rates, but is

very sensitive to bit errors. To minimize the effects of bit errors in this coded data, the

MPEG-4 standard supports reversible variable length coding (RVLC). Data coded in

reversible length coding can be decoded in forward and reverse direction without

significant impact on the coding efficiency; so a single bit error would not make the

coded data unusable. This feature also ensures that bit errors do not propagate in a

frame.

Based on the low redundancy observable errors may be more severe compared to

MPEG-2, and since MPEG-4 uses long prediction sequences their effects may persist

longer. MPEG-4 does not target the high demanding environments as MPEG-2 does,

so usually the higher quality reduction caused by bit errors is acceptable.

16

3.3 Effects of errors on Video Quality

To decode a bit stream with inter frame dependencies successfully, the preceding I-

frame and P-frames are needed. The impact of a missing I-frame is significantly

bigger than the loss of a P-frame. The effects of bit errors and data loss in a MPEG-4

bit stream are widely studied [22,34,35].

0

5

10

15

20

25

30

35

0.01 0.05 0.1

bit error rate

PS
N

R
 in

 d
b

Figure 3-3: Video quality depends on frame loss rate

Figure 3-3 shows the Peak Signal to Noise Ratio (PSNR) of a decoded frame for

different bit errors [22]. The test sequence is the “Tennis” sequence at 146kbps.

PSNR can be used to describe the degradation of an image due to compression and

transmission errors. It is based on the Root Mean Squared Error (RMSE). Let f be the

17

original image and f’ the degraded image, both with size NxM , the RMSE can than

be calculated by the following formula (Formula 3-1):

() ()()∑∑
−

=

−

=

−=
1

0

1

0

2,',
*
1 N

x

M

y

yxfyxf
MN

RMSE

Formula 3-1: Root Mean Squared Error (RMSE)

A zero RMSE would be computed for identical image. The PSNR is derived from the

RMSE by denoting it to db. So for an eight bit value with values from 0 to 255, the

PSNE can be calculated with the given Formula (Formula 3-2):

RMSE
LogPSNR 25520 10=

Formula 3-2: Peak Signal Noise Ratio (PSNR)

PSNR and RMSE can be calculated for both luminance and chrominance of a given

image and than averaged to compute an overall PSNR value. An image with PSNR

below 20 is usually not viewable, values above 25 are acceptable. Please note that the

PSNR is a mathematical way to describe image degradation, the subjective quality

may differ.

The MPEG-4 error recovery ensures a minimal quality degradation due to bit errors

and since internet streaming has a low bit error rate, bit errors are not a concern.

However, encryption is an issue. A bit error in an encrypted bit stream unpredictably

garbles the decrypted bit stream and makes decoding impossible. As a result such a

garbled frame has to be considered a lost one.

18

A frame can be lost due to multiple reasons, the frame could either be lost during

transmission or bit errors make it unusable. N. Feamster shows in his research [16]

that the loss of a P-frame has minor impact on the video quality, while a lost I-frame

causes a high quality decrease and long error propagation.

Figure 3-4 the effects of frame loss on the frame rate with a certain PSNR, figure taken from [16]

His research [16] states that recovery only from I-Frame loss is as efficient as

recovery from all lost P-frames (see Figure 3-4). Since an I-frame is only emitted into

the stream about every 10 seconds, the quality degradation caused by the loss of one

intra-frame is high compared to the quality degradation caused by the loss of a

predictive frame.

19

The reason is simple: A P-frame describes the differences to the previous frame; it

uses the same motion vectors as the previous frame. An I-frame, nevertheless,

introduces a new set of motion vectors. When an I-frame is lost, the succeeding P-

frame will be decoded with motion vectors based on the wrong set.

Since the main target of low-delay real-time streaming is video conferencing, we do

not have a high demanding environment. The errors caused by loss of a P-frame can

be accepted, but the ones caused by the loss of an I-frame cannot be accepted due to

their high quality decrease.

Based on this we introduce our model: Since retransmission of a frame is not possible

due to real-time concerns, we can use the resynchronization packets introduced by the

draft [13] for immediate feedback of RTP sessions. If a receiver losses a packet, it

will send this resynchronization packet to the transmitter. Upon receiving such a

resynchronization request, the encoder will base further encoding on the image, the

request refers to. Since each frame contains the number of the image its coding is

based on, the decoder can resynchronize itself upon receiving the frame containing

the resynchronized image. This solution would guarantee that after a certain

transmission delay the error propagation would be stopped. The approach

accomplishes the goal of stopping the error propagation and guarantees a low RMSE,

but the price is a high overhead. For every lost packet a response is send by the

receiver, especially in wireless environments this may be required often. In addition

there is a high computational overhead when encoder and decoder have roll back and

base the prediction on another image. Much data has to be held for that, especially for

20

mobile devices with low performance this may be an issue. In the paragraph before

we have realized that the loss a P-frame does not have big impact on the quality.

So the appropriate approach would be only to send the resynchronization message

when a reference frame (I-frame) has been lost.

3.3.1 Custom RTP header addition

Since RTP and MPEG-4 do not provide controls to detect the loss of a certain frame

type, we add an additional header between the RTP header and the payload. The RTP

standard is defined very flexible, custom headers can be added without impact on

compatibility. The new header introduces sequence numbers for key frames and so

allows the receiver to detect key frame loss.

This value is a 4 byte (to keep byte alignment) sequence number added between the

RTP-Header and RTP-payload as described in the RTP definition (section 5.3) [2].

3.3.2 Immediate RTP feedback

To signal the loss of a key frame, we send an immediate RTCP feedback packet. This

packet is built analog to the instant feedback packet introduced in [13].

21

Figure 3-5 Instant RTCP feedback packet (figure taken from [13])

The values are set as defined in [13], with payload type (PT) set to 206 (payload

specific feedback message) and feedback message type (FMT) set to 10 (custom

value). The feedback control information (FCI) is the 4 byte sequence number of the

lost key-frame, length and both SSRC fields are set accordingly to the RFC draft.

3.3.3 Sender behavior

Since encoding is done in real-time, the sender can decide what to do up on receiving

a synchronization packet. It can base its encoding on the frame the receiver has

requested or it can just add a reference-frame to the bit stream. When it bases its

encoding on the requested frame, the resulting bit stream will contain a

resynchronization marker allowing the decoder to resynchronize to the appropriate

frame. Usually the encoder has added a reference-frame for a reason: It can be that

the scene to be encoded has changed very much (example: cut in a movie, very high

motion) or it has added the key-frame to keep the length of a prediction sequence

below a certain value. So when a key-frame is lost due to transmission errors, the best

22

way would be to add another key-frame to the stream. This solution has a minimal

overhead, since no encoder or decoder rollback is required. To match bandwidth

limitations the number of key frames added to the bit stream per second has be kept

below a certain value.

Since this approach does not do any changes to the MPEG bit stream, it can be used

in combination with error concealment techniques and post processing tools to limit

the effects of bit stream errors or the loss of prediction frames.

3.3.4 Intra-frame recovery

In the previous chapters we describe an approach to recover from the loss of intra-

frames. Now we want to formerly introduce the model:

when a frame is received:
/* check whether the frame is an intra-frame */
if the frame is an intra-frame
 /* it is an intra-frame */
 /* log the number this intra-frame */
 lastReceivedIntraFrameNum = number of this frame
else
 /* it is not an intra-frame, so test for a lost intra-frame: */
 /* compare the log to the number of the intra-frame the */
 /* received frame is based on */
 if lastReceivedIntraFrameNum !=
 number of the intra-frame this frame is based on
 /* the last intra-frame was lost, so send feedback */

send immediate feedback to sender to force an
 intra-frame

23

3.4 Error Resilience in MPEG-4 Audio

The AAC audio standard specifies profiles (Long Term Prediction, LTP and Low

Delay, LD) [9,10] with no inter frame dependencies. The Long Term Prediction uses

a backward prediction based on preceding frames to optimize compression, while the

LD profile adds an encoder and decoder model with low delay (LD). The quality

differences of the LTP and LD profiles to the main profile are minimal. The good

encoding quality of these two profiles and the fact that transmission errors and data

loss will only effect the actual frame, no error propagation will occur, make these

profile ideal for streaming.

The error robustness and error protection in MPEG-4 AAC reduces the perceived

degradation of the decoded audio data caused by bit corruption. The techniques of the

audio error resilience features are similar to the ones of video (see chapter 3.2).

3.5 Effects of errors on Audio Quality

Without error protection and resilience features turned on, tests [36] have shown that

bit error rates up to 310− are acceptable. When these tools get turned on, the quality of

the erroneous (error rate: 310−) and the error-free stream are nearly equivalent. Since

errors cannot propagate from frame to frame no retransmission model is introduced

for audio.

24

3.6 Summary

In this chapter we evaluated the effect of transmission errors on the video and audio

quality of a MPEG-4 bit stream. Since lost audio frames do not cause error

propagation, no additional techniques are needed to handle audio frame loss.

However, lost video frames cause error propagation. We presented a technique to

reduce the effects of lost video frames, thereby focusing on environments with real-

time concerns. These real-time systems allow us, to take advantage of the fact that

encoding is done live and so we can base encoding on the feedback from the receiver.

The reader may note, that our approach adds low overhead to the bit stream and does

not influence post processing and error resilience capabilities while it is conform with

the RTP RFC [2,3].

25

4 Bandwidth adaptation

The conditions of the internet regarding available bandwidth change with time. Not

adjusting to these conditions will result in random packet loss and non friendly

behavior to other applications with which the bandwidth is shared.

To deliver a stream in the highest possible quality for a given bandwidth a real-time

application has to adjust its bit rate to the changing conditions. To adjust properly an

application should:

• Adapt to the loss of packets: For example by adding a key frame for

resynchronization, as shown in chapter 3.

• Adjust the quality (bit-rate) of the stream to the available bandwidth.

For applications with no real-time constraints the solution is easy: They can afford a

long buffer time, so they could just buffer up a huge amount of data during start. This

buffer is used to smoothen bandwidth oscillations. Many of today’s applications use

this approach [37,38,39]. For applications with real-time constraints this approach is

not feasible. This chapter discusses a congestion control that is usable for real-time

streaming. We introduce TCP-friendly binominal congestion control, which is a

superset of the TCP congestion control algorithm. In our model we only use a small

buffer to accommodate transmission jitter. We will show that by using SQRT [28], a

member of the binominal congestion control algorithm family, we can achieve:

• TCP-friendly bandwidth adaptation

• Reduce rate oscillations

26

4.1 Congestion Control

Due to variations in the available bandwidth, congestion occurs; it occurs at

transmission bottlenecks. Since unlimited buffering is not possible at these

bottlenecks, random packet loss will be the result. During a TCP-transmission a

successful delivery of a packet is acknowledged by the receiver; based on this

feedback the transmitter will reduce or increase its bit-rate. Since streaming is usually

based on UDP, such an acknowledgement is not sent. So the RTCP control messages

sent by the receiver have to be used to detect packet loss and to adjust to bandwidth

bottlenecks.

When during a TCP-transmission a packet loss is detected the sender will reduce its

bit rate by half and than slowly increase it until the next packet loss is detected. This

results in a high oscillation of the bit rate. While during file transfers high oscillations

of the throughput are not an issue, high oscillations during real-time streaming would

result in a non smooth playback. So the traditional additive increase / multiple

decrease (AIMD) [40] used by the TCP congestion control algorithm is not feasible

for streaming media. We need an algorithm that also probes for bandwidth and

reduces its throughput up on congestion like AIMD does, but is should not introduce

high oscillations. Another requirement of our algorithm is TCP-friendliness to

guarantee fair bandwidth sharing.

27

4.2 Variable bit rate encoding

The MPEG-4 video standard allows video to be encoded at variable bit rates. Since

the video is encoded in real-time, the available bit rate of the link can be feed in the

encoder. This allows great advantages compared to non real-time encoding systems.

Non real-time encoding systems have to store the streams in various bit rates to

satisfy the changing conditions of a link. This is not an optimal solution, since

streams cannot be stored in every possible transmission rate and it introduces storage

and computing overhead. Scalable encoding may reduce the amount of stored data

needed, but still does not allow to support all bit-rates. Variable bit-rate encoding

done in real-time allows adjustment to the changing conditions in an optimal way.

4.3 TCP friendliness

The reasons for implementing a congestion control into an application are simple:

• An application with congestion control makes more efficient use of the

network this usually results in higher performance.

• Applications are capable of running over a much wider range of bandwidths,

if they adjust to the changing conditions. This makes them more useful in the

Internet.

• Fair congestion control algorithms prevent the network from overload and so

an congestive collapse

28

So to be safe for use in the Internet an application has to implement a protocol with

congestion control. Its congestion control algorithm has to be stable and interact well

with the existing widely used TCP. This type of protocol is TCP-friendly [41],

ensuring that traditional TCP transmissions based in the AIMD algorithm get a fair

allocation of bandwidth while sharing a link with such an application and vice versa.

It now can be argued that a real-time transmission should have a higher priority than

traditional TCP-transmission because the TCP-connection usually does not have real-

time constraints. However, this claim cannot be judged, since today’s internet does

not provide quality of service nor prioritize traffic, and not all traffic that is

transmitted through a link is our traffic. Based on that, all applications should be

TCP-friendly, especially because streaming is meanwhile widely used and so its

percentage of the internet traffic increases.

4.4 Binominal congestion controls

Binominal congestion control is a superset of TCP’s AIMD congestion control

algorithm; it is defined as (Formula 4-1):

Increase, when window gets

acknowledged
10;:

0;:

<<−←

>+←

+

+

ββ

αα

δ
l
tttt

k
t

trttt

wwwD

w
wwI

Decrease, when packets are lost

Formula 4-1: Binominal congestion control

29

Let I be the increase of the window size (in packets) as a result of an acknowledged

reception, with rtt being the round trip time. D describes a decrease of the window

size (again in packets) as an effect of a packet loss. α and β are constants.

This generalization includes the entire linear algorithms:

• For 1,0 == lk : AIMD (additive increase, multiple decrease)

used by TCP

• 1,1 =−= lk : MIMD (multiple increase, multiple decrease),

used by the slow start algorithm in TCP

• 0,1 =−= lk : MIAD (multiple increase, additive decrease)

• 0,0 == lk : AIAD (additive increase, additive decrease)

In our model we use the values 5.0,5.0 == lk . This algorithm is called SQRT,

because the increase is inversely proportional and the decrease is proportional to

square-root of the window size. Research [28,42] has shown that this algorithm is

TCP-friendly and achieves lower bit rate oscillations than traditional TCP-

algorithms. In the AIMD algorithm the window size reduction is proportional to

windows size, while in SQRT it is proportional to the square-root of the window

size; as a result the window size oscillations are less. This makes this algorithm a

perfect candidate for media streaming.

In their research [42] D. Bansal and H. Balakrishnan suggest values for βα ,

which satisfy the condition]7.0..5.0[/ =αβ . We choose the values

6.0,1 == βα as it is done in their paper. Figure 4-1 shows the lower oscillations

30

and still fair bandwidth share of SQRT compared to TCP’s AIMD congestion

control algorithm.

Figure 4-1: Window size of SQRT and AIMD (TCP) congestion control

4.5 Congestion control in RTP

Since UDP and RTP protocols do not send acknowledgements for received packets, a

different approach has to be taken to detect packet loss and allow congestion control.

The RTP connection would send control packets in different intervals. The control

packets allow the detection of lost packets. A linear congestion control model, which

uses these control messages for congestion detection, has been introduced [26]. In our

model we combine this model and the binominal congestion control algorithm SQRT

for smooth data throughput.

In a RTP-session the receiver frequently sends report packets for each incoming

stream. The report packet includes the total amount of lost data, the fraction of data

lost since the last report was send, the RTP-timestamp of the last received sender

31

report, and a timestamp indicating the time elapsed between receiving the last sender

report and sending this receiver report. When the sender knows the time of arrival of

such a receiver report it can compute the round trip time.

Let t be the arrival time of the receiver report, DLSRt the time elapsed between

receiving the last sender report and sending the receive report and LSRt the RTP-

timestamp of the sending of the last sender report. The round trip time rttt can be

calculated the following way (Formula 4-2):

LSRDLSRrtt tttt −−=

Formula 4-2: Round trip time (RTT)

The reader may note that is calculation does not require clock synchronization of the

participants and so can be considered accurate.

Based on the amount of lost packets and the round trip time the transmission rate can

be increased or decreased using the SQRT algorithm.

Let r be the transmission rate of a link, w the transmission windows size in packets,

MTU the maximal packet size and rtt the round trip time. The maximum packet size

MTU is a constant protocol depending value, the round trip time can be computed

with the above equation using RTP control packets. The following equation (Formula

4-3) shows how transmission rate and window size correlate:

MTU
rttrw *

=

Formula 4-3: Window size

32

The combination of this equation with the introduced SQRT algorithm allows

calculating a new transmission rate up on successful delivery or packet loss (Formula

4-4):

Increase, when window gets

acknowledged

rtt
MTUrrrD

rrtt
MTUrrI

t
ttt

t
trttt

*6.0:

1:
2
3

−=

+=

+

+

δ

Decrease, when packets are lost

Formula 4-4: Binominal rate control

4.6 Summary

In this chapter we argued that adjusting to the changing conditions of an internet link

is necessary to guarantee high transmission quality while sharing the links with other

applications fair. We also stated that traditional congestion controls as provided by

TCP are not appropriate for real-time streaming, since these react with high bit-rate

oscillation to packet loss. We introduced binominal congestion controls and

combined one of its algorithms (SQRT) with the RTCP feedback to allow smooth

bandwidth adjustment.

33

5 Security

In this chapter we focus on the problems of security [43]. For streaming the security

issues are the same ones as for traditional communications, such as fraud,

eavesdropping and prevention of communication. We add security to our model to

ensure that the requirements everyone has for communication cannot be subverted by

other people.

5.1 Security Requirements

To ensure the privacy we have to guarantee:

• Data Integrity:

Mechanisms prohibiting and detecting substituted, appended or removed data

have to be in place

• Authentication:

The sender of the stream has to be authenticated; often also the receivers must

have authorization to receive it.

• Confidentiality:

It should be not possible that someone not authorized is able to see the content

of a transmission

34

• Key Distribution:

To ensure confidentiality usually encryption is used, a mechanism has be in

place to allow the save distribution of keys the decrypt the received data.

ACE (Ambient Computing Environment, see chapter 2.6) implements save

mechanisms for authentication and key distribution. We will use these for our project.

To allow interoperation with ACE and to guarantee a high security-level our model

has to allow a key-change at any time, even during a transmission

Streaming of media for interactive sessions has real-time constraints, the algorithms

used to ensure integrity and confidentiality have to be fast.

5.2 Suitable Algorithms

Since our system requires strong real-time encryption done without additionally

hardware, a “software friendly” encryption algorithm is needed. Here “software-

friendly” refers to an algorithm that can be implemented in software efficiently. DES

(Data Encryption Standard) [44] and Triple DES are outdated, not secure enough for

today’s applications and not “software friendly”. In addition public / private key

cryptography is not suitable, since it is too slow. So the preferred algorithm is AES

(Advanced Encryption Standard) [48] for cryptography; AES is “software-friendly”

and supports key length of 128, 192 and 256 bits. 128 bit keys are considered safe for

today’s applications.

35

MD-5 (Message Digest) [45] is a fast hashing algorithms, but based on its design and

hash length [46], we do not consider it safe enough. Although SHA-1 (Secure Hash

Algorithm) [47] is a slower than MD5, its design and hash length [46] offers the

security needed.

5.3 Encryption and RTP

To ensure the privacy of the transmission all data send (including the RTCP control

messages) between the participants has to be encrypted. We do this by introducing

another layer to our data delivery model, as shown in Figure 5-1.

 RTP / RTCP RTP / RTCP

 Encryption layer

UDP TCP UDP TCP
IP

Other networks
 (ATM …) IP

Other networks
(ATM …)

No encryption Encryption

Figure 5-1: Additional encryption layer

First the hash of a RTP or RTCP packet is computed and attached to its end, we use

the SHA-1 digest [47]. The implementation is kept flexible enough to use any type of

hash and encryption. Next the packet and the attached hash is encrypted by using the

fast Advanced Encryption Standard (AES) [48] algorithm. Since RTP and RTCP

packets start with known plaintext a padding of random data and length has be added

to the beginning of each packet during encryption.

36

Upon delivery the receiver can now decrypt the message using the key delivered by

the ACE security framework [49]. Than it can compute the hash of the received data,

and compare it to the hash delivered with the data. While the encryption guarantees

confidentiality the combination of encryption and hash ensure integrity. When due to

transmission errors the computed hash does not be equal to the hash that was attached

to a received packet, the received packet is not useful anymore. There are no ways to

restore it, this is based on a characteristic of encryption: Does one bit of a packet get

changed, the rest of the decoded packet will be randomly garbled.

Figure 5-2: Encrypted RTP / RTCP packet

5.4 Summary

In this chapter we proposed an approach for secure transmission of RTP sessions. We

encrypt both RTP and RTCP packets. This allows hiding the complete

communication in the traffic of the internet. Since also the RTP and RTCP headers

are encrypted it is even very hard to detect that this communication consists of real-

U
D

P
H

ea
de

r

Pa
dd

in
g

R
TP

 /
R

TC
P

H
dr

.

D
at

a

H
as

h

Pa
dd

in
g

: Encrypted

37

time audio and video data. The only way to detect this is an analysis of the timely

fashion of the traffic flow, since RTCP sends characteristic feedback packets.

38

6 Implementation

This chapter describes our experience with implementing these models into a video

and audio streaming system. It describes the interaction with existing capture and

playback tools, codecs and the ACE system.

6.1 Platform

We use Java [50] and the Java Media Framework (JMF) [51] for our implementation.

This gives certain platform independence, since Java interpreters are available for a

huge number of systems. The Java Media Framework also exists as pure Java version

allowing its execution on all Java interpreters. In addition high performance system-

depending versions are available, they allow capturing and fast playback of video and

audio and support more codecs. These additional codecs are written in C to guarantee

high performance for encoding and decoding.

Currently high performance versions are available for Linux, Windows and Solaris.

6.1.1 Java Media Framework

The Java Media Framework (JMF) provides a flexible framework to integrate time

based media into Java applications. The JMF API is build from several layers. Data

sources, players and processors are the essential parts of the high level API; they

manage capture, presentation and processing of media. The lower API supports the

39

flexible integration of custom extensions and components. This offers a simple and

powerful API to build media support into java applications, while keeping the

framework flexible enough for future extensions to support new media types and

formats.

Java Application

JMF High Level API

JMF Plug-In API

Codec Effect Source Renderer Multiplex

Figure 6-1: JMF API architecture

In addition to capture, presentation and processing of audio and video data, the

framework supports different file types and the streaming of data. It supports RTP

and RTSP, and allows the synchronization of streamed and non-streamed media.

Figure 6-2: Processing media with the JMF

In the Java Media Framework processors (Figure 6-2) allow to manipulate media.

This allows encoding, packetizing for streaming, multiplexing, pre- and post-

processing. Examples for pre- and post processing are gain control or resizing.

Data source Data source Processor

40

Multiple Processors can be connected to manipulation chains, or can process audio

and video data parallel.

6.1.2 Sound in Java and JMF

JMF supports sound capture and playback via the Java Sound API [52]. The Java

Sound API is not made for real-time capture and playback since it delays the data due

to huge buffer sizes. The typical delay of the Java Sound API is about 200ms, this

might not be a problem for normal playback and capture, but for real-time

applications this is inappropriate.

To solve this problem we implemented a new JMF low-delay audio data-source and

renderer based on Java Native Interface JNI [53] calls to the Advanced Linux Sound

Architecture ALSA [54].

Now the delay is only limited by the system hardware, load and scheduling. On

systems with a good soundcard (we used Sound Blaster Live) we were able to achieve

delays below 30ms for capture and playback; these systems were equipped with

average hardware (dual Pentium III, 700 Mhz, 1GB RAM) and driven under high

load (>90% CPU load). For full-duplex (simultaneous capture and playback) we

achieve delays below 60ms on these systems. Based on the implementation, an audio

frame has a size of a third of the delay. So the 60ms delay results in delivering every

20ms an audio frame of 20ms length. A MPEG-4 AAC audio frame has a size of

1046 samples, which equals about 23 ms when sampling at 44.100 kHz, this matches

well with the capture and playback frame sizes we achieved.

41

6.2 System block diagram

In the previous chapter we described how the Java Media Framework supports the

manipulation and transmission of audio and video data. Based on JMF we

implemented our sender and receiver, a block diagram is shown in Figure 6-3.

Figure 6-3 System block diagram

As described in the earlier chapters, the real-time control protocol (RTCP) frequently

sends sender and receiver reports, these allow to compute the round trip time, detect

packet loss and to synchronize the audio and video stream. When packet loss is

detected, the encoder will reduce its bit-rate; when packets are transmitted

successfully, the encoder will probe for bandwidth by increasing the bit-rate. The loss

of an intra-frame will trigger the receiver to send an immediate feedback to the

sender, thereby requesting a new intra-frame to be added to the bit-stream.

RTCP

RTP

capture

MPEG-4

MPEG-4

feedback

encoding transmission

MPEG-4

MPEG-4

feedback

synch

playbackdecoding receive encrypt/
decrypt

42

6.3 MPEG-4 Codecs

Since the MPEG-4 reference implementation does not offer the performance and

quality needed for real-time encoding and decoding of audio and video data, we use

newer implementations. The described codecs are written in C, C++ or assembler

code, we access their APIs by using the Java Native Interface JNI [53].

The following codec versions are used:

• MPEG-4 video codec XVID [55], version 0.9.0

• MPEG-4 and H.263 video codecs of FFMPEG [56], stable cvs snapshot from

the 9th of August 2003

• MPEG-4 audio encoder FAAC [58], version 1.17b

• MPEG-4 audio decoder FAAD2 [58], version 1.1

The versions of the codecs we have tested compile on standard systems like Linux

and Windows. Many also compile and work on Macintosh and PDAs.

Most of these codecs are still under continuous development, the current versions

[55,56,58] support the basic and some advanced features of the huge MPEG-4

standard. The profiles and modes supported are sufficient for real-time streaming,

since advanced modes are more complex and so increase the time needed to encode

and decode a frame. This implementation has to meet real-time constraints, so the use

of basic and some advanced features is enough due to the limited processing power.

Please note, that since we are using open source codecs, their quality might be less

than the quality of commercial MPEG-4 video and audio codecs. Due to the flexible

43

architecture of the Java Media Framework and our additions to it, other codec

versions or even new codec types can be added when required.

In our model we did not implement any pre- or post-processing in addition to the

error concealment features of MPEG-4 to keep the amount of processing low. Since

the JMF architecture supports processor chains, this can be added very easily if

needed.

6.3.1 MPEG-4 Video Codec

For MPEG-4 video we use the XVID codec [55], in addition we implemented an

interface to FFMPEG [56]. FFMPEG provides a codec suite; we use their h.263 [6]

and MPEG-4 video codecs. H.263 allows the support of systems with lower

performance. JMF also offers a H.263 codec, but we prefer the FFMPEG version,

since it offers more control.

The MPEG-4 codecs support bit rates from well below 60 kbps up to more than 900

kbps. The quality of a bit stream encoded with a certain bit rate mainly depends on

the resolution and the motion of the input. For video conferencing applications this is

a great advantage, since a video conference usually does neither contain much motion

(compared to a movie) nor cuts or fades. Each cut or fade has to be encoded in a

reference frame, since the data to base prediction on has changed completely.

To match a requested bit rate the encoder uses different types of quantizers,

quantization values and motion compensation methods. While the type of the

quantizer and motion compensation model used usually does not change during

44

encoding, the quantization value gets recomputed for each frame to encode; the

quantization value has the most influence on the resulting bit rate. Since we encode

each frame only once and the quantization value has to be determined before

encoding, an appropriate value has to be estimated based on preceding frames, bit-

rate to match, size and motion of the input image and the type of frame to code.

Not only the average bit-rate is important for streaming media, it also important to

keep the deviation from this value small, since a link has a maximum throughput. As

intra-frames are significantly bigger than forward or bidirectional predictive-frames,

they usually get encoded with a higher quantization values to keep their size and the

deviation from the streaming rate small, and so do carry a less detailed image than

other frame types.

MPEG-4 AVC (also called H.264 or MPEG-4 Part 10) [14] has been recently (late

2002) defined and added as a new layer to MPEG-4; it allows even more compression

and is currently being developed. Tests [57] have shown that MPEG-4 AVC offers

about a 60% bit rate improvement to the older MPEG-4 layer. Since this new

standard requires even more computational power than the older MPEG-4 layers,

simultaneous real-time encoding and decoding as it would be required for video

conferencing is not possible without special hardware. In Table 6-1 the hardware

requirements for real-time coding for an implementation [57] of MPEG-4 AVC are

listed. Please note that for the older layer of MPEG-4 (the one used in this project)

simultaneous real-time video encoding and decoding is possible with CPU speeds

below 1GHz.

45

Codec CPU Speed Memory

Encoder Pentium IV 3.0 GHz 512 MB

Decoder Pentium IV 2.0 GHz 256 MB

Table 6-1: Hardware requirements for MPEG-4 AVC real-time coding;

the AVC layer is inappropriate for simultaneous real-time encoding

and decoding with today’s hardware.

6.3.2 MPEG-4 Audio Codec

For audio MPEG-4 / MPEG-2 AAC audio is used, this is provided by the FAAC

codec [58]. In addition we support GSM [61] and G.723 [60] for systems with lower

performance and very low bandwidth links. The GSM and G.723 codecs are provided

by the Java Media Framework.´

MPEG-4 AAC offers high quality audio encoding at low bit rates. Tests [59] indicate

that AAC offers a 1/3 greater compression than the widely used MPEG-1 layer III (so

called: “mp3”) compression. So has a stereo signal encoded in AAC with a bit rate of

96 kb/s a better quality than “mp3” at 128 kb/s.

AAC is a block oriented variable bit rate algorithm. The sender reads 1024 (LD

profile: 996) samples from the input and writes a number of output bits in relation to

the desired bit rate. Each of the encoded blocks of 1024 input samples can be decoded

independently from each other and so the loss or corruption of a bit in the stream has

minimal influence, since error propagation is only possible in the current frame.

46

Like in the video part a new layer has been added to MPEG-4: MPEG-4 HE AAC

(also called: AAC Plus) [15] has been recently (late 2002) defined; it allows even

more compression and is currently under heavy development. As with the new video

layer, the hardware requirements to not allow simultaneous real-time encoding and

decoding with today’s systems.

0

20

40

60

80

100

Refe
ren

ce

AAC-P
lus

MP3P
ro

AAC

WMA 8
MP3

Q
ua

lit
y

in
 %

 o
f r

ef
er

en
ce

Quality

Figure 6-4: Codec test [59] at 48 kbps stereo

Figure 6-4 shows a quality comparison of different audio coding standards, these

graphs are based on a subjective listening test [59], carried out by the European

Broadcasting Union in 2002.

47

6.4 Low performance codecs

To support systems with low performance, we added support for codecs that do not

require so much computation.

As mentioned H.263 video coding is supported, we also added the low bit-rate speech

codecs G.723 (6.3 kbps) [60] and GSM (13.2 kbps) [61], these focus on the coding of

speech only and so result in lower bit rates. The MPEG-4 standards suite also defines

speech codecs, these are still under heavy development and will not be used in this

project.

6.5 RTP

The Java Media Framework provides an implementation of RTP and RTCP. Media

Streams can be transmitted and received; Quality of Service can be controlled via

RTCP control packets. JMF also takes care of the synchronization of multiple streams

transmitted from the same source. We use the flexible RTP implementation JMF

provides to add quality and congestion control features as described in chapters 3 and

4. Later we added the security features described in chapter 5. All these additions to

the Java Media Framework could be made, because the framework is kept very

flexible.

48

6.5.1 RTP and MPEG-4

For each source the RTP standard defines that a separate stream is needed, thereby

reducing multiplexing overhead. Streams of the same source can be synchronized by

the receiver using the time stamps from the control packets (RTCP).

RFC 3016 [12] describes the direct mapping of video and audio streams on RTP-

packets without using the MPEG-4 systems standard. This allows using for example a

MPEG-4 video stream and non MPEG-4 audio stream for a session. It also keeps

multiplexing overhead low. In addition a RFC draft [13] introduces a new RTCP

packet for the resynchronization feature of MPEG-4 streams. We use this packet type

to signal the loss of a key frame as described in chapter 3.

The RFC introduces a quite simple mapping of frames on RTP packets. One MPEG-4

frame (either video or audio) gets mapped in one RTP packet. If the resulting RTP

packets are too small for efficient transmission, multiple frames can be mapped on

one packet. One frame should not be mapped on two or more packets, except its size

exceeds the maximal packet size (MTU) of the underlying protocol. Figure 6-5 and

Figure 6-6 describe the effects of inadequate mapping of video packets when a packet

gets lost during transmission.

49

Figure 6-5: Low impact of packet loss due to good mapping

Figure 6-6: High impact of packet loss due to inappropriate mapping

Since UDP is mostly used for real time transmission over the internet and UDP

supports packets up to a size of about 64kbyte, a MPEG-4 frame usually does not

exceed the maximal packet size of UDP. Depending on the network type the UDP

packets are transmitted on, some lower network layer may perform fragmentation.

But since the fragmentation depends on the link and the used lower layer network

protocol, the fragmentation has to be performed by these layers to achieve optimal

link utilization.

Since MPEG-4 audio and video has build in error resilience capabilities, no additional

RTP-Header as in H.261 and MPEG-2 / MPEG-1 is needed for error recovery. To

R
TP

 H
dr

V

O
P

H
dr

D
at

a

R
TP

 H
dr

V

O
P

H
dr

D
at

a

R
TP

 H
dr

V

O
P

H
dr

D
at

a

Packet complete Packet lost Packet complete
R

TP
 H

dr

V
O

P
H

dr

D
at

a

R
TP

 H
dr

V
O

P
H

dr

D
at

a

V
O

P
H

dr

R
TP

 H
dr

D
at

a

Packet incomplete Packet lost Packet incomplete

50

detect lost key-frames, we added a new RTP-Header as described in chapter 3 to the

stream.

Since the bandwidth used for audio is only a fraction of the video bandwidth, we

support bandwidth adjustment based on congestion control only for MPEG-4 video.

6.6 Files

Our model supports writing of MPPEG-4 video and audio files. Users can write a

copy of received and send streams to a file system. The system writes separate audio

and video files to avoid multiplexing overhead during run-time. The files than can be

multiplexed to a MPEG-4 systems file (“mp4”) or an “avi-container” by many tools

[62,63]. Playback is possible with most players such as Windows Media Player [38],

Quicktime [39] and MPlayer [64]. For all these players the appropriate codecs for

MPEG-4 files, audio and video have to be installed.

6.6.1 Synchronization

When a frame gets lost or is delayed too long during transmission the Java Media

Framework skips it to keep the video and audio data synchronized. When now both

streams get written on a file system, the audio stream for example may have less

duration than the video stream, due to the skipped frames. The result is, that after

multiplexing, both streams would not be synchronized since the multiplexer does not

51

know which frames got lost. This means during file write, a frame has to be added

where a frame was skipped to keep both streams synchronized during playback.

52

7 Evaluation

In this chapter we describe the evaluation of our models and their implementation

into a video and audio streaming system. We will show that our models enable low-

delay real-time communication, while being to recover from frame loss, adapt to

bandwidth variations and secure the transmission.

7.1 Selective intra-frame addition

A streaming system has to recover from key frame loss to prevent degradation of the

received image. The amount of degradation increases with each received frame and

depends on the amount of movement in the image. This means, recovery has to be

performed as soon as possible. The fact that the amount of degradation depends on

the movement in the image, is an advantage for the applications we target, since for

example a video conference usually has less motion than a movie.

When our system detects the loss of an intra-frame a feedback packet is send to the

transmitter, which than adds another intra-frame to the stream. This new intra-frame

will stop the image degradation. The user will only see a degraded image for the

round trip time of the connection (plus some additional processing time). Since this is

a short time, not much degradation will occur and picture will stay viewable.

53

25

26

27

28

29

30

31

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

receiver frame number

PS
N

R

test 1
test 2

frame loss

recovery

360 ms

 Figure 7-1 Image degradation after a lost key frame

Test setup: The round trip time is 200ms, 30 frames per second, recovery takes about 360 ms.

Between frame 3 and 4 an intra-frame was lost, the frame 16 is the recovery intra-frame

We tested the proposed model; the results are in Figure 7-1, Table 7-3 and Table 7-3.

A more detailed test-setup description can be found in Table 7-1. For the test, intra-

frames were randomly dropped by the sender, to accomplish that, we implemented a

packet dropping module into the implementation. For a round trip time of 200ms the

system recovers in 360ms. The additional 160ms are needed by the implementation to

react and handle to request.

54

 test 1 test 2
bit-rate 60 kbps 300 kbps
motion low high
description normal talking,

hand movement
fast movement of head from
right to left and back

round trip
time

200 ms 200 ms

time to
recover

360 ms 360 ms

Table 7-1 Adaptive intra-frame addition test setup

In the top row of Table 7-2 and Table 7-3 we show the compressed image. The first

two images in these rows are the degraded ones; the third image is the recovery intra-

frame. For comparison the uncompressed original image can be found in the row

below. The third row notes the corresponding frame number in graph shown above (

Figure 7-1).

The tests show that our system allows fast recovery from intra-frame loss. Our

approach enables delivering of low-delay real-time media, since it does not use

additional buffers. It takes advantage from the fact, that real-time media always is live

encoded. This allows us, to base the encoding on the receiver’s feedback.

55

frame 7 frame 9 frame 16

Test 1 (60 kbps, low motion)
upper row: receiver (first 2 pictures are degraded, the third picture is the recovery picture)
lower row: original uncompressed images

Table 7-2 Test 1: Sample pictures of the adaptive intra-frame addition test (low motion, 60kbps)

frame 4 frame 9 frame 16

Test 2 (300 kbps, high motion):
upper row: receiver (first 2 pictures are degraded, the third picture is the recovery picture)
lower row: original uncompressed images

Table 7-3 Test 2: Sample pictures of the adaptive intra-frame addition test
(high motion, 300 kbps)

56

7.2 Bandwidth Adaptation

Figure 7-2 Left: Window size of the reaction of a SQRT flow to an impulse;
Right: Reaction of a TCP flow to an impulse (both figures are taken from [42])

We argued that traditional TCP congestion control adds too extreme rate oscillations

to the transmission; this is not suitable for streaming applications, since streaming

requires a smooth playback. We introduced binominal SQRT based congestion

control for RTP.

The evaluation (Figure 7-2) shows that binominal SQRT congestion control reacts

with less oscillation to data loss than traditional TCP congestion control. Furthermore

it is TCP-friendly; it guarantees a fair bandwidth sharing with other applications.

7.3 Security Overhead

For each frame a hash has be computed and the frame and hash have to be encrypted.

This adds overhead, since this coding takes time and since the hash is added to each

frame, more data has to be transmitted. To guarantee privacy overhead gets

introduced to the transmission. We propose the use fast of algorithms; the delay

57

added by encryption and hashing is only noticeable for very high transmission rates,

since more data has to be processed. The absolute delay depends on the average

packet size, number of packets sent per time interval, used algorithms and the

hardware. To ensure that the messages are save against digest attacks, random

padding is added, the average padding length is 8 bytes.

Due to the attachment of the hash and the padding to each frame the average packet

size grows.

Video Bit rate (kbit/second) 60 300 900
Frame rate (frames/second) 20 30 30
Avg. packet size (bit) 3000 10000 30000
SHA-1 hash size (bit) 160 160 160
Avg. padding (bit) 256 256 256
Overhead 13.9% 4.16% 1.39%

Table 7-4: Overhead of encryption and hashing

Table 7-4 shows that due to the larger packet size at higher transmission rates, the

overhead added by security to the size of the bit stream can be neglected at high

transmission rates. For lower bit rates the user might consider the use of a message

digest algorithm with a smaller hash size or transmit only parts of the hash.

In this table we to not include the RCTP massages since they are sent not often, so

additional data transmitted because of their encryption can be neglected, too.

Our evaluation shows the overhead in size can be neglected as long as the

transmission rate is high enough. We also introduce a solution for low bit-rates, but

this approach is less secure. No additional delays or significant increase of the

processor load could be measured for the encryption, decryption and hashing. So it

58

can be stated, that overhead in time (eq. computation) can be neglected compared to

the computation required for MPEG-4 real-time coding.

59

8 Future Work

High compression video and audio coding is currently under heavy development.

New codecs and standards get developed on a rapid base; a good example would be

the new layer added recently to MPEG-4 audio and video. The computing power

needed for simultaneous real-time encoding and decoding with this layer will become

feasible in the next years. Since these codecs offer better quality they should be added

to the system as soon it becomes feasible.

Another issue is bit-rate control, we introduced in chapter 6.3.1 that the quantization

value for video has to be estimated based on previous frames, motion and targeted

bit-rate. In the last years interesting algorithms for rate control have been deployed.

Their integration in today’s codecs would increase quality and reduces derivation

from the target bit-rate; especially since most of today’s codecs only use simple bit-

rate control algorithms.

60

Appendix A H.263 vs. MPEG-4 video

This thesis does not compare and evaluate video and audio compression schemes. For

this the reader may refer to the variety of papers and books available. In this appendix

chapter we provide a comparison of the MPEG-4 video and H.263.

During the development of MPEG-4, H.263 became a part of the huge MPEG-4

standard; H.263 can be considered minimal MPEG-4. The major difference between

the full MPEG-4 standard and H.263 is, that resynchronization, byte alignment,

reversible variable length coding, adaptive intra frames, error detection and error

concealment are introduced by MPEG-4. Furthermore MPEG-4 introduces a scene

description and has motion isolation with finer granularity than H.263; both features

allow a better motion detection and so reduce the bitrate.

Please note that the MPEG-4 standard as most MPEG standards only defines the

bitstream syntax. This means that many implementation details are left open in a

flexible fashion while guaranteeing compatibility of different encoders and decoders.

For example each encoder implementation may use their own motion estimation or

DCT algorithm, based on this fact, the quality and speeds of encoders may vary. Even

a really bad implementation of a MPEG-4 codec can be outperformed in quality and

speed by a good H.263 codec implementation.

Concluding, it can be stated that, assuming a good implementation, a MPEG-4 codec

outperforms a H.263 codec in quality at all bit-rates. The trade off is, that MPEG-4

compression requires more computing power.

61

Appendix B This work vs. Microsoft NetMeeting

This appendix chapter provides a feature comparison of our work to one of today’s

widely used video conferencing systems, Microsoft NetMeeting [65,66].

Feature NetMeeting Our work
Video

Supported codecs H.263 MPEG-4, H.263
Target bitrates All All

Variable bit-rate coding No, two qualities offered
for manual bandwidth
adaptation

Yes, variable bitrates for
automatic bandwidth
adaptation

Recovery from frame loss No Yes, automatic key frame
addition

Key frame interval 15 seconds Variable, currently 10
seconds

Audio, fixed bit-rate
Supported codecs G.723 MPEG-4 AAC (16 and

more kbits/s),
G.723, GSM

Security
Authentication Certificates Based on the ACE

framework (including
fingerprints sensors,
certificates…)

Encryption None for audio and video AES and SHA-1
Session setup H.323 ACE service directory

Table B-1 Feature comparison

For a description of the individual features of our work see the corresponding

chapters in this thesis.

62

Appendix C Binominal congestion control analysis

In this appendix chapter we want to give a deeper insight into the reaction of the

congestion control scheme we use. For the work presented in thesis, we combined the

binominal SQRT algorithm with RTCP feedback to compute appropriate transmission

rates (see chapter 4).

The two graphs below show how the algorithm reacts to congestion and probes for

bandwidth availability. The graph (Figure C-1, left) nicely shows that upon

congestion the bandwidth decrease is not by half as traditional TCP, so resulting in

less oscillation. Probing for available bandwidth (Figure C-1, right) results in SQRT

function shaped graph, the steps are smaller than they would be for TCP.

0

10000

20000

30000

40000

50000

60000

70000

0
20

0
40

0
60

0
80

0
10

00
12

00

time (ms)

bi
t-

ra
te

 (b
it/

s) bit-rate

0

10000

20000

30000

40000

50000

60000

70000

80000

0
40

0
80

0
12

00
16

00
20

00
24

00

time (ms)

bi
t-

ra
te

 (b
it/

s)

bit-rate

Figure C-1 Left: bit-rate decrease, right: bit-rate increase

For these two tests, we used a round trip time (rtt) of 200ms and a frame rate of 30

frames per second. The decrease figure shows, how the stream reacts if per received

report one frame is reported lost. In this test, the reports are sent every 200ms. The

63

increase figure shows the sender probing for bandwidth every 200ms; this test

assumes that no packets are reported lost.

The next diagram (Figure C-2) shows how a 60000 bit/s stream reacts when

congestion reduces the available bandwidth to 30000 bit/s. In this test we are again

using a round trip time of 200ms, 30 frames per second and assume receiver reports

every 200ms.

0

10000

20000

30000

40000

50000

60000

70000

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800

time (ms)

bi
t-r

at
e

(b
it/

s)

200ms
report interval:

Figure C-2 Bit-rate adaptation for a 200ms report interval

For this test all packets exciding 30000 bit/s were lost and than reported lost by the

next receiver report. For each lost packet the bit-rate is reduced once according to the

SQRT formula (Formula 4-4) introduced in chapter 4.

Since the intervals between reports can differ, we conducted the same test for

different intervals (200ms, 600ms, and 800ms). Our tests suggest that values up to

64

600ms offer a quite good congestion adaptation, while 800ms results in a too extreme

bit-rate oscillation, although it offers a certain degree of adaptation.

0

10000

20000

30000

40000

50000

60000

70000

0
40

0
80

0
12

00
16

00
20

00
24

00
28

00
32

00
36

00
40

00
44

00
48

00

time (ms)

bi
t-r

at
e

(b
it/

s)

200ms
600ms
800ms

report interval:

Figure C-3 Bit-rate adaptation for 200ms, 600ms and 800ms report intervals

For a round trip time of 100ms the result would be the same kind of graph, just with a

different time axis. All time values would need to be divided by two, also the report

intervals need to be divided by two. This means that for a round trip time of 100ms

the graph would represent to report intervals of 100ms, 300ms and 400ms. So it can

be stated that for example a reporting interval of 400ms would result in a better bit-

rate adaptation for a connection with a round trip time of 200ms than with a round

trip time of 100ms. A connection with a higher round trip time usually consists of

more hops and so has a higher change of congestion and data loss. Based on this fact,

we can consider the better adaptation at higher round trip times as appropriate, since

65

the higher change of packet loss of such a connection requires a more accurate

adaptation to reduce the probability of packet loss.

66

Lists

List of Figures

Figure 1-1 Basic block diagram of a video conference system 3

Figure 2-1: RTP architecture .. 6

Figure 3-1 Dependencies between frames of a MPEG-4 bitstream............................ 12

Figure 3-2 typical video conference situation... 14

Figure 3-3: Video quality depends on frame loss rate .. 16

Figure 3-4 the effects of frame loss on the frame rate with a certain PSNR, figure

taken from [16] ... 18

Figure 3-5 Instant RTCP feedback packet (figure taken from [13])........................... 21

Figure 4-1: Window size of SQRT and AIMD (TCP) congestion control 30

Figure 5-1: Additional encryption layer ... 35

Figure 5-2: Encrypted RTP / RTCP packet .. 36

Figure 6-1: JMF API architecture ... 39

Figure 6-2: Processing media with the JMF ... 39

Figure 6-3 System block diagram... 41

Figure 6-4: Codec test [59] at 48 kbps stereo ... 46

Figure 6-5: Low impact of packet loss due to good mapping..................................... 49

Figure 6-6: High impact of packet loss due to inappropriate mapping....................... 49

67

Figure 7-1 Image degradation after a lost key frame Test setup: The round trip time is

200ms, 30 frames per second, recovery takes about 360 ms. Between frame 3

and 4 an intra-frame was lost, the frame 16 is the recovery intra-frame 53

Figure 7-2 Left: Window size of the reaction of a SQRT flow to an impulse; Right:

Reaction of a TCP flow to an impulse (both figures are taken from [42]) 56

Figure C-1 Left: bit-rate decrease, right: bit-rate increase.. 62

Figure C-2 Bit-rate adaptation for a 200ms report interval .. 63

Figure C-3 Bit-rate adaptation for 200ms, 600ms and 800ms report intervals 64

List of Tables

Table 3-1 frame size for different frame types and bit-rates 13

Table 6-1: Hardware requirements for MPEG-4 AVC real-time coding; the AVC

layer is inappropriate for simultaneous real-time encoding and decoding with

today’s hardware... 45

Table 7-1 Adaptive intra-frame addition test setup .. 54

Table 7-2 Test 1: Sample pictures of the adaptive intra-frame addition test (low

motion, 60kbps) .. 55

Table 7-3 Test 2: Sample pictures of the adaptive intra-frame addition test (high

motion, 300 kbps) ... 55

Table 7-4: Overhead of encryption and hashing... 57

Table B-1 Feature comparison.. 61

68

List of Formulas

Formula 3-1: Root Mean Squared Error (RMSE)... 17

Formula 3-2: Peak Signal Noise Ratio (PSNR).. 17

Formula 4-1: Binominal congestion control ... 28

Formula 4-2: Round trip time (RTT) .. 31

Formula 4-3: Window size.. 31

Formula 4-4: Binominal rate control .. 32

69

Bibliography

[1] M. Salomoni, M. Bonfigle, “A Software Audio Terminal for Interactive Communications in Web-
Based Educational Environments over the Internet”, 1999,
http://www.cineca.it/~nume03/Papers/IECON99/iecon2.htm

[2] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for Real-Time
Applications”, IETF January 1996, RFC 1889

[3] H. Schulzrinne, “RTP Profile for Audio and Video Conferences with Minimal Control”, IETF
January 1996, RFC 1890

[4] Moving Picture Experts Group (MPEG), ISO / IEC WG 11, 1998,
http://www.chiariglione.org/mpeg/index.htm

[5] “Video Codec for audiovisual services at p x 64 kbits/s, ITU-T Recommendation H.261”, Geneva
1990

[6] “Video Coding for narrow telecommunication channels at < 64 kbits/s”, ITU-T Recommendation
H.263, 1996

[7] “ISO/IEC 11172”, Part 1 to 5, 1993 to 1998

[8] “ISO/IEC 13818”, Part 1 to 10, 1996 to 2000

[9] “ISO/IEC 14496”, Part 1 to 10, 2000 to 2003

[10] F. Pereira, T. Ebrahimi, “The MPEG-4 Book”, Prentice Hall PTR, Upper Saddle River, NJ, 2002

[11] “The MPEG Audio Web Page“, http://www.tnt.uni-hannover.de/project/mpeg/audio/, 2003

[12] Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, H. Kimata, “RTP Payload Format for MPEG-4
Audio/Visual Streams”, IETF, November 2000, RFC 3016

[13]J. Ott, S. Wenger, N. Sato, C. Burmeister, J. Rey, “Extended RTP Profile for RTCP-based
Feedback (RTP/AVPF)”, IETF, June 2003, draft-ietf-avt-rtcp-feedback-07

[14] “ISO/IEC 14496”, Part 10, 2002, also called: “MPEG-4 AVC”

[15] “ISO/IEC 14496”, Part 3, Layer 3, also called: “MPEG-4 HE AAC”

[16] N. G. Feamster, “Adaptive Delivery of Real-Time Streaming Video”, Master-Thesis at MIT, 2001

[17] C. Burmeister, R. Hakenberg, J.Rey, A. Miyazaki, K. Hata, “Multiple selective retransmissions in
RTP”, 11th International Packet Video Workshop, Kyongju, Korea, May 2001

[18] A. Miyazaki et al., “RTP Payload Format to enable Multiple Selective Retransmissions“, IETF,
November 2000, http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-selret-00.txt

[19] K. Yano, M. Podolsky, S. McCanne, “RTP Profile for RTCP-based Retransmission Request for
Unicast sessions“, IETF, July 2000, http://www.ietf.org/internet-drafts/draft-ietf-avt-rtprx-00.txt

70

[20] B. W. Wah, X. Su, D. Lin, “A survey of error-concealment schemes for real-time audio and video
transmission over the internet”, Proceedings International Symposium on Multimedia Software
Engineering, IEEE, pages 17-24, Taipei, Taiwan, December 2000

[21] I. Rhee, “Error control techniques for interactive low-bit rate video transmission over the
internet”, Proceedings ACM SIGCOMM, September 1998

[22] Steven Gringeri, Roman Egorov, Khaled Shuaib, Arianne Lewis and Bert Basch, “Robust
Compression and Transmission of MPEG-4 Video”, GTE Laboratories Incorporated, In Proceedings
ACM Multimedia, 1999

[23] J. Padhye, J. Kurose, D. Towsley, R. Koodli, “A Model Based TCP-friendly Rate Control
Protocol”, Proceedings NOSSDAV, July 1999

[24] V. Jacobsen, “Congestion Avoidance and Contrl“, Proceedings ACM SIGCOMM, pages 314-329,
August 1988

[25] R. Rajaie, M. Handley, D. Estrin. “RAP: An End-to-end rate-based Congestion Control
Mechanism for Real-time Streams in the Internet”, Proceedings IEEE INFOCOM, volume3, pages
1337-1345, New York, NY, March 1999

[26] D. Sisalem, H.Schulzrinne, “The loss-delay Adjustment Algorithm: A TCP-friendly Adaptation
Scheme”, Proceedings NOSSDAV, July 1998

[27] W. Tan, A. Zakhor, “Real-time Internet Video Using Error Resilient Scalable Compression and
TCP-friendly Trannsport Protocol“, IEEE Transactions on Multimedia, 1999

[28] D. Bansal, H. Balakrishnan, “Binomial Congestion Control Algorithms”, Proceedings INFOCOM
2001, April 2001

[29] S. Floyd, M. Handley, J. Padhye, J. Widmer, “Equation-Based Congestion Control for Unicast
Applications”, Proceedings ASM SIGCOMM 2000, Schweden, September 2000

[30] I. Rhee, V. Ozdemit, Y. Yi, “TEAR: TCP Emulation on Receivers – Flow Control for
Multimedia Streaming”, NCSU Technical Report 2000

[31] G. Minden, J. Evans, “Ambient Computing Environment (ACE)” ,
http://www.ittc.ku.edu/projects/ACE, 2001

[32] “Information and Technology Center (ITTC)”, http://www.ittc.ku.edu

[33] “University of Kansas” in Lawrence, Kansas, http://www.ku.edu

[34] G. Kuehne, C. Kuhmuench, “Transmitting MPEG-4 Video Streams over the Internet: Problems
and Solutions”, 1999, http://dmz02.kom.e-technik.tu-darmstadt.de/acmmm99/ep/kuehne/

[35] J. Klaue, B. Rathke, A. Wolitsz, “EvalVid, a Framework for Video Transmission and Quality
Evaluation”, Proc. 13th International Conference for Modeling Techniques and Tools for Computer
Performance Evaluation, 2003, http://www.tkn.tu-berlin.de/publications/papers/evalvid.pdf

71

[36] R. Sperschneider, F. Feige, S. Quackenbusch, “Report on the MPEG-4 Audio Version 2
Verification Test”, ISO/IEC JTC1/SC19/WG11 N3075, December 1999,
http://sound.media.mit.edu/mpeg4/audio/public/w3075.pdf

[37] Real Networks, http://www.real.com

[38] Microsoft Windows Media Player, http://windowsmedia.microsoft.com

[39] Apple Quicktime, http://www.apple.com/quicktime

[40] M. Allman, V. Paxson, W. Stevens, “TCP Congestion Control”, IETF, RFC 2581, April 1999

[41] B. Braden et al., “Recommendations on Queue Management and Congestion Avoidance in the
Internet“, IETF, RFC 2309, April 1998

[42] D. Bansal, H. Balakrishnan, “TCP-friendly Congestion Control for Real-time Streaming
Applications”, MIT Technical Report MIT-LCS-TR-806, May 2000

[43] C. Kaufman, R. Perlman, M. Speciner, “Network Security: Private Communication in a public
world”, 2nd edition, Prentice Hall PTR, Upper Saddle River, NJ, April 2002

[44] NIST, “Data Encryption Standard”, standardized in FIPS 46-2, January 1988

[45] R. Rivest, “The MD5 Message Digest Algorithm”, IETF, RFC 1321, April 1992

[46] B. Van Rompay, D. Preneel, J. Vandewalle, “On the security of dedicated hash functions”, Proc.
19th Symposium on Information Theory in the Benelux, 1998

[47] NIST, “SHA-1: The Secure Hash Algorithm”, defined in Secure Hash Standard, standardized in
FIPS 180, 1993, revised in FIPS 180-1, 1995

[48] J. Daemen, V. Rijmen, “Rijndael“, standardized as AES in FIPS 197, November 2001

[49] J. Mauro, L. Searl, G. Minden, “ACE Project ACE Authorization Specification”, Version 0.1,
Technical Report ITTC-FY2001-TR-23150-08, June 2001,
http://www.ittc.ku.edu/publications/index.phtml

[50] Java, http://java.sun.com/

[51] Java Media Framework, http://java.sun.com/products/java-media/jmf/

[52] Java Sound API, http://java.sun.com/products/java-media/sound/

[53] Java Native Interface (JNI), http://java.sun.com/

[54] Advanced Linux Sound Architecture (ALSA), http://www.alsa-project.org

[55] Xvid, http://www.xvid.org

[56] FFMpeg, http://www.ffmpeg.org

72

[57] Envivio Inc., “H.264 – The New Video Codec“, 2002,
http://www.envivio.com/images/products/h264FactSheet.pdf

[58] Audiocoding.com, http://www.audiocoding.com

[59] D. Meares, K. Watanabe, E. Scheirer, “Report on the MPEG-2 AAC Stereo Verification Tests”,
ISO/IEC JTC1/SC29/WG11 N2006, February 1998

[60]“Dual rate speech coder for multimedia telecommunication transmitting at 5.3 and 6.3 kbit/s”,
ITU-T Recommendation G.723.1, 1996

[61] “GSM 06.10 RPELTP”, prI-ETS 300 036, ETSI, 1990

[62] MPEG4Tools are part of MPEG4IP, http://www.mpeg4ip.net

[63] IBM Toolkit for MPEG-4, http://www.alphaworks.ibm.com/tech/tk4mpeg4

[64] MPlayer, http://www.mplayerhq.hu/homepage/

[65] Microsoft NetMeeting, Version 3.01, January 2002
http://www.microsoft.com/windows/netmeeting/default.asp

[66] Microsoft NetMeeting Resource Kit, December 1999,
http://www.microsoft.com/windows/NetMeeting/Corp/reskit/About/default.asp

