
Security Model in the Ambient
Computational Environment

James Mauro and Gary Minden

ITTC-FY2004-TR-23150-11

June 2004

Copyright © 2004:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Technical Report

The University of Kansas

Acknowledgments

I’d like to thank the following people for making this work possible:

� Gary Minden for supporting my work on ACE, advising me on how best to pro-

ceed and allowing me to work on ACE for the past five years.

� Arvin Agah and Perry Alexander for being on my committee and making my

time at KU enjoyable.

� Leon Searl for teaching me good software practices and helping focus my work

on ACE.

� Eric Akers, Renzo Hayashi and Olaf Landsiedel who all contributed to the current

version of ACE, both in ideas and in the written software.

� My Parents, James and Kathy, for supporting my time as a student.

� DARPA, NFS, Sprint and the University of Kansas for funding my work on ACE.

ii

Abstract

The Ambient Computational Environment (ACE) builds integrated rooms where ser-

vices are integrated throughout the building. The services control the lights, projectors,

cameras, etc all of which can be controlled by the users through their mobile desktops

and with other non-traditional means such as talking to services. The following thesis

describes the construction and security of the atomic objects within the environment.

These atomic objects are called services in the architecture. The thesis describes com-

munication mechanism that the services use, a secure form of the RMI protocol. It

also discuses the use of the Transport Layer Security (TLS) for authorization, the use

of TLS and Advanced Encryption Standard (AES) for data encryption and the use of

Keynote Trust-Management system for distributing permissions to the services.

iii

Contents

Acknowledgments . ii

Abstract . iii

List of Figures . ix

1. Introduction . 1

1.1 Motivations . 1

2. Related Work . 3

2.1 Java Remote Method Invocation . 3

2.2 Java JINI . 4

2.3 Ninja . 5

3. ACE Overview . 7

3.1 Architecture . 8

3.1.1 Service Architecture . 9

3.1.2 Service Federations . 9

3.1.3 Core Services . 10

3.1.3.1 Service Directory 12

3.1.3.2 User Database . 13

3.1.3.3 Room Database . 13

3.1.3.4 Authentication Database 14

3.1.4 Room Architecture . 14

3.2 Implementation . 15

3.2.1 Service Hierarchy . 16

3.2.2 Enhanced RMI . 17

3.2.3 Security and Authentication 18

3.2.3.1 User Identification 18

3.2.3.2 Remote Authentication and Trust Management 18

3.2.3.3 Data Encryption . 19

iv

4. Enhanced RMI . 20

4.1 Standard RMI . 20

4.1.1 Standard Security Model . 21

4.2 Secure Unicast Remote Server . 21

4.2.1 Basic Architecture . 22

4.2.1.1 Secure Unicast Server 22

4.2.1.2 Stub Generation . 23

4.2.1.3 Messages Between the Stubs and the Server 23

5. Encrypted Communications . 25

5.1 Control Channel Security . 25

5.1.1 Key Management . 25

5.1.1.1 Key Issuing and Processing 25

5.1.1.2 User Keys Utilization 26

5.1.2 Authentication and Encryption using TLS 27

5.2 Media Datagram Security . 27

5.2.1 Key Generation . 28

5.2.2 Packet Protection . 29

6. Keynote Trust-Management System in ACE 31

6.1 Keynote Functionality . 31

6.2 Keynote in ACE . 33

6.2.1 Assertion Distribution . 33

6.2.2 Keynote in SecureRemoteUnicastObject 34

6.2.2.1 Permission Levels 35

6.2.2.2 Conditions Used . 36

7. Future Work . 37

8. Accomplishments . 39

References . 40

Appendices

v

A. Available Services . 42

A.1 Basic Service Levels . 42

A.1.1 Base . 42

A.1.2 Service . 42

A.1.3 Media . 42

A.1.4 Device . 43

A.1.5 Database . 43

A.1.6 SQL Database . 43

A.1.7 ID Monitor . 43

A.2 Core Services . 43

A.2.1 Service Directory . 44

A.2.2 User Database . 44

A.2.3 Room Database . 44

A.2.4 Authentication Database . 44

A.3 Devices . 44

A.3.1 Projector . 44

A.3.2 Epson Projector . 45

A.3.3 PTZ Camera . 45

A.3.4 VCC3 Camera . 45

A.3.5 iButton Monitor . 45

A.4 Media Services . 46

A.4.1 Audio Receive . 46

A.4.2 Audio Transmit . 46

A.4.3 Audio/Video Receive . 46

A.4.4 Audio/Video Transmit . 46

A.4.5 Converter . 47

A.4.6 Video Transmit . 47

A.4.7 Video Receive . 47

A.5 Other Services . 47

A.5.1 Network Logger . 47

A.5.2 Host App Launcher . 47

vi

A.5.3 Host Resource Monitor . 48

A.5.4 System Resource Monitor . 48

B. Implementing a Service . 49

B.1 Interface Implementation . 49

B.1.1 Projector Controls . 49

B.1.2 EpsonProjector Controls . 50

B.2 Service Implementation . 51

B.2.1 Projector Service . 51

B.2.2 EpsonProjector Service . 52

B.3 Stub Generation . 60

B.4 Startup Scripts . 65

B.5 Client Implementation . 66

C. Using the Core Services . 78

C.1 Service Directory . 78

C.1.1 ServiceDirectory Interface . 79

C.1.2 ServiceAccess Helper Class 81

C.2 User Database . 82

C.2.1 User Attributes Class . 84

C.2.2 User Characteristics . 87

C.2.3 User Database Interface . 89

C.3 Room Database . 93

C.3.1 Building Interface . 94

C.3.2 Room Interface . 94

C.3.3 Machine Interface . 95

C.3.4 RoomDatabase Interface . 96

C.4 Authentication Database . 98

C.4.1 Keynote Assertion . 98

C.4.2 Authentication Database Interface 100

vii

D. ACE Software and Setup . 102

D.1 Source Tree Review . 102

D.1.1 Third-Party Directory . 102

D.1.2 Src Directory . 103

D.1.3 Drivers Sub-Directory . 104

D.1.4 Java Sub-Directory . 104

D.1.4.1 src . 104

D.1.4.2 c-src . 105

D.1.5 Programs Sub-Directory . 105

D.2 How to Build the Source Tree . 105

D.3 Initial Setup . 107

D.3.1 System Setup . 107

D.3.1.1 Creating user “ace” 107

D.3.1.2 MySQL Setup . 107

D.3.1.3 Service Setup . 108

D.3.1.4 Setting up the Certificate Authority 109

D.3.1.5 Keying the “ace” user 109

D.3.1.6 Generating the Keynote Policy Assertion 110

D.3.2 User Setup . 110

viii

List of Figures

3.1 A view of a single device and the services it creates, as well as connections to other clients and services. 10

3.2 A view of a federation of services designed to create an end-to-end video conference service. 11

3.3 The figure shows the relationships between the core services, a service utilizing the services and ultimately the clients that would want to use the service. 12

3.4 A view of a possible room. The room contains projector, camera, audio capture, audio replay, CPU and iButton authentication devices[4] 15

3.5 The following is an example of the hierarchy. The blue items are members of the hierarchy that are visible to the clients. Green members are implementation only levels. 17

4.1 The graphic represents the execution environment of the edu.ku.ittc.ACE.Server.SecureUnicastServer. Each client would have its own thread in its own JVM, while the sever has one client thread per client. The service its self may have one or more threads. 22

5.1 The login process using the ID Monitors 27

5.2 The communication process to negotiate a TLS session. The handshake is a two phase session where ID’s are exchanged then the session key. 28

5.3 Packet format for the media packets. 29

6.1 Sources of data from the use of Keynote inside of a service 35

B.1 A screen shot of a gui that utilizes the projector service 66

C.1 A screen shot of a gui that utilizes the Service Directory 78

C.2 A screen shot of the current users stored in the User Database 83

C.3 A screen shot of the interface to add a new user. 84

C.4 A screen shot of the list of rooms stored in the database 93

C.5 A screen shot of the interface to add a new room 94

C.6 A screen shot of a gui that can be used to build new keynote assertions . . 99

D.1 Directory tree for the ACE software. The left tree is the overall tree from the root, while the right tree just shows the branches under the ACE/src/java directory where most of the project is housed. 103

ix

Chapter 1

Introduction

Even though computers have become more powerful and more ubiquitous, the modes

of accessing their processing power have not significantly changed since the introduc-

tion of the keyboard, monitor and mouse. Programs and sessions are designed to run

on one machine at a time. They are tied to that machine is such a manner that up-

grades, maintenance, and crashes causes both the programs and sessions to terminate

and return to their initial states on restart. The Ambient Computational Environment

(ACE) attempts to create a system that allows users to move from room to room and

take their sessions with them. ACE attempts to complete these goals by building sim-

ple independent services that can be used to control the environment. More complex

services can be created by federating the simple services into more complex services

by way of managers. The subject of this thesis is the composition of these services and

the methods they use to communicate and secure their transactions.

The rest of this chapter describes the reasons for the work. Chapter 2 describes

work related to the subject of this thesis. Chapter 3 describes the ACE environment

and the requirements placed on the designed services. Chapter 4 describes the middle-

ware used to implement the services. Chapter 5 describes the methods used to secure

the communications and authenticate the users. Chapter 6 describes the method for

authorizing users to perform actions within the environment. The Chapter 7 describes

possible extensions to the environment and the services within. Finally, the chapter 8

describes what improvements, additions, and accomplishments have been made.

1.1 Motivations

As more and more devices are added to a room it becomes more difficult to inte-

grate them into a cohesive unit. The difficulties include:

1

� GUI Interfaces - Devices usually ship with a standard GUI interface, but these

interfaces are usually limited. They won’t work with competitors devices and

may not work with all machine types or OSes.

� API Interfaces - Most devices do not ship with a programmer accessible way to

access the device either through library access or directly access the hardware.

Those that do provide interfaces the API is not consistent between vendors or

even models.

� Network Access - Network access is either unavailable or limited to a web inter-

face.

� Security Model - The security model, if one even exists, is limited to an all access

or no access approach.

The purpose of this thesis is to propose a system where some of these short com-

ings can be addressed. The thesis describes a framework where new devices can be

introduced into the system using the current GUI’s, even though newer features of a

device might not be available to the older software. The thesis also describes a frame-

work that could be extended to permit non-traditional interfaces like voice and motion

recognition and novel identification methods.

2

Chapter 2

Related Work

In this chapter, work that encompasses the similar problems to those that the thesis

covers are addressed. However, ACE goes beyond these systems by including secu-

rity (both authentication and authorization) and a well defined interface to access the

services. The work includes the Remote Method Invocation (RMI) system , the JINI

architecture, and the Ninja architecture.

2.1 Java Remote Method Invocation

Remote Method Invocation (RMI)[17] is a method where by Java programs can

hold a reference to an object that is ultimately stored in another instance of the Java

Virtual Machine (JVM). The local JVM can access the remote object as it would access

any other local object. The RMI system provides a number of utilities for creating

the objects and registering them on the network. Unfortunately the RMI model suffers

from a number of issues.

RMI allows for the remote methods and fields of an object to be accessed re-

motely. The object provides a stub for the remote clients that acts as a proxy for the

remote object. The stub takes method calls from the clients, packages the call and the

arguments and transmits them to the actual object. The remote object then executes the

method and returns the results, either the return value or the exception. The execution

of the method call occurs in a stateless manner and call parameters are not cached by

the remote object. The actual implementation of the stub is created using the rmic pro-

gram, which takes the implemented remote object and generates a stub that implements

the same interface as the remote object. When a remote object is initialized, the remote

object registers its self with a service called rmiregistry. The rmiregistry

stores a serialized copy of the stub under an unique name that other client services can

3

use to get a copy of the stub.

A RMI object can differentiate between hosts the users are connecting from, but

cannot differentiate between users. This means that the different users on the same host

would have the same permissions for calling the methods. It security model allows

blocking of specific hosts and ports, but does not allow per user security. An object can

determine the host of the client, but it cannot determine the user without the explicit

transmission of the user credentials in each method call[18]. The RMI model also

suffers from the client having no direct way to verify the integrity of the remote object

before the call is made.

In ACE, the communication system that is used is based on the same interface

that RMI uses. An Enhanced ACE RMI system would appear to be a Java client to

be no different than an normal RMI system. The Enhanced RMI system would have a

greater capability to provide for fine grained permissions on executing specific methods

under specific conditions.

2.2 Java JINI

Sun’s JINI[16] technology builds upon their RMI work to build a system where

clients can discover and use services distributed throughout the network. It attempts

to make resources on a number of computers appear to be running on a single unified

system. The JINI system defines a discovery and join protocol for the network and

provides a mechanism for clients to look up services within the network. The JINI

however provides no security technology on top of the normal RMI security apparatus.

The JINI system of services provides a way for services to find each other on the

network. The system accomplishes this task through three protocols called Discovery,

Join, and Lookup. The protocols allow for clients to locate services in the network and

provides some differentiation between them. The Discovery protocol is used by both

the clients and the services to locate the Lookup Service. During the Join protocol a

service uploads its information (class, service location, attributes, etc) to the Lookup

4

Service, which agrees to save the information for a specified amount of time. The

agreement to save the information for the specified time is called a “lease”. Finally

when a client wants to use a service, it uses the Discovery protocol to find the Lookup

Service then uses the Lookup Protocol to request services that match the interface and

attributes one is looking for. After the service is found, the client contacts the service

directly over the RMI protocol.

Due to the fact that JINI is built on top of RMI, the security for the user is bound

up in the security for the RMI model. It provides no additional security features that do

not exist in the RMI model.

While JINI provides a lookup service, the lookup service it provides does not dif-

ferent ate between the physical locations of the services. The ACE’s Service Directory

can search both by type and by physical location. The JINI style of services also have

no defined interface for accessing any of the services except the Lookup Service and

the services that are provided by default are not arranged in a manner that would be

conducive to having an unified method of accessing all the services regardless of type.

2.3 Ninja

The Ninja project attempts to build a network of services that are scalable, fault-

tolerant, and highly-available. It has built a number of core services for lookup and

discovery. It has implemented an RMI called NinjaRMI [20]. The Ninja Architecture

provides a number of services to facilitate building the network.

The NinjaRMI is similar to the Sun’s version of RMI. It’s major difference is

that it allows both the client and the server to examine the address and ports of the

other side. It is also designed to allow for different transport channels for remote object

communication, including Multicast and UDP instead of the regular TCP connections.

It was designed against the feature set of the RMI available with the 1.1 version of the

JDK.

In order for services to find each other on the network, Ninja builds a set of

5

hierarchical service locators called Secure Discovery Services (SDS)[3]. The SDS’s

attempts to resolve the query and if it cannot resolve it, it sends the request onto the

higher levels. The system conducts it’s queries using XML messages, but the matching

is constrained to an exact match for the service requested.

The ACE project is similar to the Ninja project in many respects, but the limita-

tions of the Ninja model made it preferable to implement a new model. For instance,

the NinjaRMI allows for the replacement of regular TCP sockets with TCP sockets se-

cured over the TLS protocol, but the model does not allow for information about that

session (like who the user making the method call) to be passed to the calling user. It

also implements no authorization mechanisms except those mechanisms that are inher-

ent to RMI. The SDS-style lookup services does not allow for services to be searched

by subclasses only directly by type and location which would limit arranging services

in a hierarchy to take advantage of the object oriented paradigm.

6

Chapter 3

ACE Overview

The Ambient Computational Environment (ACE) project was tasked to set out and build

a pervasive system that enables users to have long lived workspaces and mobility within

the environment, regardless of the room or the machine they are currently using. This

allows for a user to move within the environment with his or her workspaces following

them around.

The following two scenarios are examples of what the ACE framework hopes to

accomplish:

Herman walks into a conference room with his Personal Interface Device (PID).

The PID identifies him to the conference room as “Herman”. He requests access to the

devices in the room and he is granted permission to access the services in the conference

room. He the proceeds to set up the conference room by setting up lighting levels,

moving his presentation to he main projector, connecting a remote site’s video feed

to the room’s main monitor, and so forth as he sets up for the conference. He then

notes the current set up in his PID and leaves. Some time later, when the meeting is

scheduled, Herman enters the room, requests access to the resources once again and

recalls the noted setup, restoring the room to the configuration he set up earlier. During

the meeting, Herman can direct the room without the use of the PID, but by using

gestures and voice commands. For instance, he can direct the cameras to look at a

certain seat by vocalizing the command to the camera to “look here” and pointing to

the seat in question.

Holly checks her computers and sees that her working context has be running

continuously for 497 days before she leaves for the weekend. During the weekend

the office support staff replaces her computer with a new upgraded one. The staff

person unplugs the old computers (without saving Holly’s work or shutting down the

7

old computer). When Holly returns she identifies herself to the new machine and checks

the age of her context. The context has been running continuously for 499 days and the

programs left running before the weekend are still running.

The ACE concept believes that computing environments contain the following

features[11]:

� Computational resources are readily available throughout the space in which peo-

ple move. The term“Computational resources” includes CPU cycles, memory,

storage, display, wired and wireless communications, sound input and output,

video input and output, i.e. anything connected to computing.

� Users co-opt computational resources in their vicinity for their use.

� Computational sessions are long-lived and mobile beyond the extant for their

individual machines or instantiation.

� The computational environment re-acts to user voice commands, gestures, and

computer commands and maintains and individual model of how the specific

users act.

3.1 Architecture

In order to implement the above scenarios like Herman’s and Holly’s experiences,

an architecture for ACE has been developed. The services comprise the atomic levels

computational resources. The services can be arranged into larger federations of ser-

vices to perform larger, more complex tasks. A number of services have been created

to facilitate the creation of these federations. Finally, the environment contains infor-

mation about were the hardware services are located in the environment (like camera

mounting points).

8

3.1.1 Service Architecture

The services within the ACE environment are designed to be simple atomic ele-

ments that perform only one function. If a service captures video, it would not know

how to display or convert the video stream (those functions would be handled by other

specialized services) and if a hardware device performs more than one type of operation

it is separated into multiple services. Long-lived services form temporary federations

in order to create higher level services like end to end video.

Services communicate with each other and clients in two distinct ways, the Con-

trol Channel and the Media Channel. The Control Channel is a reliable in-order channel

that provides the main communication mechanism for the services. The Control Chan-

nel provides a way for the services and clients to communicate messages for controlling

the service. The Media Channel is for those services where reliability and in-orderness

is not as important as timeliness. The services that the Media Channel are designed for

are the audio and the video services.

Take for instance the setup of service for a Pan-Tilt-Zoom (PTZ) camera in Figure

3.1. The camera would create two services to handle its functions. The first service

contains the functionality to handle the mechanics of the camera (the pan, tilt, and

zoom functions). The second service would handle the camera’s video input stream.

Both of the services communicate with the controlling clients via a Control Channel.

The video service transmits its video to other media services to display or process the

video via the Media Channel.

3.1.2 Service Federations

While single function services are interesting, they are not particularly useful.

In order to perform higher level functions a video conference between two site, the

services must be grouped into larger federations. These federations are managed by

a client, called a manager. A manager searches for services on the network that can

perform the required tasks and then configure those services to work together. The

9

Figure 3.1: A view of a single device and the services it creates, as well as connec-
tions to other clients and services.

manager handles all information transfer and coordination between the services except

for the data that is transmitted in relationship to the audio and video streams. The

federation stays intact only while the manager controls the services. After the federation

has out lived its usefulness, the services can be reconstituted into a new federation with

different members.

Figure 3.2 shows an example of a federation to create a one direction tele-conference.

The conference needs audio and video to be transmitted from one site to another site.

The manager finds an audio capture and a video capture service at the remote site and an

audio player and video player at the local site. Since the traffic needs to be compressed

before it is transmitted over the network, the manager finds two converters to compress,

uncompress, and convert the data from the capture format to the display format.

3.1.3 Core Services

In order to facilitate services working together a number of “core services” are

required. The core services enable the services to find each other, look up users, dis-

cover the resources of the rooms and to retrieve certificates for user authorization. In

10

Figure 3.2: A view of a federation of services designed to create an end-to-end
video conference service.

keeping with the idea of simple services for ACE, four separate services were created

to accomplish the tasks. The four services are called the Service Directory, the User

Database, the Room Database, and the Authorization Database.

Figure 3.3 shows how the services use the core service. The service would regis-

ter its self with the Service Directory to allow others to connect to it and use the service

directory to find other services (Line 1). Next the service would communicate with

the Room Database to discover which room it is located in and use that information to

configure itself (Line 3). A client would discover a service’s current address by con-

necting to the Service Directory and querying it (Line 5). A client would then connect

to the service (Line 6) and attempt to gain authorization. To verify the authorization

the service would contact the User Database (Line 2) and the Authorization Database

(Line 4).

11

Figure 3.3: The figure shows the relationships between the core services, a service
utilizing the services and ultimately the clients that would want to use
the service.

3.1.3.1 Service Directory

The Service Directory is the core service that handles registration and unregistra-

tion of the services and allows for clients to lookup the registered information. Since

the Service Directory is used to locate all the other services, it is the only service within

ACE a fixed address.

The Service directory keeps track of a service for a specified amount of time,

called the lease time. A service registers its address, name, location, and service class

with the Service Directory and the information is stored for the specified lease time. The

service recontacts Service Directory before the lease time expires to reset the timer. If

a service does not renew its lease before the lease expires, the service is removed from

the searchable list of services.

A user searches for a service based on one or more of the following characteris-

tics:

� Name

12

� Room

� Machine

� Service Class (including sub-classes)

3.1.3.2 User Database

The User Database contains all the information about users in the system. The

database indexes this information by the public key of the user. Information about the

user includes:

� Public Key

� Name

� Login Name

� Login Characteristics

The login characteristics includes information identifying users for login types. These

logins includes information like passwords, finger print scanner, and iButton id’s that

are used to identify the users when gaining access to the system. The user’s login

information is not accessible to normal users, but all other information is accessible.

3.1.3.3 Room Database

The Room Database contains information about the rooms set up inside of the

ACE environment. The Room Database contains information about the room’s size and

locations of objects in the room. It also contains information about what machines are

nominally located in the room, what capabilities they have and what services they are

required to run due to hardware configurations. All information stored in the database is

available to any user, but editing the information is restricted to specified administrators.

13

3.1.3.4 Authentication Database

The final core service is the Authentication Database. It stores Keynote assertion

certificates [2] that specifies permissions used within the system. These certificates

specify which users are allowed to access services. The services are indexed by the

public key of the user, room, and time the certificates are issued to cover. The services

query the authentication database while determining the correct permissions of the user.

While everyone is able to read the database contents, only administrators are allowed

to add or update information.

3.1.4 Room Architecture

Finally, information about were services are located are stored inside of the room

database allows for services to be associated with a room. The room is the largest unit

inside of the ACE. Figure 3.4 shows one such conference room. Services located inside

of specific rooms tend to be those services with a some required physical connection to

the room (for instance they utilize hardware mounted in the room). Services with no

specific room (like media converters) can be moved from room to room at the will of

the system and are not included in the description of any specific room.

The room contains two PTZ camera services, a projector, two microphones, four

speakers, a general purpose computer, and a number of iButton[4] authentication de-

vices. These access to these devices are granted when someone enters and identifies

themselves to the room. The users would have instances of a manager that could the

utilize the services to perform higher functions. For instance a user could use a micro-

phone and a video input service from a camera to set up a service that would listen for

commands and then determine what the command was referring to by looking at the

actions of the user through the video camera.

14

Figure 3.4: A view of a possible room. The room contains projector, camera, audio
capture, audio replay, CPU and iButton authentication devices[4]

3.2 Implementation

In order to build the required architecture, the environment was implemented with

a number of features. The first feature is the Service Hierarchy, which arranges services

so similar services can be used by just knowing their common methods. Secondly, an

Enhanced form of RMI was created in order to allow for the required encryption, au-

thentication and authorization for the services to be implemented. The Enhanced RMI

generates classes, called stubs, that act as proxies for the services on the remote hosts.

The stubs and services implement the actual interface for the service. See Appendix B

for an example and source code of an implemented service.

15

3.2.1 Service Hierarchy

In order to ease the implementation of services and to simplify bringing new

services on line the Service Hierarchy was created. The intent of the Service Hierarchy

is to group together services in the environment in such a way that all the services that

share similar functionality share as much of the same interface and implementation

as possible. This allows for older clients to utilize newer services by referencing the

lower levels of the interface. The interfaces are arranged into a tree with the most basic

functions at the top of the tree and the leafs of the tree being the most specific.

For example, the Epson 7350 series of projectors have a picture-in-picture func-

tion. The projector’s functions of changing the input for the projector is defined by the

Projector interface, while the picture-in-picture system is accessed by using the Ep-

son7350Projector interface. This allows for a client that just knows on how to use a

projector to use the Epson 7350 by just accessing the Projector interface and ignore the

more advanced features of the Epson7350Projector interface.

A number of interfaces have been defined in the ACE to implement the most

common services within the environment. Figure 3.5 shows an example of part of the

tree. The base of the tree contains the Base and Service levels that define the basic

properties of any service. All Services should extend off the service level, since the

base level provides no methods (it exists for possible future expansion). The next level

contains the main branches of the Hierarchy, Device, Media, and Databases which

define the three main types of services. The Device branch represent hardware devices

like cameras, projectors, iButtons security devices, etc. The Media branch handles

devices like audio and video capture, display and streaming. The Database branch that

contains data stores like the Service Directory and Authorization. Some services, like

the Host App Launcher, do not fit into either of the three main categories and extend

directly off of the service level.

Directly under the Database level consists of a implementation only level called

SQLDatabase that is not exposed to the clients, but is used to group together the SQL

16

Figure 3.5: The following is an example of the hierarchy. The blue items are mem-
bers of the hierarchy that are visible to the clients. Green members
are implementation only levels.

functions that are used by a number of sub-services. These levels are referred to as

virtual levels since they have no corresponding interface and therefor from the clients

point of view do not exist.

For more information about what is contained within the tree look to Appendix

A for a complete list of the implemented services.

3.2.2 Enhanced RMI

In order to communicate between services, an enhanced form of the Remote

Method Invocation (RMI) was created. The Enhanced RMI system is a stateful version

a remote procedure call (RPC) system where remote services appears as local objects

that can be used and manipulated like any other object. In reality the local object is a

proxy for the real object. These proxies, also known as stubs, are generated from the

implementation of the service. The stubs have the same interface as the service, but

implement a communication system to the remote object instead of the actual object.

17

3.2.3 Security and Authentication

In order to provide the requested services a number of security policies and pro-

cesses must be developed. These policies include defining how to representative users

within the system, how the users are authenticated and how the services are secured.

3.2.3.1 User Identification

Users within the environment need a unique identification to differentiate them

from other users. The most appropriate way to identify a user would be his or her public

key. Public keys also have a number of other properties that are useful in authenticating

users and passing permissions between users. It allows users on separate ACE environ-

ments top have an identification token that could be used in other environments. It also

allows for user authentication and authorization by the services without transferring a

known secret between them.

It does have a drawback, the ability of the users to refer to each other would be

difficult. The problem is mitigated due to the presence of User Database that is used

to map user’s real names and login names to their public keys. A user could use a

shortened login name and on the fly the users pubic key is retrieved from the User

Database, similar to how Unix uses the passwd file to map user login name to the user’s

identification number (UID).

3.2.3.2 Remote Authentication and Trust Management

Since the ACE uses network services as building blocks to perform actions, a

system needs to be developed to both authenticate the users and a system to define

what users do within the individual services. Since users are identified by their public

keys, the private parts of the keys is used to authenticate the users. The ACE uses the

mechanisms embedded in the Transport Layer Security (TLS) protocol [5]to perform

this authentication. After a user has been authenticated, the levels, processes, and which

he or she effects needs to be determined. The exact permissions that each user has needs

18

to be shared and transmitted between each of the services. For this purpose the ACE

uses the Keynote Trust-Management system [2].

The ACE grants and denies of access on a number of conditions including:

� User ID

� Service being accessed

� Current time

� Room the service is located inside

� Method being accessed on the service

Other conditions are possible but dependent on the implementation of the service using

them.

Authorization is granted by the Keynote compliance checker based on the asser-

tions and conditions it contains. Due to the nature of the Keynote Trust-Management

System authorization can be passed between users by creating new assertions and pass-

ing them to the service.

3.2.3.3 Data Encryption

The ACE environment requires that data being transmitted be protected. The

reasons for the protection are to prevent unauthorized individuals from accessing in

appropriate information and to prevent sessions from being replayed in the future to

repeat an action. To handle these functions on the Control Channel, the Transport

Layer Security (TLS) protocol is used. For the Media Channel a system of symmetric

encryption using the Advanced Encryption System (AES) [12] is used. The keys for

the Media Channel are shared using the Control Channels.

19

Chapter 4

Enhanced RMI

The standard Java model for objects communicating across the network is to use the

Remote Method Invocation (RMI) system. While this method works well for abstract-

ing away the problems of creating remote interfaces and the language constructs needed

for services to communicate, the implementation of the communication protocol makes

adding per user and per method security difficult. Due to the security concerns, the ACE

project used an enhanced form of the RMI protocol.

The new Enhanced RMI system implements the same interface as the standard

RMI system. This allows the Enhanced RMI system to use the same tools as the stan-

dard RMI and to let the objects have interoperability when needed. The modifications

made for this these to the RMI model included a reimplementation of the Unicast Re-

mote Server to provide the spadeful, per-user security required for ACE.

4.1 Standard RMI

The process of implementing a standard RMI service consist of implementing

two separate pieces of software, the first part consist of the interface for the RMI ser-

vice. The interface indicates to the JVM that it is remote by extending the Java inter-

face java.rmi.Remote. The second part consists of the implementation of the service.

The implementation uses the class java.rmi.server.UnicastRemoteServer to access

the mechanisms of RMI by either extending the class or using the exportObject()

method to export the object. The stub classes used to access the java.rmi.server.Uni-

castRemoteObject remotely are generated using the rmic program provided by the

standard Java Development Kit.

20

4.1.1 Standard Security Model

The basic security model for RMI provides very little extra in the way of security.

It differentiates between hosts and can ban hosts from connecting to the object, but it

cannot however differentiate different users on the same host. It does not provide any

mechanism for securing the data in transit. There exists a way to add custom sockets

which could use a mechanism like TLS allowing for per user identification, but this

method does not allow the user’s ID to be passed back to the method being called. The

end result is that the TLS socket will allow valid system users to be let in, but no other

properties could be judged on whether the user could access the module.

The most common solution around this problem is to pass credentials as an ar-

guments to every method call. While this solution accomplishes the goal of allowing

a program to have per user access, it forces the developers to include code in every

method to handle the security verification, cause the execution of a method to begin

before security has been checked (possibly tying up unneeded resources), as well as

dirtying the method signatures with extra, unneeded arguments.

4.2 Secure Unicast Remote Server

As a solution around the deficiencies presented by the standard RMI model a new

remote object was implemented under Java. This object provides the mechanism that

allow the security system required by the ACE environment to be implemented. The

resulting class, called edu.ku.ittc.ACE.Server.SecureUnicastRemoteServer, imple-

ments a stateful server that is used to both identify and check his or her permission

before the method is executed. It simplifies the work a programmer must do to use

the ACE security model and localizes any changes that need to be made when security

updates occur to just one classes for all of ACE.

21

Figure 4.1: The graphic represents the execution environment of the edu.ku.it-
tc.ACE.Server.SecureUnicastServer. Each client would have its own
thread in its own JVM, while the sever has one client thread per client.
The service its self may have one or more threads.

4.2.1 Basic Architecture

The edu.ku.ittc.ACE.Server.SecureUnicastServer object was designed to im-

plement the java.rmi.Remote interface. As such, it uses most of the RMI programs

(like rmiregistry) without any modifications to the programs. The helper program,

called StubGenerator, generates stubs for the in a similar way to the rmic for standard

RMI.

4.2.1.1 Secure Unicast Server

The Secure Unicast Server is composed of two object classes classes, Secure-

UnicastServer and ServerClientThread, both classes are members of the edu.ku.it-

tc.ACE.Server package. Each class has its own thread of execution that handles a

different part of the communication system. The SecureUnicastServer thread handles

new incoming connections and starts a new ServerClientThread for each connection.

While the class ServerClientThread handles the individual requests and the state of

each client. There is one ServerClientThread per client that connects. Figure 4.1

22

shows the relationship between the two server classes.

A remote object uses the SecureUnicastServer object by either extending the

class or implementing a remote interface and calling the exportObject() method. Upon

initialization of the extended object or the calling of the exportObject() method, a

thread is started to handle the incoming connections to the server. When a client con-

nects, the SecureUnicastServer temporarily accepts the connection and creates an

instance of ServerClientThread to handle requests. The ServerClientThread then

authenticates the user. When a request to execute a remote method comes in, the Ser-

verClientThread runs the required per method authorization and then executes of the

method. If the execution is allowed, the method is executed in the thread controlled by

the associated ServerClientThread. The result of the execution is then returned to the

client.

4.2.1.2 Stub Generation

A stub generated for each SecureUnicastServer that implements the communi-

cation mechanisms for connecting to the remote object. When a remote object registers

itself with the rmiregistry or when the object is serialized to an output stream, the stub is

transmitted instead of the remote object. This stub contains the information necessary

for the service to be contacted and its methods to be accessed.

The stub generator works by loading the compiled interface of the requested

class. The class then is tested if is a remote interface. The generator then writes out a

new Java source file containing the proxy’s implementation. The generated class im-

plements the same remote interfaces as the requested class. The resulting stub is then

compiled using javac. After compilation a service creates instances of the stub class to

pass to those clients who are interested in connecting to the service.

4.2.1.3 Messages Between the Stubs and the Server

When a stub wants to execute a method on the remote object, a message object is

created. The message object, contains the method definition and either the arguments to

23

the method, the return value or the generated exception to the method call. The method

definition contains the name arguments and return types of the method as well as any

declared thrown arguments. The format for the method declaration is the same format

as the method signatures in the Java Language Specification [8].

When calling the method, the client packs the method signature and arguments

via serialization and sends the object to the remote object. The sending thread on the

client blocks until the response is received.

Upon receiving a message object, the remote server determines the java.lang.re-

flect.Method that the method signature in the message belongs to. The method is then

executed in the receiving thread and the results are gathered. A return message object

that contains the same method declaration as requesting object and a return value or

exception is generated depending on the execution. The result is the returned to the

client over the same channel.

When the client receives the response and unpacks it. The client then takes the

return value and returns it to the calling method. If the remote object incurred an

exception the returned exception is thrown instead.

24

Chapter 5

Encrypted Communications

In order to provide both authentication and transport security for the ACE services, the

Transport Layer Security Protocol (TLS) [5] was used on the Control Channel. In order

to protect the the Media Datagrams the AES [12] and the SHA-1 algorithm [6] is used

to protect each packet.

5.1 Control Channel Security

This section describes the use of the TLS protocol in the services. The following

sections discuss how keys are managed and how authentication and encryption are used

by the services.

5.1.1 Key Management

The individuals in the ACE are identified by their public keys. The public keys are

used for two separate functions. The keys are generated by the users and added to the

ACE Certificate Authority for use by the TLS protocol and inside of the Keynote Trust-

Management System. The users can then utilize their key pairs to identify themselves,

to protect their communications and to receive authorization on the system.

5.1.1.1 Key Issuing and Processing

The users in the ACE are identified the pubic part of the asymmetric key. The

key is either an RSA or DSA asymmetric key. These keys are formatted into x509

certificates [7] for the use inside of TLS and inside of Keynote Trust-Management

System. The keys are also signed by a Certificate Authority (CA) to verify the validity

of the key.

25

The initial public and private key pair is generated when the user account is cre-

ated. The private part of the key is restricted to the user, while the public part is placed

into a certificate request. The request is then signed by the ACE certificate authority to

verify the validity of the key. The resulting signed key is passed back to the user with

the CA’s certificate. The user can then be added to the User Database. The when the

signed key is uploaded to the user database it is converted into the format Keynote uses

(a base-64 encoded string of the certificate with the type, in this case x509-base64:,

perpended to the the beginning.)

The CA serve the purpose of verifying the key is valid and allowing the keys to

be verified between domains. The every valid key is signed by the CA and those users

who are no longer allowed are added to the Certificate Revocation List (CRL) that is

managed by the CA. Since each ACE domain would have its own CA, but users could

keep their original key. This can either be accomplished by signing the remote CA’s

key or by signing the new user’s key by the local CA.

5.1.1.2 User Keys Utilization

Users within ACE need to protect all their private keys from unauthorized access.

The private keys are best protected using operating system mechanism. The private

keys can then only be read by application running as the user. The user can access his

or her private keys for negotiating TLS sessions and signing new Keynote assertions.

Because the keys are used to access the authenticate the users, access to them

must be limited. The private portion of the key is stored in a file that only the user can

access. These keys can only be accessed after a user has been logged into the system.

The logging in process is handled by services known as ID monitors. The ID Monitors

are configured to spawn processes off as the user logging in. These process are usually

managers that allow rooms to be configured or sessions to be started. These processes

then access remote services using the users public/private key pair.

26

Figure 5.1: The login process using the ID Monitors

5.1.2 Authentication and Encryption using TLS

The Transport Layer Security protocol provides both authentication for accessing

the service and encryption for the conversations that occur on the Control Channel. It

creates a secure authenticated channel on TCP-like data streams.

Authentication in the TLS protocol uses a two-round handshake to authenticate

the users and negotiate the session key and algorithm used. The protocol uses x509

certificates [7] to identify users. The x509 certificates contain information about the

user and the public portion of their asymmetric key. The certificate is also signed be a

trusted third party to verify the authenticity of the key and avoid the man-in-the-middle

style of attack. After the session is negotiated the data is compressed and encrypted

using a stream cipher like RC4 or a symmetric block cipher like AES or triple-DES.

5.2 Media Datagram Security

Since the main properties of the Control Channels are unneeded for applications

like transmission of audio and video over the network, a second communications sys-

27

Figure 5.2: The communication process to negotiate a TLS session. The hand-
shake is a two phase session where ID’s are exchanged then the session
key.

tem was developed to communicate the data. The system uses RTP datagram packets

[14] to handle the transmission of the audio and video frames. These frames are then

wrapped inside of an encryption frame the protects the data while in transit.

5.2.1 Key Generation

Keys in the ACE are generated by the clients setting up the media services. The

key is transmitted out-of-band by the Control channels for the clients and services that

want to access the media stream. The key consists of an array of bytes that are used to

specified the key and initial vector (IV) for the AES encryption. The key is generated

using a random number generator due to no specific requirements for the AES key. The

key exchange system is also designed to allow the keys be rotated at specified instances

too prevent too much data from being used with one key.

28

Figure 5.3: Packet format for the media packets.

5.2.2 Packet Protection

In order to protect the packet, a media packet format is defined. The format

include the header, footer, checksum algorithm and encryption algorithm. The packet

is encrypted using the AES algorithm and the SHA-1 hashing algorithm is used to

create data integrity.

The packet format takes the data in the packet and the key used to protect that

packet. The purpose of the packet format is to prevent common data in the media pack-

ets to be used for breaking the key and to detect bit error introduced in transmission.

The packet format is showed in figure 5.3. The packet format is based on the PKCS #1

[9] format. The packet starts with a 256-bit header that contains the packet key. The

actual data is then headed by at least 8 non-zero bytes to remove any expected data

at the beginning. A zero byte is then inserted into the stream to signify the end head

padding. The data is placed into the packet in the next block. The data is terminated

by PKCS #5 padding[10] to delineate the end of the data and to correct for block size

mismatches. The header, data and footer are then encrypted with the packet key. The

packet is finally terminated by the 20 bytes representing the SHA-1 checksum of the

encrypted portion of the packet.

The encryption used to encode the packet is the AES [12] algorithm. Both the

session an the packet use the same algorithm AES is a 128-bit block cipher with key

of length 128. In order to protect blocks longer than 128-bits Cipher Block Chaining

29

(CBC) [13] is used. When the session is set up the IV is required as well as the key. The

session IV and key are only used to encrypt the key and IV for the individual packet.

The packet key changes from packet to packet. This scheme is used to prevent the

session key from being overused.

The hash of both the padding and the data is computed using the SHA-1[6]. The

reason is to insure some data integrity in the packet. While the media algorithms, like

AAC and MPEG-4 can handle individual bit error in transmission, the encryption used

would make packet unreadable from the point where bit bit error occurs. As such, if the

error does occur, it does not make sense to attempt to process the packet, but instead

to just consider such packet to be lost. Because the checksum occurs outside of the

encryption system it is only used to insure integrity during transmission and cannot be

used to verify that the packet was not altered by a third party.

30

Chapter 6

Keynote Trust-Management System in ACE

In order to give access to the users in the ACE the Keynote Trust-Management System[2]

chosen. The Keynote Trust-Management System defines a way the permissions are as-

signed to users and have those permissions re-assigned. To use Keynote in ACE, the

system of passing assertions must be defined, the conditions that the ACE uses by de-

fault and how it is integrated into the service structure.

6.1 Keynote Functionality

The Keynote Trust-Management System is a system for distributing information

about the access levels and the conditions needed to access those levels. It embeds the

necessary information into certificates called assertions. Assertions describe the prin-

ciples of the operation and the actions they can perform. The assertions are evaluated

using a compliance checker.

All trust-management systems consist of five main parts[2]:

� A language for describing actions

� A system for identifying principles

� A language for describing which actions the principles can perform

� A method for allowing principles to pass their authorizations to other users

� A system for verifying compliance with the above requirements.

The Keynote Trust-Management System uses a language to both describe the

actions and to describe the conditions in which an action is performed. The language

uses conditions which are connected by boolean statement to evaluate into the possible

31

actions. For instance APP DOMAIN ��� ‘‘ACE’’ && ((time
�

23000)

|| (cost
�

4536)) ��� WRITE would give permission to the principle for

the WRITE action if the APP DOMAIN is “ACE” and either the time is greater than

23000 units or the costs are greater than 4536 units. The language evaluates either

numeric or string values against the specified variables .

Principles are listed in the assertions as either authorizers or licensees. Autho-

rizers represent the person attempting to perform the action, while licensees represent

who, if anyone, the permission is being transfered to. Keynote describes these prin-

ciples as strings. It does a straight equality check between the users. Even though

principles are identified by any sort of string, they are most often identified by their

public key. Using public/private key pairs allow for permissions to be re-assigned and

the verification of the reassignment to occur via signing of the assertion.

The compliance checker takes in both the trusted assertions and the untrusted

assertions and runs a depth first search for permissions against the current state and the

user or users who are trying to authorize the action. It attempts to discover the highest

possible permission that are granted to the user and returns that value to the user.

The following is an example of a policy assertion

keynote-version: 2

authorizer: POLICY

local-constants: KEY1 = "x509-base64:MIIEZzCCA...LCSG0N2ICh"

licensees: KEY1

conditions: (APP_DOMAIN == "ACE") -> _MAX_TRUST;

Since policy assertions are implicitly trusted, they do not have to be signed. This policy

give the highest level of trust, specified by the Keynote variable MAX TRUST, to the

user who holds the licensee’s key.

The following is an example of a credential assertion:

keynote-version: 2

authorizer: "x509-base64:MIIEZzCCA9CgAw...LCSG0N2ICh"

32

local-constants: KEY1 = "x509-base64:MIIEZnb53...ighfkRT4523k"

licensees: KEY1

conditions: ((APP_DOMAIN == "ACE") &&

(time >= 1082390980610) &&

(time <= 1082390980628)) -> "write";

((APP_DOMAIN == "ACE") -> "read";

signature: "sig-rsa-sha1-base64:Nt4+XIP...soP+mgjjTXWA=="

It specifies whose permission is begin subsumed in the authorizer field and to whom the

permission is being granted to in the licensees field. It lists two possible access levels,

one being write and the other being read. The permission granted would be based on

what is the current time. The signature is that of the authorizer and used to validate if

the authorizer actually gave the permission.

6.2 Keynote in ACE

The description of ACE’s use of Keynote comprises two separate parts. The first

part covers how the assertions are distributed and how the conditions are used inside of

ACE.

6.2.1 Assertion Distribution

Assertions are passed to services in three ways. First policy assertions are avail-

able to the services upon start-up. Credential assertions are passed to the service by

querying the Assertion Database or by passing the assertion to the service over the

command channel.

The policy assertions within ACE setup the core of the permissions for the sys-

tem. In ACE all permissions is given to a user called “ace”, who like “root” user in

Unix, does whatever it wants. These user “ace” distributes its permission to any user

in the system. The “ace” is consistent throughout an ACE domain (different domains

would have a different “ace”). All other permissions must be defined by credential

33

assertions passed to or retrieved by the service.

Most of the assertions in the ACE are stored in the Assertion Database. The

Assertion Database is a long term storage system for all the services inside of ACE. It

stores credential assertions that are searched based on time, location, service type and

users who need authorization. All the stored assertions are retrieved and loaded into

the compliance checker to do the actual processing on what the permissions are. The

compliance checker also determines if the signatures on the credential assertions are

correct. When a user logs into a service, the service queries the Assertion Database to

retrieve those assertions that could be used.

Sometimes the assertions needed are not stored in the Assertion Database. For

instance if a user is visiting from outside the local ACE domain or if the Assertion

Database is unavailable. In cases like these the credential assertions are passed directly

to the service using a method inherited from the Service level of the ACE hierarchy

called addAssertion. The method adds the assertion to the current session if the cryp-

tographic signature are verified against the authorizer.

6.2.2 Keynote in SecureRemoteUnicastObject

The control of the Keynote session occurs in the SecureRemoteUnicastObject

in the ServerClientThread. The ServerClientThread holds a Keynote context for

each user. After a user connects and is authenticated by the TLS session, a new Keynote

session is created for the user. The established session loads the default policies and

fetches any relevant credentials from the Authentication Database. Then the condi-

tions are loaded in and the permission level is checked. If access is permitted then the

ServerClientThread executes the method. A user could then add any assertions he or

she feels are necessary by calling the addAssertion method. Access is checked before

every method call and the session is cleaned up upon the user disconnecting.

If a service wants different conditions than the default ones, it adds them to the

user section when the user executes the method. The service also determines the current

34

Figure 6.1: Sources of data from the use of Keynote inside of a service

level and then check to see if the new variable raises the permission level as well as

getting what the current level is of the user executing the command.

6.2.2.1 Permission Levels

In the ACE system there are four levels of permissions: administrator, write,

read and no access. The permissions are arranged in that order with administrator at

the top and no access at the bottom. A permission level of no access only lets the

method addAssertion to be called (and then the number of calls is limited before the

system disconnects). Read access levels grants users permission to execute method.

Those services that do no want to have users change the internal state without correct

permissions should check the user has write permissions before executing the state

change. The administration permission gives the administrator full permissions on the

35

system to do what ever they want.

6.2.2.2 Conditions Used

The service architecture enters a small number of environmental variables into

the keynote session automatically. The variables include:

� “time” - the current time (in seconds from midnight January 1, 1970)

� “method” - the method being executed

� “service” - the service class

� “room” - the room the service lives in

� “machine” - the machine the service is being executed on

Other conditions are added by the services as needed.

36

Chapter 7

Future Work

While the security system provides the functionality needed to implement higher level

services and functionality. The service framework provides security authentication for

the services provided that the keys for the system are properly protected. Currently the

keys need to be protected using the methods of the operating system. These methods

can be limited in their protection schemes, for instance if the keys are stored using the

Network File System (NFS) the private keys would be vulnerable to generic network

snooping. It might be possible to give passwords for the keys and/or require the keys to

be stored on secure removable storage devices like iButtons or USB keys. How such a

method of key storage would integrate with other non-standard ways of logging into a

system, like voice authentication, is unknown.

Work also needs to be done on more novel methods of authentication like audio or

visual recognition of users. Currently locally authentication of users is limited to user

name/password combinations, iButton, or fingerprint scanners. While these methods

are interesting, they do not start to provide the breadth of services needed in the full

ACE environment.

It would also be useful to allow non-Java programs to provide or access services.

Currently those services are limited to using a proxy for access. To make ACE acces-

sible to all languages, the message system would need to be re-implemented using a

method like XML-RPC [21] instead of serialized Java objects. Some experimentation

with these methods occurred early in the project but they were not completed due to

complexity issues in the software.

Finally the system as describes provides no way for one to store data in a secure

way. A secure distributed file system need to be invented that would allow users a long

term storage system. Such a system would need to store the data in multiple locations

37

and encrypt the data when storing it. The storage encryption should be per user and not

per server. Currently, no available file systems meets all the requirements for ACE.

38

Chapter 8

Accomplishments

This thesis describes the following accomplishments that were made for the creation of

this section of the ACE project:

� The implemented Service Directory combines the features of the JINI lookup

service and the Ninja Secure Directory Service in such a way to allow for services

to be located by both their class (or sub-classes) and their current location in the

environment.

� An authentication system that depends on the user’s identity and not the identity

of the machine he or she is running the application on. This is an improvement

over the standard RMI authentication techniques where a user can only be iden-

tified by his host or by his port. It also allows for clients to authenticate servers

in the same manner as clients

� The authorization system using the Keynote Trust Management System. The

authentication system allows for more fine grained control of what actions each

user is allowed to perform and to allow. It also allows RMI type services to have

an integrated security model at the method level instead of at the object level.

� A set of services that allow for the authentication and authorization services to be

used and updated over the network. The Authentication Database and the User

Database let the services discover their permissions on the fly instead of being

given their permissions at the start.

� A drop in replacement for the RMI architecture. The new Enhanced RMI service

provides interactions and interfaces similar to the standard RMI model as well as

letting standard RMI and Enhanced RMI services interact without difficulty.

39

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, A. Keromytis. “The Role of Trust
Management in Distributed System Security.”, Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, Springer-Verlag, 1999.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis,A. Keromytis, “The KeyNote
Trust-Management System Version 2”, RFC 2704, September 1999.

[3] Czerwinski, Zhao, Hodes, Joseph, Katz,“An Architecture for a Secure Service
Discovery Service”, Fifth Annual International Conference on Mobile
Computing and Networks (MobiCom ’99), Seattle, WA, August 1999, pp. 24-35.

[4] Dallas Semiconductor Corp. “iButton Home Page”, www.ibutton.com.

[5] T. Dierks, C. Allen, “The TLS Protocol Version 1.0”, RFC 2246, January 1999.

[6] D. Eastlake, P. Jones, “US Secure Hash Algorithm 1 (SHA1)”, RFC 3174,
September 2001.

[7] R. Housley, W. Polk, W. Ford, D. Solo “Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile”, RFC 3280, April
2002.

[8] James Gosling, Bill Joy, Guy Steelem, Gilad Bracha “The Java Language
Specification Second Edition”, 2000,
http://java.sun.com/docs/books/jls/second edition/html/j.title.doc.html.

[9] B. Kaliski, “PKCS #1: RSA Encryption Version 1.5”, RFC 2313, March 1998.

[10] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification Version
2.0”, RFC 2898, September 2000.

[11] G. Minden, J. Evans, “Ambient Computational Environments Research
Description.’

[12] National Institute of Standards and Technology (NIST), “Specification for the
Advanced Encryption Standard (AES)”, FIPS-197, November 26 2001.

[13] National Institute of Standards and Technology (NIST), “DES Modem of
Operation”, FIPS 81, December 1980.

40

[14] H. Schulzrinne, GMD Fokus, S. Casner, R. Frederick, V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications”, RFC 1889, January 1996.

[15] Sun Microsystems, “Java Media Framework API”,
http://java.sun.com/products/java-media/jmf/index.jsp.

[16] Sun Microsystems, “Jini Network Technology”,
http://java.sun.com/developer/products/jini/index.jsp.

[17] Sun Microsystems, “Java Remote Method Invocation (Java RMI)”,
http://java.sun.com/products/jdk/rmi/.

[18] Sun Microsystems, Inc., “Java Remote Method Invocation - Distributed
Computing for Java”,
http://java.sun.com/products/jdk/rmi/reference/whitepapers/javarmi.html.

[19] UC Berkley, “The Ninja Project”, http://ninja.cs.berkeley.edu

[20] Matt Welsh ,“NinjaRMI: A Free Java
RMI”,http://www.eecs.harvard.edu/ mdw/proj/old/ninja/ninjarmi.html.

[21] Winer, D., ”XML-RPC Specification”, January 1999,
http://www.xmlrpc.com/spec

41

Appendix A

Available Services

The following services have been implemented using the ACE framework. These ser-

vices are available in the 1.0 release of the ace3. Each of these services is either a level

or virtual level of the Service Hierarchy.

A.1 Basic Service Levels

The following implement no services per se, but they provide basic structure in

which other services can be extended.

A.1.1 Base

The Base level exists in order to allow for future expansion. The Base level

extends directly off of the SecureUnicastRemoteServer. The Base level provides no

methods or unique services.

A.1.2 Service

The Service level provides the methods needed for services to communicate and

operate with clients The level provides methods that allow the services to reset, shut-

down, security commands. The Service level extends directly off of the Base level.

A.1.3 Media

The Media level provides the base for all the services that implement audio and

video transmission and receiving. This level provides methods for connecting the ses-

sion, sharing keys, setting up session, and starting or stopping sessions. The level

extends directly off of the Service level.

42

A.1.4 Device

The Device level provides all the methods needed for controlling devices. The

level consists of methods like device turn on, device turn off, and device reset. The De-

vice level extends off of the Service level. The implementation of the level is declared

abstract, since there is no generic way to implement the power control of the device.

A.1.5 Database

The Database level extends directly off of the Service level. It is the connecting

level for all the data storage services. The level only provides one method, flush, that

empties out the database.

A.1.6 SQL Database

SQL Database is a virtual level that extends off of the Database. This level imple-

ments the functions required to access a SQL database. This include connection pools,

SQL string encoding, SQL command execution. It provides no exposed methods, but

only exists to help simplify the implementation of other services which want to use

SQL databases.

A.1.7 ID Monitor

The ID Monitor extends off of the Device level. It exists off of the Device level to

provide the implementation for users to login to the ACE. The ID monitor is extended

by devices like a Fingerprint Identification Unit or a iButton authentication service. It

provides methods to store user ID’s and the commands they want executed when they

login to the ACE.

A.2 Core Services

The core services exist to provide the basic information for all the other services

to work properly. These services allow for services to find each other, find information

43

about the environment, and to discover authentication within the environment.

A.2.1 Service Directory

The Service Directory extends of the SQL Database level. The service stores

information about the services within the environment. See Section 3.1.3.1 for more

information.

A.2.2 User Database

The User Database store information about the users in the environment and what

information can be used to identify them. The level extends off of the SQL Database

level. See Section 3.1.3.2 for more information.

A.2.3 Room Database

The Room Database contains information about rooms and what services are

located inside of the rooms. The services listed are those bound to the room by physical

location. See Section 3.1.3.3 for more information. The Room Database extends off of

the SQL Database level.

A.2.4 Authentication Database

The Authentication Database holds the assertions for the environment. The ser-

vice extends off of the SQL Database level. For more information, see Section 3.1.3.4

A.3 Devices

The following devices represent hardware devices that can be accessed within the

environment.

A.3.1 Projector

The Projector level extends off of the Device level. It contains methods for ac-

cessing projector functions like changing the input source and changing the zoom on

44

the projector.

A.3.2 Epson Projector

The Epson Projector implements a service for controlling an Epson 7350 projec-

tor. The level extends off of the Projector level and implements all the functionality

of the Projector level plus control for the picture-in-picture functions available on the

Epson 7350. The service communicates with the device by way of a serial connection

that is accessed by using native interfaces.

A.3.3 PTZ Camera

The Pan-Tilt-Zoom (PTZ) Camera service provides all the methods needed to

control a PTZ camera. The PTZ camera service provides movement and zoom methods

with coordinates related to the camera position and positions located inside of the room.

The PTZ level extends the Device level.

A.3.4 VCC3 Camera

The VCC3 Camera extends off of the PTZ Camera level and implements a service

for controlling the Canon VCC3 PTZ camera and the Canon VCC4 camera running

with VCC3 compatibility. The level is a virtual level, since the VCC3 camera provides

no capabilities that are not exposed by the generic PTZ camera level. The service

communicates with the camera is over a serial interface, implemented using native,

non-Java code.

A.3.5 iButton Monitor

The iButton Monitor is an ID Monitor that listens to a 1-Wire interface[4] that

can identify unique tokens. The service uses the Java based One Wire API provided by

the iButton’s maker, Dallas Semiconductor.

45

A.4 Media Services

The following service implement the Audio and Video transmission services

within the ACE. They all utilize the Media Channels to move video from one service

to another, instead of the usual Control Channels.

A.4.1 Audio Receive

The Audio Receive service takes in audio from another source and plays it out

of the audio cards in the system. The service uses the Java Media Framework [15] to

process and play the sounds. The service extends off of the Media level.

A.4.2 Audio Transmit

The Audio Transmit service captures audio from a microphone and transmit the

audio to another service for processing or playing. The service uses the Java Media

Framework [15] to capture the sound and process it into a form suitable for transmis-

sion. This level extends off of the Media level.

A.4.3 Audio/Video Receive

This service is for transmission of synchronous audio and video. It utilized the

same Java Media Framework [15] functions as the Audio and Video services. The level

extends off of the Media level.

A.4.4 Audio/Video Transmit

This service captures audio and video, processes them, and transmits both streams

in such a away that the receiver can play them in sync. The service utilizes the same

Java Media Framework [15] functions as the Audio and Video services. The level

extends off of the Media level.

46

A.4.5 Converter

A Converter takes data from one Media service and converts the data into another

form for processing by another Media service. The Converter uses the Java Media

Framework [15] and extends off of the Media level.

A.4.6 Video Transmit

The Video Transmit service implements a service for capturing video from a de-

vice using the Java Media Framework [15]. The video is then processes and transmitted

to a receiving service or converter. This service level extends off of the Media level.

A.4.7 Video Receive

The Video Receive service implements a service for displaying video using the

Java Media Framework [15]. The service extends off of the Media level of the frame-

work.

A.5 Other Services

The following services have been implemented but do not fit into the model of

the other services. These services would be useful to create higher level functions, but

currently are not used.

A.5.1 Network Logger

The Network logging service takes strings from other services and logs them to a

specified file. The Network Logger extends the Service Level.

A.5.2 Host App Launcher

The Host App launcher takes commands from a specified user and runs a com-

mand as that user. The Host App Launcher runs the command on the local machine as

the user who requested. The Host App Launcher extends off of the Service Level.

47

A.5.3 Host Resource Monitor

The Host Resource Monitor extends off of the Service level. It looks at the current

machine and reports the current status of the processor load, memory usage, etc. This

information can be used to help distribute services within the local environment.

A.5.4 System Resource Monitor

The System resource monitor extends off of the Service level. It takes information

from the Host Resource Monitors and correlates the information to allow one to pick

the best host and to get system level views of the whole status of the system.

48

Appendix B

Implementing a Service

The implementation of a service occurs in two phases. The first part consists of defining

the interface, while the second part concerns the actual implementation of the service.

After that point any clients that want to use the service can be implemented. The fol-

lowing chapter shows an example on how to implement a service. For an example, an

implementation of a projector service that has a has a picture-in-picture (PNP) capabil-

ity as well as the normal projector functions.

B.1 Interface Implementation

The first step to describe the interface into the service. This interface is imple-

mented by both the server and the generated stubs. It allows the clients to access the

stubs as if they were a local object running inside of the same JVM. All methods in

an interface need to throw the java.rmi.RemoteException even if the method will not

throw an exception normally. The java.rmi.RemoteException is used to both com-

municate normal exceptions in the server and to communicate communication errors.

The implementations for ACE must also be members of the edu.ku.ittc.ACE.Interface

package.

B.1.1 Projector Controls

The following is the interface for the projector class of services. It extends off the

interface Device, and as such it borrows the definition for turning the projector on and

off from that service. The interface defines the strings needed to identify the possible

input sources and the methods to change the input sources of the projector.

package edu.ku.ittc.ACE.Interface;

import java.rmi.RemoteException;

49

public interface Projector

extends Device {

/** Possible projector input sources */

public static final String PC1 = "PC1";

public static final String PC2 = "PC2";

public static final String RCA = "RCA";

public static final String S_VIDEO = "S_VIDEO";

public static final String BNC_RBG = "BNC_RGB";

public static final String BNC_CRCYCB = "BNC_CRCYCB";

public static final String COMPOSITE = RCA;

/** Sets the input sources to one of the above */

public void setVideoInputSource(String input)

throws RemoteException;

/** Gets the current input source */

public String getVideoInputSource()

throws RemoteException;

}

B.1.2 EpsonProjector Controls

The following is the definition for implementing the picture-in-picture (PNP)

functionality that the Epson Projectors provide. The interface provides methods for

changing the input sources of the PNP function. It also provides a new string that

allows the user to change the functionality of the projector to off.

package edu.ku.ittc.ACE.Interface;

import java.rmi.RemoteException;

public interface EpsonProjector

extends Projector {

50

/** Video mode for turning PNP off. */

public static final String PNP_OFF = "OFF";

/** Sets input source and turns pnp on */

public void setPictureInPicture(String Input)

throws RemoteException;

/** Gets status of pnp */

public String getPictureInPicture()

throws RemoteException;

}

B.2 Service Implementation

The following gives an example of the services that implement the Projector and

EpsonProjector interface. These two services called, Projector and EpsonProjector are

members of the edu.ku.ittc.ACE.Service package. Unlike the above interfaces, the

services are not required to be members of the above class.

It is important to note that the constructors of both services throw the RemoteEx-

ception. This is inherited from the constructor of the edu.ku.ittc.ACE.Service.Secure-

UnicastRemoteObject which is ultimately inherited by at root of the implementation

tree. It is also important to note that the constants from the interfaces are not included

int the implementation, since they are imported when the interface is used.

B.2.1 Projector Service

The following is the implementation of the Projector Service. While not directly

necessary, since it only defines abstract methods, it is defined in order to keep the

services matched with the interface tree. A different implementation could omit this

implementation and just implement the Epson Projector service directly. The service

extends off of the Device service an as such it inherits all the methods of the Base,

Service, and Device interfaces and implementations of the superclass services, as well

51

as the Projector interface that it directly inherits.

package edu.ku.ittc.ACE.Service;

import java.rmi.*;

import java.rmi.server.*;

import edu.ku.ittc.ACE.Library.*;

public abstract class Projector

extends Device

implements edu.ku.ittc.ACE.Interface.Projector {

public Projector() throws RemoteException {

}

public abstract void setVideoInputSource(String input)

throws RemoteException;

public abstract String getVideoInputSource()

throws RemoteException;

}

B.2.2 EpsonProjector Service

The following is the implementation of the Epson Projector service. It uses the

EpsonProjector7350 object as the means to communicate with the projector.

package edu.ku.ittc.ACE.Service;

import java.rmi.*;

import java.rmi.server.*;

import edu.ku.ittc.ACE.Library.*;

52

import java.util.*;

import edu.ku.ittc.ACE.EpsonProjector7350.*;

/**

Implementation for service.

*/

public class EpsonProjector

extends Projector

implements edu.ku.ittc.ACE.Interface.EpsonProjector {

The following defines the service variables. The first one defines the the configuration

key needed to retrieve the serial port to use. The second one defines the object reference

to hold the projector object that the rest of the methods use to communicate with the

projector.

/** Key for the serial port config */

private static final String PROJECTOR_SERIAL_PORT =

"edu.ku.ittc.ACE.Service.EpsonProjector.SerialPort";

/** Instance for projector */

private ACEEpsonProjector MyProjector;

The following is the method called when the service is started. It needs to create a new

service object and then exit. If more complex setup needs to be done before the service

is started, then it should be done in this method. In this case, nothing else needs to be

done.

/** Program to start service */

public static void main(String Args[]) {

try {

EpsonProjector x = new EpsonProjector();

}

53

catch(RemoteException E) {

E.printStackTrace();

}

}

The following is the constructor for the service. The service starts with an implicit

call to its parent constructor with no arguments. The parents and grandparents handle

exporting the object and registering it with the rest of the environment. After the par-

ent constructor returns, the service gets the serial port from the edu.ku.ittc.ACE.Lib-

rary.Configuration library and the initializes the projector service. If the projector

cannot be started it exits the JVM.

public EpsonProjector() throws RemoteException {

try {

String Port =

Configuration.getConfigValue(PROJECTOR_SERIAL_PORT).trim();

debug("Serial Port: " + Port);

MyProjector = new ACEEpsonProjector(Port);

debug("Projector Opened");

}

catch(ACEEpsonProjectorException E) {

E.printStackTrace();

// Can’t open serial port so just die.

System.exit(-1);

}

}

The following methods implement the abstract methods from the Device level. Since

these are specific to the device begin controlled, they were left to the leaf node to

implement. Note the reset method, since there is no way to “reset” an Epson 3705

projector, this method does nothing.

public boolean getPowerState() throws RemoteException {

54

try {

int PowerState = MyProjector.getPower();

if(PowerState == ACEProjectorInterface.POWER_ON) {

return true;

}

else {

return false;

}

}

catch(ACEEpsonProjectorException e) {

e.printStackTrace();

throw new RemoteException(e.getMessage, e);

}

}

public void resetDevice()

throws RemoteException {

// Do nothing.

}

public void powerOn()

throws RemoteException {

try {

MyProjector.setPowerOn();

}

catch(ACEEpsonProjectorException e)

{

e.printStackTrace();

throw new RemoteException(e.getMessage, e);

}

55

}

public void powerOff()

throws RemoteException {

try {

MyProjector.setPowerOff();

}

catch(ACEEpsonProjectorException e) {

e.printStackTrace();

throw new RemoteException(e.getMessage, e);

}

}

The following methods implement the methods inherited from the Projector interface.

public void setVideoInputSource(String input)

throws RemoteException {

try {

if(input.equals(PC1)) {

MyProjector.setInputSource(

ACEProjectorInterface.INPUT_PC1);

}

else if(input.equals(PC2)) {

MyProjector.setInputSource(

ACEProjectorInterface.INPUT_PC2);

}

else if(input.equals(RCA)) {

MyProjector.setInputSource(

ACEProjectorInterface.INPUT_RCA);

}

else if(input.equals(S_VIDEO)) {

MyProjector.setInputSource(

56

ACEProjectorInterface.INPUT_S_VIDEO);

}

else if(input.equals(BNC_RBG)) {

MyProjector.setInputSource(

ACEProjectorInterface.INPUT_COMPONENT);

}

else if(input.equals(BNC_CRCYCB)) {

MyProjector.setInputSource(

ACEProjectorInterface.INPUT_COMPOSITE);

}

}

catch(ACEEpsonProjectorException e) {

e.printStackTrace();

throw new RemoteException(e.getMessage, e);

}

}

public String getVideoInputSource()

throws RemoteException {

try {

int Source = MyProjector.getInputSource();

String ArgValue = "";

switch(Source)

{

case ACEProjectorInterface.INPUT_PC1 :

ArgValue = PC1;

break;

case ACEProjectorInterface.INPUT_PC2 :

ArgValue = PC2;

break;

57

case ACEProjectorInterface.INPUT_RCA :

ArgValue = RCA;

break;

case ACEProjectorInterface.INPUT_S_VIDEO :

ArgValue = S_VIDEO;

break;

case ACEProjectorInterface.INPUT_COMPOSITE :

ArgValue = BNC_RBG;

break;

case ACEProjectorInterface.INPUT_COMPONENT :

ArgValue = BNC_CRCYCB;

break;

default: ArgValue = null;

}

return ArgValue;

}

catch(ACEEpsonProjectorException e) {

e.printStackTrace();

throw new RemoteException(e.getMessage, e);

}

}

The final set of methods implement the methods gained from directly implementing the

EpsonProjector interface.

public void setPictureInPicture(String Input)

throws RemoteException {

try {

if(Input.equals(RCA)) {

MyProjector.setPNPSource(

ACEProjectorInterface.PNP_COMPOSITE);

}

58

else if(Input.equals(S_VIDEO)) {

MyProjector.setPNPSource(

ACEProjectorInterface.PNP_S_VIDEO);

}

else if(Input.equals(PNP_OFF)) {

MyProjector.setPNPSource(

ACEProjectorInterface.PNP_OFF);

}

}

catch(ACEEpsonProjectorException e) {

e.printStackTrace();

throw new RemoteException(e.getMessage, e);

}

}

public String getPictureInPicture()

throws RemoteException {

try {

int Source = MyProjector.getPNPSource();

String PNPSource = "fail";

switch(Source) {

case ACEProjectorInterface.PNP_COMPOSITE:

PNPSource = RCA;

break;

case ACEProjectorInterface.PNP_S_VIDEO:

PNPSource = S_VIDEO;

break;

case ACEProjectorInterface.PNP_OFF:

59

PNPSource = PNP_OFF;

break;

default : break;

}

return PNPSource;

}

catch(ACEEpsonProjectorException e) {

e.printStackTrace();

throw new RemoteException(e.getMessage, e);

}

return null;

}

}

B.3 Stub Generation

The following is an example of the generated source file from the StubGenera-

tor. The StubGenerator takes the interface and then generates an implementation of the

methods that can be used to communicate with the remote service. All stubs extend

from the edu.ku.ittc.ACE.Service.Stub class and implement all the remote methods

that a class inherits. The class below is an example of the stub generated for the Epson-

Projector class.

/*

Generated by edu.ku.ittc.ACE.StubGenerator

DO NOT EDIT

*/

package edu.ku.ittc.ACE.Interface;

public class EpsonProjector_StubACE

extends edu.ku.ittc.ACE.Server.Stub

60

implements edu.ku.ittc.ACE.Interface.EpsonProjector {

The following is the constructor called by the service when generating the first stub. The

initialized stub is passed to the rmiregistry and then passed to the services initialized.

public EpsonProjector_StubACE(

edu.ku.ittc.ACE.Server.SocketFactory sf,

String host,

int port) {

super(sf, host, port);

}

The following is the implementation of the setPictureInPicture method. The method

takes the arguments places them in an array of objects, retrieves the java.lang.re-

flect.Method object referring to this method, and then passes them to the callMethod

method of the parent class that will package the items up and send them on. The excep-

tions are fatal, because they indicate something is horribly wrong with the classpath.

public void setPictureInPicture(java.lang.String arg0)

throws java.rmi.RemoteException {

try {

java.lang.Object[] o = new java.lang.Object[1];

java.lang.Class[] c = new java.lang.Class[1];

o[0] = arg0;

c[0] = Class.forName("java.lang.String");

java.lang.reflect.Method m =

this.getClass().getMethod("setPictureInPicture",

c);

java.lang.Object ret = callMethod(m, o);

61

}

catch(java.lang.NoSuchMethodException e) {

e.printStackTrace();

System.exit(-1);

}

catch(java.lang.ClassNotFoundException e) {

e.printStackTrace();

System.exit(-1);

}

}

The following is the implementation of the getPictureInPicture method. It is similar

to the setPictureInPicture except that it gets the return from the callMethod call and

returns that as the return of the object. If a Java primitive is returned instead of an object,

the Stub has methods to convert the objects to privative in the appropriate manner.

public java.lang.String getPictureInPicture()

throws java.rmi.RemoteException {

try {

java.lang.Object[] o = new java.lang.Object[0];

java.lang.Class[] c = new java.lang.Class[0];

java.lang.reflect.Method m =

this.getClass().getMethod("getPictureInPicture", c);

java.lang.Object ret = callMethod(m, o);

return (java.lang.String) ret;

}

catch(java.lang.NoSuchMethodException e) {

e.printStackTrace();

System.exit(-1);

}

return null;

62

}

The following are the other methods implemented by Stub generator. The bodies of the

methods have been removed from this paper. Since the following methods do not differ

substantially from the above methods their bodies have been removed for compactness.

public void setVideoInputSource(java.lang.String arg0)

throws java.rmi.RemoteException

{...}

public java.lang.String getVideoInputSource()

throws java.rmi.RemoteException

{...}

public boolean getPowerState()

throws java.rmi.RemoteException

{...}

public void powerOn()

throws java.rmi.RemoteException

{...}

public void powerOff()

throws java.rmi.RemoteException

{...}

public void shutdown()

throws java.rmi.RemoteException,

edu.ku.ittc.ACE.RobustService.RobustServiceException

{...}

63

public void reset()

throws java.rmi.RemoteException,

edu.ku.ittc.ACE.RobustService.RobustServiceException

{...}

public void close()

throws java.rmi.RemoteException

{...}

public void connect(edu.ku.ittc.ACE.Interface.Service arg0)

throws java.rmi.RemoteException,

edu.ku.ittc.ACE.RobustService.RobustServiceException

{...}

public void testStatus()

throws java.rmi.RemoteException

{...}

public edu.ku.ittc.ACE.Library.UserInformation[]

getUsersList()

throws java.rmi.RemoteException,

edu.ku.ittc.ACE.RobustService.RobustServiceException

{...}

public void

addCommandWatchNotify(java.lang.String arg0,

boolean arg1)

throws java.rmi.RemoteException,

edu.ku.ittc.ACE.RobustService.RobustServiceException

{...}

64

public void

deleteCommandWatchNotify(java.lang.String arg0)

throws java.rmi.RemoteException,

edu.ku.ittc.ACE.RobustService.RobustServiceException

{...}

}

B.4 Startup Scripts

The final part of the implementation is the scripts used to start the services. These

scripts set up the variable and class path as needed. The work by calling the parent level

scripts to set up the variable. The important item is the use of the the DAEMON variable

to control what service is started by the last script called in the chain.

The following is the script for the Projector level.

#!/bin/sh

TOPDIR=‘dirname $0‘/..

TOPDIR=‘cd $TOPDIR; pwd‘

export CLASSPATH=$CLASSPATH

if([-z $DAEMON]) then

export DAEMON=edu.ku.ittc.ACE.Service.Projector

fi

$TOPDIR/bin/Device.sh $@

The following is the script to start the EpsonProjector.

65

Figure B.1: A screen shot of a gui that utilizes the projector service

#!/bin/sh

TOPDIR=‘dirname $0‘/..

TOPDIR=‘cd $TOPDIR; pwd‘

export CLASSPATH=$CLASSPATH

if([-z $DAEMON]) then

export DAEMON=edu.ku.ittc.ACE.Service.EpsonProjector

fi

$TOPDIR/bin/Projector.sh $@

B.5 Client Implementation

The following is the source code of a simple client that uses the projector service.

The client connects to a projector service, as specified by the building name and room

name passed to the service upon initialization. The service then contacts the Service

Directory to get the room Information. Next the service contacts Room Database to get

the correct room object for the service. Finally the client requires the room database to

find the projectors that implement the required interface and are located in the specified

room. The resulting service is then used to drive the GUI frame. Figure B.1 shows the

resulting window shown the user.

package edu.ku.ittc.ACE.utility;

66

import edu.ku.ittc.ACE.Library.*;

import edu.ku.ittc.ACE.Interface.*;

import javax.swing.*;

import java.awt.*;

import javax.swing.event.*;

import java.awt.event.*;

import java.rmi.*;

public class ProjectorFrame

extends JPanel

implements ActionListener {

/** projector service */

private Projector MyProjector = null;

/** Strings used in the gui */

private static final String ON_SYMBOL = "On";

private static final String OFF_SYMBOL = "Off";

private static final String WINDOWS_SYMBOL =

"Podium Computers";

private static final String LINUX_SYMBOL =

"Laptop Connection";

/** State variable */

private boolean currentState = false;

/** label for state */

private JLabel PowerStateLabel;

The following is the main method of the object. This method connects to the projector

service then creates an new window accessing the projector service. If it fails to do

67

either, the method exits the JVM.

public static void main(String Args[]) {

try {

if(Args.length < 2) {

System.out.println("Usage: ProjectorGUI " +

"BuildingName RoomName");

System.exit(-123);

}

// get the projector

Projector proj = null;

proj = getProjector(Args[0], Args[1]);

if(proj == null) {

System.out.println("Specified Projector " +

"cannot be found.");

System.exit(-124);

}

// Initialize the frame

ProjectorFrame x = new ProjectorFrame(proj);

// Finish the setup

JFrame jf =

new JFrame("Projector Control: " + Args[1]);

jf.getContentPane().add(x);

// jf.setSize(640, 480);

jf.pack();

jf.setVisible(true);

68

jf.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e)

{System.exit(0);}

});

}

catch(RemoteException e){

e.printStackTrace();

System.exit(-1);

}

}

The following constructor sets up the window, creates the button and associates the

listeners with the same frame. The buttons call the method, actionPerformed, when

they are pressed. The method, actionPerformed, actually uses the Projector service,

which is passed to the constructor as an argument.

public ProjectorFrame(Projector p)

throws RemoteException {

this.MyProjector = p;

BoxLayout x =

new BoxLayout(this, BoxLayout.Y_AXIS);

this.setLayout(x);

/* Power State panel */

JPanel PowerStatus = new JPanel();

BoxLayout y =

new BoxLayout(PowerStatus, BoxLayout.X_AXIS);

PowerStatus.setLayout(y);

PowerStatus.add(new JLabel("Current Power State: "));

69

PowerStateLabel = new JLabel();

currentState = p.getPowerState();

updatePowerStateLabel();

PowerStatus.add(PowerStateLabel);

/** Button Labels */

JPanel VertItems1 = new JPanel();

BoxLayout a =

new BoxLayout(VertItems1, BoxLayout.Y_AXIS);

VertItems1.setLayout(a);

VertItems1.add(new JLabel("Turn the " +

"Projector On/Off: "));

VertItems1.add(new JLabel("Select " +

"the Input Computer: "));

// Buttons

JPanel VertItems2 = new JPanel();

BoxLayout a2 =

new BoxLayout(VertItems2, BoxLayout.Y_AXIS);

VertItems2.setLayout(a2);

// power buttons

JPanel PowerSelector = new JPanel();

BoxLayout w =

new BoxLayout(PowerSelector, BoxLayout.X_AXIS);

PowerSelector.setLayout(w);

JButton PowerOn = new JButton(ON_SYMBOL);

PowerOn.addActionListener(this);

JButton PowerOff = new JButton(OFF_SYMBOL);

PowerOff.addActionListener(this);

70

PowerSelector.add(PowerOn);

PowerSelector.add(PowerOff);

// Input buttons

JPanel InputSelector = new JPanel();

BoxLayout z =

new BoxLayout(InputSelector, BoxLayout.X_AXIS);

InputSelector.setLayout(z);

JButton InputWindows = new JButton(WINDOWS_SYMBOL);

InputWindows.addActionListener(this);

JButton InputLinux = new JButton(LINUX_SYMBOL);

InputLinux.addActionListener(this);

InputSelector.add(InputWindows);

InputSelector.add(InputLinux);

VertItems2.add(PowerSelector);

VertItems2.add(InputSelector);

// Finished adding the buttons

JPanel holder = new JPanel();

BoxLayout bl = new BoxLayout(holder, BoxLayout.X_AXIS);

holder.setLayout(bl);

holder.add(VertItems1);

holder.add(VertItems2);

this.add(PowerStatus);

this.add(holder);

}

The following is the implementation of the method, actionPerformed. The code

uses the projector service and calls methods on the service to turn the projector on

71

or change the input source. The actual method used to communicate with the re-

mote service is hidden here, the client only needs to handle errors thrown through the

java.rmi.RemoteException exception.

public void actionPerformed(ActionEvent a) {

try {

System.out.println(a.getActionCommand());

Projector p = getProjector();

// On action

if(a.getActionCommand().equals(ON_SYMBOL)) {

debug("Entering on");

p.powerOn();

currentState = p.getPowerState();

updatePowerStateLabel();

debug("Leaving on");

}

// Off actions

else if(a.getActionCommand().equals(OFF_SYMBOL)) {

debug("Entering off");

p.powerOff();

currentState = p.getPowerState();

updatePowerStateLabel();

debug("Leaving off");

}

// Windows Input

else if

(a.getActionCommand().equals(WINDOWS_SYMBOL)) {

p.setVideoInputSource(Projector.PC1);

}

// Linux input

72

else if

(a.getActionCommand().equals(LINUX_SYMBOL)) {

p.setVideoInputSource(Projector.PC2);

}

}

catch(RemoteException e) {

e.printStackTrace();

}

}

/** returns ref to projector */

Projector getProjector() {

return MyProjector;

}

/** debug statement */

private static void debug(String d) {

System.out.println(d);

}

The final method of note, takes the information about the Building and the room and

gets a Projector service within the room. The client isn’t too particular about which

service it gets and if there is more than one service it will choose which ever one the

service directory returns first. Before the service can contact the Projector service, it

needs to communicate with the Room Database to get the object that represents the

requested room. After that object is retrieved, the Service Directory can be contacted

to retrieve the Projector service.

/** gets the projector service */

private static Projector getProjector(String BuildingName,

String RoomName)

throws RemoteException {

73

// Get the room database.

RoomDatabase rd = null;

// Need ref to service directory.

ServiceDirectory sd =

ServiceAccess.getServiceDirectory();

// Set services that are of class RoomDatabase

ServiceAttributes sa[] =

sd.getServices(

new

ClassHierarchy("edu.ku.ittc.ACE.Interface.RoomDatabase"));

// Check services for services one can connect to.

if(sa != null) {

for(int i=0; i < sa.length; i++) {

try {

Remote r = ServiceAccess.getService(sa[i]);

if(r != null) {

rd = (RoomDatabase) r;

break;

}

}

catch(Exception e) {

e.printStackTrace();

rd = null;

continue;

}

}

74

if(rd == null) {

System.err.println("No Room Directory found. "+

"Please start one.");

System.exit(-1);

}

else {

debug("RD: " + rd);

}

}

// Since I have a room directory, now try to get

// specified room object.

Room rm = rd.getRoom(BuildingName, RoomName);

if(rm != null){

debug(rm.toString());

}

else {

debug("Room NULL");

System.err.println("No room with the name " + RoomName +

" was found in the building " +

BuildingName +

". Please add it to the room database");

System.exit(0);

return null;

}

// Now have room object, get the projectors

// that implement the object get the first

// one in the room.

Projector proj = null;

75

ServiceAttributes[]sa2 =

sd.getServices(rm,

new ClassHierarchy("edu.ku.ittc.ACE.Interface.Projector"));

debug("sa length:" + sa2.length);

if(sa2 != null) {

for(int i=0; i < sa2.length; i++) {

debug(sa2[i].toString());

try {

debug("Getting the projector");

Remote r = ServiceAccess.getService(sa2[i]);

debug("Got r");

if(r != null) {

debug("Converting r to string");

debug(r.toString());

}

else {

debug("Remote connection is null");

}

debug("Before class cast");

proj = (EpsonProjector) r ;

proj.testStatus();

debug("Got the projector");

}

catch(Exception e) {

proj = null;

e.printStackTrace();

continue;

}

}

76

}

else {

debug("No projectors in the Service Directory");

}

if(proj == null) {

System.err.println("Cannot connect to the " +

"projector. An error " +

"as orrcured.");

}

return proj;

}

/** Updates the power label */

private void updatePowerStateLabel() {

if(currentState == false) {

PowerStateLabel.setText("Off");

}

else {

PowerStateLabel.setText("On");

}

}

}

77

Appendix C

Using the Core Services

The following chapter describes the use of the Core services by other services and

how one would use the services in their own clients. The core services are the Service

Directory, the User Database, the Room Database, and the Authentication Database.

C.1 Service Directory

The Service Directory is the most important of the services and it is the only one

contacted without the help of the Service Directory itself. The interface for Service

Directory also comes along with the help of a class called ServiceAccess. A GUI

has also been implemented in order to see the items currently stored in the Service

Directory.

The interface into the Service Directory contains a number of methods to access

the stored data. The methods are all called getServices and returns an array of objects

of the ServiceAttributes class. The ServiceAttributes class contains the information

to contact the service. The final set of methods are used by services to register services

with the service directory. The registration and unregistrations methods are usually

called by the services internally and not called by the services directly.

Figure C.1: A screen shot of a gui that utilizes the Service Directory

78

A GUI called asdClient.sh has been implemented to give a view of the ser-

vices currently stored in the Service Directory. The client allows for one to see a subset

of the services and to select which service needs to be shutdown. Figure C.1 shows a

screen shot of the service.

C.1.1 ServiceDirectory Interface

The following is the interface to use the Service Directory:

package edu.ku.ittc.ACE.Interface;

import java.util.*;

import edu.ku.ittc.ACE.Library.*;

import java.rmi.*;

public interface ServiceDirectory extends Database

{

The following methods search for services based on a number of different characteris-

tics. All the methods return an array of ServiceAttributes classes.

public ServiceAttributes[]

getServices(ClassHierarchy c)

throws RemoteException;

public ServiceAttributes[]

getServices(String Name)

throws RemoteException;

public ServiceAttributes[]

getServices(Machine m)

throws RemoteException;

79

public ServiceAttributes[]

getServices(Room rm)

throws RemoteException ;

public ServiceAttributes[]

getServices(String Name,

ClassHierarchy c)

throws RemoteException;

public ServiceAttributes[]

getServices(String Name,

Machine m)

throws RemoteException;

public ServiceAttributes[]

getServices(String Name,

Room rm)

throws RemoteException;

public ServiceAttributes[]

getServices(Machine m,

ClassHierarchy c)

throws RemoteException;

public ServiceAttributes[]

getServices(Room rm,

ClassHierarchy c)

throws RemoteException;

80

public ServiceAttributes[]

getServices(String Name,

Room rm,

ClassHierarchy c)

throws RemoteException;

public ServiceAttributes[]

getServices(String Name,

Machine m,

ClassHierarchy c)

throws RemoteException;

The following methods are used internally by the services to register, unregister, and

update their attributes.

public void register(ServiceAttributes Attribs)

throws RemoteException;

public void unregister(ServiceAttributes servAttrs)

throws RemoteException;

public void renew(ServiceAttributes Attribs)

throws RemoteException;

public long getLeaseTime()

throws RemoteException;

public void

addServiceDirectoryListener(ServiceDirectoryListener

listener)

throws RemoteException;

}

C.1.2 ServiceAccess Helper Class

The ServiceAccess helper class is used to get the initial connection to the Ser-

vice Directory and to create new connections to the services based on their ServiceAt-

81

tributes.

package edu.ku.ittc.ACE.Interface;

/**

Finds the instance of the ASD and returns

that instance to the user

*/

public class ServiceAccess implements RobustServiceFinder {

/** Gets the service directory */

public static ServiceDirectory

getServiceDirectory()

{...}

/**

@return An instance of a service interface.

If the service does not really

exist then return a NULL.

*/

public static Service

getService (ServiceAttributes servAttr)

{...}

}

C.2 User Database

The User Database stores information about the users and the items needed to

identify them. The database stores in the information in two objects, UserAttribues

and UserCharacteristics. A GUI called User Editor has been created to allow the

data in the database to be updated and changed.

The User Database’s interface allows for a user to be entered by creating a User-

82

Figure C.2: A screen shot of the current users stored in the User Database

Attributes class. This class contains the information about the user that corresponds

to the user’s public key, name, login name, and last login time. The database stores

these objects until they are requested by the user. After a user has been entered his or

her information can be updated by adding the new characteristics to the database. The

characteristics are returned to the ID Monitors in terms of a UserCharacteristics class.

This class contains the characteristics, the device the characteristics are intended for

and the command to execute when the user is identified by the device. The command

should be launched by the Host App Launcher and not by the ID Monitor its self.

The User Editor GUI allows for users to be entered into the system. The

GUI consists of two main components. The initial screen (shown in figure C.2 shows

the screen that allows for a user to be edited after he or she has been entered into the

system. The second screen (shown in figure C.3) allows for an individual user to be

entered into the system. For the second screen the user’s public key is retrieved from

the file system.

83

Figure C.3: A screen shot of the interface to add a new user.

C.2.1 User Attributes Class

The UserAttributes class contains the representation of the user within the ACE.

It contains information about the users such as their public key, login name, real name

and list time the user logged in.

package edu.ku.ittc.ACE.Library;

import java.util.*;

public class UserAttributes

implements java.io.Serializable {

The following constructor makes a new UserAttributes class containing the options as

specified. Most of the objects are created by the User Editor or the User Database

service and not by individual users.

84

public UserAttributes(String key,

String user,

String firstName,

String lastName,

String middleName,

String userLoc,

Date logInTm,

Date activityTime)

{ ... }

The following methods allow for the stored objects to be retrieved.

/** This is just the getter method for obtaining

this user’s public key.

@return The public key of the user.

*/

public String getPublicKey() { ... }

/** This is just the getter method for obtaining

this login name of this user.

@return The login name of the user.

*/

public String getLoginName() { ... }

/** This is just the getter method for obtaining

the first name of this user.

@return The first name of the user.

*/

public String getFirstName() { .. }

/** This is just the getter method for obtaining

85

the middle name of this user.

@return The middle name of the user.

*/

public String getMiddleName() { ... }

/** This is just the getter method for obtaining

the last name of this user.

@return The last name of the user.

*/

public String getLastName() { ... }

/** This is just the getter method for obtaining

the full name of this user.

@return The full name of the user.

*/

public String getFullName() { ... }

/** This is just the getter method for obtaining this user’s

ID strings that are used to identify him/her on different

ACE identification devices.

@return The user’s ID strings used by the ACE devices.

*/

public Vector getUserIDs() { ... }

/** This is just the getter method for

obtaining this user’s ID device names that are

used to identify for which ACE identification device a

particular user ID string is for.

@return The user’s ID device names.

*/

86

public Vector getUserIDDevices() { ... }

/** This is just the getter method for returning

the user’s current location.

@return The user’s current location

where he/she is active.

*/

public String getUserLocation() { ... }

/** This is just the getter method for returning the

time when the user logged into his/her current

active location/host.

@return The time when the user logged into

his/her current location.

*/

public Date getLogInTime() { ... }

/** This is just the getter method for returning

the time when the user was last reported

active at his/her current location.

@return The time when the user was

last reported active.

*/

public Date getLastActiveTime() { ... }

}

C.2.2 User Characteristics

The UserCharacteristics class allows for information that could be used to iden-

tify the user to a device to be transfered from the device into the User Database. The ac-

tual information stored is specific to the device and stored a string by the user database.

87

If a device needs to store a more complex, binary structure the device should encode

the binary data into a string using an algorithm like base-64. The object also stores a

command to be run by the App Host Launcher when the user is identified.

package edu.ku.ittc.ACE.Library;

import java.util.Vector;

import java.lang.reflect.*;

public class UserCharacteristics

implements java.io.Serializable

{

/** Allows instantiation of an empty object

Also sets the name of the device that the characteristics

are for */

public UserCharacteristics(String characteristics,

String key,

String deviceName,

String command)

{

userCharacteristics = characteristics;

publicKey = key;

this.deviceName = deviceName;

this.command = command;

}

/** Returns the public key

@return The public key object

*/

public String getPublicKey()

{ ... }

88

/** Returns the user characteristics

@return the user characteristics object

*/

public String getUserCharacteristics()

{ ... }

/** Returns the name of the device

@return The full name as a string

*/

public String getDeviceName()

{ ... }

public String getCommand()

{ ... }

}

C.2.3 User Database Interface

The following is the interface needed to access the User Database. The methods

are divided into two sections. The first section concerns adding users and the second

section concerns adding information about the user logging information.

package edu.ku.ittc.ACE.Interface;

import java.util.*;

import edu.ku.ittc.ACE.Library.*;

import java.rmi.*;

public interface UserDatabase extends Database

89

{

The following methods allows for adding and removing a user. Users are added by

passing an initialized UserAttributes class to the system. The users are removed by

specifying them as the public key.

public void registerUser(UserAttributes userAttrs)

throws RemoteException;

public void unregisterUser(String PublicKey)

throws RemoteException;

The following method can be used to search the database for the already entered users.

/** This method shall create a command object

and obtain information about users from the

ACE User Database. The parameters passed into

this method are later used as wildcard information to

the ACE User Database sql table queries. The

information returned here describes

the users that match the input parameters.

@param publicKey The public key of the user we are

looking for.

@param loginName The login name or names we are

looking for.

@param firstName The first name of the user(s) we are

looking for.

@param middleName The middle name of the user(s) we are

looking for.

@param lastName The last name of the user(s) we are

looking for.

90

@param userID A user’s device identification

information we are looking for.

@param userIDDevice The ACE ID Device type that

corresponds to the userID string

we are looking for.

@param userLocation The location where the user

is currently at.

@param logInTime The time when the user logged into

where he/she is at.

@return An vector of UserAttributesthat match the input

information/criteria.

@exception ServiceUnavailableException

*/

public UserAttributes[] getUsers(String PublicKey,

String LoginName,

String FirstName,

String MiddleName,

String LastName,

String UserID,

String UserIDDevice,

String UserLocation,

String LoginTime)

throws RemoteException;

The following methods allow for a user’s record to be updated. The updateUser

method updates a user inside of the database. The method matches the public key

of the passed class to find the users stored record. The updateUserLocation allows the

user’s last login location to be update.

public void updateUser(UserAttributes attr)

91

throws RemoteException;

public void

updateUserLocation(UserAttributes attr,

String location,

Date Login,

Date Active)

throws RemoteException;

The following methods are used by the ID Devices to store, delete and retrieve the

UserCharacteristics class from the User Database.

FIXME : Get correct methods for retrieval.

public void

addUserIdentification(UserAttributes attr,

String UserID,

String userIDDevice)

throws RemoteException;

public void

removeUserIdentification(UserAttributes userAttribs,

String userID,

String userIDDevice)

throws RemoteException;

}

FIXME: Get the retrieve method

92

Figure C.4: A screen shot of the list of rooms stored in the database

C.3 Room Database

The Room Database is used to store information about the buildings, rooms, and

machines stored in the room database. The information can be viewed and edited us-

ing the rdbClient.sh. The objects are viewed inside of the software as edu.ku.it-

tc.ACE.Library.Building, edu.ku.ittc.ACE.Library.Room, and edu.ku.ittc.ACE.Lib-

rary.Machine. These objects are accessed by the room database.

The rdbClient.sh provides a way for a user to input the buildings, rooms,

and machines currently stored in the Room Database. The main GUI consist of a tabbed

set of windows that allows the user to view the stored objects. Figure C.4 is a screen

shot of the GUI. The GUI provides an interface to enter new object (an example is

shown in figure C.5).

A machine is added by using the addMachine.sh script. The script examines

the machine and sets the items in the database appropriately.

93

Figure C.5: A screen shot of the interface to add a new room

C.3.1 Building Interface

The following is the interface for a building. The building is assumed to have an

address as well as a name.

public interface Building

extends java.io.Serializable

{

public String getName();

public String getStreetAddress();

public String getZipCode();

public String getCity();

public String getState();

}

C.3.2 Room Interface

The following is the interface into a room. A room is assumed to have a name, a

room number, be located in a building, and have a size. The size of the room is stored

in a Point3d object where each point is the largest distance from the origin of the room.

94

The room’s origin is the nearest corner to the door and all distances are in meters.

package edu.ku.ittc.ACE.Library;

import java.io.*;

/**

Defines the interface for use of the ACE Room object. This interface

is used to compile classes that depend on the Room object before

the room object actually compiled.

*/

public interface Room extends Serializable

{

public Building getBuilding();

public String getName();

public String getNumber();

public Point3d getSize();

public String getRoomName();

public String getBuildingName();

public String toString();

}

C.3.3 Machine Interface

The following defines a machine in the ACE. A machine has a name and char-

acteristics that go along with it including hardware, operating system, etc. It is also

nominally located inside of a room. A machine is uniquely identified in the environ-

ment by its MAC address.

package edu.ku.ittc.ACE.Library;

public interface Machine

extends java.io.Serializable {

95

public String getName();

public ServiceAttributes[] getServices();

public Room getRoom();

public java.net.InetAddress getInetAddress();

public String getOperatingSystemType();

public String getOperatingSystemVersion();

public String getJavaVersion();

public int getProcessorNumber();

public int getProcessorSpeed();

public int getBogoMIPS();

public int getMemorySize();

public String getVideoCardType();

public int getNumberOfSerialPorts();

public boolean canCaptureVideo();

public boolean canCaptureAudio();

public boolean canPlayAudio();

public String getMACAddress();

}

C.3.4 RoomDatabase Interface

The following is the last interface into the Room Database. It defines the methods

that the room database implements. These methods consist of searching and adding

Machines, Rooms, and Buildings.

package edu.ku.ittc.ACE.Interface;

import edu.ku.ittc.ACE.Library.*;

import java.rmi.*;

public interface RoomDatabase extends Database {

The following methods define getting buildings from the database.

96

public Building getBuilding(String BuildingName)

throws RemoteException;

public Building[] getBuildings()

throws RemoteException;

The following methods add fetch rooms from the database.

public Room getRoom(Building BuildingName, String RoomName)

throws RemoteException;

public Room getRoom(String BuildingName, String RoomName)

throws RemoteException;

public Room[] getRooms(Building BuildingName)

throws RemoteException;

public Room[] getRooms()

throws RemoteException;

The following methods fetch machines from the database.

public Machine getMachine(String Name, Room rm)

throws RemoteException;

public Machine getMachine(String Name)

throws RemoteException;

public Machine[] getMachines(Building BuildingID)

throws RemoteException;

public Machine[] getMachines(Room RoomID)

throws RemoteException;

public Machine[] getMachines()

throws RemoteException;

These methods are used to add objects to the database.

public void addBuilding(Building b)

throws RemoteException;

public void addRoom(Room r)

97

throws RemoteException;

public void addMachine(Machine m)

throws RemoteException;

The following remove items from the database. A room and building cannot be re-

moved if the machine or room exists.

public void deleteMachine(Machine m)

throws RemoteException;

public void deleteRoom(Room r)

throws RemoteException;

public void deleteBuilding(Building b)

throws RemoteException;

}

C.4 Authentication Database

The last core service is the Authentication Database. The Authentication Database

stores assertions for the services. The assertions can be searched by service within the

network and used to determine permissions within the network. These services. A GUI

called Cert Generator was implemented to allow users to enter new assertions

into the database. The interface for the database contains an interface for the keynote

assertion and for the database itself.

The GUI uses the User and Room Database for determining the users and rooms

that can be added to the system. The program then creates a new certificate. The new

certificate is either saved to disk or entered into the database. Figure C.6 shows an

screen shot of the GUI.

C.4.1 Keynote Assertion

A keynote assertion is an object representing a Keynote assertion. The assertion

can be passed to the Authentication Database or a Keynote session.

98

Figure C.6: A screen shot of a gui that can be used to build new keynote assertions

package edu.ku.ittc.ACE.Keynote;

import java.util.*;

public class KeynoteAssertion

implements java.io.Serializable

{

private static final String APP_DOMAIN = "ACE";

private static final String KEYNOTE_VERSION = "2";

public KeynoteAssertion(String StringAssertion) { ... }

public KeynoteAssertion(String AssertionData,

boolean trusted)

throws KeynoteSignatureException,

KeynoteSyntaxException { ... }

public void sign(KeynoteKeyPair keys) { ... }

99

public boolean isSignatureVerified() { ... }

}

C.4.2 Authentication Database Interface

The Authentication Database stores assertions until they are retrieved by a user.

The assertions must be initialized keynote assertions.

package edu.ku.ittc.ACE.Interface;

import java.util.*;

import edu.ku.ittc.ACE.Library.*;

import java.rmi.*;

import edu.ku.ittc.ACE.Keynote.*;

public interface AuthenticationDatabase

extends Database {

The following method adds an assertion to the database. An assertion is added with its

characteristics to allow for a service to search for the assertion.

/** Adds an assertion to the database. Assertion

is connected to the the time between start

and end, takes place in the specified room,

and has the specified authorizers and licensees. */

public void addAssertion(KeynoteAssertion assertion,

Calendar startCalendar,

Calendar endCalendar,

Room rm,

UserAttributes[] authorizers,

UserAttributes[] Licensees)

throws java.rmi.RemoteException ;

100

The following method retrieves the assertions as needed.

/** Search for all the assertions that meet the

requested statisics. These users are either listed

in the licensee or authorizer fields.

*/

public KeynoteAssertion[]

getAssertions(Calendar searchCalendar,

Room rm,

UserAttributes uas)

throws java.rmi.RemoteException;

}

101

Appendix D

ACE Software and Setup

The following discusses the setup of the ACE tree, building the software, and setting up

the initial system. This software is primarily written in the Java programming language,

although some parts are written in C and accessed through the Java Native Interface

System. The software was written to target the RedHat Linux 7.3 and RedHat Linux 9

systems with an installed Java Development Kit of 1.4 or later.

D.1 Source Tree Review

The source code is divided into two major sections. The first section, called third-

party contains sources from other projects that are either not normally installed on the

system or need to be modified for use within ACE. The src directory contains all the

sources written for the ACE project. The src directory is further divided into drivers,

java, and program directories. The drivers directory contains custom self-contained

drivers for devices (like the Java interface for the Canon VCC3 camera.) The java

directory contains the actual sources for what is considered to be ACE. The programs

directory contains stand alone programs for accessing services and programs inside of

ACE.

D.1.1 Third-Party Directory

The third party directory contains sources used by ACE, but not written by those

working on ACE. They usually consist of drivers from the vendors and media libraries

for MPEG4. The software is built along with the rest of ACE on a normal install, except

for the rxtx and nasm directories, which must be installed separately before the build

can take place.

The keynote directory is the software to run the Keynote Trust-Management Sys-

102

Figure D.1: Directory tree for the ACE software. The left tree is the overall tree
from the root, while the right tree just shows the branches under the
ACE/src/java directory where most of the project is housed.

tem. The iButton contains the software to access the iButtons under java. The mysql

directory contains the Java database drivers for the MySQL Database. The jmf, libsnd-

file, xvidcore, ffmpeg, faad2, and faac directories contain the libraries for processing

video and sound inside of java as well as the libraries for processing AAC audio and

MPEG4 video.

The nasm and rxtx directories must be built separately of the tree. The nasm

contains an i386 assembler used by some of the software libraries. The nasm version

that ships with RedHat 7.3 and 9 does not support all the options required by the media

libraries. The rxtx is the implementation of the Java Comm Serial Port library for

Linux. Rxtx is required for the iButton libraries.

D.1.2 Src Directory

The src directory contains the software written to implement ACE. It is divided

into three parts. The drivers sub-directory contains stand alone software to run certain

devices. The Java sub-directory contains the implementation of ACE and the programs

sub-directory contains programs implemented to access ACE and perform functions

103

within ACE.

D.1.3 Drivers Sub-Directory

The drivers subdirectory contains drivers for the Epson 7350 Projector, the Sony

Fingerprint Identification Unit (FIU), and the VCC3 camera. All the devices work

over a serial interface and are implemented in the C library. A library called Serial is

included as well. This software is used by the other libraries to implement the serial

communication interface in a thread safe way.

D.1.4 Java Sub-Directory

The java sub-directory contains the code that makes up the core of ACE. This

includes the service interfaces, service implementations, and any needed helper objects.

The data is divided into two parts, the first part stored in the src directory contains the

sources for the java portions of the project. The second directory called c-src contains

the implementations for the native parts of the service.

D.1.4.1 src

The src directory contains the Java source code for ACE. The code all belongs

to a sub-package under edu.ku.ittc.ACE structure. The sub-packages include drivers

for Keynote, Epson 7350 Projector, Sony FIU, the Canon VCC3 camera and the Java

Media Foundations. It also includes the service interfaces in the Interface directory and

the implementation in the Service directory. The RobustService, StubGenerator, and

Server directories implement the features which make ACE different from other RMI

systems. Finally the Library and Room directories contain the generic objects that

clients and services need to communicate complex information amongst each other.

All the code is stored in the directory related to the package name of the ser-

vice and the file name of the implementation is related to the class name For instance

the edu.ku.ittc.ACE.Service.ServiceDirectory class is implemented in a file called Ser-

viceDirectory.java and stored in the edu/ku/ittc/ACE/Service directory under src.

104

D.1.4.2 c-src

The c-src directory contains the implementations of necessary native functions

for src library. The native implementations are written in either C or C++. Implemen-

tations headers derive directly from the Java class files created by the javah program.

The directory contains implementations for a number of JMF programs, Keynote, Sony

FIU, VCC3 camera and the Epson 7350 projector.

D.1.5 Programs Sub-Directory

The final directory of note is the programs sub-directory. This directory contains

the sources for programs that while not providing services directly to ACE, utilize ACE

services to perform functions within the environment. These programs include a client

to view the current Service Directory entries, a program to edit the User Database, a

program to generate and store Keynote Assertions, and a GUI for the media programs.

D.2 How to Build the Source Tree

The source tree is designed to be built with one make command from the root.

The build should be successful, if the correct libraries are already installed. The source

tree builds its self and installs its files in the bin, etc, lib, and include. A script to build

an installable RPM is included as well.

The system needs the following programs installed to build the tree:

� Java Development Kit version 1.4 or later (http://java.sun.com)

� GCC compiler version 2.95 or later (http://gcc.gnu.org)

� NASM version 0.98.36 or later (http://nasm.sourceforge.net)

� rxtx version 2.1.7 or later. (http://www.rxtx.org)The version that does not use the

Java Comm libraries is required.

� Apache Ant version 1.6 or later (http://ant.apache.org)

105

� GNU Make version 3.79 or later (http://www.gnu.org)

� MySQL version 4 or later (http://www.mysql.com) Not needed for building, but

required to run some services.

These programs need to be installed separately from building the ACE tree. The

rxtx program must be installed into the JVM environment being used. To point the

Makefiles to use the appropriate programs, one needs to edit the Makefile.global file at

the root.

JAVA Home Directory Directory

JAVA_HOME = /tools/java/i686/j2sdk1.4.2

Ant control files

ANT_HOME=JAVA_HOME=$(JAVA_HOME) /users/jmauro/ant

ANT_EXEC=$(ANT_HOME)/bin/ant -emacs

The three most important lines are above. The system uses make to control the

main building and the compiling of all the C and C++ source files. Unfortunately make

is not designed to compile Java programs. For building Java files, Apache Ant is used.

It is called by the make files to build the Java programs. As such, make needs to be told

both the location of the JDK which contains javac and the location and and program

needed to run Ant.

After the environment has been setup, ACE can be built by running the following

command at the root of the tree:

make install

ACE will then be installed into the correct directories on the root. If the pro-

gram needs to be installed into another directory, the bin, etc, share, include, and lib

directories can be directly copied.

There exists a spec file for building the ACE system on RPM based systems. A

script called makeACERPM.sh (installed into the bin directory) can take the spec file

106

and build a new RPM from the source tree. This RPM specifies that the software is

installed into the /usr/local/ace directory.

D.3 Initial Setup

This section assumes that one installed ACE into the /usr/local/ACE directory. If

that is not the case, please change the directories as needed.

D.3.1 System Setup

The following lists the commands and steps needed to setup ACE after it has

been installed. It includes creating the “ace” user, configuring MySQL, setting the core

services to start, setting up the Certificate Authority (CA) for all of ACE, keying the

ACE user, then generating the main policy assertion for all of ACE.

D.3.1.1 Creating user “ace”

The first step is to create a user called, “ace”. This user is the “root” user of ACE.

It should be created on all the machines in the environment and have the same home

directory. The home directory is used to house specific files for ACE, like the master

key, the Certificate Authority files and passwords for the services that use the MySQL

database.

D.3.1.2 MySQL Setup

The core services in ACE all utilize the MySQL database for information storage

and retrieval. The MySQL database needs to have databases created for each service

and unique passwords for each service. The database only needs to be running on those

hosts which are running a core service. A script called configureMySQL.sh has

been created to help with the tasks.

The script takes one argument, which is the database being created (limited to

either asd, roomdb, authdb or userdb). The script checks to see if the MySQL server is

107

running. If the server is running the script creates a new database, a new user with

a password stored in the ACE directory. For instance if one was creating the asd

database, a database called ace asd would be created, a user called ace asd would be

created to access the database and the password for the user is stored in ace/.mysql-

Password ace asd. The password should be unencrypted and be only readable to the

ace user. If the password file does not exist and the mkpasswd program exists, a new

password is generated. If mkpasswd does not exist, then the password file needs to be

created by hand.

D.3.1.3 Service Setup

There are two main configuration files for ACE. The file, /usr/local/ace/etc/Dae-

mon.conf, handles the configuration of the individual services. The second one The

second one, /etc/ace/ace.conf, exists to control what services are started at boot. After

the RPM is installed, these files need to be modified to indicate which services need to

be started.

The following is an example of the /usr/local/ace/etc/Daemon.conf file:

asd=rmi://pigpen.ittc.ku.edu/ServiceDirectory

edu.ku.ittc.ACE.ACEDaemon.PolicyAssertions=$(TopDir)/etc/policyassert

edu.ku.ittc.ACE.Service.NetworkLogger.FileName=ACELogFile.log

edu.ku.ittc.ACE.Service.EpsonProjector.SerialPort=/dev/ttyS0

edu.ku.ittc.ACE.Service.VCC3Camera.SerialPort=/dev/ttyS1

edu.ku.ittc.ACE.Service.IButtonMonitor.DefaultPort=/dev/ttyS1

The example file shows the most commonly changed portions of the Daemon.conf.

It include which serial ports the the devices are connected on, what is the location of

the service directory and where the network logger logs to. The edu.ku.ittc.ACE.ACE-

Daemon.PolicyAssertions option tells the service where to look for its policy asser-

tions. The file can take already stored variables and use them internally with the

$ �����������	��
 name syntax. The variables can also be overridden on the command

108

line using the -Dvariable=value syntax after the shell script to operate the program is

executed. .

The following is an example of the /etc/ace/ace.conf:

ENABLE_ASD="yes"

ENABLE_ROOMDB="yes"

ENABLE_PROJECTOR="no"

ENABLE_USERDB="yes"

ENABLE_AUTHDB="yes"

ACE_INSTALL_PATH=/usr/local/ace

JAVA_HOME=/tools/java/i686/j2sdk1.4.2

ACE_USER=ace

This file is used by the ACE init script. The ENABLE SERVICE lines tells the

init script which service to start up on boot. “Yes” starts a services, while “no” or no

answer causes the service not to start-up on boot. The ACE INSTALL PATH variable

tell the script where to look for the startup and JAVA HOME tells the script where the

Java Virtual Machine is located.

D.3.1.4 Setting up the Certificate Authority

ACE needs a certificate authority to authorize the correct users within the envi-

ronment. The CA resides in the ace user’s home directory. The CA can most simply be

setup by using the setupCA.sh script which creates a new OpenSSL CA a directory

called CA.

D.3.1.5 Keying the “ace” user

Please see the section D.3.2 for more information about creating ace’s key and

adding him to the User Database. The actual keying of the user is no different than

keying any other user, except that it needs to be done before the session starts.

109

D.3.1.6 Generating the Keynote Policy Assertion

The generic policy assertion for all of ACE needs to be created. The assertion

can only be created after the keys for the “ace” user have been implemented. The basic

policy assertion needs to be distributed on all the machines in the same ACE domain.

It should be installed into the etc directory of ACE’s install location. It should be given

the name policyassertion. Since it is a policy assertion its authorizer must be policy and

it does not need to be signed. The ACE user should be given MAX TRUST for the

“ACE” application domain. Below is an example of a policy assertion:

keynote-version: 2

authorizer: POLICY

local-constants: KEY1 = "x509-base64:MIIEZzCC...LCSG0N2ICh"

licensees: KEY1

conditions: (APP_DOMAIN == "ACE") -> _MAX_TRUST;

D.3.2 User Setup

Setting up a user for working under the ACE environment occurs in three phases.

The first phase has the user run the script, setupAceUser.sh, which generates the

user’s keys and request for the CA to sign his or her keys. The next setup has the

administrator run convertCerts.sh with the user’s name as an argument. The

convertCerts.sh signs the user’s certificate. Finally the finishSetupAce-

User.sh script is run by the user. The finishSetupAceUser.sh finishes the

setup by importing the signed certificate and the CA’s certificate into the key rings

for use under TLS and Keynote. The keys and their key rings are stored in the /.ace

directory.

110

	Acknowledgments
	Abstract
	List of Figures
	1. Introduction
	1.1 Motivations

	2. Related Work
	2.1 Java Remote Method Invocation
	2.2 Java JINI
	2.3 Ninja

	3. ACE Overview
	3.1 Architecture
	3.1.1 Service Architecture
	3.1.2 Service Federations
	3.1.3 Core Services
	3.1.3.1 Service Directory
	3.1.3.2 User Database
	3.1.3.3 Room Database
	3.1.3.4 Authentication Database

	3.1.4 Room Architecture

	3.2 Implementation
	3.2.1 Service Hierarchy
	3.2.2 Enhanced RMI
	3.2.3 Security and Authentication
	3.2.3.1 User Identification
	3.2.3.2 Remote Authentication and Trust Management
	3.2.3.3 Data Encryption

	4. Enhanced RMI
	4.1 Standard RMI
	4.1.1 Standard Security Model

	4.2 Secure Unicast Remote Server
	4.2.1 Basic Architecture
	4.2.1.1 Secure Unicast Server
	4.2.1.2 Stub Generation
	4.2.1.3 Messages Between the Stubs and the Server

	5. Encrypted Communications
	5.1 Control Channel Security
	5.1.1 Key Management
	5.1.1.1 Key Issuing and Processing
	5.1.1.2 User Keys Utilization

	5.1.2 Authentication and Encryption using TLS

	5.2 Media Datagram Security
	5.2.1 Key Generation
	5.2.2 Packet Protection

	6. Keynote Trust-Management System in ACE
	6.1 Keynote Functionality
	6.2 Keynote in ACE
	6.2.1 Assertion Distribution
	6.2.2 Keynote in SecureRemoteUnicastObject
	6.2.2.1 Permission Levels
	6.2.2.2 Conditions Used

	7. Future Work
	8. Accomplishments
	References
	A. Available Services
	A.1 Basic Service Levels
	A.1.1 Base
	A.1.2 Service
	A.1.3 Media
	A.1.4 Device
	A.1.5 Database
	A.1.6 SQL Database
	A.1.7 ID Monitor

	A.2 Core Services
	A.2.1 Service Directory
	A.2.2 User Database
	A.2.3 Room Database
	A.2.4 Authentication Database

	A.3 Devices
	A.3.1 Projector
	A.3.2 Epson Projector
	A.3.3 PTZ Camera
	A.3.4 VCC3 Camera
	A.3.5 iButton Monitor

	A.4 Media Services
	A.4.1 Audio Receive
	A.4.2 Audio Transmit
	A.4.3 Audio/Video Receive
	A.4.4 Audio/Video Transmit
	A.4.5 Converter
	A.4.6 Video Transmit
	A.4.7 Video Receive

	A.5 Other Services
	A.5.1 Network Logger
	A.5.2 Host App Launcher
	A.5.3 Host Resource Monitor
	A.5.4 System Resource Monitor

	B. Implementing a Service
	B.1 Interface Implementation
	B.1.1 Projector Controls
	B.1.2 EpsonProjector Controls

	B.2 Service Implementation
	B.2.1 Projector Service
	B.2.2 EpsonProjector Service

	B.3 Stub Generation
	B.4 Startup Scripts
	B.5 Client Implementation

	C. Using the Core Services
	C.1 Service Directory
	C.1.1 ServiceDirectory Interface
	C.1.2 ServiceAccess Helper Class

	C.2 User Database
	C.2.1 User Attributes Class
	C.2.2 User Characteristics
	C.2.3 User Database Interface

	C.3 Room Database
	C.3.1 Building Interface
	C.3.2 Room Interface
	C.3.3 Machine Interface
	C.3.4 RoomDatabase Interface

	C.4 Authentication Database
	C.4.1 Keynote Assertion
	C.4.2 Authentication Database Interface

	D. ACE Software and Setup
	D.1 Source Tree Review
	D.1.1 Third-Party Directory
	D.1.2 Src Directory
	D.1.3 Drivers Sub-Directory
	D.1.4 Java Sub-Directory
	D.1.4.1 src
	D.1.4.2 c-src

	D.1.5 Programs Sub-Directory

	D.2 How to Build the Source Tree
	D.3 Initial Setup
	D.3.1 System Setup
	D.3.1.1 Creating user ``ace''
	D.3.1.2 MySQL Setup
	D.3.1.3 Service Setup
	D.3.1.4 Setting up the Certificate Authority
	D.3.1.5 Keying the ``ace'' user
	D.3.1.6 Generating the Keynote Policy Assertion

	D.3.2 User Setup

