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Abstract— In this paper, we present the details of a
portable, powerful, and flexible software-defined radio
development platform called the Kansas University Agile
Radio (KUAR). The primary purpose of the KUAR is
to enable advanced research in the areas of wireless
radio networks, dynamic spectrum access, and cognitive
radios. The KUAR hardware implementation and software
architecture are discussed in detail. Radio configurations
and applications are presented. Future research made
possible by this flexible platform is also discussed.

I. INTRODUCTION

Given the public and private sectors’ insatiable desire
for additional wireless bandwidth, new solutions are
required to help address the burgeoning problem of
“spectrum scarcity”. Measurement studies have shown
that licensed spectrum is relatively unused across time
and frequency [1, 2]. This is particularly true (on a per
market basis) for TV spectrum. A new concept has been
proposed which would enable unlicensed devices to ac-
cess this unused spectrum, thus solving the scarcity issue
and spurring innovation in the wireless industry. Nev-
ertheless, current government regulations prohibit unli-
censed transmissions in these bands, constraining them
instead to several heavily populated and interference-
prone regions of spectrum. Despite these current prohibi-
tions, the figurative “regulatory wheels” are beginning to
roll towards the possibility of opening certain frequency
bands to unlicensed usage. The Federal Communications
Commission (FCC) has already commenced work on
the concept of unlicensed users “borrowing” spectrum
from spectrum licensees [3, 4]. Simultaneously, a similar
approach has also been promoted through the Defense
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Advanced Research Projects Agency (DARPA) Next
Generation (XG) program [5]. This form of spectrum
allocation is known as dynamic spectrum access (DSA).

With the rapid evolution of microelectronics, wire-
less transceivers are becoming more versatile, power-
ful, and portable. This has enabled the development of
software-defined radio (SDR) technology, where the ra-
dio transceivers perform the baseband processing entirely
in software. The ease and speed of programming base-
band operations in a SDR makes this technology a prime
candidate for DSA networks. Software defined radios
also represent an advancement in the rapid prototyping,
testing and deployment of new radio hardware and
communications systems. New modulation schemes or
coding techniques can be rapidly implemented and tested
without building expensive custom hardware. SDR sys-
tem software can be designed to interface with communi-
cations system design programs, thus enabling designers
to rapidly move from simulation to implementation.

SDR units that can rapidly reconfigure operating pa-
rameters due to changing requirements and conditions
at the physical, network, and/or application layers of
the system are known as cognitive radios [6]. With
recent developments in cognitive radio technology, it is
becoming possible for these systems to simultaneously
respect the rights of incumbent license holders while
providing additional flexibility and access to spectrum.
When implementing a cognitive radio platform, there
are several design goals to consider that would greatly
assist research in this area, namely: (1) a very flexible
RF front-end that can support both wide transmission
bandwidths and a large center frequency range, (2) a
self-contained, small form factor radio unit to enable
portability, (3) powerful on-board digital processing to
support a variety of cognitive functions and radio oper-
ations, and (4) a low cost build cycle to easily facilitate
broad distribution of the radio units to other researchers
within the community. Although several cognitive radio
prototypes and testbeds have been implemented [7–10],
each of these systems employs a set of design criteria that
prevents them from realizing the aforementioned four
design goals.



In this paper, we present the Kansas University Agile
Radio (KUAR) platform, a low cost, flexible RF, small
form factor SDR implementation that is both portable
and computationally powerful. The KUAR satisfies all
four design goals discussed previously, making it an
excellent platform to conduct cognitive radio and DSA
network research. Section II provides an overview of
the platform and its constituent parts. Section III cov-
ers the KUAR hardware components and discusses the
design flexibility they provide. Section IV addresses
the software architecture and tools provided to program
the KUAR. A sensible design workflow that integrates
design and simulation tools with the KUAR software
architecture is discussed in Section V. Issues regard-
ing configuration and adaptation specific to cognitive
radio functionality are addressed in Section VI. Section
VII enumerates current research projects related to the
KUAR platform. Section VIII concludes the paper with
a summary and the direction of future research regarding
the platform.

II. KUAR OVERVIEW

The KUAR is a software-defined radio specifically
designed to address the needs of wireless networking
and radio frequency (RF) research. It features a modular
design consisting of separate power supply, digital pro-
cessing, and RF sections. The current version of the radio
operates in the 5 - 6 GHz band and is capable of imple-
menting numerous modulation algorithms, media access
control (MAC) protocols, and adaptation mechanisms.
As shown in Fig. 1, the KUAR consists of five major
sub-systems on three printed circuit boards: a power
supply, a control processor host (CPH), a digital board
(DB) with a programmable signal processor, A/D, and
D/A converters, an RF transceiver, and active antennas.
With the exception of the antennas, the sub-systems are
contained within a shielded box approximately 7 inches
tall, 3 inches wide, and 6 inches deep, or roughly the
size of a good dictionary. The antennas are separated to
reduce interference and other antenna configurations are
possible. The KUAR RF transmit and receive ports are
standard SMA connectors, which allow the use of a vari-
ety of commercial and prototype antenna configurations.

A modular design was chosen so that sections of
the KUAR platform can interoperate with other, third
party prototypes for the purposes of experimentation and
testing. For example, the KUAR CPH and DB could
be connected to other RF transmitters or receivers in
order to allow investigation of other frequency ranges
or channel parameters (Fig. 2). Alternatively, the KUAR
active antennas and RF transceiver could be used with
existing signal processing systems.

Fig. 1. KUAR Radio

III. KUAR HARDWARE

A. Power Board

The current version of the KUAR power board is
designed to run off of a 12V battery and converts that
to six independent supply voltages which supply power
to the RF, Digital and CPH boards as well as the active
antennas. The power board also features current sensors
on each supply voltage that allows experimenters to
evaluate the power efficiency of various communications
systems.

B. Digital Board

The CPH of the KUAR is an embedded PC built on an
industry standard ComExpress form factor and contains a
1.4 GHz Pentium M, 1 GB DDR2 SDRAM, and an 8 GB
MicroDisk for storage. It connects to the Digital Process-
ing board through a PCI Express connection. The CPH
runs Linux and provides USB 2.0, VGA, PCI Express
and Gigabit Ethernet (10/100/1000 Mbps) connections.
The processing power of the CPH allows for significant
signal processing, as well as rapid radio reconfiguration
based on performance measurements of the current RF
environment or the physical, network and application
layers of the communications system. The addition of
VGA and USB allow this mobile experimental platform
to be used as a standard PC while on the test bench or in
the field, decreasing the amount of equipment necessary
for testing and experimentation.

The majority of digital communications components
and digital signal processing operations in the KUAR are
implemented in a Xilinx field-programmable gate array
(FPGA) . The current KUAR hardware employs a Xilinx
Virtex II Pro P30 FPGA, which possesses 30,816 logic
cells, two PowerPC 405 cores, and operates at up to 350
MHz. The FPGA is programmed using command line
utilities and software libraries available under Linux on



Fig. 2. KUAR System Diagram

the CPH. Programming and configuration commands are
sent across the USB 2.0 bus to a Cypress USB peripheral
controller. The controller sends the configuration data to
the FPGA via a parallel bus connected to the configu-
ration pins of the FPGA. The configuration data rate is
at 48 Megabytes per second (MBps) which is near the
50 MBps limit of the FPGA. There are three possible
physical interfaces between the CPH and the FPGA.
The fastest is a connection over the PCI Express bus,
which provides data rates around 250 MBps, but it takes
around 7,000 logic slices to implement in the FPGA.
To save logic space, a PCI bus connection may also be
used. It provides a transfer rate of 130 MBps and only
uses 500 logic slices. Finally, data can be transferred to
and from the FPGA using the USB peripheral controller.
This provides the slowest data rate at 48 MBps, but it
requires only 10-20 logic slices. There is also a JTAG
header on the Digital Board that connects to the FPGA
for programming and debugging in the laboratory.

The current transceiver bandwidth is 30 MHz, al-
though future designs will employ larger bandwidths.
Received signals in an in-phase/quadrature modulation
scheme are converted to baseband by the RF board
and converted from an analog-to-digital representation
by a Linear Technology LTC2284 dual analog to digital
converter (ADC) at up to 105 megasamples per second
(MSPS) with 14 bit resolution per sample. Processed
baseband signals are converted from a digital to analog
representation by an Analog Devices AD9777 DAC
running at 100 MSPS with 16 bit resolution.

The KUAR has significant flexibility in locating signal
processing functions in hardware logic, the embedded

PowerPC processors or the CPH. This allows extremely
parallel and time-sensitive operations to be moved into
custom, reconfigurable hardware, and more complex
operations to be implemented in software. Giving the
system designer the fine-grained ability to determine
whether an operation should occur in hardware or soft-
ware allows for compact, efficient and innovative de-
signs.

The design flexibility afforded by the KUAR can be
demonstrated by the following three scenarios (Fig. 3):

1) Scenario 1 - Full Hardware Communications sys-
tem: The communications system (BPSK, QPSK, etc.)
is implemented entirely in hardware inside the FPGA.
Data is fed from the CPH to the FPGA through the
KUAR Memory Interface (discussed further in the Soft-
ware section). This frees the CPH to perform various
cognitive and control tasks. Placing the communications
system in hardware allows for timing and performance
requirements to be guaranteed and in general achieves a
speed-up in comparison to the same system implemented
in software.

2) Scenario 2 - Hybrid Hardware/Software Commu-
nications System: This scenario features a hybrid hard-
ware/software implementation. Here, the two PowerPC
cores can be used as general purpose RX and TX pro-
cessors. These cores can execute software programs in
much the same manner as the CPH. The PowerPC cores
can also directly connect to any hardware accelerators
or custom logic through the PowerPC’s OPB and PLB
buses which are standard PowerPC peripheral buses
provided by Xilinx as pre-designed VHDL modules.
This allows the cores to run synchronously with the



Fig. 3. KUAR Hardware/Software Flexibility

custom hardware, providing low latency data transfer.
Designers can thus be extremely creative with regard
to where signal processing operations are placed across
this software/hardware boundary. Using this architecture
the embedded processors may be dedicated to running
a real-time operating system specially enhanced to use
hardware accelerators, such as the KU Hybrid Threads
project [11], which allows hardware accelerators to be
controlled via the Posix Threads (pthreads) Application
Programming Interface (API). More complex and user-
interactive processing may then be moved into the CPH,
alleviating the need for the same processor to meet strict
real-time deadlines.

3) Scenario 3 - Full Software Communications Sys-
tem: In the final scenario, we demonstrate a minimal
FPGA implementation. This would be used if a commu-
nications system was implemented entirely in software
on the CPH. After all the signal processing is performed,
the modulated data would then be sent to the FPGA. The
KUAR Memory Interface and hardware first-in first-out
(FIFO) buffers merely transfer this data to and from the
ADC and DAC, where it is sent to the RF front-end.
Because a minimal amount of logic slices are used in
this design, it is easy to place other helper hardware in
the FPGA such as a signal sampler, which can be used
to adjust sampling rates, detect the presence of a signal,
and perform general handshaking operations between the
CPH and the data buffers. This is the implementation
that is being used to test the GNU Radio software on
the KUAR.

The aforementioned scenarios are just several of the
possibilities afforded by the KUAR platform. Developers
will be able to implement solutions regardless of whether
they are more comfortable writing software or designing
reconfigurable hardware.

C. RF Board

The RF module designs (left half of Fig. 2) have been
tailored for experimental use. Features of the KUAR RF
Board include the ability to set independent transmit
and receive frequencies, as well as digitally control
the transmit power output and receive gain levels. The
RF modules incorporate standard SMA-style RF input
and output connectors to allow the use of a variety
of antenna types and configurations. Digital control of
transmitter output power, receiver front end attenuation,
and IF amplifier gain should prove to be useful for
fading channel experiments, and also allows researchers
to perform experiments in test environments. The RF
modules currently in use offer a frequency range of 5.25-
5.85 GHz, and are designed for operation in the 5 GHz
Unlicensed National Information Infrastructure (UNII)
and Industrial, Scientific and Medical (ISM) bands. An
RF design for 2.05-2.70 GHz operation is currently being
developed.

The 5 GHz RF module is a hybrid direct conversion
design that makes use of a traditional superheterodyne
frequency conversion to and from an intermediate fre-
quency (IF) range of 1.85-2.45 GHz, which is directly
converted to baseband using a quadrature demodulator,
and from baseband using a direct conversion quadrature
modulator. The RF modules are currently configured to
select 30 MHz sections of the frequency band, in 4 MHz
tuning steps.

1) Programming: A Freescale 8-bit microcontroller
unit (MCU) is used to interface the digital processing
section to the programmable components of the 5 GHz
RF module. All frequency settings and amplifier gain



controls are programmed using a Serial Peripheral Inter-
face (SPI) bus, while the Rx chain variable attenuator
is controlled with 3 V logic levels. The MCU is used
to pass control register data and collect device status
information, and is connected to the digital processing
section using an inter-integrated circuit (I2C) bus.

2) Local Oscillators: The design incorporates three
local oscillator (LO) sections; an IF receive (Rx) LO
(Rx LO1), an IF transmit (Tx) LO (Tx LO2) and a
common 3.4 GHZ fixed frequency LO (Rx+Tx LO3)
which is supplied to separate receive and transmit front-
end mixers. All three LOs share a buffered 16MHz
reference frequency generated by a temperature com-
pensated crystal oscillator (TCXO), and distributed us-
ing a dual 1:5 CMOS clock fanout buffer. The 16
MHz reference frequency is also provided to the digital
processing section of the transceiver. Rx LO1 and Tx
LO2 are two-stage differential output designs, with each
LO comprised of a pair of integrated synthesizer /
voltage controlled oscillator (VCO) devices; an Analog
Devices 1.85-2.15 GHz ADF4360-2 is coupled with an
Analog Devices 2.05-2.45 GHz ADF4360-1 to provide
an effective tuning range of 600 MHz. RX+TX LO3
components consist of an Analog Devices ADF4113
PLL synthesizer device controlling the tuning port of a
Z-Comm SMV3300A VCO. The SMV3300A RF output
is passed through a 5th order Chebychev interdigital
band-pass filter (BPF), centered at 3.4 GHz with a -3dB
bandwidth (BW) of 200 MHz, to the input of an Agilent
MGA-82563 (+10dB Gain, +17dBm P1dB, 2.4dB NF @
4.0 GHz) amplifier, which feeds into a Wilkinson 3dB
splitter, providing a 3.4 GHz LO to the Rx and Tx chain
frequency mixers.

3) Receiver: Starting at the input SMA RF connec-
tor, the Rx chain consists of a 5th order Chebychev
interdigital BPF, centered at 5.5 GHz with a -3dB
BW of 600 MHz, followed by a 6-bit programmable
GaAs 0-31.5dB Hittite HMC425LP3 variable attenuator,
and an Agilent MGA-85676 (+19dB Gain, +4.3dBm
P1dB, 1.8dB NF @ 6.0 GHz) Low Noise Amplifier
(LNA). The output of the LNA feeds the RF input of
a Hittite HMC488MS8G GaAs double balanced mixer,
which features an integrated LO amplifier, and mixes
the fixed frequency 3.4 GHz input from Rx+Tx LO3,
down-converting frequencies from the 5.250-5.850 GHz
range to the 1.850-2.450 GHz intermediate frequency
(IF) range of the receive section.

Down-converted IF frequencies are passed through a
5th order Chebychev interdigital BPF centered at 2.15
GHz with a -3dB BW of 600 MHz, and are then
fed into an Analog Devices AD8347 direct conversion
quadrature demodulator. The AD8347 amplifies the IF
signal with two stages of variable gain amplification
before frequency conversion via two Gilbert-cell mixers,
which perform a direct conversion to baseband using the

differential 1.850-2.450 GHz output from Rx LO1.
The Rx LO1 inputs to the AD8347 are internally con-

ditioned using a poly-phase filtered phase splitter, then
connect to the Gilbert-cell mixer inputs. The baseband
outputs of the mixers are followed by separate in-phase
(I) and quadrature-phase (Q) channel variable gain am-
plifiers (VGA). A user may select either automatic gain
control (AGC), which employs baseband level detectors
integral to the AD8347, or manually control the RX IF
VGA gain levels with the output from an Analog Devices
6-bit AD5601 Rx Digital-to-Analog converter (DAC).

The AD8347 internal IF and baseband VGAs provide
a cumulative 69.5 dB of gain control. The baseband
VGA outputs are brought out of the device to allow
filtering before final amplification. Baseband I and Q
signals are passed through a pair of 30 MHz -3dB BW
low-pass filters (LPF), before being amplified and output
as differential I and Q signals to a pair of Analog Devices
AD6645 12-bit 80MSPS Analog-to-Digital converters
(ADC) in the digital processing section.

4) Transmitter: The 5 GHz module Tx chain begins
with differential I and Q inputs from an Analog Devices
AD9777 16-bit 160 MSPS dual DAC located in the
digital processing section, which are low-pass filtered
with a pair of 30 MHz -3dB BW differential LPFs, then
passed to I and Q inputs of an Analog Devices AD8349
direct conversion quadrature modulator. The quadrature
modulator has an automatic gain control unit that can
provide amplitude normalization.

The modulator uses the differential 1.850-2.450 GHz
output of TX LO2 to up-convert baseband I and Q
signals. The differential Tx LO2 input signal is buffered,
and then split into I and Q signals using a poly-phase
phase splitter. These two LO signals are amplified, then
mixed with the corresponding I channel and Q channel
baseband input signals in two Gilbert cell mixers. The
mixer outputs are then summed together in the AD8349
output amplifier.

The 1.85-2.45 GHz output of the AD8349 is passed
through the TX IF BPF; a 5th order Chebychev inter-
digital design centered at 2.15 GHz with a -3dB BW of
600 MHz. The Tx IF BPF output is then amplified by
the programmable Tx IF VGA. The Tx IF VGA consists
of a Phillips BGA2031/1 VGA (+23dB Gain, +11dBm
P1dB @ 1.9 GHz) combined with an Analog Devices
AD5601 6-bit DAC; the DAC output voltage sets the
gain level of the BGA2031/1, which has a gain control
range of 56dB.

The output of the Tx IF VGA is connected to the
IF port of the Tx mixer (Hittite HMC488MS8G), which
uses the 3.4 GHz input from Rx+Tx LO3 to up-convert
Tx IF frequencies to the 5.25-5.850 GHz range. The
RF output of the Tx mixer is amplified by a Mini-
Circuits ERA-1SM (+6dB Gain, +12dBm P1dB, 4.3dB
NF @ 6.0 GHz) RF amp, then passed through a 5th



order Chebychev interdigital BPF, centered at 5.5 GHz
with a -3dB BW of 600 MHz. The band-pass filtered
signal is fed into the input of an Agilent MGA-83563
(+17dB G, +15dBm P1dB, +18dBm PSAT@6.0 GHz)
amplifier, with the amplifier output connected to the Tx
output SMA connector, providing an output of up to 15
dBm (32mW) of RF signal power in the 5.25-5.85 GHz
frequency range.

D. Antennas

Three basic configurations of broadband 5 GHz di-
rectional planar antennas have been designed and con-
structed to complement the KUAR system; basic passive,
active Rx, and active Tx. The passive antennas are
intended for use in indoor or short range outdoor test
environments, while the active versions utilize integrated
RF amplification and filtering to provide longer range
outdoor test performance.

The active and passive antennas share the same basic
planar element design, consisting of an air dielectric
patch element and feed structure that exhibits a 1.5:1
VSWR BW of 1.5 GHz, centered at 5.5 GHz. The
element design provides 8.5dB of directive gain, with
respective E and H plane -3dB beam-widths of 80 and
70.

The passive antenna element feed structure is directly
connected to an SMA-style RF connector, and is suitable
for use on either the KUAR Rx or Tx port, or both,
depending upon testing needs. In the case of the active
Rx antenna, the feed structure connects to a 5.5 GHz
3rd order Chebychev interdigital BPF with a -3dB BW
of 600 MHz. The filtered signal is then passed through
an Agilent MGA-86576 LNA to the antenna SMA-style
RF output connector.

The active Tx antenna design uses an SMA-style RF
connector as an RF input. The input signal is fed into an
Agilent MGA-545P8 (+11.5 dB Gain, +21dBm P1dB,
+22dBm PSAT) RF power amp, then passed through a
3rd order Chebychev interdigital BPF centered at 5.5
GHz, with a -3dB BW of 600 MHz. The output of the
BPF is connected to the antenna element feed.

A KUAR 5 GHz transceiver, equipped with the pre-
viously described active Rx and Tx antennas, is capable
of recovering signal levels as low as -100dBm, and
can transmit an Effective Isotropically-Radiated Power
(EIRP) level of up to +25dBm (354mW) .

IV. KUAR SOFTWARE

A. Architecture

Software-defined radio platforms are complex devices
from a software point-of-view. The platform must be
agile enough to support processing at multiple hardware
and software layers. It must also allow researchers of var-
ious backgrounds, including communications, network-
ing, system engineering and RF researchers, to perform

TABLE I

SDR SOFTWARE ENVIRONMENTS FOR RADIO DEVELOPMENT

Execution Environment Type / KUAR Use
EnvironmentTools

FPGA Digital logic described Signal processing;
in schematics or VHDL. radio control; RF
(Xilinx ISE, Xilinx environment sensing;
command line tools; Design of
VHDL simulators; communications signal
Signal simulation tools) processing modules

and systems
FPGA Programs written in C orSignal processing;
embedded any language with PPC radio control; RF
processor compiler; custom environment sensing;

runtime Secondary Linux layer
(Xilinx EDK, GCC or
any PPC compatible
compiler)

RF Programs written in C; Control and sensing of
Transceiver custom runtime RF Transceiver
and MCU (Code Warrior with I2C functions

& SPI Hardware Beans,
GCC, any HC08
compatible compiler)

Control Linux Kernel / realtime Device drivers linking
Processor code; Operating System; the CP, FPGA, and

Linux userland other hardware
programs; written in C components; Network
or other common protocols; Control
programming language programs for loading
(Any x86 compatible and managing the
compiler, any software FPGA; Radio services;
development tools) Management

programs; User
applications; Running
experiments; SDR
network control scripts

research and experimentation at their locus of expertise
while simultaneously not burdening them with the com-
plex details of other layers of the platform. Software
modules need to operate on and within a large number of
different execution environments ranging from computer
aided design tools to digital logic executing on the
FPGA. These environments are listed in Table 1 starting
at the signal processing level.

Learning, configuring, managing, and integrating these
environments can be a difficult task, especially given
the reality that researchers may want to work on either
a specific layer or across multiple layers. The KUAR
Software Architecture is shown in Fig. 4. The Software
Architecture incorporates radio module design and li-
braries depicted on the left of the figure, management
and hardware abstraction in the middleware layer, drivers
and signal processing modules on the bottom, and net-
work protocol stacks and user applications on the right.

This architecture provides bootstrapping to researchers
who want to perform targeted experiments while also
allowing developers the flexibility to implement ex-
perimental designs. This will be further discussed in
the KUAR Workflow section, but a library of pre-built



Fig. 4. KUAR Software Architecture

modules (both software programs and reconfigurable
hardware) allow various radio configurations to be cre-
ated (BPSK, QPSK, OFDM, etc.). This modular setup
would allow for example, a networking researcher to
perform multi-hop routing experiments on top of any
number of physical layer designs without requiring an in-
depth knowledge of RF design. Additionally, a commu-
nications engineer could design a new communications
system and immediately test it with various cognitive
radio programs (OSSIE, other SCA programs).

B. Software Architecture, Development and Tools

In order to simplify the complexity of programming
the KUAR, we have developed a KUAR Control Library
that is composed of various APIs. These interfaces allow
radio and experiment software to be written at a high
level with logical commands and syntax. They also
shield the developer from extremely specific and nuanced
details of implementation1. Rather than meticulously
setting every register on each RF component (PLL’s,
DAC’s, etc), the API abstracts these actions to simple
calls that set the desired RF parameter, such as transmit
frequency.

1) RF Control API: The RF Control API is part of
the KUAR control library. The RF front-end consists
of multiple SMBUS2 controlled components includ-
ing phase-locked loops (PLL’s), quadrature demodulator
chips, analog to digital converters (ADC’s), and digital
to analog components (DAC’s). These devices work in
unison to provide independent control of transmit and
receive frequencies, transmit power and receive gain.

1These details are still accessible through the design and usage doc-
umentation generated during the design and assembly of the KUAR.
Information regarding design choices and low-level programming is
available by request or in a password protected Wiki on the KUAR
website (https://agileradio.ittc.ku.edu/) that is accessible to third-party
KUAR developers.

2System Management Bus. A communications bus created by Intel
in 1995 that allows for various on-board components to exchange
commands and data. http://www.smbus.org.

TABLE II

SAMPLE RF CONTROL API FUNCTIONS

Abstract RF Related rfControl API function
Parameters (written in C)

Transmit KUAR rf status
frequency KUAR rf Tx set frequency(

KUAR rf settings *
settings, KUAR frequency *
frequency)

Transmit KUAR rf status
gain KUAR rf Tx set gain(

KUAR rf settings *
settings, gain cdB
gain mB)

Transmitter KUAR rf status
on/off KUAR rf Tx set power on(

KUAR rf settings *
settings, boolean
power on)

Receive KUAR rf status
frequency KUAR rf Rx set frequency(

KUAR rf settings *
settings, KUAR frequency *
frequency)

Receive KUAR rf status
gain KUAR rf Rx set gain(

KUAR rf settings *
settings, gain cdB
gain mB)

Automatic Gain Control (AGC), useful in many standard
communications systems, can be enabled via a hardware
jumper and will be controlable via software on future RF
boards. The RF Control API abstracts this collection of
related components into a structure that consists of five
fields as shown in Table 2.

The previous table shows the functions for setting the
various parameters of the RF Settings structure. There
also exists a matching set of functions for retrieving the
values, and a function call to configure the hardware
based on the desired settings. Using this architecture,
the RF Control API allows the user to create and store
these specification parameters ahead of time, and then
apply them with a single commit function call. In this
manner an application which frequently changes between
a set of pre-determined frequency ranges may rapidly
hop between different frequencies. Alternatively, a set of
RF Settings structures could be statically allocated for a
specific operational frequency band such that radio op-
eration is confined to that band. Finally, the RF Control



API includes a data structure to determine the current ca-
pabilities of the given radio (transmit frequency, receive
frequency and gain ranges and fidelity), so that code may
be written independently of the RF front-end attached to
a given radio.

2) FPGA Control API: In addition to the RF Control
API, there also exists an API for controlling the FPGA.
The FPGA may be configured using a function call
which takes the path to a Xilinx bit-file3 and returns a
status code. Once the FPGA has been configured, the
software programmer may then use another API call
to access an array which contains the memory mapped
registers and data buses of the configuration loaded on
the FPGA. From the point of view of the software
programmer, two API calls result in a configured FPGA
image and the necessary data streams to communicate
with it. From the point of view of the hardware engineer,
there are several pre-built modules that allow registers,
FIFO’s, and addressable memory elements to be con-
nected to the radio memory bus. One of the integral
problems of hardware/software co-design is creating
interfaces to allow for data to be easily and accurately
transferred from the software layer to the hardware layer.
Data flow and access in these implemented interfaces
is accomplished in hardware by the KUAR Memory
Interface and in software by the FPGA Control API.

3) KUAR Memory Interface: The KUAR Memory
Interface is a set of VHDL modules that provides Con-
trol Processor Host bus abstraction, and a set of pre-
defined memory elements, including registers, FIFO’s,
and RAM’s that may be accessed by both the CPH and
the hardware module. This interface has already allowed
the CPH-FPGA connection to be migrated from a direct
connection to the memory bus (KUAR hardware version
2.1) to a PCI Express bus connection (KUAR hardware
version 3.0). The KUAR Memory Interface provides
a constant data and control interface to the hardware
programmer regardless of the KUAR version.

Data Registers can be written in VHDL and synthe-
sized to the FPGA, where they are accessible in much
that same way that a programmer would store values
in the register of a CPU. These FPGA registers are
then memory mapped in the Linux operating system,
allowing the programmer to simply write data to a
specific memory location and know that the given data
will be transferred into the hardware logic. The memory-
mapped data elements are exposed through the FPGA
Control API so that developers do not need an in-depth
knowledge of the Linux memory system or hardware-
specific constructs. This API allows for hardware to be
accessed using standard bus techniques. The state of
the hardware can be controlled and monitored through

3For Xilinx FPGAs, the binary-configuration file used has the file
extension of bit, and is referred to as a bit-file.

software by reading and writing to and from control
registers. Hardware FIFO’s and memory elements appear
to the software programmer as buffers for sinks and
sources. Overall, this system allows hardware program-
mers to easily connect existing components to the KUAR
Memory Interface or easily write new components with-
out extensive knowledge of the implemented CPH-FPGA
bus.

4) Additional Features API: The main purpose of the
KUAR Control Library is to provide a simple interface
to the RF front-end and the reconfigurable hardware.
However, several additional features are included. These
include simple logging routines, error handling codes
specific to the agile radio, unit-based data-types (i.e. Hz,
dB, sec), and radio status controls for thermal and power
systems.

5) Software tools using the KUAR Control Library:
All the current features of the KUAR Control Library
are exposed via command line utilities. These include:

• rfControl - Controls the RF front-end.
• fpgaCnfg - Writes Xilinx bit-file to configure

FPGA.
• fpgaRW - Read and write data both to and from

hardware/logic in the FPGA. The program can be
used to automate large data transfers and collection
for experimentation. Complex experiments can be
easily scripted using fpgaCnfg and fpgaRW.

• thermal - Determine the temperatures of vital com-
ponents.

• power - Monitors current sensors on Power Board
to measure radio power usage for experimentation
purposes or to report such statistics to cognitive
control software on CPH. Allows for control of
power consumption by various devices.

There is also a graphical user interface (GUI) called
the KUAR Control Panel, which allows for these API’s
to be controlled remotely or locally. The main program
window displays the status of available radios on a given
network and allows the user to control one or more
KUARs.

Once connected, each radio gets its own window
which contains tabs for generic control parameters on
the left, and data specific to the current FPGA image on
the right. Fig. 5 shows the layout of the main window and
the generic RF Control data. Fig. 6 shows the spectrum
analyzer configuration, which uses the FPGA Control
API to connect to the data stream of an FFT implemented
in the FPGA. The implementation shown is a 16,383
point FFT with a real-time refresh rate of about a quarter
of a second, with the main bottleneck being transmitting
the data back to the control computer over the network.
Several other plotters are also implemented for analyzing
eye-diagrams, symbol constellations, and real-time error
graphs. Each of these plotters may be configured to
work with an arbitrary FPGA image through an XML



Fig. 5. KUAR Control Panel Radio Controls

Fig. 6. Spectrum Analyzer Window with Data from a KUAR running
the Spectrum Analyzer FPGA Image

file which defines the locations of data sources, control
registers and status registers.

6) Distributed Radio Control / Management: “Radio
Net” scripts have been developed that automate the
process of setting up and executing multi-radio exper-
iments. These scripts execute commands over Secure
Shell (SSH) connections with each radio in the network
that is participating in the current demonstration or
experiment. On each radio, the FPGA is configured with
the relevant communications system or other image. Any
corresponding cognitive or control software on the Linux
layer is also configured and started. For example, an
experimenter could test a jamming/interference resistant
design by configuring two radios to use the communi-
cations system under test, while a third radio could be
configured to act as an interferer. A fourth radio might
be configured to act as a spectrum analyzer so that RF
activity can be observed and recorded for analysis. Radio
Net scripts can be executed from either a command line
prompt or the KUAR Control Panel on the experiment
control computer4.

7) Operating System: The CPH runs a Linux 2.6
kernel and can support a full Linux distribution such
as Fedora Core or Ubuntu. FPGA firmware registers
are addressable as PCI Express registers and exposed
through the FPGA Control API discussed previously.

4The experiment control computer may be any computer with an
SSH client and a network connection to the controlled radios. There-
fore, any KUAR may be used as an experiment control computer.

8) KUAR VHDL Component Library / Communica-
tions System Library: We readily acknowledge that not
every experimenter wants to implement an entire com-
munications system on the KUAR. While it is possible
to develop virtually any type of communications systems
on the KUAR platform, we are developing a library of
common components and systems that can be used for
various experiments. Currently, we have implemented
full, synthesizable VHDL designs for BPSK with phase
and timing recovery, QPSK, M-QAM, and a simple
multi-carrier system. By the time this paper is published
we will also have a WiMax 802.16 physical layer refer-
ence design featuring a 256 subcarrier OFDM system.
In addition to full communications systems, we have
created a library of re-usable VHDL components which
includes a signal sampler, energy detector, direct digital
synthesizer (DDS), phase and timing error detectors, as
well as data and system abstraction components such as
CPH Processor and Bus abstraction blocks, Control and
Status registers, and agile modulation blocks.

V. KUAR DESIGN WORKFLOW

The KUAR is designed to be used with industry
standard design tools. As such, we have implemented an
example workflow that we feel mimics design processes
used in industry while providing certain levels of ab-
straction to various teams of designers. For example, en-
gineers working on communications system design often
use tools such as Matlab and Simulink. Once a design is
complete, it can be implemented using components from
the KUAR VHDL Component library if the designer is
not familiar with reconfigurable hardware development
using hardware description languages (HDLs) such as
VHDL or Verilog. If the designer wishes to implement
a custom VHDL design or the design team has access to
HDL programmers, standard tools like Xilinx ISE can
be used to design, simulate and implement hardware
designs. If the designers wish to implement a higher level
design, they can also use entire pre-built radio systems
like the BPSK and QPSK systems discussed above.

After these designs have been flashed into the FPGA,
other components allow for the design to be easily tested.
One KUAR could be used to transmit a modulated
signal to another KUAR which is testing an experimental
receiver design. The signal sampler component could be
implemented to detect the beginning of the transmitted
packet and start writing data to a FIFO receive buffer
in the FPGA. The KUAR Memory Interface handles
the memory mapping of buffers and other control/status
elements in Linux. This allows control and testing pro-
grams to easily read and write data to and from the
FPGA. The fpgaRW control program is designed to
accept input data and create output data formatted in raw
text, Matlab, or Simulink format. Output from the FPGA
can thus be easily fed back into Matlab/Simulink using a



Fig. 7. KUAR Design Workflow

series of test bench scripts. This allows the output of the
implemented system to be easily compared to the output
of the simulated system. This setup also allows for the
designer to easily generate eye diagrams, BER curves
and other diagnostic plots that provide information about
the performance of the communications system under
test.

By providing an abstraction layer that allows programs
running in Linux to easily read and write data to and
from the FPGA, another set of programmers and design-
ers can work on network and application layer designs
without having to have in-depth knowledge of lower
level aspects of the communications system. This will
allow cognition, adaptation and control software to be
implemented and tested on a variety of communications
systems.

While it is desirable to have an understanding of all
layers of communications systems design and imple-
mentation, this is not always possible depending on the
composition of the design team. We feel that the KUAR
platform will enable research on various levels of the
network stack that may have previously been impossible
to perform because of the complexity involved in devel-
oping a system that provides the necessary underpinnings
to support experiments at a specific, desired layer.

VI. KUAR CONFIGURATION & ADAPTATION

The process of setting up the appropriate commu-
nication modules and transmission parameter settings
for the KUAR is separated into two stages. First, the
configuration stage determines higher level communi-
cation settings that will be used by the radio. These
settings are passed to the adaptation stage which uses this
information to determine which lower level transmission
parameters are available to modify and what the range
of values is for each parameter.

A. Configuration

One of the major end goals of any software defined
radio is high modularity of radio component functions.
Ideally, software defined radio functions/techniques are
swapped out as dictated by various environmental or user
situations. However, there has been little discussion on
what the initial configuration of the system should be
upon startup and who or what determines this initial
configuration.

In order to address these issues, our configuration
phase is designed to allow users a means of setting
constraints regarding expected radio performance. We
have termed these constraints Mission-Oriented Com-
munications (MOC) properties. Each MOC property is
a formal description of a desired radio quality, attribute,
or situation. For example, we define a MOC property
for specifying the shape of a spread signal in terms of
avoiding detection and interference from that detection.
We formally define eight properties:

1) Low Probability of Detection / Interference
2) Avoidance / Rejection of Non-Intentional Interfer-

ence
3) Multipath Mitigation
4) Information Assurance / Robustness
5) Jamming Resistance
6) Communication Range
7) Communication Capacity
8) Bandwidth Efficiency
Each of these properties will be discussed in detail

in a future paper. These properties allow us to perform
reasoning within a rule based system, analyzing user
input about expected radio performance and various
implementation techniques.

A set of these constraints, defined by a user, are given
to a rule based engine which analyzes the constraints
against a pre-defined set of radio component imple-
mentation techniques, various modulation techniques,



Fig. 8. Cognitive Adaptive Module

compression algorithms, error correcting codes, and
spreading methods. The engine is comprised of rules
which add or remove support for a given implementation
technique based on the given constraints and then yields
a specific configuration, which is then used as the initial
configuration for all radios involved.

The rule engine was developed in Java and imple-
mented on top of the Java Expert System Shell (JESS).
The rules that the system uses were obtained from an
“expert” on physical layer communications.

B. Adaptation

The cognitive adaptation module (CAM) uses the in-
formation from the configuration to understand the avail-
able transmission parameters and their possible ranges
of operation. At the core of the cognitive adaptation
module is an artificial intelligence (AI) engine that uses
information sensed from the environment and quality of
service (QoS) objectives to determine the appropriate
lower level transmission parameters that may change
more frequently than those in the configuration stage.
Fig. 8 gives a visual representation of an instance of the
KUAR and how the CAM is used.

The environmentally sensed parameters, also com-
monly referred to as “dials”, are input to the CAM. The
CAM reads these dials and sets the appropriate transmis-
sion parameters, also commonly referred to as “knobs”.
We have recently developed two cognitive engines for
the KUAR. A genetic algorithm driven engine has been
developed along with an expert system driven engine.
Our current focus is identifying the hardware require-
ment trade offs for using each engine and determining
the appropriate engine for the KUAR.

An important design decision for developing a cogni-
tive engine is the selection of the “knobs” and “dials”.
Having a poorly selected set of parameters results in an
uniformed CAM that outputs inaccurate decisions. We
have identified a list of common wireless parameters that
are essential to the operation of a cognitive radio.

Using these sets to control the operation of the radio
is the primary task of the cognitive methods. In order
for any cognitive method to perform its task, a relation-

ship must be found between the “knobs”, “dials”, and
performance objectives that give the cognitive engine
the intelligence to understand how the environment is
affected by the parameters.

Several challenges exist within the cognitive radio
configuration and adaptation phase. Finding the correct
objectives and parameters are among the most impor-
tant. Developing the relationships that exist between
several parameters and multiple objectives is the key
to developing a well informed cognitive radio. We have
implemented two cognitive engine methods and shown
how each uses the derived relationships to find the appro-
priate operating parameters for a wireless environment.
Along the way, several implementation trade-offs were
identified that can be used to tailor the implementation
to a specific hardware resource environment.

VII. KUAR APPLICATIONS

Several experiments are being developed for the
KUAR and we briefly describe them in this section.

A. Agile Transmission

In a wide-band communications system, a large por-
tion of frequency channels may be occupied by trans-
missions from incumbent or unlicensed users. Systems
that desire to operate within these occupied channels
must avoid placing subcarriers in occupied or licensed
spectrum. Thus, to avoid interfering with these other
transmissions, the subcarrier within the vicinity of the
given transmission is turned off, or nulled. In the case
of systems like OFDM, these null subcarriers are repre-
sented as zero-valued inputs to the FFT and IFFT blocks.
When available spectrum is sparse, the number of zero-
valued inputs in the FFT may be significant relative to the
total number of the usable subcarriers. When the relative
number of zero-valued inputs is quite large, significant
hardware resources can be saved by pruning the FFT
algorithm.

Channel conditions and incumbent spectrum occu-
pancy (ISO) often vary over time so efficient FFT prun-
ing algorithms should be able to generate an optimized
FFT implementation every time the channel conditions
and ISO changes. Given that the hardware resources of
small form factor cognitive radios are limited, this FFT
pruning algorithm would be very beneficial.

B. Distributed Radio Spectrum Survey

Determining whether a portion of the RF spectrum
is in use is difficult. The common approach of measur-
ing spectrum utilization with a spectrum analyzer only
captures activity at a particular location for a particular
time. This typical measurement approach can easily
miss spectrum users who transmit intermittently, those
with shaped antenna patterns, or those with very low-
power signals. With a set of KUARs distributed over



an area, coordinated observations can be collected and
wideband signals can be captured for offline analysis.
Given sufficiently long signals, offline analysis can elicit
characteristics of time division multiplexed signals and
detect weak signals in addition to conventional power
analysis. Using distributed RF sensors enables us to
better understand the RF environment over a region.

C. Channel Sounding Techniques

Channel sounding techniques are used to obtain the
radio channel characteristics, such as the channel im-
pulse response (CIR), the channel frequency response,
the average delay, the delay spread and the coherence
bandwidth among others. As the demand for high data
rate wireless communications increases dramatically, ra-
dio channels are becoming more and more sophisticated
(non-stationary transceivers and signal reflections) and
the ability to characterize said channels is essential to
the design of future radio systems.

In a Dynamic Spectrum Access network environment,
the channel conditions might change rapidly due to
random access to the channel by different types of
users. Furthermore, radio channel characteristics can also
change over a short period of time. Channel models built
upon short-term measurement data may not accurately
describe the channel. System designers require new
techniques to model the long-term behavior of a given
radio channel. Cognitive and software defined radios
will allow for the development of channel sounding
techniques for DSA networks. Cognitive radios will be
capable of adjusting transmission parameters when chan-
nel conditions change and will be capable of capturing
long-term channel characteristics.

VIII. CONCLUSION

We have presented the design details of the KUAR
platform. The KUAR supports a very flexible RF front-
end supporting wide transmission bandwidths and large
center frequency ranges. The current version supports
a 30 Mhz bandwidth anywhere within the 5-6 GHz,
although auxilary RF designs will allow for operation
in other bands, including the 2.4 GHz ISM band. The
KUAR is extremely portable due to its small form factor,
self-contained design, and on-board power supply. It
also hosts powerful on-board processing to support a
wide variety of complicated radio functions, network
architectures and protocols, and cognitive algorithms.
This highly configurable system has a robust set of both
hardware and software tools to allow developers to work
in their area of expertise without being encumbered by
the other layers. Finally, a low cost build cycle will help
facilitate wide distribution of KUAR units to researchers
in the cognitive radios and DSA networks community,
assisting them in implementing and validating new de-
signs, algorithms and approaches.
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