
Database and Web Application to View
Echograms and Ice Sheet Thickness Plots of

Greenland Ice Sheet Data

Subhajyoti Paul

January 2005

Copyright © 2005:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsors:
National Science Foundation

Grant #OPP-0122520
NASA Grants #NAG5-12659 and #NAG5-12980

Technical Report

The University of Kansas

ITTC-FY2005-TR-27640-06

 ii

ACKNOWLEDGEMENTS

This master’s project would not have materialized without the support and

assistance of several people. First and foremost, I express my deep gratitude to Dr. Prasad

Gogineni, my thesis advisor and committee chair, for giving me the opportunity to work

on this project. Thanks to Dr. David Andrews and Dr. John Gauch for serving on my

thesis committee. I am deeply indebted to Mr. Torry Akins, my project supervisor, for

conceiving the idea behind this project. Thanks also go to Mr. John Paden, whose

insightful solutions bailed me out whenever I was in a quandary. Thanks to my friend

Atul for reviewing the initial draft of this document.

Last, but not least, I thank my parents and my siblings for their support and

encouragement throughout the course of my stay at KU.

This work was supported by the National Science Foundation (grant OPP-

0122520) and NASA (grants NAG5-12659 and NAG5-12980).

 iii

ABSTRACT

Radar depth sounder data collected as part of the Program in Arctic Regional

Climate Assessment (PARCA) are used to analyze bedrock and ice sheet conditions in

the polar regions. As the size of the total data collected is unmanageable as a single file,

the data are broken down into smaller files. MATLAB programs and tools are developed

to extract information from these files one at a time and present them in the form of

images, thickness plots and contour maps. The problem with this method is that it is

difficult to isolate information pertaining to a certain search criterion across multiple

files.

This project explores a new approach for viewing the radar data files. The first

part of this project aims at loading selective data from data files into database tables.

Only enough information from each data file is stored in the database as would be

required to conduct searches on the data files later; the raw data are still stored in the

original files because it is impractical to store all of the raw data in the database due to its

size. The second part of this project is the development of a Mex interface to MATLAB

(written in C) to conduct queries on the database. Results from the database queries are

used to create dynamic web pages for the target audience – scientists, geologists and

educators. The web interface designed as a part of this project seeks input from the user

from a web browser. The user input is passed to a background MATLAB process for

further processing. The final output appears in the web browser in the form of MATLAB

plots and images. A plot of flight lines corresponding to the data is provided to the user to

aid in visualization. Buttons are provided to generate echograms and thickness plots

corresponding to the area covered by the flight lines.

 iv

TABLE OF CONTENTS

1. Introduction... 1
1.1 Motivation... 3
1.2 Goals ... 3

1.2.1 Database loader.. 3
1.2.2 MATLAB mex interface.. 4
1.2.3 Web Interface... 4

1.3 Software Requirements... 4
1.3.1 Software for the developer... 4
1.3.2 Software for the end user ... 5

1.4 Approach... 5
2. Related Work .. 6

2.1 Format of coherent radar depth sounder data file ... 6
2.2 Data types in files.. 9

3. Overall System Design ... 10
3.1 System architecture... 10

3.1.1 Database loader.. 11
3.1.2 Mex – interface .. 12
3.1.3 Web interfaces ... 12

4. Database Design and Implementation .. 13
4.1 Directory structure of data files .. 13
4.1 Entity-Relationship (ER) diagram .. 14
4.2 Database contents.. 15

4.2.1 Description of FileInfo table entries .. 15
4.2.2 Description of Header table entries.. 15
4.2.3 Description of GPS table entries.. 16
4.2.4 Description of TopBottomData table entries ... 17

4.3 Design issues – Transaction safe or non-transaction safe tables 17
4.4 Loader program... 19

5. Mex interface .. 21
6. Web Interface.. 26

6.1 MATLAB operation on the web... 28
6.2 Layout of the html form.. 29
6.3 Files used for web interfaces .. 30
6.4 Signal Processing.. 31

7. Experiment results and validation... 33
7.1 Test Case 1:... 33
7.2 Test Case 2:... 36
7.3 Test case 3:.. 39

CONCLUSIONS AND FUTURE WORK ... 40
Recommendations... 41

APPENDIX A... 43
A.1 Header .. 43

 v

A.2 FileInfo... 43
A.3 GPS .. 44
A.4 TopBottom ... 45

APPENDIX B ... 46
Configuration and Setup Notes... 46
B.1 Configuring Matlab Web Server .. 46
B.2 Software Setup ... 47

REFERENCES ... 49

TABLE OF FIGURES

Fig 1 – Rapid thinning of Greenland’s Coastal ice ([3]) .. 2
Fig 2 – Overall system design... 11
Fig 3 – Data file archive structure... 13
Fig 4 – ER diagram of CoRDS file database .. 14
Fig 5 – Contents of table FileInfo ... 15
Fig 6 – Partial contents of table Header.. 16
Fig 7 – Partial contents of table GPS.. 16
Fig 8.– Partial contents of table TopBottomData ... 17
Fig 9 – Flowchart of operation of the loader application.. 19
Fig 10 – Operation of mex file.. 22
Fig 11 – result of select query within mex function ... 24
Fig 12 –MATLAB webserver and httpd running on the same machine........................... 27
Fig 13 - MATLAB web server and httpd running on different machines 27
Fig 14 – Functioning of MATLAB web server [7]... 28
Fig 15 – Output of submit button.. 29
Fig 16 – Output of search triggered by user ... 33
Fig 17 – Echogram for surface covered by flight path 2 .. 34
Fig 18 – Echogram generated manually for comparison (has more records) 34
Fig 19 – Thickness plot for surface covered by flight path 2 ... 35
Fig 20 – Thickness plot generated manually (has more records) 36
Fig 21 – Output on main page... 37
Fig 22 – Echogram generated by the application.. 38
Fig 23 – Echogram generated manually for comparison .. 38
Fig 24 – Echogram generated using first 7 files only ... 39
Fig 25 – Header table structure... 43
Fig 26 – FileInfo table structure.. 44
Fig 27 – GPS table structure ... 44
Fig 28 – TopBottom table structure .. 45
Fig 29 – Options in appl.conf ... 47

 1

1. Introduction

Average temperatures in the Arctic region are rising twice as fast as the global average

[1]. Arctic ice is getting thinner, melting and rupturing [1]. If this trend continues, then

summers in the Arctic could become ice-free in a few more decades. A warmer Arctic

will affect weather patterns and food production around the world. For example, Kansas

would be 4 degrees warmer in the winter without Arctic ice. This would have a profound

effect on the wheat production in Kansas [1]. Apart from local flora and fauna, the effect

of climbing global temperatures and melting land mass ice has far-reaching effects

beyond the polar regions. A vast majority of the world’s population live in low-lying

coastal areas. With increasing global temperatures and the consequent rise in sea level,

the lives of people living in the coastal regions will be affected. As such it is important

for scientists to precisely identify the factors contributing to sea level rise. At present,

there is a large uncertainty in the role of polar ice sheets in the global sea level rise [2].

To assess the role of the polar ice sheets in sea level rise, we will need to determine the

mass balance of these ice sheets. One of the crucial measurements required to determine

the mass balance of an ice sheet is the ice thickness.

 2

Fig 1 – Rapid thinning of Greenland’s Coastal ice ([3])

The Radar Systems and Remote Sensing Lab (RSL) at the University of Kansas has been

involved in the measurement of ice sheet thickness in Greenland since 1991. The data

used for this project were collected by two coherent radar depth sounders operated in

Greenland, each with a center frequency of 150 MHz. They are Improved Coherent

Antarctic Radar Depth Sounder (ICARDS) and Next Generation Coherent Radar Depth

Sounder (NGCoRDS) [4]. The data obtained by airborne radar measurements are

processed to produce more comprehensible output such as radio echograms and thickness

plots. The processed echograms are used by glaciologists all over the world to investigate

possible reasons behind the alarming sea level rise in the past century.

Apart from data collection and analysis, there is also a need for a strong public

outreach program that aims at disseminating information to the general public and

 3

scientific community outside KU. The current work aims at making a contribution to this

area.

1.1 Motivation

One of the objectives of the Polar Radar for Ice Sheet Measurements (PRISM) project,

funded by the National Science Foundation and NASA, is to make data collected from

the polar regions available to the general public. As such, alliances have been formed

with Haskell Indian Nations University and the Advanced Learning Technologies in

Education Consortia (ALTEC) to make educational resources available to both students

and educators alike. Data provided by PRISM field teams have to be analyzed and

transformed into maps. Currently, interested parties can download data in the form of

MATLAB data files (mat files). Portable Document Format (PDF) documents containing

processed radio echograms are available for download too. This project explores a way to

generate echograms and thickness plots on the fly and make the whole process more

interactive.

1.2 Goals

Following is a summary of the goals to be accomplished in this project. Radar data files

are referred to as CoRDS files.

1.2.1 Database loader

The first goal of this project is to test the feasibility of storing a subset of data from

CoRDS files collected by airborne radar flights conducted by the NASA Wallops flight

facility. This involves the design of a database and loading selected data from data files

 4

into respective database tables. Information stored in the database should be self-

sufficient to perform search operations at a later stage.

1.2.2 MATLAB mex interface

The second stage is the development of a mex interface to query the data repository.

MATLAB programs have already been written to read and extract data from binary data

files. The mex file builds upon these programs. The central database, mex interface, and

MATLAB programs work in tandem to return results corresponding to a search generated

by users.

1.2.3 Web Interface

The last and most tangible part of the project is the development of web interfaces to

provide an online search facility. Users are prompted to specify search parameters

(latitude and longitude). The final output visible to the users consists of thickness plots

and echograms representing the bedrock conditions along the flight lines flown in the

area of interest.

1.3 Software Requirements

The following is a list of software required for this project.

1.3.1 Software for the developer

All parts of the software application have been developed on a GNU/Linux system.

Following is an exhaustive list of software components used in this project.

1. C

2. Mysql (4.0.18 Standard)

 5

3. HTML

4. JavaScript

5. MATLAB 7.0 (R14)

6. MATLAB Web Server

7. Apache Web Server

8. gcc

1.3.2 Software for the end user

1. A graphical user interface (GUI) based web browser

2. JavaScript capability

3. Frames capability

1.4 Approach

The approach taken is a combination of database, MATLAB, and web programming.

MATLAB library functions are used for matrix operations. As the file sizes are

enormous, it is not feasible to store the entire data set collected in the database. Instead,

only the information necessary for searching (e.g., global positioning system tag,

thickness, etc.) is stored in the database. Each radar data file contains many records (A-

scopes). Only the necessary information from each record will have an entry in the

database. The database allows quick retrieval of the record indices and corresponding file

paths that satisfy a certain query operation. Using these record indices and file paths we

can extract the corresponding records for further processing.

 6

2. Related Work

This document would be incomplete without explaining the current framework that exists

to view data from radar data files. What follows is a brief summary of the format and data

types available in CoRDS files and the access mechanism. Much of the background

content in this section is reprinted from the online CoRDS resource [5].

2.1 Format of Coherent Radar Depth Sounder Data File

These are the files generated by the data system of the airborne radar depth sounder. The

radar depth sounder transmits a sequence of pulses from an aircraft flying over the ice

sheet and coherently processes the received signal. The received signal is demodulated

into its inphase (I) and quadrature (Q) components, which are sampled at 18.75 MHz.

The operator sets the delay after which the system begins to sample. This delay is called

the Sampling Window delay and is determined by the time taken by the transmitted pulse

to make the trip from the transmitter to the ice surface and back. The number of samples

is also set by the operator and is determined by the anticipated thickness of the ice sheets.

Once the received signal is sampled, it is represented by the digital system as two vectors,

I and Q. The I vector corresponds to the inphase channel, and the Q vector corresponds to

the quadrature channel. Several pulses are averaged together to reduce the data rates. The

number of samples averaged together is called the number of coherent integrations. The

figure below illustrates how the coherent averaging is done for the two channels.

 7

I Channel Data
I Channel
Pulse 1

I Channel
Pulse 2

……… I Channel
Pulse N

I channel
averaged
 Iavg

Sample 1 Sample 1 ……… Sample 1

Sample 2 Sample 2 ……… Sample 2

…
…

.

 …

…
..

…

…
…

…

…
…

Sample M* Sample M …….. Sample M

 N

 Σ I
/N*
 p=1

Q Channel Data
Q Channel
Pulse 1

Q Channel
Pulse 2

……… Q Channel
Pulse N

Q channel
averaged
 Qavg

Sample 1 Sample 1 ……… Sample 1

Sample 2 Sample 2 ……… Sample 2

…
…

.

 …

…
..

…

…
…

…

…
…

Sample M Sample M …….. Sample M

 N

 Σ I /N
 i=1

Table 1 – Coherent averaging of samples

N* - Number of coherent integrations

M* -Number of samples

p – Pulse no

The radar may operate in two modes – coherent and incoherent. When operating in

coherent mode, the data system saves the averaged I and Q channel data to the hard disk.

 8

When operating in incoherent mode, the sum of the squares of the averaged I and Q

channel data is saved to the hard disk.

Incoherent Data are given by the formula

Iavg 2 + Qavg 2

Laser altimetry data and global positioning system (GPS) data are fed into the data

system and stored with every set of averaged coherent/incoherent data.

The raw data file size is fairly large. For example, the data file size for a single

flight conducted on May 20, 2001, is approximately 3.0 GB. The data are broken down

into manageable files of up to 32-40 MB each. The format of each of these binary files is

shown below.

(float 32) Pulse Repetition Frequency (PRF) in Hz
(float 32) Sample Window Delay in seconds
(uint32) DSP mode (0 – coherent, 1 – incoherent)
(uint32) Number of samples
(uint32) Number of coherent integrations
(uint32) Number of incoherent integrations
(uint32) Number of receiver cards
(uint32) data format
(uint32) BLANK
(uint32) BLANK
(uint32) BLANK
 (uint32) BLANK
 (uint32) BLANK
(uint32) BLANK
(uint32) BLANK
(uint32) BLANK
(int32) datatype in position 1 (int32) datasize

in position 1
(int32) Number of records in
position 1

Position 1 data

(int32) datatype in position 2 (int32) datasize
in position 2

(int32) Number of records in
position 2

Position 2 data

H
ea

de
r (

 6
4

by
te

s)

D
at

a
el

em
en

t
D

at
a

el
em

en
t

 9

(int32) datatype in position 3 (int32) datasize
in position 3

(int32) Number of records in
position 3

Position 3 data

….

(int32) datatype in position n (int32) datasize
in position n

(int32) Number of records in
position n

Position n data

Table 2 – Data file format with repeated tagged data elements

The first 64 bytes of every file contain header information. This header describes the

radar settings during the time the data were collected. This is followed by a sequence of

tagged records. Each record starts with a 12-byte tag followed immediately by the radar

data (a single A-scope). The 12-byte tag is composed of three 4-byte fields:

• Data type

• Data size

• Number of records

2.2 Data Types in files
The figure below lists the possible data types in the binary files.

Datatype Description Format
1 Incoherent raw data Uint16
2 I channel raw data

(coherent)
Uint16

3 Q channel raw data
(coherent)

Uint16

4 GPS string Uint8
5 Time Uint8
7..19 Reserved
20 Top Curve Float32
21 Bottom curve Float32

Table 3 – Data types in use

 10

3. Overall System Design

There are three main components in this project. They are:

1. Database loader application: The main purpose of this piece of software is to

load selective information from CoRDS files to a central database. The Entity-

Relationship and the data model diagrams are given later in this document.

2. Mex interface: This program acts as the intermediary between the web interface

and the central database system. This takes as input the search parameters passed

from the web search page. Subsequently, it forms a query based on the passed

parameters and sends the query to the database, which responds with the

corresponding result set. The results returned are further processed to isolate

separate flight paths and their corresponding latitude and longitude values.

3. Web Interface: The primary purpose of the web interface is to interact with the

end user. Latitude and longitude co-ordinates specified by the user are passed to

the mex interface described above. Based on the information passed back by the

mex file, buttons to create plots are created on the fly.

3.1 System Architecture

This section describes the functionality and interaction between the different components

of the system designed for this project. Figure 2 diagrams the tasks performed by these

components and how the flow of control and data takes place. The oval symbol

represents a component and the rectangles represent an input/output to the system.

 11

Fig 2 – Overall system design

3.1.1 Database loader

A database needs to be created before this stage is initiated. A detailed explanation of the

database design follows in the next chapter. The database consists of four tables –

Header, FileInfo, GPS, and TopBottomData – which hold the individual file header

information, file indices, GPS data, and top and bottom curve information respectively.

Data have not only to be consistent; they also have to be indexed in such a way that fast

searching is made possible. The database loader is run from time to time to update the

database with the latest CoRDS files.

Mex
interface

Filesystem folder
Individual radar data file,
e.g.:
2001/may20/may20_01.001
2001/may23/may23_01.105

Loading
Stage

Database
Tables: Header, FileInfo,
GPS, TopBottom

cgi-client &
matlabserver

MATLAB
web programs
[Calls mex file
Processes signal
Creates plots]

HTML documents
Latitude, Longitude

WEB INTERFACE

 12

3.1.2 Mex – interface

This stage works in tandem with the web interfaces. Any time a user triggers a search,

this stage come into play. Once search information is received from the MATLAB cgi

client, a MATLAB program calls this interface program. The purpose of this program is

to query the database to find matching records, place some variables into the MATLAB’s

workspace, and then hand back control to the MATLAB process. The variables placed in

the workspace are used to generate a flight line plot.

3.1.3 Web Interfaces

The mex interface passes a list of file names to the MATLAB workspace. This in turn is

passed to the user’s browser. This list is parsed to form a set of buttons. Clicking the

buttons triggers the creation of echograms or thickness plots.

 13

4.Database Design and Implementation

Selective information is extracted from data files and stored in the database. The data

files are large in size. For example, the data for a single flight on May 23, 2001, over the

polar regions generated 5.1 GB of data. These data are broken down into smaller files.

The typical file size is between 31 – 40 MB.

4.1 Directory structure of data files

The directory structure where data files are stored is shown in the figure below.

Fig 3 – Data file archive structure

Files belonging to a particular year are stored relative to the directory called

ICARDS_data. Within each of the folders marked by years (1999, 2001, 2003, etc), is

1993 2001

 may19 may21 may23

may19_01.000
may19_01.001
may19_01.002
…
…
…
may19_01.105

may21_01.000
may21_01.001
may21_01.002
…
…
…
may21_01.105

 .
 .
 .

 .
 .

.

.

.

.

2003

 .
 .
 .

…

ICARDS_data

 14

another set of folders organized by dates (may23, may21, may19, etc). The data files are

stored in these folders. The loader application should be run from the base folder

ICARDS_data. This ensures that the file paths stored in the database are always relative

to the top-level directory, ICARDS_data.

4.1 Entity-Relationship (ER) diagram

Fig 4 - ER diagram of CoRDS file database

The diagram above represents the overall logical structure of the database.

Rectangles represent entity sets, ellipsis represent attributes and lines link attributes to

entity sets or entity sets to relationships. For each entity and relationship set, there is a

unique table, which is assigned the name of the corresponding set. Each table has a

number of columns with unique names.

The entity set FILE has a one-to-one relationship with the HEADER entity set.

FILE has a one-to-many relationship with GPS. GPS in turn has a one-to-many

 15

relationship with TOP_BOTTOM_CURVE. Refer to Appendix A for a description of

table fields and their corresponding data types.

4.2 Database contents

The following figures illustrate what the tables look like after data have been successfully

loaded.

4.2.1 Description of FileInfo table entries

A snapshot of database entries for the table FileInfo is given below:

Fig 5 – Contents of table FileInfo

The figure above displays the first several entries for CoRDS files recorded on May 20,

2001. fileKey is an auto increment column. fileIndex denotes the last three

characters in the file name. The last column shows the number of ascopes/records in each

of the individual files.

4.2.2 Description of Header table entries
The next figure displays the contents of the table Header.

 16

Fig 6 – Partial contents of table Header

The above figure displays the information found in the header section of the files. Table

Header is linked to table FileInfo through the column fileKey. Each row in

FileInfo table will have exactly one corresponding row in table Header. This is due to

the 1-1 correspondence between the two tables.

4.2.3 Description of GPS table entries
The figure below displays the contents of table GPS.

Fig 7 - Partial contents of table GPS

 The above figure displays the contents of GPS table for the file may20_01.009. Note

that entries in this table are related to FileInfo table through the column fileKey.

 17

Because of a one-to-many relationship, each row in the table FileInfo is associated

with multiple entries in GPS table.

4.2.4 Description of TopBottomData table entries
The next figure displays the contents of table TopBottomData.

Fig 8 – Partial contents of table TopBottomData

GPS has a one-to-many relationship with TopBottomData. Hence, corresponding to

the value pair (fileKey=577, gpsIndex=1) in GPS, you will find multiple rows in

TopBottom. When data is collected, the GPS information remains the same over several

pulses. Hence, the need for a one-to-many relationship between these two tables.

4.3 Design Issues – Transaction safe or non-transaction safe tables

Mysql database server is the world’s most popular open source database. Mysql supports

several storage engines to handle different table types. It includes both those that handle

transaction safe tables and those that handle non-transaction safe tables.

1.MyISAM – handles non-transactional tables.

2.InnoDB – transaction safe tables.

 18

The issue here is whether to choose a Transaction Safe Table (TST) or a Non-

Transaction-Safe Table (NTST). TSTs have several advantages over NTSTs[6]:

1. They are safer, in the event of any power failure or any other unforeseen events

that crash the server. Changes to NTSTs cannot be roll backed.

2. They use a Commit and Rollback feature to execute or ignore a transaction as per

the user’s needs.

3. They provide better concurrency for tables that get many updates.

NTSTs have advantages of their own, which are largely due to the absence of any

transaction overhead:

1. They are much faster than TSTs.

2. They consume less disk space.

3. They need less memory to perform updates.

In our application, data corresponding to 4 different data types is to be loaded into the

database. What happens if the program successfully loads the first three data types but

fails while loading the fourth data type because of some unhandled error or hardware

failure? All the tables will contain a large volume of data. And our main motive is to

conduct searches through these tables as fast as possible. Using InnoDB engine would

hamper our goals. To make database search queries fast, MyISAM storage engine has

been used to manage the tables. Utmost care is taken to handle all possible error

conditions. Of course, in the event of power or hardware failure, we won’t have a

database transaction log to fall back on. All the update operations made up to the failure

point will be permanent. An abrupt end of the application will leave the database in an

 19

inconsistent state. The log file can be checked to see where the program termination took

place and use that information to manually delete inconsistent data from the tables.

4.4 Loader Program

The diagram below illustrates the operation of the loader program.

Fig 9 – Flowchart of operation of the loader application

The various stages involved in this process are:

 Start 3. Connect to database

4. Open matlab
engine Read next file

1. * List of file names
 * Database parameters

2. Read
.my.cnf in
$HOME

connected

End of
list

5. Get Header
from current
file

isNull(Header)

6.Get GPS
 Get Top
 Get Bottom

If Top or Header
== null

Insert Header
Insert FileInfo
Insert GPS
Insert TopBottom

7. Top or bottom = -
9999

End

 20

1. A list of file names and optional database parameters are passed as arguments to

the program.

The usage is as follows.

CORDS_loader [-d database] [-u user] [-p[password]] [-h host] “list of file names”

The list of files names is specified using the “find” linux command. An actual

example is given below. Note that the executable is to be run from the directory

ICARDS_data. If database parameters are not specified on the command line,

then the program uses the database settings found in <home>/.my.cnf file.

e.g. ncords_loader `find ./ -name `*.[0-9][0-9][0-9] –print |sort`

2. Read .my.cnf file in the current working directory. This file contains database

parameters – server name, user name and database name. Password is to be

passed from the command line for security reasons.

3. A connection to the backend database is made.

4. The MATLAB engine is opened. This helps us in calling MATLAB routines to be

executed on the files passed as command line arguments.

5. File are read and processed sequentially. First the Header (datatype = 0) is read,

followed by the GPS (datatype = 4), top (datatype = 20), and Bottom (datatype =

21).

6. A fileKey is generated at this point, which is used to index the files in the

FileInfo, GPS, and TopBottomData tables.

7. If the Top or Bottom value is null, it is replaced by -9999 to represent invalid

data.

8. Insert data into Header, FileInfo, GPS and TopBottomData tables.

 21

5. Mex interface

Mex files are subroutines produced from C or FORTRAN code. They can be called from

within MATLAB just like any other M-file or built-in function. Mex files are

dynamically linked subroutines that the MATAB interpreter can directly load and

execute. For our purpose, C language has been chosen to write the Mex files.

The main purpose of building a mex interface is to conduct queries on the

database from within MATLAB. Based on the parameters passed to it, the program

queries the database, loops through the records returned and generates a series of flight

paths in the form of matrices. The output of this program is a structure of arrays which

contain latitude and longitude values. The MATLAB instance, from within which the

mex file is called, generates a plot of the flight lines based on the latitude and longitude

values.

 22

Fig 10 – Operation of mex file

The various stages involved are:

1. The mex file is called from within a MATLAB instance. The name of the mex file

to be called is form_paths. The mex file first reads a file called .my.cnf in the

MATLAB
 1.Read .my.cnf

file in current
directory

2. Connect to database
prism_radar

3.connected

No

4. Select all records from
database within given co-
ordinates

Records exist

6. Curr = 1st record
Fetch lat, long records

Record
exists

7. Read next record

8.Prev = curr
Curr = new record
Fetch lat, long records for
curr

Merge lat, long values
for both curr and prev
records

9.If curr, prev
are related

No

Yes

Yes

No

Yes

Yes

No

 23

current user’s home directory ($HOME). This file contains data base parameters –

database name, user name, database server and an optional password to connect

to.

The mex file usage is shown below.

form_paths(min_lat, max_lat, min_longd, max_long, max_files)

“min_lat” and “max_lat” stand for the lower and upper limit of latitude values.

”min_longd" and “max_longd” stand for the lower and upper limit of longitude

values. The input argument “max_files” is used to determine the maximum

number of samples available within the first N files for a flight line, where N

denotes the value of “max_files.”

2. A connection to the database is established.

3. If a connection is not successfully established, return to MATLAB workspace

with error message.

4. Select records from the database which fall under the given co-ordinates, i.e.,

latitude and longitude range. The following sql query is issued.

“select T.fileKey, F.fileName, F.fileIndex, F.nrecords, count (*), MIN(T.recordIndex),

H.nosamples from TopBottomData T inner join FileInfo on F.fileKey = T.fileKey inner join

GPS G on (G.gpsIndex = T.gpsIndex and G.fileKey = T.fileKey) inner join Header on

(H.fileKey = F.fileKey)where (G.lat > x and G.lat < y) and (G.longd > a and G.longd < b)

group by T.fileKey.”

where x, y , a and b form the latitude and longitude range.

Say the search values are:

Minimum latitude – 67oN Maximum latitude – 69oN

Minimum longitude – 34oW Maximum longitude – 37oW

 24

The result of the search query at this stage is displayed below.

Fig 11 – Result of select query within mex function

The rows can be processed to break the result set into three flight paths. Observe the

fileKey column. There is a jump from fileKey 615 to 645. So, this is identified

as the boundary between two logical flight paths even though both the files

./2001/may20_01.027 and ./2001/may20/may20_01.057 belong

physically to the same flight. Another boundary is identified between the pair of

fileKeys 647 and 698. The field count (*) gives the total number of records within

each file that satisfy the search query.

Pa
th

 1

Pa
th

 2

Pa
th

 3

 25

5. The latitude and longitude values for all files that fall within a flight path are

concatenated and placed in the MATLAB workspace as a matrix variable.

6. A string variable is also placed in the MATLAB workspace. This string can be

parsed to get the filenames belonging to a particular flight path. The string also

holds the starting record index and the number of records selected per file. This

string is used by another MATLAB program to create a set of buttons to be

displayed to the user.

 26

6. Web Interface

The web interface has been designed using a combination of HTML and JavaScript.

The input form on the search page seeks four inputs from the user - minimum and

maximum values of latitude and minimum and maximum values of longitude. These

values are then passed to a MATLAB thread via a cgi client. The MATLAB instance

processes the input and makes a call to the mex file meant to return flight paths. The mex

file returns a structure of arrays from which a plot is generated. The mex file also passes

information about the individual file names involved and the starting and ending record

indices within the individual files.

An important component in the whole process is the MATLAB web server. The

MATLAB Web Server is a toolbox, which is a web-front-end for MATLAB. The

MATLAB web server allows us to create MATLAB applications that use the World

Wide Web to send data to MATLAB for computation and to display the results in a web

browser. A MATLAB web server component needs to be installed. The other two

software requirements are the matlab cgi client on the web server and httpd.

The MATLAB web server (matlabserver) and the web server daemon (httpd) can run on

the same or separate machines. Both the configurations are shown below.

 27

Fig 12 – MATLAB webserver and httpd running on the same machine

Fig 13 – MATLAB web server and httpd running on different machines

MATLAB web server applications are a combination of M-files, HTML and graphics.

The steps involved are as follows:

1. Create HTML documents for collection of input data and display of the results.

2. List the application name and associated configuration data in a file matweb.conf,

which resides in the cgi-bin directory of the web server.

3.Write a MATLAB M-file that:

i. Analyzes input data entered in the HTML form

ii. Calls MATLAB functions of mex files for further processing

 28

iii. Creates images and plots if required

iv. Places output data in a MATLAB structure

v. Calls htmlrep (MATLAB function) to place the output data in an HTML

output document template

6.1 Matlab operation on the web

Fig 14 – Functioning of MATLAB web server [7]

 29

6.2 Layout of the html form

The figure below shows the layout of the search html document.

 Input frame

Fig 15 – Output of submit button

The above snapshot of the browser window shows the main page. On the top left side lies

the input frame. Here, the minimum and maximum values for latitude and longitude are

Output frame to plot flight
lines

Output frame for buttons to
create plots and images.

 30

specified. Once the Submit button is clicked, a call to the MATLAB web server is made.

The MATLAB web server runs on a remote machine where MATLAB is installed. The

web server spawns several MATLAB threads based on configuration file entries. It hands

over the input to one of the MATLAB threads, which starts the processing. The output

html document is then sent back to the web browser to be displayed in the two output

frames.

6.3 Files used for web interfaces

What follows below is a discussion of the different MATLAB applications and html

templates used in this project.

1. gen_flight_lines.m

This is the first program that is invoked when the user clicks on the submit button on the

search page. This program accomplishes two purposes. First, it calls the mex file

form_paths with appropriate arguments. Second, it plots the flight lines based on latitude

and longitude matrices returned by form_paths. It then calls the template html file

prismweb.html to create a dynamic web page to be sent back to the web browser. Once

data is transferred back to the browser, the flight plot appears on the right frame and the

image and thickness buttons appear on the bottom left frame.

2. gen_flight_lines.html

This is a template html file used to create a dynamic web page with buttons to generate

echograms and thickness plots corresponding to flight lines plotted in gen_flight_lines.m.

3.gen_echogram.m

This file is invoked when a user clicks on the button in the output frame. The

MATLAB function defined in this file generates echograms based on the input values

 31

present in the form of which the image button is a member. Various input values passed

are data file names, starting record indices, and end record indices.

4. image_echogram.html

This template html file is used by gen_echogram to embed the echogram generated in

part 3 above.

5.gen_thickness.m

This file is invoked when a user clicks on the button in the output frame.

The MATLAB function defined in this file generates a thickness plot of the ice sheet

based on the input values present in the form of which the image button is a member.

Various input values passed are data file names, starting record indices, and end record

indices.

6. image_thickness.html

This template html file is used by gen_thickness.m to embed the thickness plot generated

in part 5 above.

Input validation is done in the web browser using JavaScript.

6.4 Signal Processing

The collected data is further processed. This has a two fold purpose. The first is to reduce

the data size and the second is to enable more accurate measurements of ice sheet

thickness. The m-file gen_echogram.m performs the following signal processing steps:

1. First the dc offset is eliminated. This is done by deducting the mean value of each A-

scope from each of the sample values in the A-scope.

 32

2. 10 coherent averages are done. This reduces the data size by a factor of 10, which leads

to faster execution. This also serves the purpose of reducing the random noise.

3. Finally, five incoherent averages are done before generating the echogram. This

reduces the data size by a factor of five and reduces the effects of fading.

 33

7. Experiment results and validation

7.1 Test Case 1:
In this case, the number of samples is same across all files. The number of samples

recorded is typically 800 or 1024. This parameter is set by the operator during the time of

data collection.

Search values: Minimum latitude – 64

 Maximum latitude – 69

 Minimum longitude – 34

 Maximum longitude – 35

The above search parameters produced the following output.

Fig 16 – Output of search triggered by user

Creates
echogram

Creates
thickness plot

Format:
Flight date:: starting file index – last file index

Plot of flight
lines

Flight path
nos

 34

Clicking on the image button corresponding to Path 2 creates the radio echogram shown
below.

Fig 17 – Echogram for surface covered by flight path 2

Based on the flight date and start and end file indices available from the output window,

an echogram was generated manually in MATLAB.

Fig 18 – Echogram generated manually for comparison (has more records)

Bed rock

Bed rock

 35

Compare Fig 17 and Fig 19. Observe that the bedrock images in both the pictures are

similar. They appear slightly different because there are more records in the latter graph.

Fig 19 represents all records found in files. Fig 18 represents partial records from the first

file and last file. This is because only a subset of the records in the first and last file

satisfied the query.

Clicking on the Thickness button produced the following output.

Fig 19 – Thickness plot for surface covered by flight path 2

For comparison purposes, thickness plots for the same files were plotted manually in

MATLAB.

 36

Fig 20 – Thickness plot generated manually (has more records)

Observe the similarity between Fig 20 and Fig 21. Once again, the difference in the initial

few and last few points on the plot is due to the different number of records represented

by the plots.

7.2 Test Case 2:

In this case, the number of samples varies across files. By querying the Header table in

the database, it was found that files generated for may23/2001 provided an ideal test

case. Files may23_01.000 – may23_01.005 had records with 800 samples. Files

may23_01.006- may23_01.008 had records with 1024 samples.

Search values: Minimum latitude – 65

 Maximum latitude – 68

 37

 Minimum longitude – 35

 Maximum longitude – 45

The following output was produced.

Fig 21 – Output on main page

Click on Image button for Path 2.

 38

Fig 22 – Echogram generated by the application

The white rectangular portion in the echogram represents non-existent samples.

Fig 23 – Echogram generated manually for comparison

Records
with 800
samples

Records
with 1024
samples

 39

7.3 Test case 3:

This case tests the scenario when more than eight files are returned for each flight line. In

this case, only the first eight files are used to construct the echogram. The machine used

for testing was unable to handle more than eight files efficiently. This setting can be

changed by modifying a variable in the M-files.

Fig 24 – Echogram generated using first 7 files only

 40

CONCLUSIONS AND FUTURE WORK

The work presented in this project has three main parts – a database to store

selective information about radar data files, a mex file to interface between MATLAB

and the database, and a web interface to view plots and echograms. Programs exist which

can read data files given the particular data file name. This project goes a step further in

providing an online search facility to retrieve records from these files. The users can base

their search on latitude and longitude.

Our first concern is to organize the data from raw binary data files into several

database tables in order to facilitate searches based on certain conditions. This was

accomplished by designing a normalized database that stores information about the

various datatypes available in data files.

The database is used to probe queries triggered by the user. An intermediate

program is built that can communicate between MATLAB and the database. To meet this

end, a mex file is used. The main purpose of this program is to accept search parameters,

build the query, probe the database and put the results back in the MATLAB workspace.

The MATLAB program that invokes the mex file then uses the results to create dynamic

web pages and flight line plots. The dynamically created web page is sent back to the

web browser that initiated the whole process. This mex file can be run as a standalone

MATLAB function as well.

The web interfaces are designed to display radio echograms and thickness plots.

When a user submits her search values, a whole cycle of operations is triggered. The cgi-

client transfers input values to the MATLAB server. The MATLAB server hands over the

 41

incoming data to a MATLAB thread, which calls the mex file, which in turn probes the

backend database. A reverse sequence of operations occurs to transfer the results back to

the initiating web browser. At this stage, the user sees a plot displaying flight lines and a

series of buttons corresponding to each of the flight lines. Users can click on the buttons

to generate echograms and thickness plots showing the ice sheet thickness.

Educators and scientists interested in analyzing data available from field

experiments can now directly check bedrock conditions for a region in the form of

echograms and thickness plots. This obviates the need to download large data files onto

their system and then run MATLAB programs to view them.

Recommendations

1. Currently, online searches can be conducted based on latitude and longitude values.

Enhancements could be made to restrict the search to a particular file or year. The GPS

string and UTC time for each record in the data file is stored but is currently unused.

2. The database used is mysql 4.0.18 Standard version. This was available at the time the

project work started. The latest stable version is 5.0. The latest version has support for

Views, Triggers, sub queries and Stored Procedures. These database objects can be used

to further optimize the performance of queries.

3. Zooming into generated plots is not possible in the current scenario. This is because

the MATLAB web server simply returns an image to the web browser, which makes it

impossible to interactively zoom in or zoom out of the plots. A zoom-in field could be

provided to let the user specify the zoom percent required. Even then it is not a good idea

to rerun a particular calculation as the amount of data involved is enormous.

 42

4. The number of MATLAB threads run by the MATLAB web server is fixed. So, if all

threads are executing at a particular point of time and a new search request arrives, the

request is queued to be submitted to the next free MATLAB thread. If a lot of requests

arrive within a short period of time, the waiting time will be very high. Currently, the

MATLAB web server provides no way of knowing how many requests are pending. If

we can determine the number of pending requests, then we can deny new requests once a

predefined threshold is exceeded.

5. Additional signal processing techniques can be used to improve the quality of the radar

returns [8]. These methods are

1. Gain compensation – normalizing the receiver gain

2. Coherent noise reduction

3. Multiple echo elimination – eliminate multiple reflections from the ice surface

4. Intergain compensation – compensates for the change in radar gain settings across

adjacent data files.

 43

APPENDIX A

DATABASE TABLES

A.1 Header
The Header table stores information found in the header section of CoRDS files. This

consists of radar parameters that can be set by the operator during the functioning of the

radar. The exact structure of the table is given below.

Column Name Type Description

fileKey (PRIMARY KEY) Char(255) Unique file
identifier

prf Float Pulse repetition
frequency

swd Float Sample window
delay

dspmode Int(1) 0 or 1

nosamples Int(4) Number of samples
recorded

nocohintgr Int(4) Number of coherent
integrations

noicohintgr Int(4) Number of
incoherent
integrations

cards Int(4) Number of cards
used

dformat Int(1) Data format (8 bit
or 16 bit)

Fig 25 – Header table structure

A.2 FileInfo
This table stores file identification information. Each file has a unique fileKey associated

with itself, called the fileKey. This key is used in all join operations on the table. It also

 44

stores the file index, i.e., the last three characters in the filename (15 for the file

“./2001/may21/may21_01.015”)

Column Name Type Description

fileKey (PRIMARY) int(10) unsigned Auto_increment column

fileName Char(255) filename along with relative
path

fileIndex Int(2) unsigned The last three characters of
file name

nrecords Int(10) unsigned Number of ascopes on each
file

Fig 26 – FileInfo table structure

A.3 GPS
This table stores GPS information. This includes the latitude, longitude, elevation, and

the GPS string. Each file in the FileInfo table is related to records in TopBottom table via

GPS entries.

Column Type Description

fileKey Int(10) unsigned

gpsIndex Int(4) Starts from 0 for every new
file

gps_str Char(70) The entire GPS string

UTC Float

Lat Float Latitude in degrees

Longd Float Longitude in degrees

Elev Float Elevation in meters.

Fig 27 – GPS table structure

 45

A.4 TopBottom
Stores the Top and Bottom curve information.

Column Name Type Description
fileKey Int(10) unsigned
gpsIndex Int(4)
recordIndex Int(11) Starts with 0 for every new

file
Top Double Surface top in meters
Bottom Double Surface bottom in meters
Thickness Double (Bottom – thickness) in

meters

Fig 28 – TopBottom table structure

 46

APPENDIX B

Configuration and Setup Notes

The following discusses the configuration, building of the software, and the setup of the

initial system. The backend programs have been written in C and MATLAB. The front

ends are written in JavaScript and HTML. The software was written to target RedHat

Linux 9 systems with MATLAB 7.0 R14 installed on them. The MATLAB web server

component needs to be installed for the web interfaces to function.

B.1 Configuring Matlab Web Server
Run the bash script webconf in the directory <matlab>/webserver, where

<matlab> is the root installation directory for MATLAB. This creates the

matlabserver.conf file. A snapshot of the configuration file used in this project is

shown below.

Of particular importance is the first line. Here, the number of MATLAB threads to be

spawned by the MATLAB server is specified. For our testing purposes, we used five

MATLAB threads. SERVER_HOST is the host name of the machine where matlab is

Number of MATLAB threads

 47

installed. START_USERNAME is the user who starts the web server. Note that root

should not be this user because of security reasons. The MATLAB web server needs to

be stopped and restarted before changes to matlabserver.conf take effect.

B.2 Software Setup
The root directory is divided into four sections. They are

1. programs – The final executables are stored in this directory along with the various m-

files used for processing data.

2. scripts – This section contains a bash script to do the initial configuration and

compilation. The first step towards the initial setup is modifying certain options in the file

appl.conf. Run the bash script prepare.sh to do the initial configuration and

compilation. Options in appl.conf file are explained below.

Option Meaning

MYSQL_ADMIN_USER MySQL user with admin privileges. This user
will be used by the loader application.

MYSQL_READONLY_USER MySQL user with read-only privileges. This user
will be used by the mex file to conduct queries.

MYSQL_HOST Host name of machine running mysql server
(mysqld). Typically this is localhost.

MATLABSERVER TCP/IP host name of host running the MATLAB
server (e.g., typhoon2.ittc.ku.edu

RSPI_DFILE_PATH Root directory where CoRDS files are stored.

MAX_NO_FILES Integer value specifying the number of data files
to be used for generating echograms and
thickness plots. This is done to limit the data
size.

Fig 29 – Options in appl.conf

3. source – Contains source code for the loader and mex file.

 48

4. webprgms – This directory contains M-files that are invoked by the MATLAB server

in response to user actions on the web interface.

The bash script prepare.sh creates a file matweb.conf from a template file.

Place this file in the cgi-bin directory of your web server. Prior to this, copy matweb,

found in <matlab>/webserver/bin/arch, to the cgi-bin directory. This is the cgi-client

which communicates between the web server and MATLAB.

The source is designed to be built with one make command from the root. The

source tree builds itself and places the final executables in the programs directory. Make

sure that the programs directory is set in your $PATH and $MATLABPATH

environment variables.

 49

REFERENCES

[1] Natural Resources Defense Council,

http://www.nrdc.org/globalWarming/qthinice.asp , “Global Warming Puts the Arctic on

Thin Ice,” 2004

[2] Van Der Veen, C.J., “Polar ice sheets and global sea level: How well can we predict

the future?”, Global and Planetary Change, vol. 32, pp. 165-194, 2002.

[3] NASA Press Release, July 20, 2000.

[4] Gogineni, S., D. Tammana, D. Braaten, C. Leuschen, T. Akins, J. Legarsky, P.

Kanagaratnam, J. Stiles, C. Allen, K. Jezek, “Coherent Radar Ice Thickness

Measurements over the Greenland Ice Sheet,” Journal of Geophysical Research (Climate

and Physics of the Atmosphere), vol. 106, pp. 33,761-33,772, 2001.

[5] Definition of the Greenland Depth Sounder Data File Structure,

http://tornado.rsl.ku.edu, 2004.

[6] MySQL Database Server, http://www.mysql.com, 2004.

[7] Matlab Web Server Manual, http://www.mathworks.com, 2004.

[8] Ramamoorthy, H, N., “Radar Depth Sounder Processing and Digital Thickness Map

of Outlet Glaciers,” M.S. project, Department of Electrical Engineering and Computer

Science, The University of Kansas, Lawrence, Kansas, 2004.

