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Abstract - Interference due to transmissions by adjacent nodes in a multi-hop wireless network can be 

modeled using a Unit Disc Graph (UDG). We investigate the reliability associated with using the clique 

number instead of the chromatic number of the UDG while computing the interference. In our extensive 

simulations with UDGs of random networks, we observed that the clique number and the chromatic 

number values were typically very close to one another and the maximum deviation was much less than 

the theoretical bounds. This implies very high reliability in the proposed approximation. 

 

Index Terms – wireless interference, clique number, chromatic number, unit disk graph, imperfection 

ratio 

I. INTRODUCTION 

     The transmission interference between nodes in a wireless network affects network performance in 

a number of ways.  For example, the extent of this interference must be determined in order to find 

the capacity of the network [1]. However, determining this interference is an important and difficult 

problem in itself. 

     The interference problem can be modeled using graph-theoretic techniques, in particular the theory 

associated with Unit Disc Graphs (UDGs).  As explained below, the chromatic number of a UDG 

model of a wireless network is directly related to interference. Closely related to the chromatic 

number is another graph invariant, the clique number, and is known in special cases to equal the 

chromatic number. For most classes of graphs, computing the chromatic number and clique number is 



 

NP-complete (hardest among problems that cannot be solved in polynomial time). However, in 

UDGs, while the chromatic number problem is still NP-complete, the clique number can be 

determined in polynomial time.  This raises the question: What is the frequency of scenarios in which 

the clique number value equals or is in the vicinity of the chromatic number value of a UDG? The 

primary goal of this paper is to investigate through simulations the accuracy of approximating the 

chromatic number with its clique number in UDGs. More specifically, we would like an estimate of 

the fraction of instances when the chromatic number equals or is very close to the clique number in 

randomly generated UDGs.      

II. BACKGROUND 

      In a UDG G(V, E) with vertex set V and edge set E, there is an edge uv between vertices (nodes) a 

and b if and only if (iff) the Euclidean distance between a and b d(a,b) is less than or equal to 1  

i.e. },,1),(|{ VvuvuduvE ∈∀≤= . The chromatic number χ(G) is the minimum number of colors required to 

color the vertices of G such that no two adjacent vertices share the same color. A clique is a complete 

(fully interconnected) sub-graph in G, and a maximal clique is a clique that is not contained in any 

larger clique. The clique number or maximum clique number ω(G) is the maximum size of all 

maximal cliques. 

      Assume that we are given n nodes (1, 2…, n), and their respective position coordinates in 2D. If 

these nodes are thought of as nodes in a wireless network, then the following two definitions will be 

useful: transmission range (TR) of a given node is defined as the maximum distance at which the 

node’s transmission can be successfully received, and all nodes that lie within the transmission range 

of the given node are called the communicating neighbors of that node. The interference range (IR) is 

defined as the maximum distance at which a given node’s transmission can interfere with or corrupt a 

simultaneous transmission or reception attempt by another node, and all nodes that lie within 



 

interference range of a given node are interfering neighbors of the given node.  Clearly all 

communicating neighbors are interfering neighbors as well.  We treat the case in which IR is the same 

for all nodes. The following discussion is relevant to any mode of channel access that uses time slots 

(TDMA, CSMA, etc.). 

      The UDG formed by taking the nodes in the wireless network as its vertices, and normalizing the 

distance to IR is the interference graph of the network. If the two nodes share an edge, it means that 

they are mutually interfering and hence they cannot transmit simultaneously in the same timeslot.  

      If all nodes require identical number of transmission timeslots per second to suit their traffic 

requirements, then the number of timeslots per second required to satisfy the traffic requirement of all 

the nodes in the network can be obtained by optimally coloring the nodes of the UDG. That is, the 

chromatic number gives the minimum number of timeslots required per second in this scenario. 

However, such a balanced load scenario rarely occurs in the real world.      

      The unbalanced load scenario, wherein the traffic rates of each node need not be identical, is more 

practical. Let a vector of integers R = [r1,r2,..,rn] be specified and an element ri in the R vector be the 

number of transmission timeslots required per second by node i to satisfy its traffic needs.  The UDG 

can be now termed as a weighted UDG, wherein each node has a weight associated with it. To find 

out the optimal number of timeslots required per second in case of a weighted UDG, we must use 

weighted vertex coloring [5] algorithms, which is simply normal (unweighted) coloring done on a 

transformed graph G’. The graph G’(V’, E’) is obtained from G(V,E) by replacing each vertex v in G 

by a clique of size rv, where rv is the rate requirement of node v. The edge set E is augmented to 

obtain E’, such that if two nodes u, v V∈ were neighbors in G, then in G’ every node in the clique 

corresponding to u is also a neighbor of every node in the clique corresponding to node v. The 

chromatic number of G’ is the minimum number of timeslots per second required to satisfy the 



 

unbalanced traffic needs of the nodes in the network. Figure 1 gives an example of a weighted UDG 

and its corresponding transformation. If the UDG in Fig. 1 corresponds to a wireless network, then 

the minimum number of timeslots required to satisfy the traffic requirements of the nodes in the 

network equals 5, which is also the value of χ(G’) of the UDG G’.  

    

            

         

 

       The clique number (ω) of any graph lower bounds the chromatic number (χ) of the graph. In the 

special case of a “Perfect Graph” [2] χ and ω have equal values in every induced subgraph, but we 

are only interested in the relationship between χ(G) and ω(G) for the given graph G and not for the 

induced subgraphs of G. So, for our purposes, it is important to note that even non-perfect graphs can 

have equal values for χ and ω.  While the chromatic number problem on a UDG is still NP-complete, 

the clique number problem can be solved in polynomial time in UDGs [3]. Thus when χ(G) = ω(G) 

for the given UDG, the timeslot allocation problem can be solved in polynomial time.  

III. RELATED WORK 

      In [4], the chromatic number of an unweighted UDG G is upper bounded as 6ω(G) – 6. For 

weighted UDGs, the authors in [5] introduce the metric “imperfection ratio”, imp(G), of a 

transformed weighted graph, defined as the supremum of the ratio of its chromatic number to its 

clique number. The supremum is computed over all possible weight vectors R. They also bound 

imp(G) as: 

Fig.1   Weighted UDG G and its Transformation G’.  Weights in G are given in parentheses 
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The authors in [5] also mention that the imp(G) = 1 iff G is perfect, and also speculated that the bound 

could be improved to 1.5 for  non-perfect UDGs. The authors in [6], while developing a mathematical 

model for computing feasible rate vectors in ad-hoc networks, make use of the theoretical bound on 

imp(G) in their optimization problem. They also note that the observed imp(G) was significantly 

lower than the theoretical bound in [5]. In most cases, their model computes rate vectors that are 

overly conservative with respect to the optimal values due to the use of the imp(G) bound in their rate 

constraints. They make an argument that the bound of 2.155 needs to be present to account for the 

worst-case scenario. In light of this very conservative approach, we are interested in investigating the 

frequency of occurrence of worst-case-like scenarios, and more importantly the “closeness” of the 

clique number and chromatic number values in non-worst case scenarios.  To the best of our 

knowledge, no such study has been documented to date. 

IV. EXPERIMENTAL STUDY 

      Mathematical analysis to provide information on the closeness of chromatic number and clique 

number seems very difficult to do. The other approach is to employ an exhaustive search method over 

all possible weight vectors  

for all possible UDG combinations.  Clearly, the second approach is infeasible. However, in the 

context of wireless networks, the maximum rate (weight) can be bounded. More specifically, it is 

quite reasonable to assume that the ratio of maximum traffic rate to the minimum traffic rate in a 

wireless network does not exceed some bound. While an exhaustive search will still not be possible 

even with a bounded maximum weight, we can conduct experiments that will search through a large 

number of scenarios. 



 

      In this study, we will restrict ourselves to the following problem: Given a node i, what is the total 

number of timeslots required per second to satisfy the traffic needs of i’s interfering neighbors? In 

other words, we would like to compute the interference as sensed by node i due to the transmissions 

of its interfering neighbors. Note that part of the interfering traffic may be generated by node i’s 

communicating neighbors for node i itself. However, we need to make no such distinction as we are 

only computing the total number of timeslots required per second for node i’s interfering neighbors. 

The total number of timeslots required by node i’s neighbors is the total interference sensed by node i.  

In a graph-theoretic sense, we would like to analyze the coloring properties of the UDG that is formed 

between nodes that lie within a circle of radius 1. In this case, the chromatic number of the UDG 

exactly equals the interference sensed by node i. 

       To assess closeness of χ and ω, we define the measure partial imperfection ratio (PIR) of a graph 

G, defined as the ratio χ (G)/ω(G) for a given weight vector R. PIR values closer to 1 indicate very  

high closeness. The following is our simulation scenario: we assume our simulation area to be a disk 

of radius 1. We place n nodes in randomly chosen locations within the disc. Node i is assigned an 

integer weight ri that corresponds to its traffic requirements. The weights are chosen randomly having 

a uniform p.m.f in {1, 2,.., K}, where K corresponds to the maximum weight. To study the influence 

of nodal density on PIR, we varied n as 10, 25, 50, 75 and 100. Also, to study the effect of having 

various node traffic rates, we independently varied K as 1, 5 10, 20, 30, 40, and 50. It has to be noted 

that the mean weight assigned to a node in UDG G is 0.5(K+1), and hence the mean number of nodes 

in UDG G’ is 0.5n(K+1). Thus, the smallest mean size of the UDG (in terms of number of vertices) in 

our study is 10, and the largest is 2550.      

      An experiment in our case comprised 500 simulations conducted for a given (n, K) pair. For each 

experiment, the mean PIR value (M-PIR), the maximum PIR value (X-PIR) and the percentage of 



 

instances when the PIR value exactly equaled 1.0 (PIR-1.0) were observed. We used MATLAB to 

generate graphs in DIMACS [7] format. For optimal coloring, we used the DSATUR program [8] 

written in C, and to compute the maximum weight clique, we used the CLIQUER software [9], also 

written in C. Tables 1-3 show the results obtained. 

      From Table I, it can be seen that the PIR value equaled 1.0 more often for lower number of nodes 

in G, and the number of instances when the PIR value did not equal 1.0 increased steadily with an 

increase in the number of nodes in G. The maximum, minimum and average PIR-1.0 values were 

99.8%, 36.4% and 68.6%. From Table II, it can be seen that the observed X-PIR values are quite 

close to 1.0, with the mean value being 1.106 (i.e. mean value of maximum deviation is 10.6%). The 

maximum value is 1.2079, far less than the conjectured upper bound of 1.5 or the theoretic upper 

bound of 2.155. Table III shows that the M-PIR values lie very close to 1 for all scenarios, with the 

maximum of the M-PIR values being 1.0138, which implies that, on an average, the observed 

deviation between the chromatic number and the clique number was less than 1.4%. The mean of all 

M-PIR values was 1.007. While the worst-case PIR-1.0 value seems discouraging, it has to be viewed 

in conjunction with the M-PIR and X-PIR values, which suggest that the deviations between χ and ω, 

if any, were negligible the vast majority of the time. Thus, we now have evidence to believe that the 

theoretical bound of 2.155 very rarely holds in practice, and using this bound almost always grossly 

over-estimates the actual chromatic number and severely under-estimates the available wireless 

network capacity (by around 50% in most cases). 

V. CONCLUSION 

      In our simulations conducted with weighted UDGs corresponding to wireless interference graphs, 

we observed that (1) the number of instances when the chromatic number χ (G) equaled the clique 

number ω(G) decreased with an increase in number of nodes, (2) the maximum deviation between χ 



 

(G) and ω(G) was much less than the existing bounds in literature, and (3) on an average, the 

deviation between χ (G) and ω(G) values was very small for all scenarios. Hence, we can conclude 

that in a UDG G that corresponds to a wireless interference graph, the maximum clique number ω(G) 

can be used as a very good approximation to the chromatic number χ (G), without any significant loss 

of accuracy. If we wish to be more conservative, we could use a practical bound 

of )(21.1)( GG ωχ ≤ . 

 

n K=1 K=5 K=10 K=20 K=30 K=40 K=50 

10 0.998 0.988 0.992 0.982 0.986 0.984 0.994 

25 0.918 0.896 0.89 0.86 0.872 0.872 0.856 

50 0.746 0.652 0.696 0.626 0.628 0.644 0.664 

75 0.634 0.504 0.458 0.482 0.468 0.458 0.452 

100 0.484 0.414 0.364 0.384 0.408 0.374 0.388 

 

 

n K=1 K=5 K=10 K=20 K=30 K=40 K=50 

10 1.200 1.125 1.100 1.152 1.099 1.208 1.152

25 1.091 1.184 1.113 1.103 1.102 1.087 1.103

50 1.136 1.083 1.123 1.097 1.101 1.122 1.085

75 1.103 1.073 1.083 1.105 1.064 1.091 1.072

100 1.089 1.071 1.086 1.070 1.078 1.067 1.092

 

 

Table I: Fraction of Instances when χ = ω (PIR-1.0) for various nodes (n) and maximum weight (K) 

Table II: Maximum Value of PIR (X-PIR) for various nodes (n) and maximum weight (K) 



 

 

n K=1 K=5 K=10 K=20 K=30 K=40 K=50 

10 1.000 1.001 1.001 1.001 1.001 1.001 1.000

25 1.006 1.004 1.003 1.005 1.004 1.004 1.004

50 1.011 1.009 1.007 1.008 1.008 1.007 1.008

75 1.012 1.012 1.011 1.010 1.011 1.011 1.011

100 1.014 1.013 1.012 1.012 1.010 1.011 1.012
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