
Adaptive Dynamic Radio Open-source Intelligent
Team (ADROIT): Cognitively-controlled

Collaboration among SDR Nodes
(Invited Paper)

Gregory D. Troxel∗, Eric Blossom‡, Steve Boswell∗, Armando Caro∗,
Isidro Castineyra∗, Alex Colvin∗, Tad Dreier¶, Joseph B. Evans†, Nick Goffee∗, Karen Zita Haigh∗,

Talib Hussain∗, Vikas Kawadia∗, David Lapsley∗, Carl Livadas∗, Alberto Medina∗,
Joanne Mikkelson∗, Gary J. Minden†, Robert Morris§, Craig Partridge∗, Vivek Raghunathan∗,

Ram Ramanathan∗, Cesar Santivanez∗, Thomas Schmid¶, Dan Sumorok∗,
Mani Srivastava¶, Robert S. Vincent∗, David Wiggins∗, Alexander M. Wyglinski†, and Sadaf Zahedi¶

∗BBN Technologies, Cambridge, MA 02138 USA Email: gdt@bbn.com
†Information and Telecommunication Technology Center, The University of Kansas,

Lawrence, Kansas, 66045 USA Email: gminden@ittc.ukas.edu
‡Blossom Research, LLC, Reno, NV 89506 USA Email: eb@comsec.com

§Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139 Email: rtm@csail.mit.edu
¶Electrical Engineering Department, UCLA, Los Angeles, CA 90095 USA Email: mbs@ee.ucla.edu

Abstract— The ADROIT project is building an open-source
software-defined data radio, intended to be controlled by cog-
nitive applications. The goal is to create a system that enables
teams of radios, where each radio both has its own cognitive
controls and the ability to collaborate with other radios, to create
cognitive radio teams. The desire to create cognitive radio teams,
and the goal of having an open-source system, requires a rich
and carefully architected system that provides great flexibility
(enabling cognitive applications to change the radio’s behavior)
and also has a clear structure (both so that others may add or
enhance the software, and also so that the system can be clearly
modeled for cognitive applications). What follows is a summary of
the ADROIT system and the key architectural features intended
to enable cognitive radio teams.1

I. INTRODUCTION

Software-defined radios (SDRs) have existed for nearly
15 years [1], [2]. About six years ago, researchers came to
realize that combining cognition with SDRs was likely to
yield far more flexible and powerful radio systems [3]. Yet,
as a research community, we are still struggling to develop an
understanding of how best to combine cognition and SDRs.
Currently, the community lacks either an architecture or a
reference implementation that is commonly agreed upon. The
problem is even more acute if we focus our attention on
SDRs used for data communication. One of the challenges
in software-defined data radios is that they require cognition

1This paper is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under contract number NBCHC050166.
Any opinions, findings and conclusions or recommendations expressed in
this paper are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency (DARPA); or its
Contracting Agent, the U.S. Department of the Interior, National Business
Center, Acquisition & Property Management Division, Southwest Branch.

not just within the individual radio, but cognition across the
teams of radios that seek to communicate with each other.

The goal of the ADROIT effort is to change this situation.
ADROIT is creating open SDRs for data communication and
demonstrating how to use cognition to manage teams of these
radios. Specifically, we seek to achieve two broad goals:

• Enable cognitive radio teams. A cognitive radio team
is one where multiple highly-configurable radios can
intelligently and dynamically assemble and configure
themselves to meet the needs of a particular application
or suite of applications. Central to this idea is the notion
that applications (or suites of applications, or controllers
acting on the applications’ behalf) are cognitive and
capable of adapting the radios’ behavior to best meet the
applications’ needs.

Observe that the ADROIT definition of a cognitive radio
differs slightly from the classic definition of Mitola and
Maguire [3]. In their definition, cognition is internal to
the radio. In the ADROIT definition, the applications
using the radio (and cognitive controllers) are cognitive
and (potentially) self-aware, but the radio itself is not
necessarily cognitive. This difference implies that the
radio must expose its internal workings such that the
applications can manage the radio’s behavior.

• Create an open-source real-time composable software-
defined data radio. SDRs have been in existence for
several years. The glory of SDRs is that their behavior is
programmable – a radio can be a cell phone or a WiFi
hub and the change is a simple matter of programming.

In ADROIT, we seek to take these radios to another level
of flexibility. First, we want the radio software to be open
source. Open-source software is a well-known method to
drive innovations, and t if we are to fully exploit the
power of SDRs, we need to make SDRs easy to acquire
and experiment with. The open-source approach is the
best path.

Second, we seek to make the radios composable in
real-time. Instead of the prevalent practice of stopping
the radio and loading new code to change the radio’s
performance, we seek, insofar as possible, to allow the
radio to change or evolve its behavior while running.
Real-time composability is essential for cognition, where
the ability to swiftly adapt to changing conditions is
required.

Real-time composability also would appear to be a mer-
itorious goal in itself. A radio that can reconfigure in
microseconds is, intuitively, far more powerful than one
that reconfigures in seconds. Furthermore, a composable
radio enables others to replace individual components and
use the rest of the system, thereby enabling research while
reducing the need to duplicate existing work.

After briefly summarizing the past literature, we use the rest
of this paper to explain how we seek to meet these two goals.

II. PRIOR WORK

The ADROIT effort is the beneficiary and outgrowth of two
complementary research thrusts. The first is the evolution from
software-defined radios (SDRs) to software-defined data radios
and the second is the emerging application of cognition to
network management and SDRs. We trace both thrusts in the
next two subsections.

ADROIT is also the beneficiary of substantial work on
open-source systems for radios and data communications, in
particular GNU Radio and Click. As ADROIT is enhancing
both GNU Radio and Click, it was more useful to present them
in conjunction with the enhancements and the discussion of
GNU Radio and Click is therefore deferred until section IV.

A. Software-defined Radios and Software-defined Data Radios

The evolution of SDRs has generally followed the evolution
in the power of Digital Signal Processors (DSPs).

The first software radios emerged in the early 1990s as it be-
came clear that DSPs had reached a level of sophistication and
performance such that they could process the output from (or
input to) an analog-to-digital-converter in real time. DSPs with
this level of performance permitted radios whose waveforms
could be changed by simply altering the DSP’s software. The
result was a series of radios, beginning with SpeakEasy [2],
then the Joint Tactical Radio System (JTRS) [4] and the Vanu
radio [5], that realized a modular radio, capable of mimicking
the over-the-air behavior of existing radios (e.g. push-to-talk
handsets, cellular phones or FM radios) or implementing new
waveforms.

As DSPs have become more powerful, and as better hard-
ware developed for frequency selection, the range of potential
capabilities of the software radio expanded. It became possible
around the year 2000 to imagine radios that dynamically
scanned the spectrum, looking for available capacity (e.g., the
neXt Generation [XG] radio research project at DARPA [6]),
or simply trying to understand how the spectrum was being
used (e.g., the WolfPack program at DARPA [7], [8]). The
central idea was that the radios would change their behavior
based on current spectrum conditions. XG seeks to find
and utilize idle spectrum. WolfPack seeks to understand the
purposes for which the spectrum is being used.

In the past few years, there has been an additional step.
Fast, inexpensive embedded processors has allowed not only
the radio frequency and waveform to be programmable, but
also the data communications media-access protocol layered
on top of the frequency and waveform to be programmable
too. The result is a software-defined data radio. The idea is
to view data communications protocols such as 802.11 and
TCP/IP as fungible protocols, whose behavior is adjusted (or
completely reworked) according to current needs. ADROIT
takes this idea one step further by viewing the entire protocol
stack as fungible; it is assembled in the form needed by the
applications currently using the radio.

B. Combining Cognition with Network Management and Soft-
ware Radios

The other research thread influencing ADROIT is the desire
to combine cognition with network management and with
software radios.

Network management, at its core, is the process of making
sense of a vast amount of information. An individual device
may make thousands of variables visible at any time. A single
link may see millions of packets per second. Then, once the
condition of the network or its components has been assessed,
a manager must determine which of thousands of configuration
options to adjust in order to improve performance or repair a
fault.

This kind of environment is generally viewed as ideal
for cognitive tools, which do much better than people at
juggling hundreds or thousands of variables. There have been
suggestions to embed cognition into network management [9],
as well as efforts to allow cognitive entities to mediate between
applications and a balky network [10], [11].

There has also been a recognition that cognition is extremely
well-suited to network management of SDRs. The XG project
found that cognitive tools were essential to allowing the radio
to decide which frequencies were free and how to best exploit
them. (Part of the issue for XG was that the availability of
a frequency was determined not just by what traffic could
be found at that frequency, but also by a complex set of
FCC rules dictating how the frequency could be used). In
an experiment at BBN, we found that a cognitive tool using
genetic algorithms was far better at configuring a software
radio with over a thousand configuration options than the best-
trained radio engineers.

ADROIT is building a software-defined data radio that is
intended, from the start, to be cognitively controlled.

C. Terminology

One thing about software radios that has not fully evolved is
the terminology. However, some researchers (see, for instance,
[12]), have begun to make a distinction between software-
defined radios, in which most signal processing is done in
hardware configured by software, and software radios, in
which most signal processing is done in software. In this paper,
we use the two terms inter-changeably to mean a radio in
which most or all signal processing is done in software. We
further enhance the concept with a software-defined data radio
in which both signal processing and higher layer protocols are
done mostly or entirely in software.

III. THE ADROIT APPROACH

Reflecting the two research thrusts that have influenced
ADROIT, our approach has focused on two central ideas.

First, we set out to make the ADROIT software radio
composable. To achieve this goal we first integrated and
enhanced two existing open-source systems, GNU Radio and
Click, as described in section IV.

The second central idea is ensuring that the radio can be
cognitively controlled. In ADROIT, this means that modules
of the object may be monitored and adapted in rich, real-
time manner. Further, behavior can change within one radio,
or across a team. Cognitive control required the creation of
several mechanisms to manage the composable software and
radio hardware.

First, ADROIT needed a consistent way to model all the
components of the radio. This model is described in section V.

Reconfiguration consists of selecting the best components
for the current task. (In ADROIT, we use the term “reconfigu-
ration” rather than “configuration” to emphasis that the config-
uration is dynamically changing). Reconfiguration is managed
by a Reconfiguration Manager, described in section VI.

Adaptation is a collective activity, in which (both cognitive
and non-cognitive) components of the radio decide how best
to tune parameters in the current configuration. Because the
tuning is collective, it is essential that all components have
a shared view of the radio’s operation. Providing that shared
view is the job of the Broker, described in section VII.

Finally, because ADROIT seeks to create radio teams,
we needed to add some team infrastructure to ensure com-
munication and security. This infrastructure is discussed in
section VIII.

IV. CREATING A COMPOSABLE SOFTWARE-DEFINED DATA
RADIO

Central to ADROIT is the idea that the radio is composable.
In the ADROIT context, this means that the radio is made
up of a collection of code modules which can be dynami-
cally inserted and removed from the running configuration as
needed. Our goal is to make modules represent small units of

functionality. For instance, a module might represent a round-
trip time estimation routine or a checksum routine.

As we worked through the design of the system, it quickly
became clear that modules needed to be typed. For example,
if we have two round-trip time estimation routines, one based
on mean deviation and the other on standard deviation [13],
there needs to be some way to say that both modules take
the same inputs and do the same thing, just using a different
algorithm. Object classes with inheritance solve this problem
nicely.

Having conceptually made all code modules into typed
objects, we then needed to solve the problem of how to think
about connections between modules. The issue is that the
data entering and exiting an object is not only typed, but that
only certain types of objects should swap data. In ADROIT,
we solved this problem by defining the notion of an object
dependency, which simply states that to function correctly, an
object depends on the presence of certain object types.

Given this model, the next concern was how to implement it
in an open-source environment. We could have simply sought
to build yet-another open-source system, but our preference
was to leverage existing work. In particular, we were commit-
ted from the start to working with GNU Radio. GNU Radio
already had a functional model very close to this model, with
the notion of processing blocks (modules) and typed ports
(dependencies) connecting blocks.

Additionally, after some study of the open-source imple-
mentations of higher protocol layers it became clear that the
Click modular router [14] fit the need. Click implements
protocols that sit above GNU Radio and had a compatible
architecture (namely an emphasis on small code modules and
typed ports, and the ability to insert and remove modules at
run time). The next few subsections discuss how we added to
these software packages to meet the needs of a composable
software-defined data radio.

A. An Overview of GNU Radio

GNU Radio is an extensible free software framework for
the creation of software radios. The GNU Radio framework
also incorporates software that supports the easy integration of
a number of hardware modules so that radio signals may be
received from, transmitted to, or exchanged with other GNU
Radio-based software radios or conventional radio systems.

GNU Radio uses a modular, block-based architecture with a
hybrid Python/C++ programming model. The combination of
Python and C++ provides a convenient and high performance
platform for developers to use in the development of soft-
ware radio systems. Functionality that requires CPU-intensive
processing is implemented in C++ for high performance,
while functionality that involves complex interactions between
blocks is implemented in Python [15].

One of the features of the GNU Radio framework is an
extensive library of pre-defined and tested functional blocks.
These blocks provide signal processing functionality, encap-
sulate sources and sinks of data, and provide simple type
conversions. The blocks are written in C++ and typically have

an automatically generated Python “wrapper” or interface that
allows them to be manipulated, connected and utilized in
Python. New blocks can easily be added to the block library;
indeed the GNU Radio community strongly encourages the
addition of new blocks implementing new functionality or
improved performance.

GNU Radio processing blocks may be hooked together and
run from a Python program. The Python program provides
a framework for the processing blocks to communicate via
buffers. It also provides a simple scheduler whereby the vari-
ous processing blocks making up a radio transmitter or receiver
are executed sequentially depending on the availability of
inputs to the block.

A GNU Radio software radio typically consists of the
following elements:

• Sources: A GNU Radio software radio will have at least
one source. Each source is the head of a processing chain
or flow graph. An example of a GNU Radio source is
the Universal Software Radio Peripheral (USRP) radio.
This is a radio front end that connects to a computer via
a USB 2.0 bus. GNU Radio has integrated support for
configuring and using the USRP

• Sinks: A GNU Radio software radio will have at least one
sink. Each sink is the tail of a flow graph. An example
of a sink is a sound card.

• Flow graphs: A GNU Radio software radio will have a
flow graph that links together each source and sink pair
as well as any intermediate blocks that are required to
transform the data stream from a source into a format that
is understandable by the sink. For example, converting an
FM radio signal that is received by a USRP into an audio
signal that can be played through a sound card.

• Schedulers: A scheduler is associated with each active
flow graph. Each scheduler is responsible for moving
data through its flow graph. A scheduler iterates through
the blocks in a flow graph, identifies blocks that have
sufficient data on their input(s) and sufficient space on
their output(s) to be able to process data. It then triggers
the processing function for those blocks. The scheduler in
the current GNU Radio system relies on a steady stream
of data input to the collection of blocks to cause the
blocks to run and produce output.

The GNU Radio framework provides an excellent environ-
ment to create and run complex signal processing functions,
and to connect them to the RF world. GNU Radio has
already demonstrated its expressiveness and versatility by
rapidly implementing a number of very complicated signal
processing programs, such as a High Definition Television
(HDTV) receiver. GNU Radio provides a strong foundation
for radio development that is enabling academics, industry,
and hobbyists to collaborate and innovate effectively.

B. Enhancing GNU Radio

The ADROIT effort, in conjunction with the GNU Radio
team, is extending the system to better support data communi-
cations. There are only a few proposed extensions to GNU Ra-

dio, but they are important for packet radio. The Media Access
Control (MAC) layer needs low-latency transmission control
– faster than the FIFO processing currently implemented in
GNU Radio flow graphs.

The extensions allow a flow to execute to fill a buffer, so
that the sample data is pre-computed and ready to go upon
receipt of a signal. The extensions implement a signaling
mechanism that quickly delivers signals to the processing
blocks, either from other blocks or from programs running
outside the GNU Radio context. Some MACs require tight
timing and time-tagging, and that capability is provided by
the proposed extensions. Finally, higher layers like to track and
operate on collections of bytes together, and in hierarchies of
collections. The network layer thinks of “packets”, and the link
layer considers “frames”, either of which may be composed of
multiples of the other. The extensions incorporate the ability
to manipulate and tag buffers to meet those needs.

Transmission priority is also of concern to the network
and link layers. Quality of Service implementations allow
the network to match interfaces with different bit rates and
loading to each other, as well as allow higher-priority packets
to get through, even though lower-priority packets arrived at
the interface earlier. This priority needs to reach down all the
way to the transmitter in order to satisfy the latency needs
of the network layer. If not accounted for by the physical
layer, a large lower-priority packet already in transmission,
for example, might occupy the channel, preventing a higher
priority packet from being transmitted in a timely fashion.

The extensions extend the GNU Radio stream-based
paradigm to allow metadata to be associated with data and
transported as discrete messages of information. The architec-
ture defines a standard format for the metadata and provides
functionality to generate, transport, manipulate and parse this
information.

The extensions also include a new type of GNU Radio
block. We call this block a message-block (or m-block). Infor-
mation flows into or out of m-blocks as messages that flow into
or out of bi-directional m-block typed ports. These messages
may communicate data, metadata, control information, status
information, signals, or a combination. The m-blocks process
any control or signaling information that is sent to them
and transform any data using information supplied within the
associated metadata. Each port has an associated protocol class
that specifies which messages may pass into or out of that
port. This port typing ensures that only compatible ports are
connected together.

The extensions support the needs of time-knowledgeable,
priority-based scheduling required for processing m-blocks,
as well as reconcile the interoperation between current GNU
Radio flow graphs and the new m-blocks. This is achieved
through the use of m-blocks and a hierarchical, quasi-real-
time, hybrid scheduling scheme.

The scheduling algorithm is priority-based. Each m-block
is assigned a priority which is equal to the priority of the
highest priority message in its input buffer. The scheduler
determines which m-block possesses the highest priority and

then dequeues the highest priority message.

C. An Overview of Click

Click is software for a modular router. Its basic architecture
is crisply summarized by its designers:

“A Click element represents a unit of router
processing. An element represents a conceptually
simple computation, such as decrementing an IP
packet’s time-to-live field, rather than a large, com-
plex computation, such as IP routing. A Click router
configuration is a directed graph with elements at the
vertices. An edge, or connection, between two ele-
ments represents a possible path for packet transfer.
Every action performed by a Click router’s software
is encapsulated in an element, from device handling
and routing table lookups to queueing and counting
packets. The user determines what a Click router
does by choosing the elements to be used and the
connections among them.” [14]

From ADROIT’s perspective, this is precisely the modularity
of implementation that we seek for upper layer protocols in a
software-defined data radio.

The challenge in Click is that Click is designed to imple-
ment a router. In one way, that is a good thing. In many types
of radio networks (most notably ad-hoc networks and sensor
networks), every radio is potentially a router or bridge. Indeed,
other researchers have worked to enhance Click’s software to
support wireless routing [16].

However, Click is structured in the expectation that the
mechanics of receiving, transmitting, and, to a large degree,
the processing of media layer packets is handled by a piece of
hardware, managed by a device driver. In ADROIT, however,
that’s not true. MAC protocols, in all their richness, are to be
modularized just as Click modularizes the Internet Protocol.
So ADROIT needed to insert the concept of a software MAC
layer into Click.

D. Enhancing Click and Creating a Software MAC Layer

The straightforward approach is to create APIs for a soft-
ware MAC layer and then adapt Click to use that API. That
is broadly the approach ADROIT has taken, with two tweaks.

First, ADROIT defines two APIs: an API for Click to use to
talk to the MAC layer, and an API for the MAC layer to talk
to the (GNU) Radio. In between the two APIs, implementers
can write software for any MAC they wish.

Second, ADROIT implements a model MAC layer. A slight
surprise was that the rational platform for such a model
MAC layer was Click! It turned out that most of problems
of implementing a MAC protocol are similar to those of an
internet protocol, and so Click mostly contains the correct
programming abstractions.2

2One incompletely solved issue is real-time actions, such as sending an
ACK to an 802.11 DATA packet, an event that must happen in a very narrow
time window that may be faster than Click can respond. One solution is to
push certain real-time response problems down into the Radio layer. Real-time
m-blocks could be supported in the DSPs or even in (run-time programmable)
FPGAs.

So, in the end, Click was enhanced two ways. Two new
APIs were added, and Click was enhanced to support software
MACs.

1) Replacing One API with Two: Click has an interface
for devices. Packets to be sent are given to the ToDevice
element and arriving packets are pushed into the system by
the FromDevice element. The two elements are the effective
API to the device drivers.

ADROIT replaces this model with two APIs. The MAC-
Subnet API connects the subnet layer (what, in Click, currently
sits above the {From/To}Device) elements to the modular
MAC layer. The Radio API connects a media access layer
(MAC) with the radio channel(s) it needs to transmit and
receive on. The Radio API is the boundary between Click
and GNU Radio.

Working through the Radio API, a media access protocol,
can pass protocol and user data to the radio device for
transmission over the air; accept data received by the radio
device; obtain information about the operational status of the
radio device; and control the operation of the radio device (on
a per-packet basis only).

The Radio API is conceptually a tiered interface. There are
three tiers:

• Radio: The entire radio.
• Phy: A Physical layer realization (fully defined in terms

of frequency, encoding and modulation). A Phy is viewed
as being owned by a particular MAC. Multiple Phys may
have the same settings.

• Frame: A single logical transmission unit. A frame is
transmitted or received over a particular Phy.

Operations may occur at any tier, although certain operations
(such as turning the radio on or off) make sense only at
particular tiers.

Broadly, operations come in two forms:
• There is a collection of operations to transmit or receive

a frame over a particular Phy. This interface is largely
intuitive, with one possible surprise: it is possible to
temporarily change Phy properties for the lifetime of a
frame’s transmission. For instance, one way to implement
spread spectrum is to specify the transmission frequency
separately for each frame.

• There is a collection of operations, largely relevant at the
Phy and radio level, to learn about and manage the state
of the radio.

The Radio API interface is asychronous. Different oper-
ations in the radio may take differing amounts of time, so
operations may be completed in an order different from the
order in which they are invoked.

The MAC-Subnet API seeks to reflect a conceptual shift that
occurs fairly low in the network stack, namely the distinction
between media access and subnetwork access. Media access is
the process of using the medium (in this case RF) to transmit
and receive frames of data. Subnetwork access encompasses
the larger problem of routing among a set of (reasonably)
homogenous nodes in a network . This distinction is perhaps

most clear when thinking of Ethernet. The media access layer
transmits and receives Ethernet frames. The subnetwork layer
implements Ethernet bridging.

In its current form, the API is simple. It links one MAC
layer to one subnetwork layer. So, for instance, we cannot use
a subnetwork layer to bridge between different MAC layers.
(The expectation is that this model will be enhanced in later
versions of ADROIT).

The MAC layer is responsible for transmitting and receiving
frames and for tracking the quality of connectivity to neigh-
bors. The MAC makes information about neighbors available
to the Subnet layer. The MAC is also responsible for managing
buffer memory and notifying the Subnet layer when buffering
is in short supply.

Abstractly, the Subnet side of the API is even simpler.
The Subnet layer simply provides two primitives to the MAC
layer to help the MAC layer in the transmittal and receipt of
messages. In particular, the MAC may ask the Subnet layer
which of the radio’s neighbors need to acknowledge receipt
of a frame, and the MAC may ask if a frame just received
is actually for this radio. These primitives enable support for
bridging (the radio can accept a frame not addressed to it, and
relay the frame on) as well as multicast and anycast addressing
(where whether the radio is a member of the multicast or
anycast group is relevant as is knowing which neighbors
should receive the multicast or anycast transmission).

2) A Modular MAC Layer: Between the MAC-Subnet API
and the Radio API lies a modular MAC layer. In principle, one
can implement a MAC layer in anyway one wishes between
the two APIs. However, since ADROIT seeks to make devising
new MAC layers easy, we put a lot of thought into how one
might structure a modular MAC layer to encourage ease of
modification.

The modularity we chose is shown in Figure 1. A key goal
is to accommodate a wide-range of MACs (the ADROIT team
expects to support five distinct MACs). Replacing one MAC
with another should be possible by rewriting as few modules
as possible. A brief description of the function of each module
follows.

A brief description of the functions of each module fol-
lows. These functions encompass the general function of each
module and are open to further development. In addition, as
shown in Figure 1, some functions (or groups of functions)
of the modules are represented as sub-modules for improved
clarity of presentation.

• Channel Access (CA). This module contains functionality
required to transmit, receive and generally be the point
of contact for the radio device. It interacts with the radio
device through the Radio API and is the final/first point
of exit/entry of over-the-air frames out-of/into the MAC
layer. Received frames are processed and dispatched to
the pertinent modules. In general, all controls that need
to be done “close to the radio” are candidates for being
here.

• Floor Acquisition and Control (FAC). This module con-
tains all of the functions necessary to resolve con-

Radio API

if
X

m
tF

ra
m

e

Reliability control and Queueing

Channel Access

FEC ARQ
Priority
Queue
Mgmt

Collision
Avoidance

Slot
Alloc.

Deferenc
Control

Dispatch

Xmt Rcv

Subnet Interactions

Reassembly

Segment−
−ationInterface

functions

if
Q

ue
ue

D
at

a

ifParamGetSet ifFramePushPull

if
Pa

ra
m

G
et

Se
t

if
Pa

ra
m

G
et

Se
t

ifGetStats
Link
Stats Aggreg.

ifRecordStats

ifFramePushPull

Floor Acquisition and Control

Data
Mgmt Proc.

Query

MAC−Subnet API

if
In

fo
if

D
at

a

Fig. 1. MAC layer modules and semantic interfaces. Each interface may be
supported by multiple implementation-specific primitives that conform to the
semantics described in the text. Submodules are shown for example purposes
only.

tention for the channel. It includes sending, receiving
and processing control messages (e.g., RTS/CTS/slot-
information) and computing deference durations (e.g.,
NAV/slot allocation). It also controls the nature and dura-
tion of floor acquisition, deciding, for instance, whether
or not use ACKs, RTS/CTS, or how many DATA packets
to send in the burst. It obtains frames from the Reliabilty
and Queueing module when necessary (e.g., when floor
is acquired) and passes the frame to the CA module
for transmission. In sum, this is where all of the smarts
for distributed resource allocation of the shared channel
resides.

• Reliability control and Queueing (RQ). This module con-
tains all of the functions needed to provide reliable packet
delivery, and for doing class based priority queueing of
outgoing packets. An alternative design would be to place
Reliability and Queueing in separate modules. Because
many reliability schemes (e.g., ARQ) store packets in
queues, the interfaces between separate Reliability and
Queuing modules are fairly rich, and it is difficult to
specify a complete yet flexible abstract interface. It is
expected that particular MAC implementations will have
abstraction boundaries between Reliability and Queueing,
and with more experience we may be able to separate
these modules. Forward Error Correction (FEC), MAC-
layer retransmissions (ARQ) and related functionality are
to be placed in this module. Queueing disciplines and
head of line unblocking are also included in this module.
This module is also charged with creating a frame of a
given size upon request from the FAC module.

• Subnet Interactions (SI). This module is responsible for
all interactions with the subnet layer. As such, it is the
coordinating stop for all calls by the subnet layer. It
implements these calls by sending/receiving packets and
communicating with other modules to implement certain
interfaces. In the reverse direction, it handles all of the

interface calls to the subnet layer on behalf of the other
modules. This module also performs segmentation of
packets and reassembly, if required.

• Neighbor Statistics Aggregation (NSA). This module col-
lects, aggregates, processes and makes available summary
information for use by other modules. It may use sent
data and control frames, received data and control frames,
or any other activity. Examples include the number of
retransmissions per neighbor, the average signal strength
of a frame from a given neighbor, the average load or
utilization, the average queue length, and error rates. The
MAC architecture allows a high degree of flexibility in
the amount of processing done on the basic observations
– from just aggregating and providing raw data, to
smoothing, filtering, estimation and calculating a metric.
The NSA module provides an interface through which
any module can query for the statistics of a link.

V. MODELING THE RADIO FOR HIGHER LAYERS: AN
INFORMAL OBJECT MODEL

We don’t want applications to have to know the innards
of GNU Radio and Click to be able to manage or change
the radio’s behavior. To solve this problem for ADROIT, we
created an abstract model of the radio.

Most scenarios seemed best solved by treating the radio
and its applications as a collection of objects. Configuration
is the best example: if we can think of each software or
hardware module as an object with dependencies, building a
functional configuration becomes largely a matter of satisfying
dependencies across all the objects in a configuration. Simi-
larly, the thousands of variables we need to track for network
management are best understood by cognitive applications as
attributes of objects, where the objects are part of a type
hierarchy. Nonetheless, we observe, there are some parts of
the radio, such as low level radio functions, that are reluctant
objects.

The ADROIT approach has been to tread lightly. The radio
is modeled as a collection of objects. The requirements on
objects are quite light, allowing considerable implementation
flexibility under an object-oriented veneer.

The basic object model has five components:
• Type: A definition of a particular category of module or

module that implementers can map their code into. A
type is used to characterize a set of services that may be
offered by implementations of that type.
Types use inheritance and types may have more than
one parent type. Types may also have more than one
implementation or realization in a system.

• Dependency: A statement that an object must be con-
nected to another object of a particular type to operate
correctly.

• Parameter: A visible attribute or member of an object.
The parameters of an object are defined by the object’s
type.

• Implementation: A realization of a particular type. A
specific piece of code that “implements”, or “is a”, or

“complies with” a Type. An implementation makes the
services and parameters (defined by its type) available.

• Invocation: Actual running instance of an implementa-
tion. More than one invocation of an implementation may
be active in a configuration.

This structure neatly solves several problems. For instance,
it groups parameters into clusters of well-defined objects. It
also expresses the modes in which an object may exist (an
abstract type, a realization that can be run, the realization
that is current running) and gives us a way (via their type)
to quickly identify related implementations or invocations.

VI. MANAGING CONFIGURATIONS: THE
RECONFIGURATION MANAGER

The role of the Reconfiguration Manager is to create con-
figurations that can be execute on the radio, as well as to
start, stop, or change the running configuration, as appropriate.
Another useful way to think of the Reconfiguration Manager
is that it is the part of the system responsible for controlling
how objects transition from implementations to invocations
and back.

To perform its functions, the Reconfiguration Manager ex-
pects that every object in the ADROIT system will implement
the following basic functions (either directly or through a
proxy):

• Run-time control: An implementation may be started and
thus create an invocation. An invocation may be stopped,
paused or resumed.

• Dependency resolution: Objects know their dependencies
and accept instructions as to how they are to be intercon-
nected in the current configuration.

• State transfer: In some situations, invocations hold state
information that, for the consistency of the radio, must
be transferred if the invocations are replaced with new
invocations.

VII. THE BROKER: ENABLING INFORMATION FLOW FOR
COGNITION

The Broker serves as a open communications path between
objects in the ADROIT system. The idea is that anyone or
anything that wishes to observe, monitor, or change the state
of an ADROIT radio will do so via a command relayed by the
Broker. Furthermore, the Broker will notify interested parties
of any changes in the radio’s state or configuration. In almost
all cases, this involves reading, writing or tracking the value
of one or more parameters.

The Broker solves a scaling problem. If there were no
Broker, then the addition of a new object could create the
need to update every existing object to interface with the new
object. This is the classic mxn problem [17] and its solution
is to provide a common interface (the Broker), to which every
object (new or old) must connect.

Beyond passing commands, the Broker acts as a switch-
board and a directory. Entities need know only the name of
the invocation whose parameters they wish to update and the

Network
Layer

 to modules and parameters

− Pass through of Reconfig
 commands

− Note: Broker−broker
 communication with other
 nodes

Broker

Re/Setting Values

Observing Parameters

Get Configurations
Invoke Modules

Remove Modules

Cognitive
Layer

Controls run−time
execution order

Re/Setting Values

Registering Modules

Observing Parameters

Reconfiguration Manager

Network
Module

N
et

w
or

k
M

od
ul

e
Get Configurations

Invoke Modules
Remove Modules

Requesting Modules,
Parameters and

Properties

− Pass through of set/get
 values

− Sets up notifications of
 events

 poll, value−change, threshold)
− Sets up event monitoring

− Assigns unique handles

Fig. 2. Broker’s role as a system bus, relaying commands and information
among its clients.

Broker will find the invocation and make the change. Further-
more, the Broker maintains a directory of all implementations
that are available for use, and a copy of the current system
configuration (which is maintained by the Reconfiguration
Manager).

To perform these services, the Broker implements a rela-
tively rich interface that contains operations to perform the
following functions:

• Directory Services: Implementations and invocations reg-
ister themselves with the Broker. The Reconfiguration
Manager places a copy of the current system configu-
ration in the Broker. It is possible to ask the Broker to
search for active invocations based on their implementa-
tion or type. One can also ask for the current configura-
tion, showing how the invocations are interconnected.

• Parameter Management: The Broker views every invoca-
tion as containing a suite of parameters. These parameters
may be read, monitored (e.g., to determine if they change
to a value outside expected limits), and some may be
altered (to change system behavior). As part of the
directory services, it is possible to ask for the list of
parameters associated with an invocation.
The Broker also defines an interface for communication
with invocations to read, change, or reset the values of
parameters.

• Configuration Management Pass Through: The Broker is
not responsible for configuration management. However,
since so many of the Broker’s clients need to know the
configuration and also for simplication of APIs, the Bro-
ker maintains a pass-through interface, in which requests
regarding configuration (including checking the viability
of proposed new configurations) are passed through to
the Reconfiguration Manager.

VIII. INFRASTRUCTURE FOR RADIO TEAMS

Given modular software, a Reconfiguration Manager to
manage the radio’s configuration, and a Broker to ensure coor-
dination, we have all the components needed to build an agile,
cognitive software-defined data radio. However, ADROIT’s
goals go beyond enabling single radios. We seek to build

(cognitive) radio teams. To enable radio teams, we need to add
two more mechanisms: a coordination channel and a security
model.

A. A Coordination Channel

Suppose we turn on a group of radios in a region. How do
the radios find each other? How do they coordinate?

It would be nice to imagine that the radios could dynam-
ically search the spectrum and find each other. But, so far,
no solution exists for the dynamic discovery problem. So
ADROIT does what everyone else does: it defines a small
bit of dedicated spectrum to use as the coordination channel
(in ADROIT, we call it the orderwire).

Radios discover each other via the orderwire and are then
free to use the orderwire to negotiate to use other frequencies
for communication. Even if another communication frequency
has been negotiated, radios must periodically check the order-
wire for newly arrived radios that wish to join the team.

It may seem wasteful to permanently allocate spectrum to
the orderwire. Studies suggest, however, that if the orderwire is
used wisely, the improved spectrum utilization that SDRs can
achieve by coordinating usage outweighs the loss of bandwidth
due to the allocation of the order wire [18].

B. Security Model

Just because a radio begins to use the local orderwire does
not mean that the radio should be permitted to join a given
radio group. How does a radio group distinguish between
radios that it should admit to the group and those it should not?
And how does the team protect itself against hostile radios?

ADROIT (at least for the moment) has decided to focus
on problems of radios that seek to join teams they are not
authorized to join and radios that successfully join and then
seek to subvert a team. ADROIT does not seek to address
cases of radios that seek to jam or perform denial of service
style attacks on communications channels.

The ADROIT security model is simple. Every radio carries
signed public key certificates from one or more authorization
authorities. Initiators are radios whose certificate’s attributes
includes the ability to define a team, where a team is defined
by the characteristics of the radios allowed to join it. So, a
radio can join a team if it has a certificate issued by the
team’s initiator; admission can also be contingent on holding
other, pre-existing attribute certificates as defined by per-team
policy. Furthermore, members of a team may define their own
multicast groups within the team, with admission defined by
a separate subteam roster. Thus communications, even within
the team, can be kept to a “need to know” subgroup.

Currently ADROIT focuses on protecting IP-layer commu-
nication (both multicast and unicast) by combining the above
admission controls with IPsec. Later, we will consider security
extensions for our subnet-layer routing protocol based on the
same model.

IX. COGNITIVE TEAMS

Having discussed all the components of an individual
ADROIT radio, it is now time to look at cognition and how

ADROIT enables cognitive teams. We should emphasize that
this section, in particular, discusses work in (early) progress.
Creating cognitive radio teams in the style ADROIT envisions
is very much a research challenge.

A. The Cognitive Layer on Each Node

ADROIT explicitly seeks not to favor one mode of cognition
over another and, indeed, seeks to permit multiple modes
of cognition to coexist on a single node. As part of this
mindset, ADROIT thinks of cognition not as being resident
in a particular entity or application but rather in a cognitive
layer where multiple cognitive applications may co-exist.

The implication of this design is that ADROIT radio teams
will be heterogeneous in cognition. Even if the radios are
all running ADROIT software on the same hardware, their
cognitive layers may contain different mixes of cognitive
applications.

B. Multi-Node Coordination

Because the (independent) cognitive layers of different
nodes will be changing parameters and network configurations
dynamically, a very real risk is that applications will be unable
to communicate. The different applications will have certain
communication requirements and expectations they impose
upon the broader network – such as the receive frequency, the
transmit frequency, the expected header format, the maximum
header size, the bit-representation used (4 bit, 16 bit, etc), the
re-send protocol, the backoff protocol, the acknowledgment
protocol, the unicast/broadcast assumption, quality of service
needs (e.g., projecting forward), and reservations (block off
resources). These requirements may conflict, both within a
node (where they will presumably be swiftly detected) and
also between nodes (where multi-node coordination will be
required).

As a result, each ADROIT node will have a Coordination
Manager responsible for maintaining inter-node coordination.
Coordination is the act of managing interdependencies be-
tween activities [19].

In this environment, the cognitive layer must reason about
what is currently being applied within the node, assess the
likelihood that it will significantly impact neighbouring nodes,
and then ask the Coordination Manager to manage the inter-
dependencies. The Coordination Manager must also be able
to robustly handle the change over. No change in protocol,
module, or parameter setting should cause significant long-
term adverse effects in the network.

Note that coordination may be regional; i.e., it does not
need to apply to the entire network. Regions may be defined
in different ways, including geographically, by task, or by
organizational hierarchies. For example, all sensors may be
communicating on Channel A, while all people are communi-
cating on Channel B. A possible network might include one
or more nodes that serve as communication bridges, running
multiple protocols (one for each region).

One consideration is that that orderwire bandwidth will
be limited, and may have to be shared among a number of

radio teams. So, as a starting point, our assumption is that we
would like to keep coordination traffic between Coordination
Managers modest.

One approach to minimizing cross-node communication is
to bookmark safe states. That is, the cognitive layer tracks
the performance of the node and network, and keeps a list
of previously experienced working configurations (potentially
sorted by their successfulness). When the cognitive layer
changes a parameter that causes the network to stop func-
tioning correctly (or to dramatically reduce performance), it
can return to the bookmarked state. If a bookmarked state
no longer performs well, then it is likely that other nodes
have changed their configurations for unsafe values, or that
the environment has changed dramatically. In these cases,
the Coordination Manager can resort to the orderwire to re-
coordinate, perhaps asking all nodes to return to a bookmarked
state.

An alternate approach is to support inter-node negotiation.
Negotiation is the communication process used by a group
of agents in order to reach a mutually accepted agreement on
some matter [20], and is a vibrant area of Artificial Intelligence
research [21], [22], [23]. We assume that the Coordination
Manager will negotiate over the orderwire unless alternative
communication regions can be easily identified. A research
issue lies in deciding what terms to negotiate.

A third approach is to develop a handshake mechanism
(deadlock-free) that allows two different nodes to synchronize
changes.

Duplication approaches may also be appropriate for certain
classes of changes, in which a change results in both protocols
being applied until it is clear that both sides have changed pro-
tocols. This approach may apply in some cases (e.g., a change
in header size), but not in others (e.g., for transmit/receive
frequencies).

It is currently undecided whether a node will make the
decision locally and then coordinate with its neighbours, or
whether the decision will be jointly made.

C. Information Sharing

In addition to basic coordination, nodes may need to (or de-
sire to) share information. For example, if two nodes have ex-
plored different parts of the environment (either geographical
or communications), they may wish to share their observations.
We want to have the ability for a cognitive layer to be able to
receive information from multiple nodes, identify appropriate
patterns and issue appropriate reconfigurations – both within
and across nodes, as needed. A key research interest is to
identify meaningful patterns of behaviours across the network
and choose the right response for multiple nodes.

The Coordination Manager will decide what information
to share across nodes, and when to share it. Information
could include current configurations, local observations, or
current models. To calculate what information to share, we
will use an estimate of information benefit that manages
temporal decay, context- and task-sensitive importance of the
data, and monitors the effect of sharing information on overall

performance, as in [21], [24], [25]. To calculate the cost of
information, we will monitor the additional overhead caused
by information sharing, and estimate cost proportional to avail-
able resources. The Coordination Manager will combine these
two measures to effectively evaluate the utility of information
sharing, thereby sharing relevant information when network
resources are available.

The Coordination Manager may also decide which mod-
ule(s) are to perform particular computations. For example:

• The Coordination Manager could select one node to
compute the region-wide Quality of Service and select a
common communication frequency for all nodes in that
region. In this situation, all nodes must send their events
to the selected node for processing. This approach is gen-
erally easy to implement, may reduce communications,
but may be less fault-tolerant.

• The Coordination Manager could choose to distribute
a task over multiple nodes so that all cognitive layers
take shared responsibility for observing patterns and
making decisions regarding that task. While more robust
to node and communication failures, it may be difficult
to decompose the task.

X. CONCLUSION

ADROIT is an on-going project. Furthermore, as an open-
source effort, ADROIT expects many of its features to evolve
and mutate as new parties contribute their code and ideas
to the effort. So any conclusions are necessarily preliminary.
With that warning having been given, there are some useful
observations.

First, one of the challenges is finding multi-layered struc-
tured environments. For instance, we want the network code
to contain lots of small modules to perform functions such
as decrementing a TTL, or computing a CRC. Yet, as the
discussion of the MAC sub-layer shows, we also want to
clump those modules into larger units of operation. Similarly,
in GNU radio we found the need to create m-blocks to handle
aggregations of data. And to avoid the disaster of thousands
of parameters in a flat space, we placed them in the context
of a typed object system with inheritance.

Second, creating an environment for cognition is hard. Each
radio, much less each radio team, contains a vast amount
of data about its performance and a range of configuration
options. Making sense of that information, and in a way that
multiple cognitive entities can manage is hard. Our approach
was to make objects typed, and to create helper applications
such as the Broker and the Coordination Manager and the
Reconfiguration Manager. Time will tell if this is the right
approach.

ACKNOWLEDGMENT

The authors would like to thank Jonathan Smith and Lee
Badger of DARPA for their support and insights.

REFERENCES

[1] J. Mitola, “The software radio architecture,” IEEE Commun. Mag.,
vol. 33, pp. 26–33, May 1995.

[2] R. Lackey and D. Upmal, “Speakeasy: The military software radio,”
IEEE Commun. Mag., vol. 33, pp. 56–61, May 1995.

[3] J. Mitola and G. Maguire, “Cognitive radio: Making software radios
more personal,” IEEE Personal Commun. Mag., vol. 6, pp. 13–18, Aug
1999.

[4] “Joint program executive office, joint tactical radio system,” SPAWAR.
[Online]. Available: http://enterprise.spawar.navy.mil/

[5] “Vanu radio,” Vanu. [Online]. Available: http://vanu.com
[6] H. Kenyon, “Smart radios juggle spectrum,” Signal, Dec 2003.
[7] D. Cousins, C. Partridge, K. Bongiovanni, A. Jacksons, R. Krishnan,

T. Saxena, and W. Strayer, “Understanding encrypted networks through
signal and systems analaysis of traffic timing,” in Proc. 2003 IEEE
Aerospace Conference, Mar 2003.

[8] “Wolfpack,” DARPA. [Online]. Available:
http://www.darpa.mil/ato/programs/WolfPack/index.htm

[9] D. Clark, C. Partridge, J. Ramming, and J. Wroclawski, “A knowledge
plane for the internet,” in Proc. ACM SIGCOMM Conference, Aug 2003.

[10] “Sapient: Situation aware protocols in edge net-
work technologies,” DARPA. [Online]. Available:
http://www.schafertmd.com/sapient/index.html

[11] K. Z. Haigh, S. Varadarajan, and C. Y. Tang, “Automatic learning-based
manet cross-layer parameter configuration,” in Workshop on Wireless
Ad hoc and Sensor Networks (WWASN2006), Lisbon, Portugal, 2006, to
appear.

[12] J. Reed, Software Radio: A Modern Approach to Radio Engineering.
Prentice Hall, 2002.

[13] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIG-
COMM Conference, Aug 1988, pp. 314–329.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The click
modular router,” ACM Trans. on Computer Systems, vol. 18, no. 3, pp.
263–297, Aug 2000.

[15] G. van Rossum and F. Drake, The Python Language Reference Manual.
Network Theory Ltd., 2003.

[16] B. Chambers, “The grid roofnet: A rooftop ad hoc wireless
network,” Master’s thesis, MIT, Jun 2002. [Online]. Available:
http://pdos.csail.mit.edu/papers/grid:bac-meng.pdf

[17] M. Padlipsky, “A perspective on the arpanet reference model,” in Proc.
IEEE INFOCOM ’83, 1983.

[18] C. Santivanez, R. Ramanathan, C. Partridge, R. Krishnan, M. Condell,
and S. Polit, “Opportunistic spectrum access: Challenges, architecture,
protocols,” in Proc. 2nd Annual International Wireless Internet Confer-
ence (WICON), Aug 2006.

[19] T. W. Malone and K. Crowston, “The interdisciplinary study of coor-
dination,” ACM Computing Surveys, vol. 26, no. 1, pp. 87–119, March
1994.

[20] S. Bussmann and J. Muller, “A negotiation framework for co-operating
agents,” in Proc Cooperating Knowledge-Based Systems (CKBS-SIG),
S. M. Dean, Ed., University of Keele, 1992, pp. 1–17.

[21] A. H. Bond and L. Gasser, “An analysis of problems and research in
distributed artificial intelligence,” in Readings in Distributed Artificial
Intelligence, A. H. Bond and L. Gasser, Eds. (San Mateo, CA: Morgan
Kaufmann), 1988, pp. 3–35.

[22] S. Green, L. Hurst, B. Nangle, P. Cunningham, F. Somers, and
R. Evans, “Software agents: A review,” Department of Computer
Science, Trinity College Dublin, Tech. Rep. TCS-CS-1997-06, 1997,
https://www.cs.tcd.ie/research groups/aig/iag/toplevel2.html.

[23] X. Zhang, V. Lesser, and S. Abdallah, “Efficient Management of
Multi-Linked Negotiation Based on a Formalized Model,” Autonomous
Agents and Multi-Agent Systems, vol. 10, no. 2, pp. 165–205, 2005.
[Online]. Available: http://mas.cs.umass.edu/paper/384

[24] L. Gasser and B. Stvilia, “A new theory of information quality,” Graduate
School of Library and Information Science, University of Illinois at
Urbana-Champaign, Tech. Rep. ISRN UIUCLIS–2001/1+AMAS, 2001.

[25] S. Sen and P. P. Kar, “Sharing a concept,” in Working Notes of the AAAI
Spring Symposium on Collaborative Learning Agents, Mar. 2002, aAAI
Tech Report SS-02-02.

