

Publications

- K. Damodaran and E. Perrins, "Serially Concatenated High Rate Convolutional Codes with Continuous Phase Modulations," in *Proceedings of the International Telemetering Conference*, Las Vegas, NV, October, 2007.
- K. Damodaran and E. Perrins, "Turbo Product Codes with Continuous Phase Modulations," in *Proceedings of the International Telemetering Conference*, San Diego, CA, October, 2008.
- K. Damodaran and E. Perrins, "Spectrally Efficient Concatenated Convolutional Codes with Continuous Phase Modulations," in *Proceedings of the International Telemetering Conference*, San Diego, CA, October, 2008.
- K. Damodaran and E. Perrins, "Serially Concatenated Codes for Aeronautical Telemetry," in review for *Proceedings of the IEEE Military Communications Conference (MILCOM' 08)*, San Diego, CA, November, 2008.

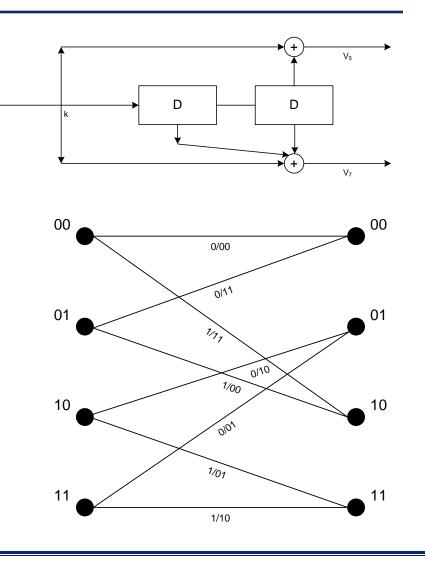
- Introduction
- Error Control Coding
- Continuous Phase Modulation
- Serially Concatenated Codes
- Bit Error Rate Performance
- Conclusion and Future Work
- Appendix Performance analysis

- Introduction
 - Motivation
 - Objective
- Error Control Coding
- Continuous Phase Modulation
- Serially Concatenated Codes
- Bit Error Rate Performance
- Conclusion and Future Work
- Appendix Performance analysis

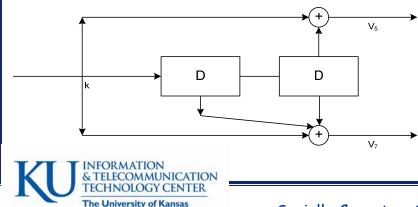
Introduction

- Motivation
 - Effective transmission efficient utilization of power, bandwidth, and complexity
 - Error control codes increases power efficiency; reduces bandwidth efficiency
 - Aeronautical telemetry: constant envelope waveforms
 - Pulse code modulation/frequency modulation (PCM/FM)
 - Shaped offset quadrature phase shift keying (known as SOQPSK-TG)
 - Forward error correction for aeronautical telemetry preliminary attention to date

Introduction


- Objective
 - Develop bandwidth-efficient serially concatenated codes (SCCs) for aeronautical telemetry
 - Inner codes: SOQPSK-TG, PCM/FM
 - Outer codes: Convolutional codes (CCs), Turbo-Product codes (TPCs), Repeat-Accumulate codes (RACs)
 - Analyze coded coherent and noncoherent modulations
 - Compare coding gain performances of coded CPMs

- Introduction
- Error Control Coding
 - Convolutional Codes
 - Encoding
 - Puncturing of Convolutional Codes
 - Soft-Input Soft-Output Decoding
 - Turbo-Product Codes
 - Encoding
 - Chase Decoding
 - Repeat-Accumulate Codes
 - Encoding
 - Sum-Product Decoding
- Continuous Phase Modulation
- Serially Concatenated Codes
- Bit Error Rate Performance
- Conclusion and Future Work
- Appendix Performance analysis



- Reasons
 - Satisfies the properties stated in [Benedetto1998]
 - Strong coding gains
 - Rate flexibility
 - Simple structure
- Encoding
 - Rate (R) = u/n
 - Constraint length of convolutional code 1 (CC1) and convolutional code 2 (CC2) is 2 and 4
 - Encoder: 4-state, time-invariant trellis

- Puncturing
 - Improves spectral efficiency
 - Rate selectable encoder/decoder
 - Viterbi decoding of punctured CCs: simple
 - High rate punctured CCs: from basic rate 1/2 CCs
 - A map: O's indicate deleted bits

Code Rate	K = 2	N	S
1/2	1(5) 1(7)	2048	32
2/3	10 11	1536	27
3/4	101 110	1364	26
4/5	1011 1100	1280	25
5/6	10111 11000	1230	24
6/7	101111 110000	1197	24
7/8	1011111 1100000	1168	24
8/9	10111111 11000000	1152	24
9/10	101111111 110000000	1140	23

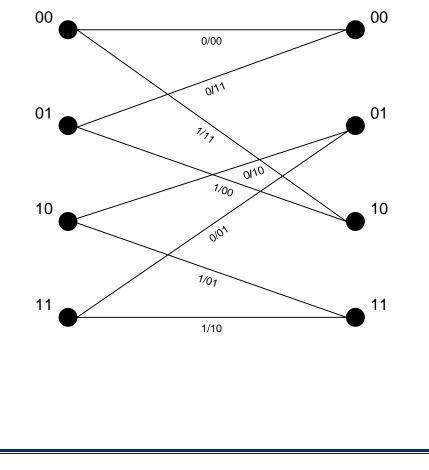
- Soft-input soft-output (SISO) decoding algorithm
 - SISO: 4 port device; 2 inputs, 2 outputs
 - Input: probability distribution of information bit and codeword symbols (P(u;I) and P(c;I), respectively)
 - Output: update on input probability distributions based on code constraints (P(u;O) and P(c;O))
 - Calculate *extrinsic* information

P (c; I)

P (u; I)

NFORMATION

The University of Kansas


& TELECOMMUNICATION TECHNOLOGY CENTER

• Modified "max-log" SISO is used

SISO

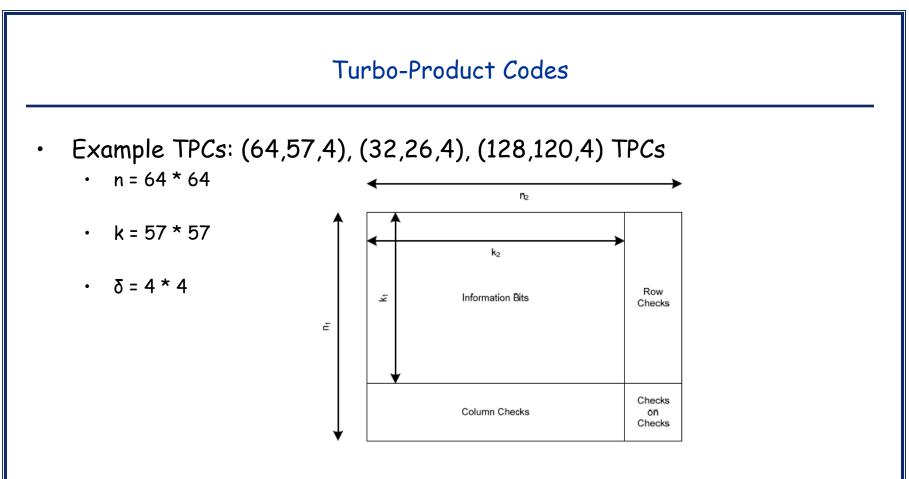
P(c; 0)

P (u; O)

- Soft-input soft-output decoding algorithm (contd.)
 - Similar to branch metrics in Viterbi algorithm: forward and backward recursion branch metrics $(A_k(.) \text{ and } B_k(.))$

$$A_{k}(s) = \sum_{e:s^{E}(e)=s} A_{k-1}[s^{S}(e)]P_{k}[u(e);I]P_{k}[c(e);I]$$
$$B_{k}(s) = \sum_{e:s^{S}(e)=s} B_{k+1}[s^{E}(e)]P_{k+1}[u(e);I]P_{k+1}[c(e);I]$$

• Output probability distributions: calculated based upon forward, backward recursive branch metrics and input *a priori* probability distribution


$$\tilde{H}_{c}^{j} = \sum_{e:c_{k}^{j}(e)=c^{j}} A_{k-1}[s^{S}(e)]P_{k}[u(e);I]P_{k}[c(e);I]B_{k}[s^{E}(e)]$$
$$\tilde{H}_{u}^{j} = \sum_{e:u_{k}^{j}(e)=u^{j}} A_{k-1}[s^{S}(e)]P_{k}[u(e);I]P_{k}[c(e);I]B_{k}[s^{E}(e)]$$

Turbo-Product Codes

- Reasons
 - Large coding gain
 - Rate flexibility
 - Simple structure
 - Modest synchronization requirements
 - Availability of commercial encoder and decoder integrated circuits
- Encoding
 - (n,k, δ) TPC: product of (n₁,k₁, δ_1) and (n₂,k₂, δ_2) linear block code
 - $n = n_1 * n_2; k = k_1 * k_2; \delta = \delta_1 * \delta_2$
 - R = k/n

- Iterative Chase decoding algorithm
 - Key idea: reduce the number of reviewed codewords

Turbo-Product Codes

- Iterative Chase decoding algorithm (contd.)
 - Compute an optimum codeword D and a competing codeword C
 - With D and C known, calculate extrinsic information

$$w_j = \left(\frac{|R - C|^2 - |R - D|^2}{4}\right) d_j - r_j.$$

• With no competing codeword C, extrinsic information is calculated as

$$w_j = \beta \times d_j \text{ with } \beta \ge 0.$$

• Soft input for the next decoding step is

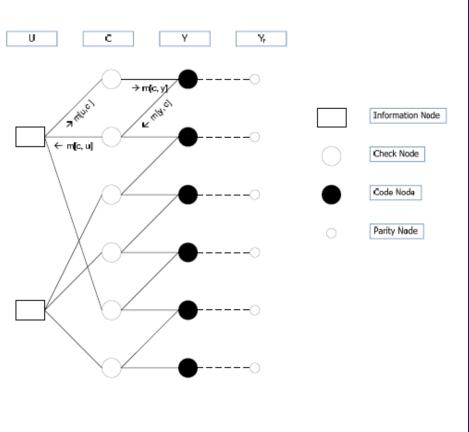
$$[R(m)] = [R] + \alpha(m)[W(m)]$$
 with $R(0) = R$.

• Updated R: refined by further iterations

Repeat-Accumulate Codes

- Reasons
 - Simple code, small encoding complexity
 - Exceptional iterative decoding performance
- Encoding
 - N-bit input block is repeated q times and scrambled by a qN X qN interleaver
 - Output from interleaver: encoded by a rate 1 accumulator.

- Sum-product decoding algorithm
 - RACs perform well with maximum-likelihood (ML) decoding; complexity prohibitively large.
 - Sum-product decoding: approximates the performance of RACs with ML decoding.



Repeat-Accumulate Codes

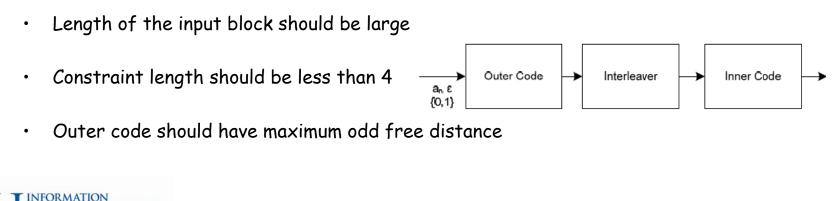
- Sum-product decoding algorithm (contd.)
 - Tanner graph bipartite with variable nodes and check nodes
 - Initialization: set branch messages to zero and update them in each iteration.
 - At the end of K iterations, calculate

$$s(u) = \sum_{c} m[u, c]$$

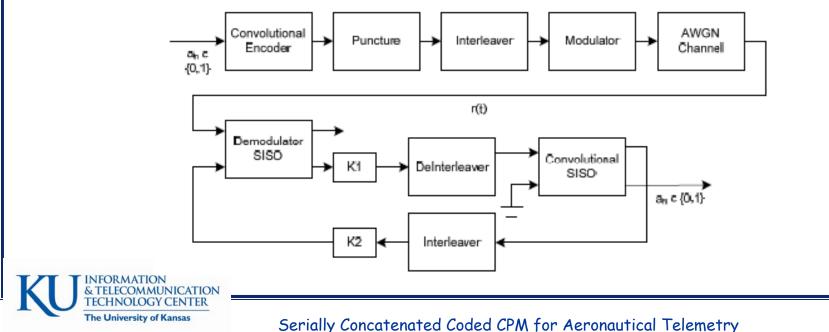
- If s(u) > 0, decoded bit is 1, else 0
- Example: repetition 3 RAC

- Introduction
- Error Control Coding
- Continuous Phase Modulation
 - Pulse Code Modulation/Frequency Modulation (PCM/FM)
 - Shaped-Offset Quadrature Phase Shift Keying (SOQPSK-TG)
- Serially Concatenated Codes
- Bit Error Rate Performance
- Conclusion and Future Work
- Appendix Performance analysis

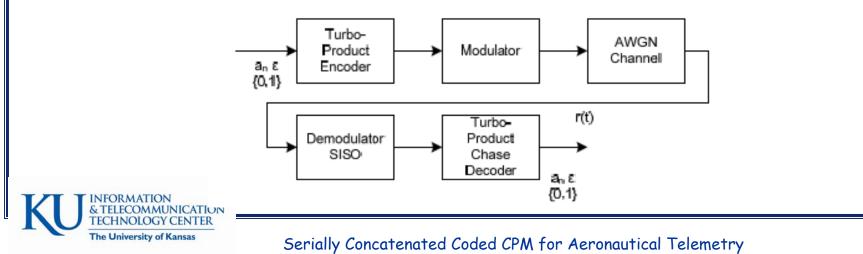
Continuous Phase Modulation

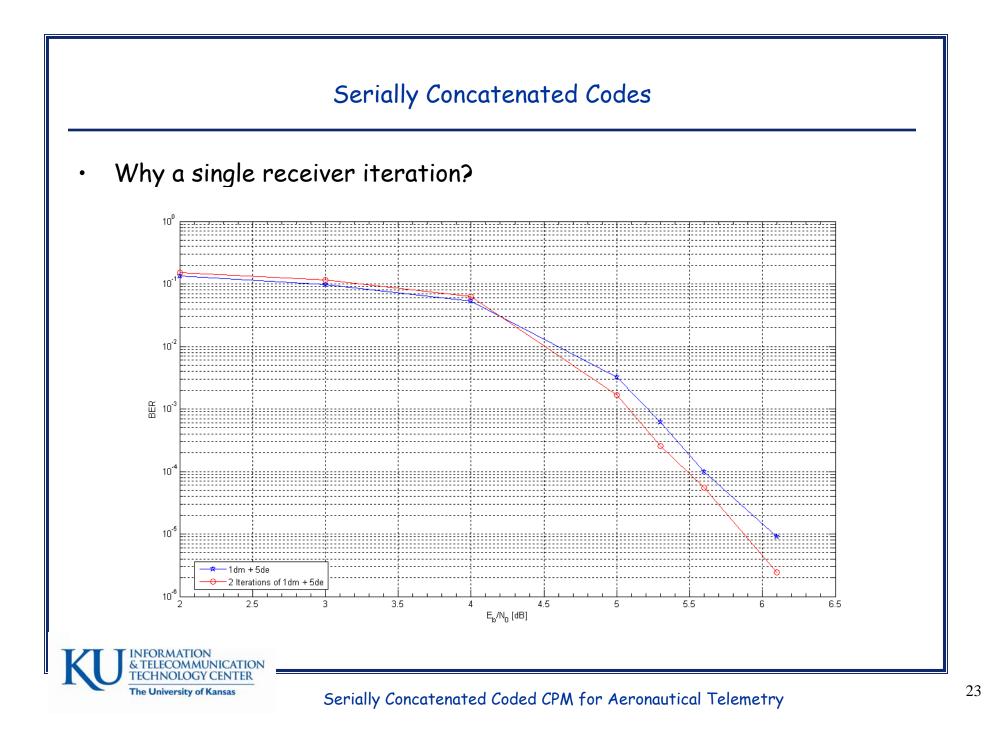

- Continuous Phase Modulation (CPM)
 - CPMs: natural choice for inner codes of a SCC
 - Demodulators are SISO: designed and implemented in [Kumaraswamy2008]
- PCM/FM
 - M = 2, h = 7/10.
 - raised cosine frequency pulse shape; duration L = 2 symbol times (2RC)
 - High detection efficiency, low spectrum efficiency, moderate decoding complexity
- SOQPSK-TG
 - Precoder: converts binary information symbols to ternary channel symbols
 - h = 1/2; uses a custom frequency pulse shape
 - low decoding complexity, compared to PCM/FM: twice the spectral efficiency, low detection efficiency.

- Introduction
- Error Control Coding
- Continuous Phase Modulation
- Serially Concatenated Codes
 - Serially Concatenated Convolutionally Coded CPM
 - Turbo-Product Coded CPM
 - Repeat-Accumulate Coded CPM
- Bit Error Rate Performance
- Conclusion and Future Work
- Appendix Performance analysis

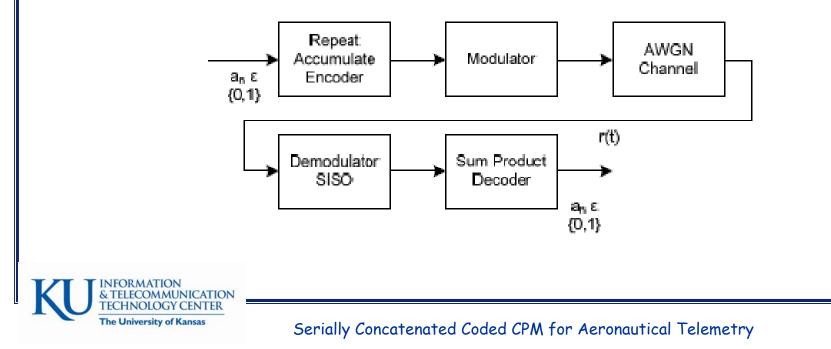


- Why serially concatenated codes (SCC)
 - standard for applications where high coding gains are needed
 - Cascade of simpler codes; effective than a single complex code
 - SCCs: believed to be superior alternatives to PCCs [Benedetto1998]
- Good Outer Code
 - Properties of outer code adopted from [Benedetto1998]
 - Outer encoder should be a non-recursive encoder



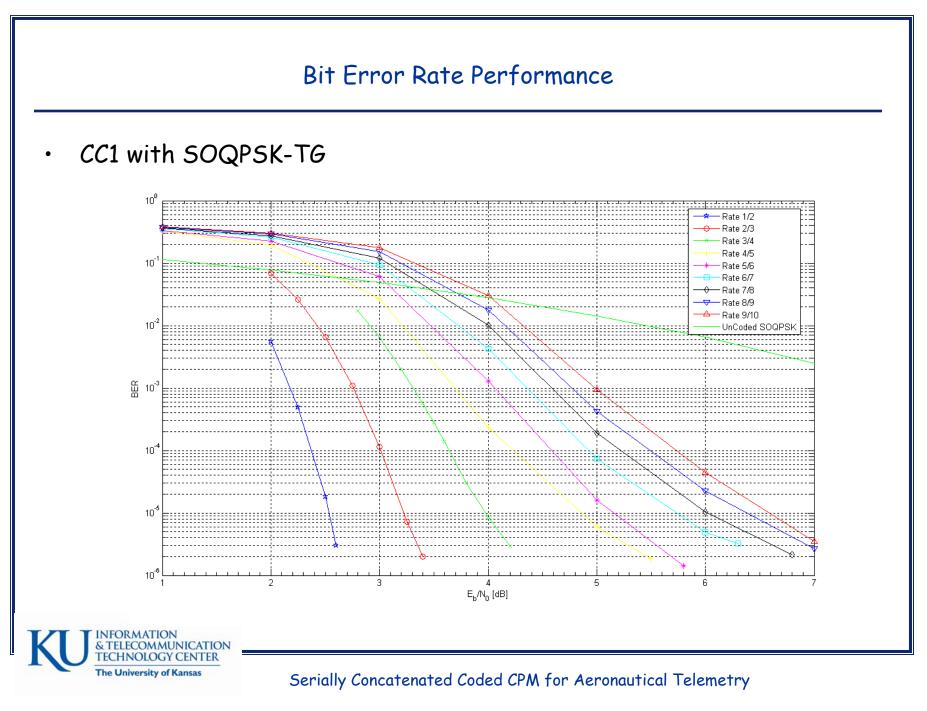


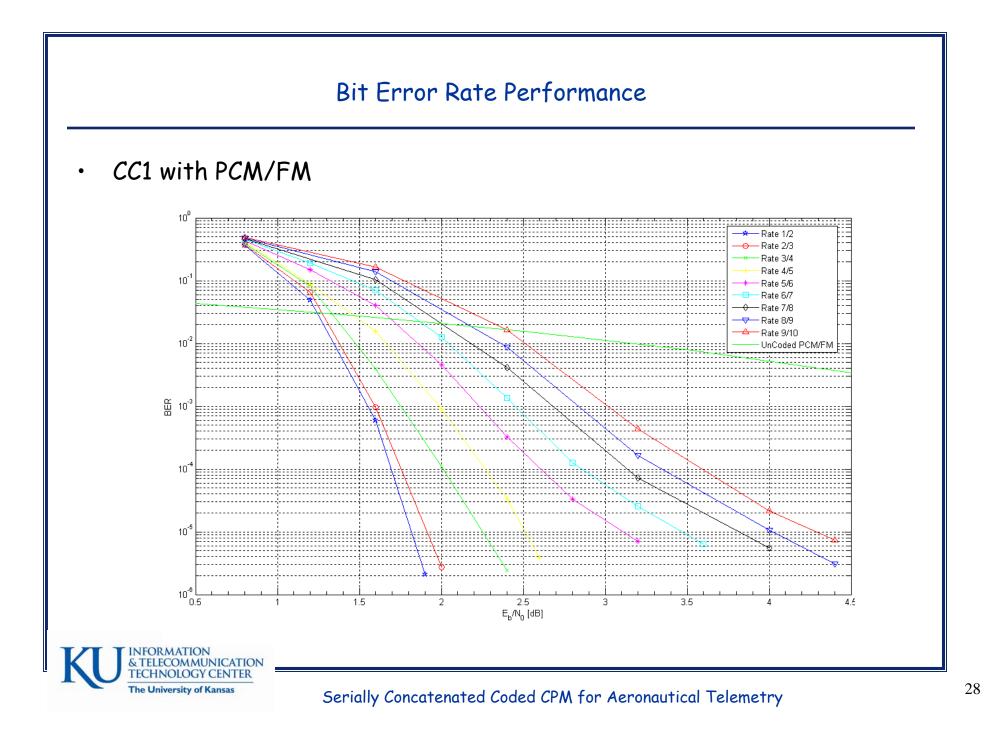
- Serially Concatenated Convolutionally Coded CPM (SCCC-CPM)
 - Outer codes: CC1, CC2; Inner modulation: SOQPSK-TG, PCM/FM
 - Inner demodulator and outer decoder: based on SISO decoding algorithm.
 - SOQPSK-TG: K1 = K2 = 0.75
 - PCM/FM: K1 = K2 = 0.65



- Turbo-Product Coded CPM (TPC-CPM)
 - Initial study: [Goeghegan2003]
 - Encoder: (64,57) × (64,57), (32,26) × (32,26), (128,120) × (128,120) TPC
 - Modulation: SOQPSK-TG, PCM/FM
 - Best performance: realized with 2 receiver iterations; each receiver iteration involves a CPM SISO demodulation followed by 5 decode iterations
 - Trade off: with 1 receiver iteration the performance is only 0.2 dB less.

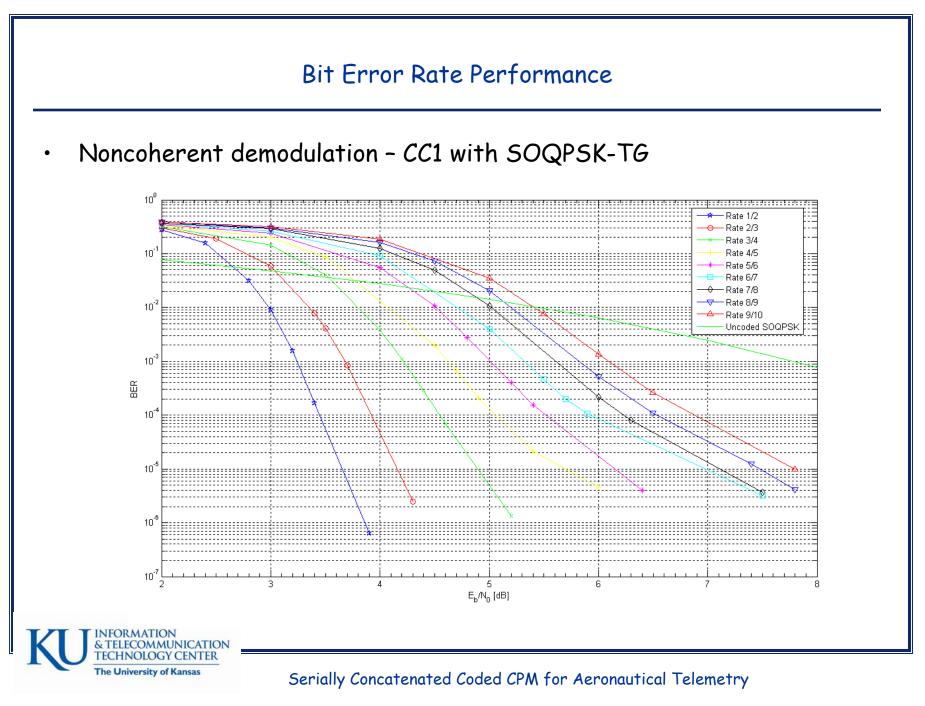
- Repeat-Accumulate Coded CPM (RAC-CPM)
 - Encoder: RAC with a repetition factor q = 3 or q = 4
 - Modulation: SOQPSK-TG or PCM/FM
 - Decoder: Iterative sum-product algorithm

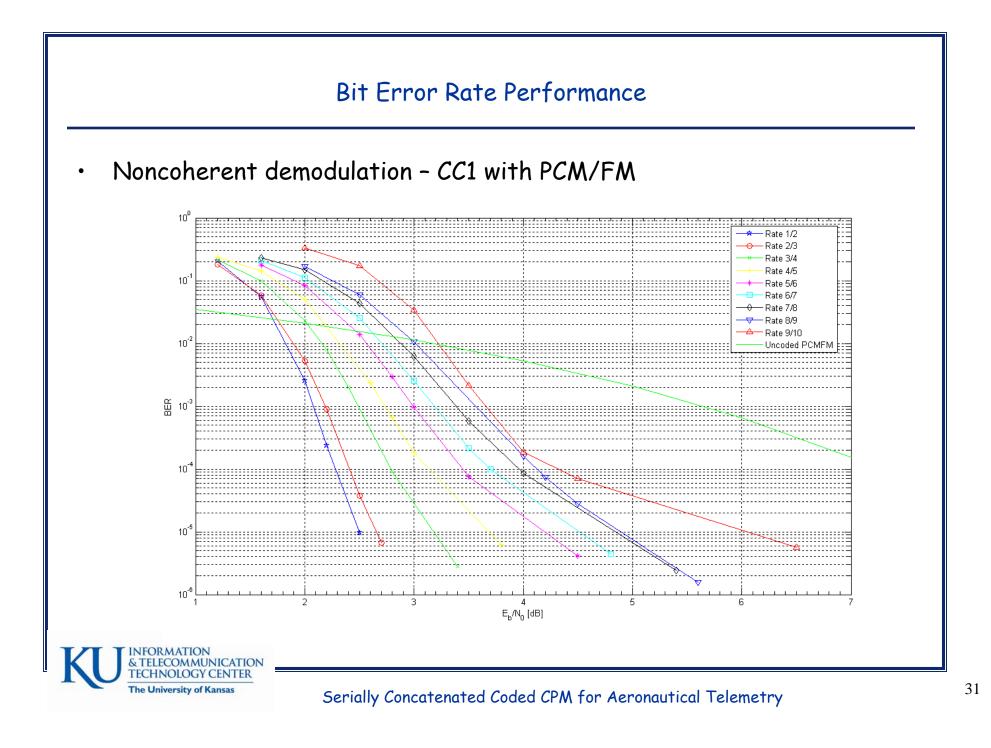

- Introduction
- Error Control Coding
- Continuous Phase Modulation
- Serially Concatenated Codes
- Bit Error Rate Performance
 - SOQPSK-TG vs. PCM/FM
 - Coherent vs. Noncoherent Demodulation
 - Convolutional Code 1 vs. Convolutional Code 2
 - Performance of Turbo-Product Coded CPM
- Conclusion and Future Work
- Appendix Performance analysis



- Coded SOQPSK-TG vs. PCM/FM
 - Coding gains measured at a bit error rate (BER) = 10^{-5}
 - Uncoded SOQPSK-TG: BER = 10^{-5} at $E_b/N_0 = 10.56$ dB
 - Uncoded PCM/FM: BER = 10⁻⁵ at E_b/N₀ = 8.44 dB
 - SOQPSK-TG has twice the bandwidth efficiency of PCM/FM: better choice for coded aeronautical telemetry.

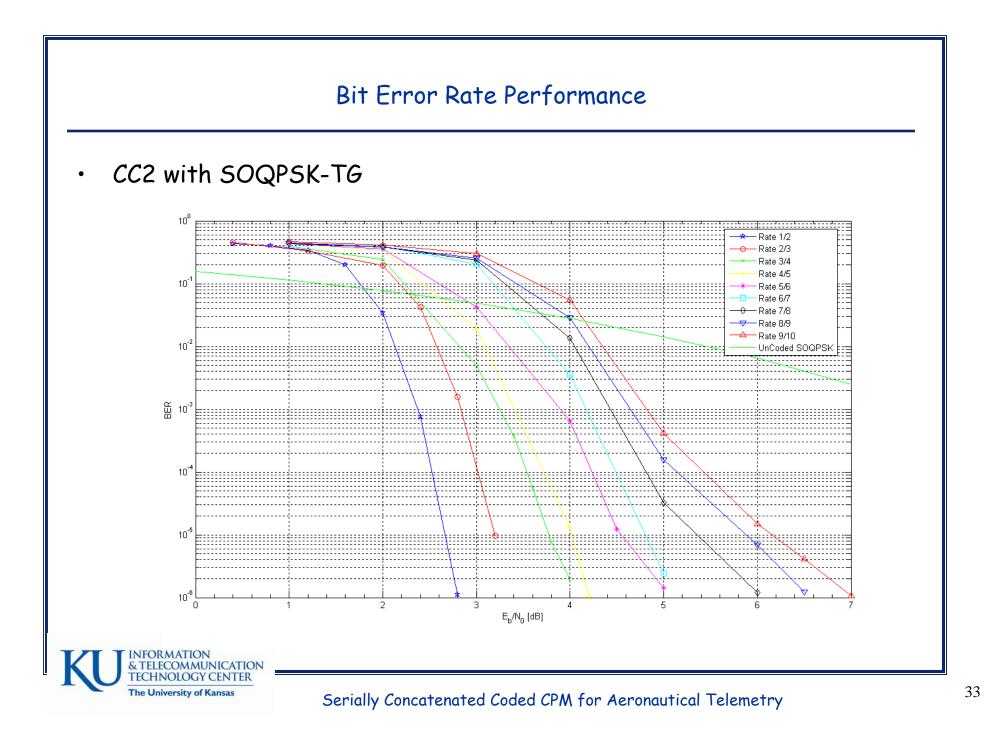
Code	Modulation	Code Rate	BER = 10 ⁻⁵	Gain dB
CC1	SOQPSK-TG	1/2	2.6	8.0
CC1	SOQPSK-TG	7/8	6.0	4.6
CC1	PCM/FM	1/2	1.8	6.6
CC1	PCM/FM	7/8	3.8	4.6





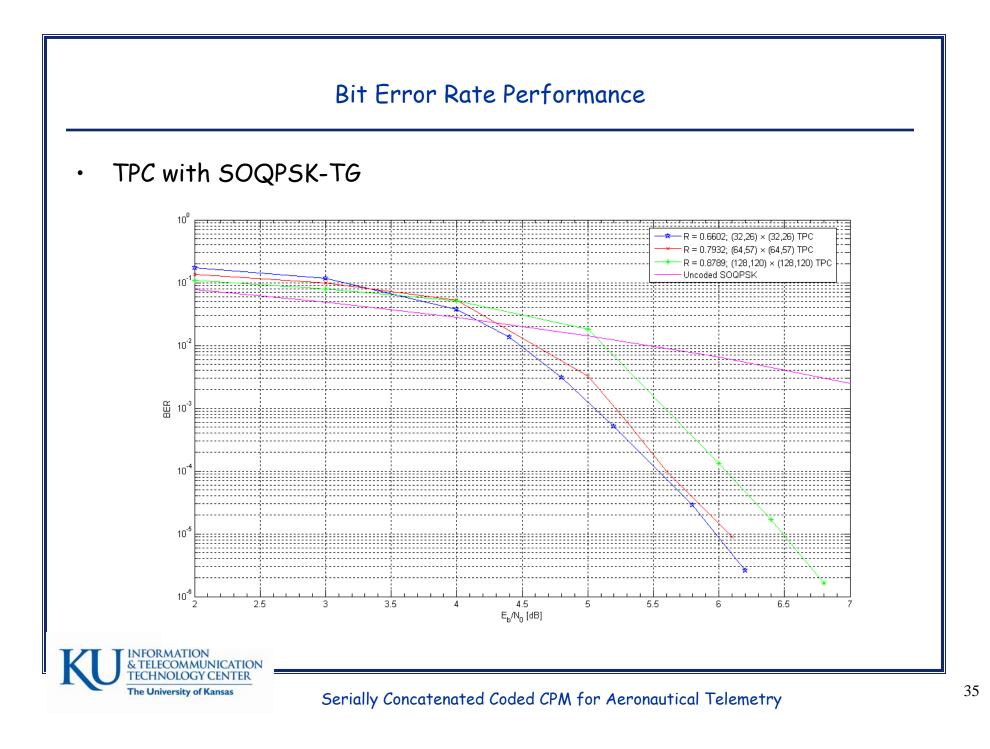
- Coded coherent vs. noncoherent demodulation
 - Noncoherent demodulation: performance about 1 dB less than coherent demodulation
 - Noncoherent demodulators: perfect tradeoff between complexity and performance

Code	Noncoherent Modulation	Code Rate	BER = 10 ⁻⁵	Gain dB	Gain dB (Cohe rent)	Diffe rence dB
CC1	SOQPSK-TG	1/2	3.6	7.0	8.0	1.0
CC1	SOQPSK-TG	7/8	7.1	3.5	4.6	1.1
CC1	PCM/FM	1/2	2.5	5.9	6.6	0.7
CC1	PCM/FM	7/8	4.8	3.6	4.6	1.0



- CC1 vs. CC2
 - SOQPSK-TG: CC2 outperforms CC1 at higher code rates; lower code rates similar performance
 - PCM/FM: CC1 outperforms CC2 at lower code rates; higher code rates similar performance

Code	Modulation	Code Rate	BER = 10 ⁻⁵	Gain dB
CC1	SOQPSK-TG	1/2	2.6	8.0
CC2	SOQPSK-TG	1/2	2.7	7.9
CC1	SOQPSK-TG	7/8	6.0	4.6
CC2	SOQPSK-TG	7/8	5.4	5.2
CC1	PCM/FM	1/2	1.8	6.6
CC2	PCM/FM	1/2	2.1	6.3
CC1	PCM/FM	7/8	3.8	4.6
CC2	PCM/FM	7/8	3.8	4.6



- Performance of TPC-CPM
 - Noncoherent demodulation performs closely to coherent demodulation
 - TPC-CPMs built here performs 0.8 dB better than similar system built in [Geoghegan2003]
 - Performance improvement: use of near-optimal SISO algorithm for CPM demodulation instead of *ad hoc* soft demodulation techniques used in [Geoghegan2003].

Code	Modulation	BER = 10 ⁻⁵	Gain dB	Geogh egan BER = 10 ⁻⁵
ТРС	SOQPSK-TG	6.1	4.5	6.9
ТРС	PCM/FM	4.4	4.0	5.0

- Introduction
- Error Control Coding
- Continuous Phase Modulation
- Serially Concatenated Codes
- Bit Error Rate Performance
- Conclusion and Future Work
- Appendix Performance analysis

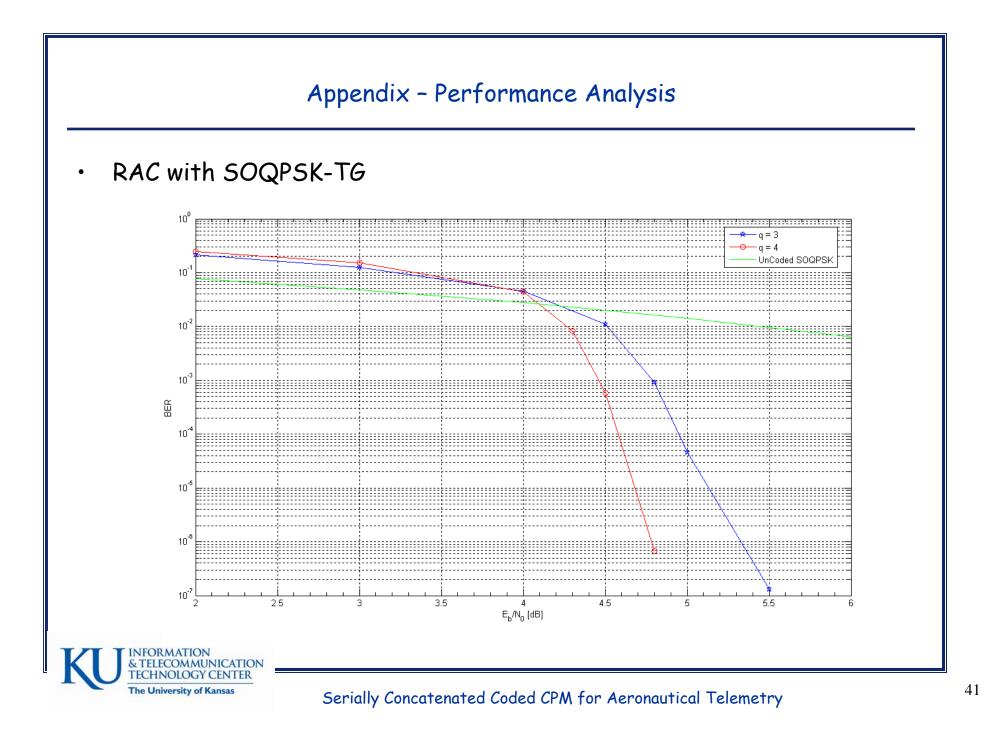
Conclusion and Future Work

- Conclusion
 - SCC-CPMs with iterative SISO demodulation and decoding were built
 - Outer Codes: CCs, TPCs, RACs
 - inner modulation: SOQPSK-TG, PCM/FM
 - Coded SOQPSK-TG is better suited to aeronautical telemetry than coded PCM/FM
 - Noncoherent demodulation performs within 1 dB of coherent demodulation
 - With SOQPSK-TG, CC2 outperforms CC1 at higher code rates
 - With PCM/FM, CC1 outperforms CC2 at lower code rates
 - TPC-CPM built here outperforms a similar system developed in [Geoghegan2003]

Conclusion and Future Work

- Conclusion (contd.)
 - CCs with CPM provide better coding gain performance than TPCs and RACs with CPM
 - Coding gain performance of SCCC-CPMs increases with an increase in input block size and number of decoding iterations
- Future Work
 - For a bandwidth efficiency and decoding complexity: find a optimum combination of coding and CPM
 - Low-density parity-check (LDPC) codes can be optimally combined with CPM to develop LDPC-CPM
 - SCC-CPMs can be built with advanced range telemetry modulation (ARTM)-CPM as an inner modulation.

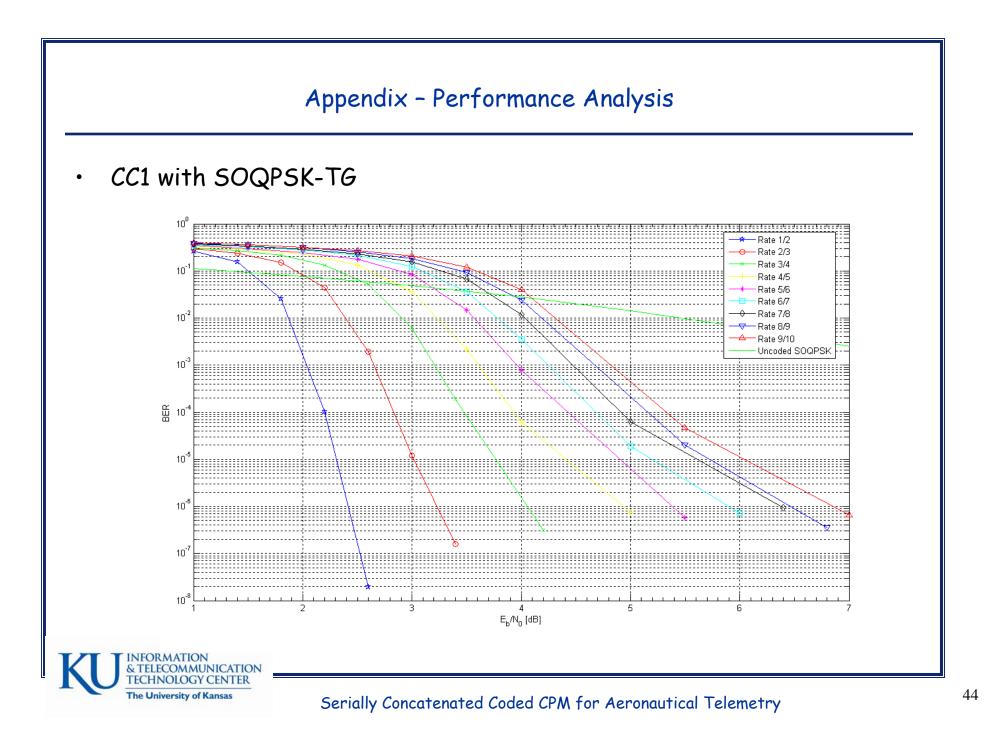
Outline


- Introduction
- Error Control Coding
- Continuous Phase Modulation
- Serially Concatenated Codes
- Bit Error Rate Performance
- Conclusion and Future Work
- Appendix Performance analysis
 - Performance of Repeat-Accumulate Coded CPM
 - Convolutional Codes vs. Turbo-Product Codes and Repeat-Accumulate Codes
 - Performance Variations due to Increase in Input Block Size and Number of Decoding Iterations.

- Performance of RAC-CPM
 - RAC-CPMs lose their significance because of their lower code rates.

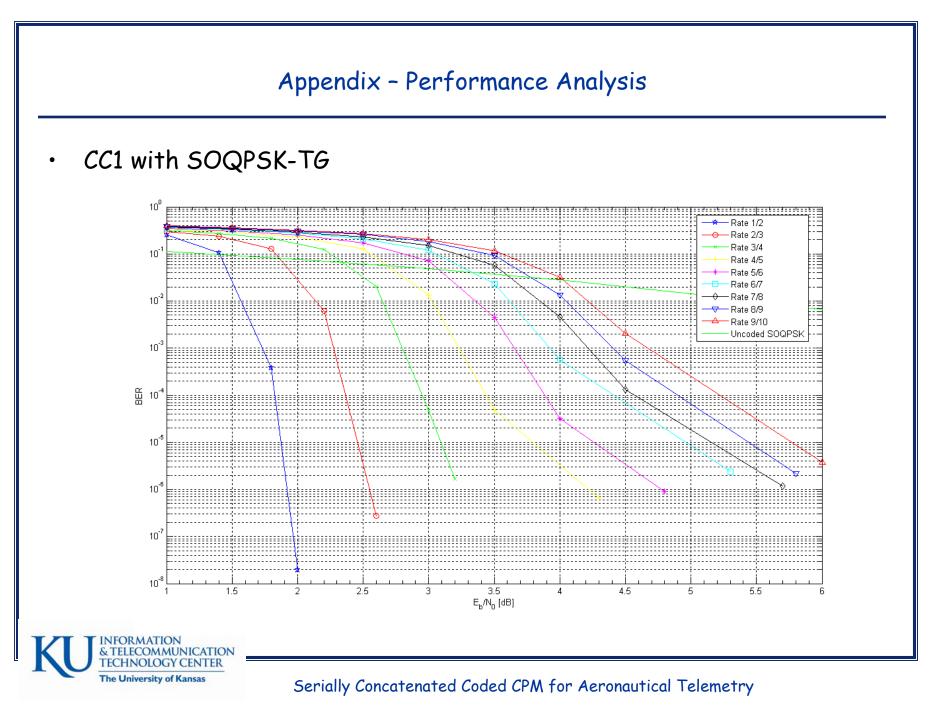
Code	Repetition factor	Modulation	BER = 10 ⁻⁵	Gain dB
RAC	q = 3	SOQPSK-TG	5.1	5.5
RAC	q = 4	SOQPSK-TG	4.7	5.9
RAC	q = 3	PCM/FM	5.2	3.2
RAC	q = 4	PCM/FM	5.0	3.4

- CCs vs. TPCs and RACs
 - From table: CCs with CPM provide better coding gain performance.


Code	Modulation	Code rate	BER = 10 ⁻⁵	Gain dB
CC1	SOQPSK-TG	4/5	4.9	5.7
CC2	SOQPSK-TG	4/5	4.0	6.6
TPC	SOQPSK-TG	0.7932	6.1	4.5
RAC	SOQPSK-TG	1/3	5.1	5.5
CC1	PCM/FM	4/5	2.5	5.9
CC2	PCM/FM	4/5	2.7	5.7
TPC	PCM/FM	0.7932	4.4	4.0
RAC	PCM/FM	1/3	5.2	3.2

- Increase in input block size
 - Input block: 4096 bits.
 - Expected performance: With a large input block decoding performance increases; complexity increases.

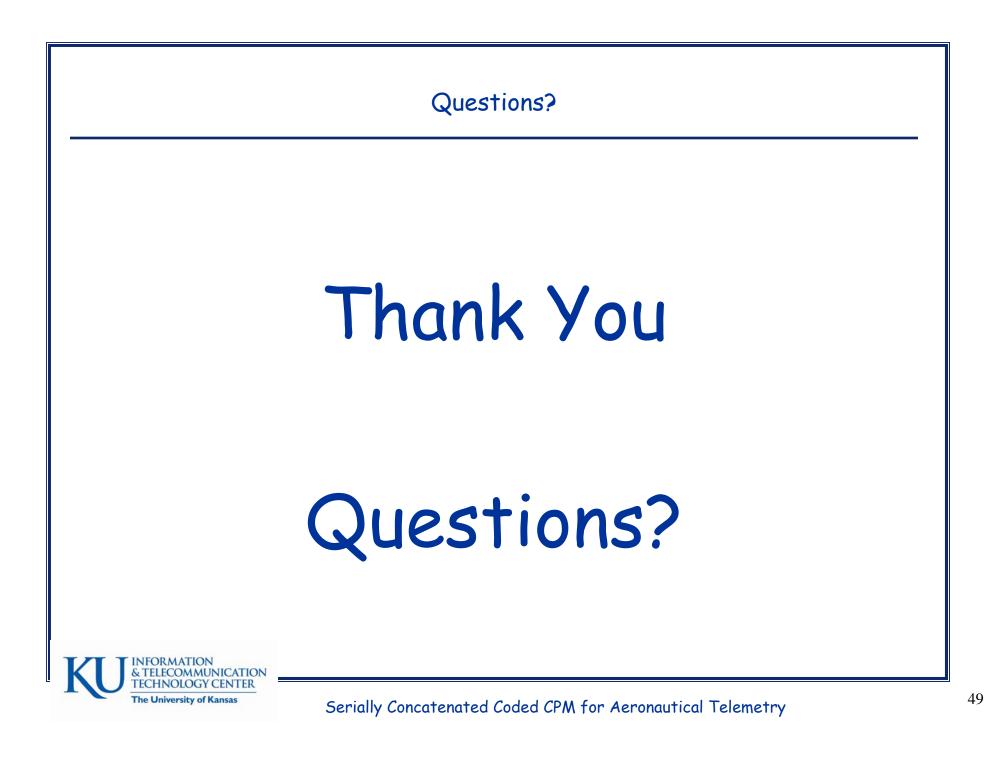
Code	Modulation	Code Rate	BER =10 ⁻⁵	Gain dB	Gain dB - 1024 bit block	Difference dB
CC1	SOQPSK-TG	1/2	2.3	8.3	8.0	0.3
CC1	SOQPSK-TG	7/8	5.6	5.0	4.6	0.4
CC2	PCM/FM	1/2	1.6	6.8	6.3	0.5
CC2	PCM/FM	7/8	3.2	5.2	4.6	0.6



- Increase in number of decoding iterations
 - Input Block: 4096 bits; Decoding iterations: 10
 - Expected performance: increase in the number of decoding iterations better performance; increased complexity

Code	Modulation	Code Rate	BER =10 ⁻⁵	Gain dB	Gain dB(4096 bits, 5 iterations)	Difference dB
CC1	SOQPSK-TG	1/2	1.9	8.7	8.3	0.4
CC1	SOQPSK-TG	7/8	5.2	5.4	5.0	0.4
СС2	PCM/FM	1/2	1.4	7.0	6.8	0.2
CC2	PCM/FM	7/8	2.55	5.85	5.2	0.65

References


- L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate," *IEEE Trans. Inform. Theory*, vol. 20, pp. 284–287, Mar. 1974.
- Y. Yasuda, K. Kashiki, and Y. Hirata, "High-rate punctured convolutional codes for soft decision Viterbi decoding," *IEEE Trans. Commun.*, vol. 32, pp. 315–319, Mar. 1984.
- R. Pyndiah, "Near optimum decoding of product codes," in *Proc. IEEE Global Telecommun. Conf.*, (San Francisco, California), pp. 339–343, Nov./Dec. 1994.
- S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "A soft-input soft-output APP module for iterative decoding of concatenated codes," *IEEE Commun. Lett.*, vol. 1, pp. 22-24, Jan. 1997.
- S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding," *IEEE Trans. Inform. Theory*, vol. 44, pp. 909–926, May 1998.
- H. Jin, *Analysis and Design of Turbo-like Codes*. Ph.D. thesis, California Institute of Technology, Pasadena, CA, May 2001.
- P. Moqvist and T. Aulin, "Serially concatenated continuous phase modulation with iterative decoding," *IEEE Trans. Commun.*, vol. 49, pp. 1901–1915, Nov. 2001.
- J. Proakis, *Digital Communications*. New York: McGraw-Hill, 2001.
- M. Geoghegan, "Exprimental results for PCM/FM, Tier 1 SOQPSK and Tier 2 multi-h CPM with turbo-product codes," in *Proc. Int. Telemetering Conf.*, (Las Vegas, NV), Oct. 2003.
- S. Lin and D. Costello, *Error Control Coding*. New York: Prentice Hall, 2004.
- T. K. Moon, *Error Correction Coding*. New Jersey: Wiley-Interscience, 2005.
- E. Perrins and M. Rice, "Reduced-complexity approach to iterative detection of SOQPSK," *IEEE Trans. Commun.*, vol. 55, pp. 1354–1362, Jul. 2007.
- D. Kumaraswamy, "Simplified detection techniques for serially concatenated coded continuous phase modulations," Master's thesis, Dept. Elect. Eng. Comp. Sci., Univ. Kansas, Lawrence, KS, July. 2007.

Acknowledgements

- I would like to thank the Test Resource Management Center (TRMC) Test and Evaluation/Science and Technology (T and E/S and T) program for their support. This work was funded by the T and E/S and T program through the White Sands contracting office, contract number: W9124Q-06-P-0337.
- Dr. Erik Perrins.
- Dr. James Roberts.
- Dr. Victor Frost.
- Dileep Kumaraswamy.
- Department of Electrical Engineering and Computer Science, University of Kansas.
- Information and Telecommunication Technology Center, University of Kansas.
- Family and friends.

