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Research Timeline

2011 2012 2013 2014 tmeline

> First major part » Second major part

» Initial research until » Channel estimation (CE) for
comprehensive exam LPTV channels

» Bit and power allocation for » Pilot geometry
LPTV channels > Transform domain (TD)

» Optimal and reduced complexity analysis approach
schemes » Robust CE with low

overhead
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Outline of this Presentation

Introduction to Power line communication (PLC)

— Broadband (BB) PLC channel
e Linear Periodically Time Varying (LPTV) channel and impulsive noise

System Model
— LPTV Channel modeling and OFDM
Bit and power allocation
— Optimal and reduced complexity schemes
Channel estimation (CE)
— Pilot-based CE: pilot geometry
— Impulsive noise mitigation — transform domain (TD) analysis
— Robust CE based on TD analysis with low overhead

Conclusion
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Outline of this Presentation

Introduction to Power line communication (PLC)

— Broadband (BB) PLC channel
e Linear Periodically Time Varying (LPTV) channel and impulsive noise

System Model
— LPTV Channel modeling and OFDM
Bit and power allocation «— brief review
— Optimal and reduced complexity schemes
Channel estimation (CE) «— new!
— Pilot-based CE: pilot geometry
— Impulsive noise mitigation — transform domain (TD) analysis
— Robust CE based on TD analysis with low overhead

Conclusion
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Brief History of PLC

e Back to early 20t century
— Switching in substations, metering and basic control
e Gained momentum after 1980s
— Especially after 1990s
e Power lines
High voltage, > 100 kV
E Medium voltage, 1 — 100 kV

Low voltage, < 1 kV
e Most research
e Easy access to network in most buildings
e Interest from utility companies: load management, automatic metering
o Disaster recovery

9

. -*..: 04/2 1/2014 THE UNIVERSITY OF
é KANSAS



Power Line Communication (PLC)

e A topic of continued interest
— Allows dual use of existing power line infrastructure
— Economic, since no additional cost for cable installation is required
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Power Line Communication (PLC)

e A topic of continued interest
— Allows dual use of existing power line infrastructure
— Economic, since no additional cost for cable installation is required

e PLC applications

— Broadband (BB) distribution over power lines (BPL)
e Internet access through power lines
— Automatic metering infrastructure (AMI)

— Smart Grid (SG) infrastructure
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Power Line Communication (PLC)

e A topic of continued interest
— Allows dual use of existing power line infrastructure
— Economic, since no additional cost for cable installation is required

e PLC applications

— Broadband (BB) distribution over power lines (BPL)
e Internet access through power lines

— Automatic metering infrastructure (AMI)
— Smart Grid (SG) infrastructure
e PLC technology
Ultra narrow band (UNB): 0.3 — 3 kHz. frequency band
E Narrowband (NB): 3 — 500 kHz. frequency band
Broadband (BB): 1.8 — 250 MHz. frequency band
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BB PLC

e Applications in the in-home (IH) domain of SG
— Collection and distribution of data on energy consumption
— Demand response and management programs

— Dynamic pricing and flexible power control of appliances
— Communication
e Plug-in Electric Vehicles (PEV) and their charging stations

Fig.2 SG home [4] 11”] e
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BB PLC

o Design criteria for devices targeting IH domain:
Low power consumption
Reduced complexity, large quantities to be deployed
e BB PLC standards
— IEEE 1901
— ITU-T G.hn
— HomePlug Green PHY (HPGP)

Fig2SGhome [4] | [ = b

14

. _‘}':-. 04/21/2014 THE UNIVERSITY OF
o KANSAS




BB PLC Channel Characteristics

e Linear periodically time varying (LPTV) channel
— Due to time-varying impedances of the electrical devices
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Broadband PLC Channel Characteristics

e Linear periodically time varying (LPTV) channel
— Due to time-varying impedances of the electrical devices

— Commuted channel

e Due to devices with two separate impedances
— EXx: low power lamps and light dimmers

e Alternates sharply between high and low values
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Broadband PLC Channel Characteristics

Linear periodically time varying (LPTV) channel
— Due to time-varying impedances of the electrical devices

— Commuted channel
e Due to devices with two separate impedances
— Ex: low power lamps and light dimmers
o Alternates sharply between high and low values

— Harmonic channel
e Due to devices with smooth variation in impedances
— Ex: monitors and microwave ovens

e Results in a combination of several transfer functions
— With progressive variation
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Broadband PLC Channel Characteristics

e Each transfer function
is a realization of the
channel for a small
portion of the AC mains
cycle

IH()| [dB]

e The transfer function
pattern repeats itself for
the following AC mains
cycles for a certain
period of time

IH(f)] [dB]

0 5 10 15 20
f [MHz]
Fig. 3. (a) Commuted and (b) harmonic channels
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BB PLC Channel Characteristics

e Linear periodically time varying (LPTV) channel
— Due to time-varying impedances of the electrical devices

— Commuted channel

e Due to devices with two separate impedances
— EXx: low power lamps and light dimmers

e Alternates sharply between high and low values
— Harmonic channel

e Due to devices with smooth variation in impedances
— Ex: monitors and microwave ovens

e Results in a combination of several transfer functions
— With progressive variation

e Impulsive noise
— Due to switching events in the power line network
— Much stronger than background noise, with short duration
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Problem Statement

e Conventional bit loading algorithms
— Simplistic adaptation
— Relative variation over time
— Not optimal
— LPTV-aware bit loading

&- = 04/21/2014
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Problem Statement

e Conventional bit loading algorithms
— Simplistic adaptation
— Relative variation over time
— Not optimal
— LPTV-aware bit loading

e (Conventional CE schemes
— Lots of channels to estimate!

— Pilot-based
e Estimation overhead
o Interpolation error
— Decision-directed
e Abrupt changes in channel and noise
e Channel tracking

— LPTV-aware, robust, and low overhead CE »
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LPTV Channel Model

Fig. 4 Network topology used for the
channel model [1, Fig. 1]

e Channel model in [1] is used
— Generates realistic channel realizations
— Based on a simplified topology
— Z; and Z: transmitter and receiver impedances
— Z,...Z;: loads connected to the power line
- L,...L,, and §;...5;: length parameters for different topologies

22

KANSAS

é 04/21/2014 THE UNIVERSITY OF



LPTV Channel Model

e AC mains cycle is divided into M microslots in time
— Microslots are used for adaptation to the channel
— Each microslot has a distinct transfer function A(/)
- j€{0,1,..., M1}, where M = 50
e Orthogonal Frequency Division Multiplexing (OFDM)
— In each microslot, spectrum is divided into VN subchannels
— We choose NV = 256 subchannels
— H,,(/) for j*" microslot, it" subchannel, where i € {0,1,...,/F1}

23
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Channel Parameters

Excursion parameter:
— Strength of the LPTV behavior
— For Fth subchannel of #th microslot

Yii = ‘Hj’i‘ H]Dw,-i — I g1 i jl::nw — arg .111i11 ‘Hj,i‘
: ‘ch:-w:t" 0=7=M—1

— How,i is the lowest of all transfer functions for subchannel 7
— [Y]avg : average of 7j,: values — in dB — over all subchannels and
microslots

Average attenuation
M—-1N-1

1
[Have] = 1010gy i Z Z \Hj!i\g
0 =0 i=0
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OFDM System

e Available spectrum is divided into many subchannels
— Channel response is assumed to be flat in each subchannel
— One tap simple equalizer at each subchannel
— Deals with highly frequency selective channels

»| Hermitian » cyclic prefix D/A
Information mapping, | : | Symmetry, | " | j44ed >
bits ————" S/P modulator | . | p/g converter
(IDFT) .
> > h J
Power line
channel
» o : : : cyclic prefix lpower
« channe < D ine
: + < + removal, .
bits _| paralielto . | estimation, |- | demodulator | - il AP noise
serial . | equalization, | - | (DFT) . | senalto converter
conversion | . | qetection . - | parallel
; . | conversion
Fig. 5. Illustration of an OFDM system for PLC -
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where

OFDM System
Fth subchannel QAM signal

ui(t) = V‘Eﬁlm cos(2m fit) — V‘E.ﬁlis sin(2m f;t)

_ E | |
= Re v’ Tﬂiﬁjﬂl Ej?wj,t]

— 0o J— _ijQ‘JT‘ﬂt
Re v TXI{

__E | ],

X; = Azel® A= \/4? + A2 Hi(f;) = H; = |H;|e?*

A;
o —1
fl; = tan (-45.:)

Received signal

[2 [2
Ti(t) = V’ T|Hg|,4gc cos(2m fit + ;) + V’ T|Hg|,4gs sin(2m fit + @i) + ni(t)

— Re [vgﬂixeﬂ?ﬁﬂ‘f + ni(t)

&- = 04/21/2014
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OFDM System

e Receiver basis functions:

—

/2 , .
P (t) = \.'# Tcosttﬁ?rfit +a@;), 0<t<T

[2 |
ha(t) = —\I.f Tsin{ﬁwﬁ;f +ai), 0<t<T ,

e Received signal vector:
vi = (|Hil Aic + 1ir [HilAis + 131)
N = Mar + i
Yi = |Hi| Xi +

e Reverse operation at receiver:

- Y; ' T
! i ){ - .=
= o T

&- = 04/21/2014
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OFDM System

Receiver basis functions:

—

()= [ Feosnfit+ d), 0<t<T
Pa(t) = —\.-“#€5i11[3ﬁfif +¢i), 0<t<T
T
Received signal vector:
vi = ([Hi| Aic + 1ir, |HilAis + 1ii)
Ni = Nir + J1ii

Yi = |Hi| Xi +

Reverse operation at receiver:
o Yy =
Sy T " TH)

&n 04/21/2014
b %

4

2 N matched filters
needed to implement!
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OFDM System

e Receiver basis functions:

2 /N matched filters

by (1) = \I,-“%m{gﬁ fttd). 0<t<T needed to implement!
Pa(t) = —\Ilf."%siu{ﬂ?rf?;t +a@i), 0<t<T P DFT to implement
e Received signal vector: modulation and
vi = ([Hi|Aic + mir, | Hil Ais + 7i) demodulation
N = Mar + i
Yi = |Hi| Xi + i
e Reverse operation at receiver:
S r_ T
AR " T
29
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Bit Loading Research (Review)

e Goal: develop optimal and reduced complexity mechanisms
— For bit and power allocation
1) Increase throughput = reduce power consumption
e Optimal bit and power allocation
2) Reduce complexity
e Mechanisms to reduce complexity of the proposed optimal bit loading
e Considered bit loading schemes
1) Non-adaptation
2) Adaptation

30
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Bit Loading Research (Review)

e Goal: develop optimal and reduced complexity mechanisms

— For bit and power allocation
1) Increase throughput = reduce power consumption
e Optimal bit and power allocation

2) Reduce complexity
e Mechanisms to reduce complexity of the proposed optima bit loading

e Considered bit loading schemes
1) Non-adaptation
2) Adaptation
3) Optimal LPTV-aware
4) Reduced complexity LPTV-aware (sub-optimal, practical)
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Bit Loading

e Water filling approach
— Optimal to maximize the capacity for band-limited channels
— Allows non-integer values for bits, not practical

e Greedy approach
— Optimal for integer bit loading

é 04/21/2014
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Bit Loading

e Greedy approach
— Optimal for integer bit loading
— Maximize:
N-1
max Biot = Z b;
{b;,i=0,....N—1} —
— Subject to:
N-1
Z €4 <_:‘ €tot s
i=0
{bij,i =0,...,N — 1} are nonnegative integers
0<e <™ 1=0,...,.N—-1
04/21/2014
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Bit Loading

o Optimality of the greedy algorithm
— Due to the matroid structure of the optimization problem
— Searching for the maximal minimum-weight member of a matroid

o Let Sbe the set of all possible (&,/) pairs
— (k) stands for A&th bit in the Ath subchannel
— kdoes not exceed a certain maximum AHmax

— Let Jbe collection of all subsets of S for which:
e Number of elements in each subset is less than ¢, the cardinality
e Each Jrepresents a particular bit allocation pattern
e Total transmission less than ¢
— Weight of each element (k,/): excess energy to transmit A-th bit
e Results in bit allocation pattern with minimum energy for a given ¢

34
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Bit Loading

e In the context of LPTV channels, for Fth microslot with I, ( f)

N-1
0 tll(l}il‘{w . Bj ot = Zbﬂ
7it 1=0
e Subject to:
N-1
Z Pji < P,
1=
{bji,i=0,...,N — 1} are nonnegative integers

e Weight function: excess power required for &-th bit
wj(k,i) = Pji(k) — Pji(k—1), 1 <k <b™, P;;(0)=0
35
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Weight Function

4.5 T T T T T T T

1] 2 4 ] g 10 12 14 18

Fig. 6. Strictly increasing concave rate function illustrated as a
function of overall SNR with ideal case of no SNR-gap.
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Bit Loading

e Greedy algorithm
— Iterative fashion
— least amount of power to transmit an additional bit
e Analogy: maximize the value of the knapsack:
— Each box $1 value, different weights
— Knapsack can only carry certain weight
— Maximize number of items

@@

5
75 6

&- = 04/21/2014
S

W
® o
) P
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Bit Loading

Algorithm 1 Greedy algorithm

I: Set bjz-i:Pj,i =0, 'f-:U,.H:P\'T—l;
2: Set Pj,sum — sztot = 0;
3:- Set ﬂpji :'Uu‘j(]_:hi)$ EZU..H\«T—L.

4: while (P gm < ) do

5 Find index [ such that [ = argming-,-ny_; AP, ;:
6: Update szsum = L7 sum T ﬁPjJ;

7. if (P — Pjgm) > 0 then,

8: Set bjzg = bj?g + 1:

0: Set sztot = Bj,t-:-t + 1

10: Update Pj; = Pj 1+ AP;;

1: Update AP;; = wj(bj; + 1,1):

12: end if;

13: end while

14: exit.

38
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LPTV-aware Bit Loading

Question: How can we exploit LPTV channel information
further?

— The success of water filling and greedy approaches
e Favor subchannels with less attenuation
— Simplistic adaptation
e Greedy approach only within microslot transfer function
e Does not consider relative variation of the microslot transfer functions
e Regards each microslot equal in power distribution
— LPTV-aware
o Allow different power levels for microslots
e Maintain the average power to be equal to simplistic adaptation
 Aggregate two-dimensional j.i into @ combined transfer function

39
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LPTV-aware Bit Loading

e Maximize:
M-1N-1
| max Biow = Z Z b
{bj,i,i=0,....N—-1,j=0,...,.M -1} j=0 1i=0
e Subject to:
M—-1N-1
Y. 3 pusur
j=0 i=0

{bji,i=0,...,N—1,j=0,..., M—1} are nonnegative integers

— Total power constraint

— Combined transfer function: bit loading across microslots

— Similar matroid structure as the single transfer function case

— Greedy approach for optimal solution 40
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LPTV-aware Bit Loadlng
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Performance Analysis

g D

N 5 5 5 5 5 5 BT r— — Increase factor >1

; ; ; ; ; : = 8 = Channel 2 .
__________ e e ] —— Channel 3 — Optimal

: : - : - : =@ Channel 4

= ~ Channel 5 — Ch 6, below -88

; | dBm/Hz
¢ No transmission
| L o : : : : : : | for simplistic
S S NN IO SN SRR S JR adaptation

oo

-]
I

[=x]
I

VW 5 5 : 5 5 Fig. 7. Increase in raw data
3_ ......... I ........ :. ........ .......E .......... E..........,: .......... I .......... : .......... rate duetothe Optimal LPTV—

§ ’ LN Ty : § § aware bit loading compared to
2% o P g i : A i i the simplistic adaptation

: Y e : scheme for commuted and
] i s R e e e R harmonic channels
-100 95 -90 -85 : ; ;

Transmit signal PSD [dBm/Hz]
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Transmit signal PSD [dBm/Hz]

Performance Analysis

— Up to 2 dB excess
power

— 5 % improvement

— Less variation and
gain for higher
transmit signal levels

_?5—----—;- ----E--—---:—-----

Fig. 8. Resultant microslot

: : : : : : : : : transmit signal PSD levels for
95 ....... S L S U SRR I U ST i Channel 5, with -75 dBm/Hz

: : : : : : : : : average transmit signal PSD
over one AC mains cycle, for
100 j j j j j j j j j the optimal LPTV-aware bit

0 5 10 15 20 25 30 35 40 45 50 loading.
Microslot #
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E, [dBJ]

Energy Efficiency

“[...m+ Channel 1] |

= & = Channel 2

7| === Channel 3|

+ oy + Channel 4

.| = = = Channel 5| .

Channel 6

-95 -90 -85 —80 -5 —f0
Transmit signal PSD [dBm/Hz]

—65 —60

Fig. 9. Energy per one bit transmission for the
optimal LPTV-aware bit loading scheme in

commuted and harmonic channels

04/21/2014

— Energy saving
— SG applications

— Reduced power levels
e More efficient

e More improvement due
to LPTV-aware bit
loading

e Reduced interference

e Reduced encoding
complexity and tone
maps

e Reduced data rate

— Power saving in standards

— PAPR analysis
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Reduced Complexity LPTV-aware Bit Loading

e LPTV-aware bit loading
— Increased system complexity
— Works on a combined transfer function of size MV
e Ex: M=50, N= 256, MN = 12800
e Reduced complexity
— First, find out microslot power levels 7,
— Initially, works on a data set of size M
— Once 7 is stored, same complexity as the simplistic adaptation

45
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Reduced Complexity LPTV-aware Bit Loading

e Inorder to find out A
— Represent transfer function for the fth microslot 1 ;

— By a single value
e Maximum magnitude value, magnitude mean, or a weighted sum
e Average capacity for a given transmit signal PSD

— Scale power to allocate to M microslots accordingly
— Run greedv bit loading algorithm
e With /7 and scaled power as inputs
e Normalize to eliminate rounding errors
e Power Clipping
— To eliminate peak power levels
— Not needed in the reduced power levels

— Clip excess power and distribute to other microslots

e Favoring the ones with better channel conditions
46
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Raw bit rate (Mbps)

Reduced Complexity with Power Clipping

12

10}-

—r— Red Compl Pow.Clip. Channel 1
— & — Optimal LPTV-aware Channel 1
-+B - Red.Compl.Pow.Clip. Channel 2
—i— Optimal LPTV—aware Channel 2
— B — Red.Compl Pow.Clip. Channel 3
-={ - Optimal LPTV-aware Channel 3
Red.Compl_Pow.Clip. Channel 4
Optimal LPTV-aware Channel 4
Red.Compl Pow.Clip. Channel 5
Optimal LPTV-aware Channel 5

A = E —Had_{:m-lpLPﬂwCﬁp Chmﬁ........:r......... :. .......é..........i. il

.............................................

<oy o« Optimal LPTY-aware Channel 6

- m
Transmlt signal PSD [dBmiHz]

04/21/2014

Sub-optimal scheme

Very close to the
optimal scheme

Maximum magnitude
values used

e Good for reduced
power levels

Power clipping

e not needed for
reduced power levels

Fig. 9. Raw data rate for the sub-
optimal reduced complexity LPTV-
aware bit loading with power
clipping, and the optimal LPTV-
aware bit loading schemes in
commuted and harmonic
channels 47
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Key Points

e Greedy type bit allocation
— Optimal when combined transfer function
— Average power constraint over one AC mains cycle used
e LPTV-aware bit loading
— Maximizes throughput over one AC mains cycle
— Outperforms simplistic adaptation
e Reduced power levels
— More energy efficient
— More improvement due to LPTV-aware bit loading
o Complexity reduction
— Using representative values
— Maintain high improvements in bit loading
— Relevant to Broadband PLC standards power saving mechanisms

e Ideas applicable to other algorithms 48
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Channel Estimation (CE)

e Must be done prior to bit loading
e LPTV channel CE challenges
— LPTV channel
— Impulsive noise
e Pilot-based (data-aided, supervised, trained) CE
— High estimation overhead
— Interpolation error
e Decision-directed CE
— Rely on decisions, low overhead
— Abrupt changes in channel and noise
e Goal:
1) Pilot-based CE = Reduce interpolation error

2) Develop a robust CE scheme with low estimation overhead
49
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OFDM Channel Estimation

e LS and LMMSE estimators:

hys =Xy hpvvse = Ry Ryy 'y

Rhy = E[hy”] = E[h(Xh + n)¥] Ryy = E[yy"] = E[(Xh + n)(Xh + n)"]
— Ehh” X" + hn"] = E[Xhh" X" + Xhn" 4+ nh" X" + nn"]

— Rpn X" — XRpu X" + Ennf] = XRun XY + 721

hpanse = Ran X (XRun X7 + 020 ly

e Practical considerations
— Complexity
— Noise and channel statistics =» Effect on performance

50
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OFDM Channel Estimation

-28 T T T T T
: : True channel response

F 3 : S| e LS estimate
-30 - " R, OISR S T ............. — — — LMMSE estimate -

o T | .. . i’f; ..... Hneosn 2 o 1_

Cop s s : ’E' - y', ...... ....... : & ,

Channel transfer function |H(f)| (dB)

i ] ] i
50 100 150 200 250
Subchannel index #

Fig. 10. LS and LMMSE estimates for a single channel 51

. _.__,E'l 04/21/2014 THE UNIVERSITY OF
g KANSAS



Pilot Based CE

Block type
— All pilots for one AC mains cycle
— High overhead

Comb type
— Reduced overhead
— Better channel tracking capability with same overhead
— Interpolation error for non-pilot locations
Incline type
— Pilot positions shifted each time
— Reduction in interpolation error
— More accurate channel estimation for the most part

04/21/2014
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Fig. 12. Decomposition of interpolation error [22, Fig. 3]
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Pilot-based CE Schemes

e For a communication channel that remains the same for L symbols:

— Linear and cubic interpolation for each scheme

Scheme A | Comb-type Pilot estimates | One time

averaged first | interpolation
Scheme B | Comb-type Interpolation Interpolated

done at each | values

OFDM symbol | averaged
Scheme C | Incline-type - Pilot estimates

combined

Scheme D | Incline-type Interpolation Interpolated

done at each | values

OFDM symbol | averaged
Scheme E | Block-type - -
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Transform Domain Analysis

e Impulsive noise mitigation
— Present in the power line due to switching events
— Very poor estimates in its presence

e Question: Can the changes in the channel estimate identified?
— Due to a change in the transfer function
— Due to the presence of impulsive noise

e Approach:
— Frequency content of the change in the transfer function
— Transform domain: Fourier transform of Fourier transformed data

— Expectation: Changes due to a change in transfer function
e Smoother = Low frequency content
e Check the energy in low and high frequencies
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Transform Domain Analysis

Case A | h, = h; | AWGN noise
CaseB | h, = h; | AWGN and impulsive noise
CaseC | h, # h; | AWGN noise
CaseD | h, # h; | AWGN and impulsive noise

e Case A - use h, to improve h,
e Case B - discard h,
¢ Case C ° replace h, with new estimate h,

e Case D = upgrade the noise variance for LMMSE, wait for

better estimates
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Transform Domain Analysis

e Compute:
Ahtp = DFT (|ha| — |hy|)

e Low and high frequency metrics, £ = 20:

jcr_‘ i\rrj(2+fc_l
TF = Z Ahtp(i)[*, uE = Z Aho (i)
— i=N /2
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Fig. 14 TD analysis for three random channels using LMMSE estimator. 60
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Fig. 15 Low frequency metric for Cases A-D.
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Transform Domain Analysis

.............................................................................
.........................................................................

I . ' JJ w | .
r ,ﬁa 4 ,ﬁ;‘wn a}{w éﬁwf%l u;fM w;_] m W{\ r;',.m f grbé

F
107 e e A
_______________________ CESEA
ZZZZ:ZZ_Eﬁ::::ﬁ_EZZZZZZZEﬁ|ZZZZﬁZEZ:ﬁZ']ZZE.ZZZZZZ_EZﬁZZZﬁ_EZZZﬁ — — —CaseB ||

100 200 300 400 500 600 700 800 g00 1000
Channel index

Fig. 16 High frequency metric for Cases A-D.
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Proposed CE Scheme

e Exploit TD analysis
e Low overhead, pilots wide apart

e Goal:
— Keep estimation overhead low
— Robust to LPTV channel and impulsive noise

— Switch between various schemes
¢ Unlike conventional schemes
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CE Schemes for Comparison

SCHEME #

Description

Scheme A

Block-type pilots.

Scheme B

Decision directed.

Scheme C

Comb-type pilots, and interpolation.

Scheme D

Discarding the current estimate based on TD analysis.

Scheme E

Comb-type pilots, decisions based on current estimate,

recompite estimate based on decisions.

Table 1. CE schemes considered.
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Performance Analysis

CASE # Scheme A | Scheme B | Scheme C | Scheme D | Scheme E
Case A - [NMMSE,, ] -47.32 -47.12 -42.04 N/A -42.70
Case A - Bgavg/ Ny N/A 0.61 /256 | 1.51 /229 N/A 1.51 / 229
Case B - :NI".II\ISEH.;E] -30.96 -31.7% -26.68 -42.04 -29.93
Case B - Eg g/ Ny N/A 27.97 / 256 | 43.15 / 229 | 25.77 / 229 | 43.15 / 229
Case C - [NMMSE,y] -47.35 -21.03 -42.02 N/A -42.74
Case C - Ey avg/ Ny N/A 192.92 / 256 | 1.54 / 229 N/A 1.54 / 229
Case D - [NMMSE.,] -30.99 -20.63 -30.10 N/A -29.89
Case D - Eg avg/Na N/A 192.53 / 256 | 43.28 / 229 N/A 43.28 [/ 229

Table 2. Performance
analysis.

Fig. 17. Proposed

scheme.

'
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Key Points

e Incline-type pilot geometry
— Reduce interpolation error
e TD analysis
— Change in transfer function in low frequencies
— Impulsive noise in all frequencies
e Pilots placed widely apart
— Low estimation overhead
e Robust CE

— Switch between various CE schemes
— Based on TD analysis
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Future Research Ideas

o Interdependency of bit loading and CE
— Performance evaluation

e Advanced TD analysis metrics for various noise models

e TD analysis applied to decision-directed schemes
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Conclusion

e A complete solution for two major problems for BB PLC

— Bit and power allocation for LPTV channels
e Optimal and sub-optimal schemes developed
e Suitable for devices in IH domain of SG
e Significant improvements in throughput

— Channel estimation for LPTV channels
e Incline type pilot arrangement for interpolation error reduction
e Transform domain analysis for impulsive noise mitigation
e Robust CE with low overhead
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Thank you for listening!

Questions?
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