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Outline of this Presentation 

• Introduction to Power line communication (PLC) 

– Broadband (BB) PLC channel 

• Linear Periodically Time Varying (LPTV) channel and impulsive noise 

• System Model 

– LPTV Channel modeling and  OFDM 

• Bit and power allocation        

– Optimal and reduced complexity schemes 

• Channel estimation (CE) 

– Pilot-based CE: pilot geometry 

– Impulsive noise mitigation – transform domain (TD) analysis 

– Robust CE based on TD analysis with low overhead 

• Conclusion 
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Outline of this Presentation 

• Introduction to Power line communication (PLC) 

– Broadband (BB) PLC channel 

• Linear Periodically Time Varying (LPTV) channel and impulsive noise 

• System Model 

– LPTV Channel modeling and  OFDM 

• Bit and power allocation       brief review 

– Optimal and reduced complexity schemes 

• Channel estimation (CE)       new! 

– Pilot-based CE: pilot geometry 

– Impulsive noise mitigation – transform domain (TD) analysis 

– Robust CE based on TD analysis with low overhead 

• Conclusion 
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Brief History of PLC 

• Back to early 20th century 

– Switching in substations, metering and basic control 

• Gained momentum after 1980s 

– Especially after 1990s 

• Power lines 

High voltage, > 100 kV 

Medium voltage, 1 – 100 kV 

Low voltage, < 1 kV   

• Most research 

• Easy access to network in most buildings 

• Interest from utility companies: load management, automatic metering 

• Disaster recovery 
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Power Line Communication (PLC) 

• A topic of continued interest 

– Allows dual use of existing power line infrastructure 

– Economic, since no additional cost for cable installation is required 
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Power Line Communication (PLC) 

• A topic of continued interest 

– Allows dual use of existing power line infrastructure 

– Economic, since no additional cost for cable installation is required 

• PLC applications 

– Broadband (BB) distribution over power lines (BPL) 

• Internet access through power lines 

– Automatic metering infrastructure (AMI) 

– Smart Grid (SG) infrastructure 

• PLC technology 

 Ultra narrow band (UNB): 0.3 – 3 kHz. frequency band 

 Narrowband (NB):  3 – 500 kHz. frequency band 

 Broadband (BB): 1.8 – 250 MHz. frequency band 
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BB PLC 

• Applications in the in-home (IH) domain of SG 

– Collection and distribution of data on energy consumption 

– Demand response and management programs 

– Dynamic pricing and flexible power control of appliances 

– Communication 

• Plug-in Electric Vehicles (PEV) and their charging stations 

Fig.2 SG home [4] 
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BB PLC 

• Design criteria for devices targeting IH domain: 

Low power consumption 

Reduced complexity, large quantities to be deployed 

• BB PLC standards 

– IEEE 1901 

– ITU-T G.hn 

– HomePlug Green PHY (HPGP) 

 

Fig.2 SG home [4] 
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BB PLC Channel Characteristics 

• Linear periodically time varying (LPTV) channel 

– Due to time-varying impedances of the electrical devices 
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• Due to devices with two separate impedances 

– Ex: low power lamps and light dimmers 
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Broadband PLC Channel Characteristics 

• Linear periodically time varying (LPTV) channel 

– Due to time-varying impedances of the electrical devices 

– Commuted channel 

• Due to devices with two separate impedances 

– Ex: low power lamps and light dimmers 

• Alternates sharply between high and low values 

– Harmonic channel 

• Due to devices with smooth variation in impedances 

– Ex: monitors and microwave ovens 

• Results in a combination of several transfer functions 

– With progressive variation 
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Broadband PLC Channel Characteristics 

Fig. 3. (a) Commuted and (b) harmonic channels 

• Each transfer function 
is a realization of the 
channel for a small 
portion of the AC mains 
cycle 

• The transfer function 
pattern repeats itself for 
the following AC mains 
cycles for a certain 
period of time 
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BB PLC Channel Characteristics 

• Linear periodically time varying (LPTV) channel 

– Due to time-varying impedances of the electrical devices 

– Commuted channel 

• Due to devices with two separate impedances 

– Ex: low power lamps and light dimmers 

• Alternates sharply between high and low values 

– Harmonic channel 

• Due to devices with smooth variation in impedances 

– Ex: monitors and microwave ovens 

• Results in a combination of several transfer functions 

– With progressive variation 

• Impulsive noise 

– Due to switching events in the power line network 

– Much stronger than background noise, with short duration 
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Problem Statement 

• Conventional bit loading algorithms 

– Simplistic adaptation 

– Relative variation over time 

– Not optimal 

– LPTV-aware bit loading 
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Problem Statement 

• Conventional bit loading algorithms 

– Simplistic adaptation 

– Relative variation over time 

– Not optimal 

– LPTV-aware bit loading 

• Conventional CE schemes 

– Lots of channels to estimate! 

– Pilot-based 

• Estimation overhead 

• Interpolation error 

– Decision-directed 

• Abrupt changes in channel and noise 

• Channel tracking 

– LPTV-aware, robust, and low overhead CE  
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LPTV Channel Model 

• Channel model in [1] is used 

– Generates realistic channel realizations 

– Based on a simplified topology 

– ZG and ZL: transmitter and receiver impedances 

– Z1…Z3: loads connected to the power line 

– L1…L4, and S1…S3: length parameters for different topologies 

 

Fig. 4 Network topology used for the 
channel model [1, Fig. 1] 
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LPTV Channel Model 

• AC mains cycle is divided into M microslots in time 

– Microslots are used for adaptation to the channel 

– Each microslot has a distinct transfer function Hj(f) 

– j ∈ {0,1,…,M-1}, where M = 50 

• Orthogonal Frequency Division Multiplexing (OFDM) 

– In each microslot, spectrum is divided into N subchannels 

– We choose N = 256 subchannels 

– Hj,i(f) for jth microslot, ith subchannel, where i ∈ {0,1,…,N-1} 

 



04/21/2014 

24 

Channel Parameters 

• Excursion parameter:  

– Strength of the LPTV behavior 

– For i-th subchannel of j-th microslot 

 

 

 

–          is the lowest of all transfer functions for subchannel i 

–         : average of        values – in dB – over all subchannels and 
microslots 

 • Average attenuation 
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OFDM System 

• Available spectrum is divided into many subchannels 

– Channel response is assumed to be flat in each subchannel 

– One tap simple equalizer at each subchannel 

– Deals with highly frequency selective channels 

 Fig. 5. Illustration of an OFDM system for PLC 
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OFDM System 

• i-th subchannel QAM signal 

   where 

, 

• Received signal 
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OFDM System 

• Receiver basis functions: 

, 

• Received signal vector: 

• Reverse operation at receiver: 
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OFDM System 

• Receiver basis functions: 

, 

• Received signal vector: 

• Reverse operation at receiver: 

 

    2N matched filters 

needed to implement! 
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OFDM System 

• Receiver basis functions: 

, 

• Received signal vector: 

• Reverse operation at receiver: 

 

    2N matched filters 

needed to implement! 

 

    DFT to implement 

    modulation and  

    demodulation 
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Bit Loading Research (Review) 

• Goal: develop optimal and reduced complexity mechanisms 

– For bit and power allocation 

   1) Increase throughput  reduce power consumption 

• Optimal bit and power allocation  

   2) Reduce complexity  

• Mechanisms to reduce complexity of the proposed optimal bit loading 

• Considered bit loading schemes 

   1) Non-adaptation 

   2) Adaptation 
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Bit Loading Research (Review) 

• Goal: develop optimal and reduced complexity mechanisms 

– For bit and power allocation 

   1) Increase throughput  reduce power consumption 

• Optimal bit and power allocation  

   2) Reduce complexity  

• Mechanisms to reduce complexity of the proposed optima bit loading 

• Considered bit loading schemes 

   1) Non-adaptation 

   2) Adaptation 

   3) Optimal LPTV-aware  

   4) Reduced complexity LPTV-aware (sub-optimal, practical) 
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Bit Loading 

• Water filling approach 

– Optimal to maximize the capacity for band-limited channels 

– Allows non-integer values for bits, not practical 

 

• Greedy approach 

– Optimal for integer bit loading   
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Bit Loading 

• Greedy approach 

– Optimal for integer bit loading 

– Maximize:  

 

 

 

– Subject to:    
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Bit Loading 

• Optimality of the greedy algorithm 

– Due to the matroid structure of the optimization problem 

– Searching for the maximal minimum-weight member of a matroid 

• Let S be the set of all possible (k,i) pairs 

– (k,i) stands for k-th bit in the i-th subchannel 

– k does not exceed a certain maximum bi
max  

– Let J be collection of all subsets of S for which: 

• Number of elements in each subset is less than c, the cardinality  

• Each J represents a particular bit allocation pattern 

• Total transmission less than c 

– Weight of each element (k,i): excess energy to transmit k-th bit 

• Results in bit allocation pattern with minimum energy for a given c 
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Bit Loading 

• In the context of LPTV channels, for j-th microslot with  

 

 

 

• Subject to: 

 

 

 

 

 

• Weight function: excess power required for k-th bit 
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Weight Function 

 Fig. 6. Strictly increasing concave rate function illustrated as a 
function of overall SNR with ideal case of no SNR-gap. 
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Bit Loading 

• Greedy algorithm 

– Iterative fashion 

– least amount of power to transmit an additional bit 

• Analogy: maximize the value of the knapsack: 

– Each box $1 value, different weights 

– Knapsack can only carry certain weight 

– Maximize number of items 
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Bit Loading 
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LPTV-aware Bit Loading 

• Question: How can we exploit LPTV channel information 
further? 

– The success of water filling and greedy approaches 

• Favor subchannels with less attenuation 

– Simplistic adaptation 

• Greedy approach only within microslot transfer function 

• Does not consider relative variation of the microslot transfer functions 

• Regards each microslot equal in power distribution 

– LPTV-aware 

• Allow different power levels for microslots 

• Maintain the average power to be equal to simplistic adaptation 

• Aggregate two-dimensional          into a combined transfer function 
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LPTV-aware Bit Loading 

• Maximize: 

 

 

 

• Subject to: 

 

 

 

 

– Total power constraint 

– Combined transfer function: bit loading across microslots 

– Similar matroid structure as the single transfer function case 

– Greedy approach for optimal solution 
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LPTV-aware Bit Loading 

Simplistic adaptation 

LPTV-aware 
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Performance Analysis 

– Increase factor >1 

– Optimal 

– Ch 6, below -88 
dBm/Hz 

• No transmission 
for simplistic 
adaptation 

 

 Fig. 7. Increase in raw data 
rate due to the optimal LPTV-
aware bit loading compared to 
the simplistic adaptation 
scheme for commuted and 
harmonic channels 
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Performance Analysis 

– Up to 2 dB excess 
power  

– 5 % improvement 

– Less variation and 
gain for higher 
transmit signal levels 

 

 Fig. 8. Resultant microslot 
transmit signal PSD levels for 
Channel 5, with -75 dBm/Hz 
average transmit signal PSD 
over one AC mains cycle, for 
the optimal LPTV-aware bit 
loading. 
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Energy Efficiency 

– Energy saving 

– SG applications 

– Reduced power levels 

• More efficient 

• More improvement due 
to LPTV-aware bit 
loading 

• Reduced interference 

• Reduced encoding 
complexity and tone 
maps 

• Reduced data rate 

– Power saving in standards 

– PAPR analysis 

 
 Fig. 9. Energy per one bit transmission for the 

optimal LPTV-aware bit loading scheme in 
commuted and harmonic channels 
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Reduced Complexity LPTV-aware Bit Loading 

• LPTV-aware bit loading 

– Increased system complexity 

– Works on a combined transfer function of size MN 

• Ex: M = 50, N = 256, MN = 12800 

• Reduced complexity 

– First, find out microslot power levels Pj  

– Initially, works on a data set of size M 

– Once Pj is stored, same complexity as the simplistic adaptation 
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Reduced Complexity LPTV-aware Bit Loading 

• In order to find out Pj  

– Represent transfer function for the j-th microslot  

– By a single value 

• Maximum magnitude value, magnitude mean, or a weighted sum 

• Average capacity for a given transmit signal PSD 

– Scale power to allocate to M microslots accordingly 

– Run greedy bit loading algorithm 

• With    and scaled power as inputs 

• Normalize to eliminate rounding errors 

• Power Clipping 

– To eliminate peak power levels 

– Not needed in the reduced power levels 

– Clip excess power and distribute to other microslots 

• Favoring the ones with better channel conditions 

 

 



04/21/2014 

47 

Reduced Complexity with Power Clipping 

– Sub-optimal scheme 

– Very close to the 
optimal scheme 

– Maximum magnitude 
values used 

• Good for reduced 
power levels 

– Power clipping 

• not needed for 
reduced power levels 

 
 Fig. 9. Raw data rate for the sub-

optimal reduced complexity LPTV-
aware bit loading with power 
clipping, and the optimal LPTV-
aware bit loading schemes in 
commuted and harmonic 
channels 
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 Key Points 

• Greedy type bit allocation 

– Optimal when combined transfer function  

– Average power constraint over one AC mains cycle used 

• LPTV-aware bit loading 

– Maximizes throughput over one AC mains cycle 

– Outperforms simplistic adaptation  

• Reduced power levels 

– More energy efficient 

– More improvement due to LPTV-aware bit loading 

• Complexity reduction 

– Using representative values 

– Maintain high improvements in bit loading 

– Relevant to Broadband PLC standards power saving mechanisms 

• Ideas applicable to other algorithms 
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Channel Estimation (CE) 

• Must be done prior to bit loading 

• LPTV channel CE challenges 

– LPTV channel 

– Impulsive noise 

• Pilot-based (data-aided, supervised, trained) CE 

– High estimation overhead 

– Interpolation error 

• Decision-directed CE 

– Rely on decisions, low overhead 

– Abrupt changes in channel and noise 

• Goal:  

1) Pilot-based CE  Reduce interpolation error 

2) Develop a robust CE scheme with low estimation overhead 
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OFDM Channel Estimation  

• LS and LMMSE estimators: 

• Practical considerations 

– Complexity 

– Noise and channel statistics  Effect on performance 
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OFDM Channel Estimation  

 Fig. 10. LS and LMMSE estimates for a single channel  
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Pilot Based CE 

• Block type 

– All pilots for one AC mains cycle 

– High overhead  

• Comb type 

– Reduced overhead 

– Better channel tracking capability with same overhead 

– Interpolation error for non-pilot locations 

• Incline type 

– Pilot positions shifted each time 

– Reduction in interpolation error 

– More accurate channel estimation for the most part 
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Pilot Geometry 

      Fig. 11. Different types of pilot arrangement: (a) block-type pilots; (b) comb-type pilots; 
(c) comb-type pilots where pilots are placed widely apart; (d) incline-type pilots 
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Interpolation Error 

Frequency  

index n0L (n0+1)L (n0+2)L 

H n0L 

n0L 

i0,int 

i0 

i0,noise 

Hi Hi 

e 

e 

e 

      Fig. 12. Decomposition of interpolation error [22, Fig. 3] 
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Pilot-based CE Schemes 

• For a communication channel that remains the same for L symbols:  

– Linear and cubic interpolation for each scheme 

 

Scheme A Comb-type Pilot estimates 
averaged first 

One time 
interpolation  

Scheme B Comb-type Interpolation 
done at each 
OFDM symbol 

Interpolated 
values 
averaged 

Scheme C Incline-type           - Pilot estimates 
combined 

Scheme D Incline-type Interpolation 
done at each 
OFDM symbol 

Interpolated 
values 
averaged 

Scheme E Block-type           -           - 
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Channel Estimation Schemes 

• LMMSE  >  LS 

• Cubic interpolation  > 
linear interpolation 

• Scheme C ~ Scheme E 

– Better channel tracking 

• Scheme D > Scheme A-
B for the most part 

• Scheme D > Scheme E 
for the most part 

 

 

 
 Fig. 13. Normalized mean 

square error using linear 
interpolation, L = 5. 
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Transform Domain Analysis 

• Impulsive noise mitigation 

– Present in the power line due to switching events 

– Very poor estimates in its presence 

• Question: Can the changes in the channel estimate identified? 

– Due to a change in the transfer function 

– Due to the presence of impulsive noise 

• Approach: 

– Frequency content of the change in the transfer function 

– Transform domain: Fourier transform of Fourier transformed data 

– Expectation: Changes due to a change in transfer function 

• Smoother  Low frequency content 

• Check the energy in low and high frequencies 
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Transform Domain Analysis 

Case A h2 = h1 AWGN noise 

Case B h2 = h1 AWGN and impulsive noise 

Case C h2 ≠ h1 AWGN noise 

Case D h2 ≠ h1 AWGN and impulsive noise 

• Case A  use ĥ2 to improve ĥ1  

• Case B  discard ĥ2  

• Case C  replace ĥ1 with new estimate ĥ2  

• Case D  upgrade the noise variance for LMMSE, wait for 

better estimates 
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Transform Domain Analysis 

• Compute: 

 

 

• Low and high frequency metrics, fc = 20: 
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Transform Domain Analysis 

 Fig. 14 TD analysis for three random channels using LMMSE estimator. 
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Transform Domain Analysis 

 Fig. 15 Low frequency metric for Cases A–D. 
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Transform Domain Analysis 

 Fig. 16 High frequency metric for Cases A–D. 
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Proposed CE Scheme 

• Exploit TD analysis 

• Low overhead, pilots wide apart 

 

• Goal:  

– Keep estimation overhead low 

– Robust to LPTV channel and impulsive noise 

– Switch between various schemes 

• Unlike conventional schemes 
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CE Schemes for Comparison 

 Table 1. CE schemes considered. 



04/21/2014 

65 

Performance Analysis 

 Table 2. Performance 
analysis. 

 Fig. 17. Proposed 
scheme. 
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Key Points 

• Incline-type pilot geometry  

– Reduce interpolation error 

• TD analysis  

– Change in transfer function in low frequencies 

– Impulsive noise in all frequencies 

• Pilots placed widely apart 

– Low estimation overhead 

• Robust CE 

– Switch between various CE schemes 

– Based on TD analysis 
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Future Research Ideas 

• Interdependency of bit loading and CE 

– Performance evaluation 

 

• Advanced TD analysis metrics for various noise models 

 

• TD analysis applied to decision-directed schemes 
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Conclusion 

• A complete solution for two major problems for BB PLC 

 

 

– Bit and power allocation for LPTV channels 

• Optimal and sub-optimal schemes developed 

• Suitable for devices in IH domain of SG 

• Significant improvements in throughput 

 

 

– Channel estimation for LPTV channels  

• Incline type pilot arrangement for interpolation error reduction 

• Transform domain analysis for impulsive noise mitigation 

• Robust CE with low overhead 
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