#### Master's Thesis

A Dual-Resonant Microstrip Antenna for UHF RFID in the Cold Chain Using Corrugated Fiberboard as a Substrate

Mutharasu Sivakumar

Committee,
Dr. Daniel Deavours (Chair-person)
Dr. Kenneth Demarest
Dr. James Stiles



# Food Safety

- US GAO 2007 report on food safety [1]
  - 76 million people contract food-borne illness
  - 325,000 require hospitalization
  - 5000 die
- Caused by consumption of contaminated food
- Efficient recall of contaminated food is necessary
- State of recall efficiency in 2004 36% to 38% of contaminated food recalled
- Passive UHF RFID has been identified as a technology that increases visibility in the cold chain [2]



#### Introduction to Passive UHF RFID

#### · Why?

- · No line of sight
- No proximity required
- · Cheap
- Authentication
- · How?
  - Reader
  - Tag
  - Backscatter

















#### Limitations of passive UHF RFID in Cold Chain

- Products in cold chain have high water content
- Corrugated fiberboard is hygroscopic
- Water content varies with change in temperature and humidity
- Tag antenna performance degrades in proximity to water
- It is desirable to have consistent performance to avoid near-far problem







## Microstrip Antenna

Microstrip antenna is a potential solution



- Inherent ground plane provides isolation
- · Use in supply chain limited by thickness and cost
- Using corrugated fiberboard as the antenna substrate solves thickness limitations
- Using a completely planar antenna solves cost limitations



## Microstrip Antenna Challenges

- Corrugated cardboard is hygroscopic
- Water content changes with temperature and humidity variations

Water content in corrugated fiberboard [4]

| Temp. | 40% RH                                        | 90% RH                                         |  |
|-------|-----------------------------------------------|------------------------------------------------|--|
| 1° C  | 8 g/100g (Sorption)<br>10 g/100g (Desorption) | 16 g/100g (Sorption)<br>18 g/100g (Desorption) |  |
| 40° C | 6 g/100g (Sorption)<br>10 g/100g (Desorption) | 14 g/100g (Sorption)<br>18 g/100g (Desorption) |  |

#### Measured dielectric properties

| Water content (g/100g) | $\mathcal{E}_r^{}$ | tan δ |
|------------------------|--------------------|-------|
| ~0                     | 1.22               | 0.005 |
| 6.5                    | 1.28               | 0.007 |
| 10                     | 1.35               | 0.016 |
| 18                     | 1.4                | 0.027 |
| 25                     | 1.5                | 0.038 |

- Change in water content affects dielectric properties
- Microstrip antennas are usually built using materials that have stable dielectric properties



### Thesis Statement

"To build a feasible UHF RFID tag antenna for the Cold Chain that has a good consistent level of performance irrespective of change in contents of the corrugated fiberboard container and change in water content of the corrugated fiberboard"



# Microstrip Antenna Facts

 Radiation efficiency is directly proportional to width of the microstrip antenna

$$\frac{1}{\eta} = Q_r \left( \frac{1}{Q_r} + \frac{1}{Q_d} + \frac{1}{Q_c} + \frac{1}{Q_{sw}} \right)$$

$$Q_r = \frac{2\pi f W_{es}}{P}$$

 $W_{es} \propto width, \quad P_r \propto width^2$ 

 Resonant frequency is inversely proportional to square root of the relative permittivity

$$f_o \propto \frac{1}{\sqrt{\mathcal{E}_r}}$$

# Microstrip Antenna Facts



- Patch dimensions
  114mmX20mm
- Substrate dimensions
   150mmX50mmX1.62mm
- Probe fed 10mm from center
- · Polyethylene substrate







# Power Transfer Efficiency

- Chip has a complex input impedance
- Power transfer efficiency  $\tau$  is the measure of impedance mismatch loss [5]
- T is plotted in a power wave smith chart



$$\tau = \frac{4R_c R_a}{\left|Z_c + Z_a\right|^2}, \quad 0 \le \tau \le 1.$$

$$s = \frac{Z_a - Z_c^*}{Z_a + Z_c}, \quad 0 \le |s|^2 \le 1.$$

$$\tau + |s|^2 = 1$$

$$\hat{z}_a = \frac{R_a}{R_c} + j \frac{X_a + X_c}{R_c}$$

$$\hat{z}_a = \frac{1+s}{1-s}$$

# Design Constraint

Performance of a tag limited by realized gain  $G_R$ 

$$G_R = D\eta\tau$$

- Directivity is fairly constant with variations in dielectric properties
- Radiation efficiency and power transfer efficiency change with variations in dielectric properties
- Design constraint formally defined as

$$\eta(w)\tau(w) \ge 0.9\eta(25g/100g), \quad 0g/100g \le w \le 25g/100g$$



# Proposed Antenna Design



$$f_o \propto \frac{1}{\sqrt{\mathcal{E}_r}}$$

 $\eta \propto width$ 

| Region 1 | $f < f_1$       | $\angle Z_{A1} \approx 90^{\circ}$  | $\angle Z_{A2} \approx 90^{\circ}$  |
|----------|-----------------|-------------------------------------|-------------------------------------|
| Region 2 | $f = f_1$       | $\angle Z_{A1} = 0^{\circ}$         | $\angle Z_{A2} \approx 90^{\circ}$  |
| Region 3 | $f_1 < f < f_2$ | $\angle Z_{A1} \approx -90^{\circ}$ | $\angle Z_{A2} \approx 90^{\circ}$  |
| Region 4 | $f = f_2$       | $\angle Z_{A1} \approx -90^{\circ}$ | $\angle Z_{A2} = 0^{\circ}$         |
| Region 5 | $f > f_2$       | $\angle Z_{A1} \approx -90^{\circ}$ | $\angle Z_{A2} \approx -90^{\circ}$ |



## Surface Currents



Surface Currents @ 18g/100g



Surface Currents @ 0g/100g



Surface Currents @ 10g/100g



## Validation

- Simulated
  - Finite element tool Ansoft HFSS v 10.1
  - · Obtained impedance and realized gain
- Measured impedance
  - · In a network analyzer
  - Used a chip balun mounted on a PCB to probe the antenna
- Measured realized gain
  - In-direct method
  - Used Samsys MP9320 UHF RFID reader

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2 \tau \rho$$

$$G_R = D \eta \tau$$

$$G_r = D\eta$$

$$G_R = \frac{P_r}{P_t G_t} \left(\frac{4\pi R}{\lambda}\right)^2 \frac{1}{\rho}$$



### Simulated and Measured Impedance

#### Simulated Impedance



#### Measured Impedance



Center of the smith chart represents a complex impedance of 35+j110



#### Simulated and Measured Performance

#### Simulated antenna parameters



#### Measured Realized Gain



Simulated gain follows our design constraint

$$\eta(w)\tau(w) \ge 0.9\eta(25g/100g), \quad 0g/100g \le w \le 25g/100g$$

- Good agreement between measured and simulated realized gain
- Gain of AD-612 Tag was measured and is plotted for comparison



## Measured Radiation Pattern



- Radiation pattern of the proposed antenna was measured in room temperature conditions at 915 MHz
- Figure shows directivity pattern with peak directivity normalized to 0 dB



#### Conclusion

- The proposed antenna design was simulated and validated using impedance and realized gain measurements
- The proposed antenna design meets the performance requirements of an ideal tag for cold chain applications
- The proposed antenna design meets the thickness and cost constraints for cold chain applications



### Future Work

- Efficiency at the higher water contents can be increased further by compromising width
- Smaller form factor can be achieved by compromising performance equally over various water content
- More rigorous dielectric measurement of corrugated fiberboard at various temperature conditions
- More rigorous dielectric measurement of corrugated fiberboard from various manufacturers



### References

- 1. Federal Oversight of Food Safety: High-Risk Designation Can Bring Attention to Limitations in the Government's Food Recall Programs <a href="http://www.gao.gov/new.items/d07785t.pdf">http://www.gao.gov/new.items/d07785t.pdf</a> April 24, 2007.
- 2. Keeping Fresh Foods Fresh: RFID Journal, <a href="http://www.rfidjournal.com/magazine/article/2137">http://www.rfidjournal.com/magazine/article/2137</a>.
- 3. Supreetha Rao Aroor and Daniel D. Deavours. Evaluation of the State of Passive UHF RFID: An Experimental Approach. *IEEE Systems Journal*, to appear.
- 4. Marcondes J., "Corrugated fibreboard in modified atmospheres: moisture sorption/desorption and shock conditioning," Packaging Technology and Science, vol.9, no.2, pp.87-98, Dec. 1996.
- 5. K. Kurokawa, "Power waves and the scattering matrix," IEEE Transactions on Microwave Theory and Techiques, vol. MTT-13, no. 3, pp. 194-202, Mar. 1965.



# Thank you!

Questions?

