

CPM-SC-IFDMA–A Power Efficient Transmission Scheme for Uplink LTE

Raina Rahman

4/7/2011

Introduction

Motivation

- LTE (Long Term Evolution)
 - » Represents the next major standard in mobile broadband technology
- Currently specified transmission scheme for uplink LTE
 - » QPSK modulated Single Carrier FDMA with localized subcarrier mapping (QPSK-LFDMA)
 - Transmitted signal has a high PAPR (Peak-to-Average-Power-Ratio)
- High PAPR reduces the efficiency of the transmitter power amplifier
 - Increases the cost of the mobile devices

Proposed Scheme

- Proposed transmission scheme:
 - » CPM-SC-IFDMA
 - Combines the key advantages of CPM (Continuous Phase Modulation) and SC-IFDMA (Single Carrier Frequency Division Multiple Access with Interleaved Subcarrier Mapping)
 - » Input symbols are CPM modulated
 - » Samples from the CPM waveform are input to the SC-IFDMA system for multiple access
- CPM-SC-IFDMA is a highly power efficient transmission scheme
 - » Transmitted signal has constant amplitude
 - » Very Low PAPR
 - » Makes an excellent choice for uplink LTE

Contributions of this Work

- In this work:
 - Comparison between CPM-SC-IFDMA and CC-QPSK-LFDMA (QPSK-LFDMA scheme combined with convolutional coding)
- Performance regarding power efficiency
 - » PAPR plots are compared
- Error performance
 - » BER analyzed in LTE specified channels
 - » Raw BER and net BER (BER with compensating for the power efficiency loss) are plotted

• CPM-SC-IFDMA has superior performance relative to CC-QPSK-LFDMA by upto 3.8 dB

Outline

- Introduction
- Background
- Power Efficiency in Mobile Communication
- Drawbacks of LTE Specified Scheme
- Advantages of CPM-SC-IFDMA
- Properties of the Selected SC-FDMA Schemes and Methodology for Selection
- CPM-SC-IFDMA Signal Model
- Simulation
- Conclusion and Future Work

Background

- Overview of LTE
- SC-FDMA System
- CPM Basics

Overview of LTE

- LTE (Long Term Evolution)
 - » A new, high performance air interface for mobile broadband communication
 - » Developed by 3GPP and first specified in Release 8
- LTE is expected to become the dominant technology for the next generation of mobile broadband
- Several of the world's largest mobile operators have already started initial deployments of LTE

Background

- Overview of LTE
- SC-FDMA System
- CPM Basics

SC-FDMA System Configuration

• SC-FDMA : A variant of OFDMA

Comparison with OFDMA

Subcarrier Mapping

- Localized SC-FDMA (LFDMA)
 - » DFT outputs are
 mapped to a set of
 adjacent subcarriers
- Interleaved SC-FDMA (IFDMA)
 - » Subcarriers are equally spaced across the entire bandwidth

Transmitted Signal

- Transmitted time domain signal
 - » IFDMA: contains only the actual input symbols, with a phase rotation and scaling factor
 - » LFDMA: contains both the complex weighted sums and the actual input symbols

Background

- Overview of LTE
- SC-FDMA System
- CPM Basics

CPM Basics

- Continuous Phase Modulation (CPM) :
 - » A phase modulation scheme
 - » Phase is varied in a continuous manner
 - » No variation in signal amplitude
 - » Higher bandwidth efficiency than other phase modulation schemes such as QPSK
 - » Power efficiency because of constant envelope

CPM Basics

• CPM signals are defined by :

 $s(t; \boldsymbol{\beta}) \triangleq e^{j\varphi(t; \boldsymbol{\beta})} \cdots \cdots (1)$

- » discrete-time symbol sequence : $\boldsymbol{\beta} \triangleq \{\beta_i\}$
- » M-ary symbols
- » Modulation index : h
- Phase :

$$\varphi(t;\beta) \triangleq 2\pi h \sum_{i} \beta_{i} q(t-iT) \cdots (2)$$

$$q(t) \triangleq \begin{cases} 0, & t < 0 \\ \int_0^t g(\tau) d\tau, & 0 \le t \le LT \\ \frac{1}{2}, & t \ge LT \end{cases}$$

- » Frequency pulse : $g(\tau)$
- » Length of $g(\tau) : L$

Power Efficiency in Mobile Communication

Power Efficiency in Mobile Communication

- Power efficiency
 - » A key concern in mobile communication field
- Poor power efficiency
 - » Shorter battery life
 - » Increased cost of the mobile device
 - » Reduced coverage
- Improving power efficiency is more important for uplink
- Uplink transmission:
 - » Signal transmitted from mobile to base station
 - » Transmitter is placed in the handheld mobile device which has limited power resources

KU KANSAS

Power Efficiency in Mobile Communication

- PAPR (Peak-to-Average-Power-Ratio)
 - » An important metric for measuring the power efficiency
- If the transmitted signal has a high PAPR
 - » Average input power in the transmitter power amplifier must be reduced to operate in the linear region
 - » Termed as: Input back-off (IB)
 - » Without input back-off
 - Non-linear distortion occurs
- Amount of Input back-off depends on the PAPR
- High PAPR reduces the efficiency of the power amplifier
 Reducing the PAPR is an important design goal

KU KANSAS

Drawbacks of LTE Specified Schemes

- Currently specified in uplink LTE:
 - » Modulation method: QPSK, 16-QAM and 64-QAM
 - Multiple access scheme: SC-FDMA with localized subcarrier mapping (LFDMA)
- QAM:
 - » Amplitude variations leads to high PAPR
- QPSK:
 - » Phase variation can be as large as $\pm \pi$
 - » Envelope may go to zero momentarily
 - » Large envelope fluctuations cause high PAPR
- LFDMA: High envelope fluctuations cause a large PAPR

Advantages of CPM-SC-IFDMA

- CPM Schemes
 - » Continuous Phase and constant amplitude
 - » Well known for power and bandwidth efficiency
- SC-IFDMA
 - » Transmitted signal consists of scaled and rotated version of original input symbols
 - » Amplitude of the transmitted signal determined by amplitude of the original input symbols
- Combining CPM with SC-IFDMA
 - » Constant amplitude CPM samples are the input to the SC-IFDMA system
 - » Transmitted signal has constant amplitude and very low PAPR

Properties of the Selected SC-FDMA Schemes and Methodology for Selection

KU KANSAS

Properties of the SC-FDMA schemes

CPM-SC-IFDMA

» Scheme 1

 Alphabet size, M = 4, Raised Cosine frequency pulse with length, L = 3, modulation index, h = 5/16, and minimum squared Euclidean distance, d²_{min} = 1.480;

» Scheme 2

Alphabet size, M = 4, Gaussian frequency pulse with BT = 0.25, pulse length, L = 3, modulation index, h = 5/8, and minimum squared Euclidean distance, d²_{min} = 4.693;

» Sampling rate: N=2 samples per symbol

• CC-QPSK-LFDMA

- » QPSK-LFDMA combined with Convolutional coding
- » Convolutional code: rate ½, constraint length 5, octal generator polynomial [23 35]

Methodology for Selection

- QPSK-LFDMA: LTE specified transmission scheme
- Combined with convolutional encoding to introduces memory so that CC-QPSK-LFDMA is comparable to CPM-SC-IFDMA
- All three SC-FDMA schemes have comparable BW and similar complexities
- CC-QPSK-LFDMA scheme:
 - » Rate ½ convolutional coding and QPSK modulation makes information rate 1 bit/symbol
 - » Constraint length of 5 makes memory length 4 bits
- CPM-SC-IFDMA Scheme 1 and Scheme 2:
 - » Alphabet size, M=4 and sampling rate, N=2 samples/symbol makes Information rate 1 bit/sample
 - » L=3 makes memory length 4 bits

CPM-SC-IFDMA Signal Model

CPM-SC-IFDMA Transmitter

- A system with J users
 - » Number of symbols transmitted by a single user : P
 - » CPM waveform is sampled at : N samples/symbol
 - » Samples transmitted by a single user (FFT size), K = PN
 - » IFFT size (total no of subcarriers), $N_{total} = J \times K = JPN$
- PN CPM samples from the i_{th} user is denoted by

»
$$\mathbf{s}_{i} = [s_{i,0}, s_{i,1} \cdots \cdots s_{i,PN-1}]$$

- Each element of s_i is given by,
 - » $s_{i,l} \equiv s[l; \beta] \triangleq e^{j\phi(l;\beta)} \cdots \cdots (3)$ [the discrete-time equivalent of (1)]
- K(= PN) point DFT operation:

»
$$S_{i,k} = \sum_{l=0}^{PN-1} s_{i,l} e^{-j2\pi kl/PN} \dots (4)$$
 $[k = 0 \dots PN - 1]$

CPM-SC-IFDMA Transmitter

- Subcarrier Mapping
 - » Mapped symbols, $Y_{i,q} = \begin{cases} S_{i,k} & q = kJ + i \\ 0, & \text{otherwise} \end{cases}$ (5)
- JPN point IFFT operation:
 - » Output samples, $y_{i,l} = \frac{1}{JPN} \sum_{q=0}^{JPN-1} Y_{i,q} e^{j2\pi ql/JPN} \dots \dots (6)$
- Output time samples can be expressed as:

 - » Scaling factor 1/J
 - » Original input symbols $s_{(i,l)}$
 - » Multiplication by $e^{j2\pi \frac{il}{N_{total}}}$ represents phase rotation

CPM-SC-IFDMA Transmitter

- Cyclic Prefix (CP) is added
- Converting to continuous-time waveform by pulse shaping

$$\mathbf{x}(t) = \sum_{n=-C_pN}^{JPN-1} \mathbf{y}_{i,l} \mathbf{G}(t-\widetilde{T}) \cdots \cdots \cdots \cdots (8)$$

» Spectral Raised Cosine (SRC) pulse

$$G(t) = \frac{\sin(\pi t/\widetilde{T})}{\pi t/\widetilde{T}} \frac{\cos(\pi \alpha t/\widetilde{T})}{1 - 4\alpha^2 t^2/\widetilde{T}^2} \cdots \cdots (9)$$

- Received signal, $r(t) \xrightarrow{Sampling}$ discrete-time sequence r
- CP is discarded
- In frequency selective channels, r can be expressed as :

- » h:discrete-time channel impulse response
- » n:AWGN noise
- » y_i : sequence transmitted by the i_{th} user terminal
- JPN point DFT operation

- The i_{th} user's data is extracted
 - » $R_{i,q} = \widetilde{R}_k$ for $k = qJ + i \cdots (12)$ $[q = 0 \cdots PN 1]$
- Received signal in the frequency domain
 - - H_i: vector containing the channel coefficients corresponding to the i_{th} user
 - $H_{i,q} = \widetilde{H}_k$ for k = qJ + i [channel coefficient extraction]
 - H
 : channel response in the frequency domain

$$\mathbf{h} \xrightarrow{\mathrm{DFT}} \widetilde{\mathbf{H}}$$

- Removing the channel effect
 - » Maximal ratio combining followed by amplitude scaling

- Maximal Ratio Combining (MRC)
 - » Two-antenna based receiver structure is specified in LTE
 - » MRC is applied to combine the two received signals

- » $H_{i,1}\,$ and $H_{i,2}\,$: frequency domain coefficient vector corresponding to the two antennas
- » $R_{i,1}$ and $R_{i,2}$: frequency domain representations of the received signal via the two antennas

- Multiplication by $\mathbf{H}_{i,1}^*$ and $\mathbf{H}_{i,2}^*$:
 - » Corrects the channel phase
 - » Blends the two signals in the correct ratio
- Division by $(|\mathbf{H}_{i,1}|^2 + |\mathbf{H}_{i,2}|^2)$: Scales the amplitude
- These two steps together removes the channel effect
- Equalization is not required
- Symbol detection
 - » Viterbi Algorithm (VA)

Simulation

- PAPR Analysis
- BER Simulation

PAPR Analysis

- At 90% CDF, for $\alpha = 0$,
 - » Scheme 1 < CC-QPSK-LFDMA by 4.42 dB
 - » Scheme 2 < CC-QPSK-LFDMA by 2.64 dB
 - >> PAPR difference increases with the increase of α
- Maximum PAPR advantage
 - » 7 dB for Scheme 1
 - » 6.34 dB for Scheme 2

 α : roll-off factor of the SRC pulse

PAPR Analysis

- PAPR value
 - » A measure of the required input back-off (IB)
 - » Indicates how much power efficiency is lost
 - » Needs to be accounted for in the BER plots to make a true comparison between the BER performance of the CPM-SC-IFDMA schemes and the CC-QPSK-LFDMA scheme
- PAPR values are added to the SNR (E_b/N_0) values, plotted along the X-axis in the BER plots
- To select which PAPR values are to be added, the bandwidths are compared

Bandwidth Comparison

• Scheme 1 with $\alpha = 0.5$ and Scheme 2 with $\alpha = 0$ have similar bandwidth as CC-QPSK-LFDMA with $\alpha = 0$

Scheme	$IB_{90\%}$ [dB]	$\mathrm{IB}_{99\%}$	α
	2.14	2.34	0
CPM-SC-FDMA Scheme 1	1.67	1.84	0.5
	0.72	0.85	1
	3.92	4.35	0
CPM-SC-FDMA Scheme 2	2.81	2.96	0.5
	1.39	1.53	1
	6.56	7.22	0
CC-QPSK-LFDMA	7.12	7.83	0.5
	7.73	8.36	1

- IB_{90%} : PAPR value at 90% CDF
- IB_{99%}: PAPR value at 99% CDF

Blue: CPM-SC-IFDMA Scheme 2 Green: CC-QPSK-LFDMA

Simulation

- PAPR Analysis
- BER Simulation

LTE Channels

- LTE specification for frequency selective channels
 - » Channel parameters
 - » Delay profiles
- For this work
 - » Three frequency selective channels are selected
 - Extended Pedestrian A Channel (EPA)
 - Extended Vehicular A Channel (EVA)
 - Extended Typical Urban Channel (ETU)
- Channel Parameters of the LTE Channel Models

Model	Number of	Delay spread	Maximum excess
Model	channel taps	(r.m.s)	tap delay (span)
Extended Pedestrain A (EPA)	7	45 ns	410 ns
Extended Vehicular A (EVA)	9	357 ns	2510 ns
Extended Tyical Urban (ETU)	9	$991 \mathrm{~ns}$	5000 ns

LTE Channels

• Tapped Delay Profiles of LTE Channels

EPA Channel

EVA Channel

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

ETU Channel

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0
230	0
500	0
1600	-3.0
2300	-5.0
5000	-7.0

4/15/2011

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

Simulation Parameters

• Transmission Parameters of LTE

			\frown			
Channel Bandwidth (MHz)	1.4	3	5	10	15	20
Number of RBs	6	15	25	50	75	100
Number of occupied subcarriers	72	180	300	600	900	1200
IDFT(Tx)/DFT(Rx) size	128	256	512	1024	1536	2048
Sample rate [MHz]	1.92	3.84	7.68	15.36	23.04	30.72
Samples per slot	960	1920	3840	7680	11520	15360

• Simulation Parameters for this work

Channel Bandwidth	$5 \mathrm{~MHz}$
Number of occupied subcarriers (N_{total})	300
$IDFT/DFT$ size $(N_{IDFT/DFT})$	300
Sampling rate (f_s)	$7.68~\mathrm{MHz}$
Sample duration (T_s)	130 ns
CP duration	$4.69\mu s$ (36 samples)

Insertion of Guard band

- Guard band prevents out-of-band radiation
- In LTE,
 - » Guard band is implemented by assigning zeros to the unused subcarriers during the IFFT operation in the transmitter
- Transmission parameters specified in LTE

Channel Bandwidth (MHz)	1.4	3	5	10	15	20
Number of RBs	6	15	25	50	75	100
Number of occupied subcarriers	72	180	300	600	900	1200
IDFT(Tx)/DFT(Rx) size	128	256	512	1024	1536	2048
Sample rate [MHz]	1.92	3.84	7.68	15.36	23.04	30.72
Samples per slot	960	1920	3840	7680	11520	15360

- » IFFT size $(N_{IDFT/DFT})$ > Number of occupied subcarriers (N_{total})
- » Remaining subcarriers have zero magnitude

Insertion of Guard Band

• Time domain representation of IFDMA and LFDMA are derived assuming

IFFT size ($N_{IDFT/DFT}$) = Number of occupied subcarriers (N_{total})

 Low PAPR feature of IFDMA cannot be maintained if

N_{IDFT/DFT} > N_{total} Guard band can be inserted by moving the center of the used band to the desired distance (in frequency)

away from the next occupied channel.

Simulation Results

Target BER : 10⁻⁵

Scheme 1 < CC-QPSK-LFDMA by **3.5** dB Scheme 2 < CC-QPSK-LFDMA by **3.8** dB (after adding the $IB_{99\%}$ values) Scheme 1 < CC-QPSK-LFDMA by **2.4** dB Scheme 2 < CC-QPSK-LFDMA by **3.4** dB (after adding the $IB_{99\%}$ values)

4/15/2011

Simulation Results

Scheme 1 < CC-QPSK-LFDMA by **2.9** dB Scheme 2 < CC-QPSK-LFDMA by **2.3** dB (after adding the $IB_{99\%}$ values)

Scheme 1 < CC-QPSK-LFDMA by **0.8** dB Scheme 2 < CC-QPSK-LFDMA by **3** dB (after adding the $IB_{99\%}$ values)

4/15/2011

Conclusion and Future Work

- Summary of Results
 - » From PAPR analysis
 - power efficiency advantage for the CPM-SC-IFDMA scheme can be as high as 7 dB (at 90% CDF)
 - » From BER simulation
 - CPM-SC-IFDMA outperform the CC-QPSK-LFDMA scheme by up to 3.8 dB (at a BER of 10⁻⁵) when input back-off values are taken into consideration

When power efficiency is considered, the proposed scheme is more desirable than the current modulation-multiple access scheme specified for LTE

Conclusion and Future Work

- Future Work
 - Designing an algorithm for finding the numerically optimum
 CPM scheme that can be combined with SC-IFDMA
 - Calculating how much increase in the cell radius can be achieved by utilizing the power efficiency of CPM-SC-IFDMA
 - » Analyzing the effect of MIMO (multiple antenna in both transmitter and receiver) on the simulation results

Thank You!