A Framework for Sensor Networks with Multiple Owners

Satyasree Muralidharan
Department of Electrical Engineering & Computer Science
Master’s Thesis Defense
December 6, 2007

Committee
Dr. Victor S. Frost (Chair)
Dr. Gary J. Minden
Dr. Joseph B. Evans
Acknowledgment

• Defense Committee:
 • Dr. Victor Frost
 • Dr. Gary Minden
 • Dr. Joseph Evans

• SensorNet Team:
 • Ed Komp
 • Pradeep Mani, Andrew Boie,
 Daniel Fokum, Supriya Vasudevan,
 Jim Stevens
Outline

• Introduction
• Research Goals
• Multi-Owner Architecture
• Available Infrastructure
• Proposed Access Control Mechanism
• Prototype Implementation
• Testing and Results
• Conclusion
• Future work
• Introduction
 • Research Goals
 • Multi-Owner Architecture
 • Available Infrastructure
 • Proposed Access Control Mechanism
 • Prototype Implementation
 • Testing and Results
 • Conclusion
 • Future work
Introduction

• Current sensor network technologies involve:
 • Assets owned and maintained by multiple disparate organizations
 • Huge pool of data generation and dissemination points
 • Providing secured distribution of data is critical

• Lack
 • well defined interfaces between different component layers
 • sophisticated, reliable, robust authentication and authorization mechanisms

• A unified architecture for sensor networks was proposed at ITTC to address many of these issues.
• Introduction
• Research Goals
 • Multi-Owner Architecture
 • Available Infrastructure
 • Proposed Access Control Mechanism
 • Prototype Implementation
• Testing and Results
• Conclusion
• Future work
Research Goals

• Providing assured and controlled access to data objects is central to the architecture.
• Some of the goals in realizing this requirement were:
 • To design an access control framework to ensure right information is provided to right people at right time
 • To design a framework to enable authentication and authorization mechanisms for users from multiple organizations
 • To address the issues involved in realizing the required security functions of privacy, integrity, authentication and authorization into a usable prototype
• Introduction
• Research Goals
• **Multi-Owner Architecture**
• Available Infrastructure
• Proposed Access Control Mechanism
• Prototype Implementation
• Testing and Results
• Conclusion
• Future work
Multi-Owner Architecture
Multi-Owner Architecture - Device Layer

- Composed of all the physical sensor endpoints.
- **Generation** of sensor data.
- Consists of:
 - Sensors - hardware devices
 - Sensor nodes - computer that manages one/more sensors
 - Sensor services - programs that control the sensors attached to the node
 - Collectors - programs that collect data from these services and transport them to the repository layer for further processing.
Multi-Owner Architecture - Repository Layer

- **Storage** of sensor information.
- Essentially composed of databases:
 - Sensor Databases that store and retrieve sensor data.
 - Infrastructural databases that store other information to support the system.
Multi-Owner Architecture - Application Layer

- Provides a **unified view** of the various components of the architecture.
- Composed of:
 - Organizer - collects and transports data from the repository layer
 - Applications - programs that can be either used to talk to the Organizer to get the processed data or to the Sensor Service directly.
 - Certificate Authority - an entity that:
 - Signs the public keys of the users
 - Creates credentials for users to talk to devices
Multi-Owner Architecture - Direct Communication

• User can talk directly to a device without having to pass through this layered architecture.
• An out-of-band communication.
• Example: A situation where the user takes control over the sensors of all organizations and may wish to control them without having to talk to the organizer or the collector.
• Introduction
• Research Goals
• Multi-Owner Architecture
• **Available Infrastructure**
• Proposed Access Control Mechanism
• Prototype Implementation
• Testing and Results
• Conclusion
• Future work
Available Infrastructure

- **Ambient Computing Environment (ACE)**, a system previously implemented at ITTC, provides an infrastructure for:
 - Authentication using TLS,
 - Encryption using AES,
 - Integrity using SHA1,
 - Authorization using KeyNote Trust Management.

- It has certain limitations when applied to multi-owner architecture.
Available Infrastructure - KeyNote

- Provides a simple language for describing and implementing security policies, trust relationships and digitally-signed credentials to control potentially dangerous actions over untrusted networks.

- Terminology:
 - Assertions - Describe the conditions under which a principal authorizes actions requested by other principal.
 - Policy - one or more unsigned assertions.
 - Credential - a signed assertion. A credential can be securely transmitted over untrusted networks.
 - Action Attributes - (name, value) pairs, and the primary objects on which KeyNote assertions operate.
Available Infrastructure - Assertion Examples

POLICY:

KeyNote-version: 2
Comment: Policy assertion authorizing the administrator
Authorizer: POLICY
Licensees: "x509-base64:MIIEZzCCA.."
Conditions: (APP_DOMAIN == "ACE") -> _MAX_TRUST;

CREDENTIAL:

KeyNote-version: 2
Authorizer: "x509-base64:MIIEZzCCA9CgAw...LCSG0N2ICH"
Licensees: "x509-base64:MIIEZnb53...ighfkRT4523k"
Conditions: ((APP_DOMAIN == "ACE") &&
(time >= 1082390980610) &&
(time <= 1082390980628)) -> "true";
Signature: "sig-rsa-sha1-base64:Nt4+XIP...soP+mgjjTXWA=="
Available Infrastructure - Limitations when applied to Multi-Owner environment

Credential granularity
- Lowest level of granularity that ACE supports is method.
- But, Multi-Owner architecture involves situations requiring credentials with different levels of specificity, ranging from parameter of a method to access of group of devices in a single credential.

Limited Set of Action attributes
- ACE cannot differentiate between different service objects and their instances.
- Grouping of devices and service objects results in enormous length of credential.

Low level embedding
- Attributes in ACE are directly embedded at a low level in the program infrastructure.
- Cannot externally control, add or delete the set of action attributes.

Scope of application
- ACE was primarily designed for single domain environment.
• Introduction
• Research Goals
• Multi-Owner Architecture
• Available Infrastructure
• Proposed Access Control Mechanism
• Prototype Implementation
• Testing and Results
• Conclusion
• Future work
Proposed Access Control Mechanism

- The access control mechanism for the architecture overcomes these limitations and meets the security requirements.
- Extension of action attribute set
 - The new set extends from parameter level to groups of services/devices.
 - External control of action attributes
- **Group level** authorization achieved by Role attribute
- **Cross Domain** authentication and authorization achieved by introducing TTP and Broker
Proposed Access Control Mechanism

Core Attributes

Existing Set:

APP_DOMAIN
- Domain for which these credentials are used.

Method
- Java method name the client is attempting to execute.

Time
- Time of client's request to access the service.

Extended Set:

ServiceClassHierarchy
- Java class hierarchy path for the service performing the action.

MachineName
- The name of the machine in which the service is running.

FirstArgValue
- Specialized attribute assigned the value of the first argument supplied to the method to be executed.

Role
- Attribute identifies a general level of device control that the client must be authorized to perform an action.

ServiceID
- A unique identification for each instance of a service.
Proposed Access Control Mechanism
Classification of Action Attributes

Attributes

External

Static - Ex: ServiceID

Dynamic - None

Internal

Static - Ex: MachineName

ServiceClassHierarchy

Dynamic - Ex: Method
FirstArgValue
Role
Time
Proposed Access Control Mechanism
Action Attribute File

• External Static attributes are placed in a file and read when the service starts

• A module to verify the syntax validity of the action attribute file

• Complete control by the Organization hosting the service.

• Organization can decide on the attributes names and values.
Proposed Access Control Mechanism
Role Attribute

1. Reader – one who can retrieve information from the device
 Example: getSensorReading().
2. Writer – one who can load information on to the device
 Example: setSensorProfile(newProfile).
3. Administrator – one who can perform (almost) any action on the device.
 Supersets the role of “Reader” and “Writer”.
 Example: resetSensor().
4. No role attribute is acknowledged for the specialized action.
Proposed Access Control Mechanism

Role Attribute

• Every method will be associated to one of the four categories.
• Who decides this mapping?
 • Author of the service, on a method by method basis.
• Example:
 $$((\text{app_domain} == \text{"SensorNet"}) \&\& (\text{Provider} == \text{"ITTC"}) \&\& (\text{Time} <= \text{"115146564580"} \&\& \text{Time} >= \text{"1161465647580"}) \&\& (\text{ServiceID} == \text{"ChemicalSensor001"}) \&\& (\text{Role} == \text{"Reader"})) \rightarrow \text{\textquoteleft allow\textquoteright}$$
 → The user has access to all methods that has “Reader” role provided by this service.

• Methods which DO NOT have a role attribute associated with them, requires explicitly mentioning of the method name in a user’s credential.
• To have privileged methods that needs explicit access.
• Example:
 $$((\text{ServiceClassHierarchy} == \text{"<full-hierarchy-spec>"}) \&\& (\text{Method} == \text{"shutdown"}) \rightarrow \text{\textquoteleft allow\textquoteright}$$
Proposed Access Control Mechanism

Advantages - Expressiveness

- **Granular access** to a particular service
- Example: 1

 KeyNote-Version: 2
 Authorizer: CA
 Licensees: Alice
 Conditions:

 ((app_domain == "SensorNet") && (Time <= "1151465644580" && Time >= "1161465647580") &&
 (ServiceID == "TemperatureSensor350") && (MachineName == "sentinel.ittc.ku.edu") && (Method == "getSensorReading()")
 && (Role == "Reader")) → "allow";
 Signature: "sig-rsa-sha1-base64:XQZopw.."
Proposed Access Control Mechanism

Advantages - Expressiveness

• Access to **different services** in a single credential
• Example: 2

 KeyNote-Version: 2
 Authorizer: CA
 Licensees: Alice
 Conditions:

  ```
  (( app_domain == "SensorNet") &&
  (Time <= "115146564580" && Time >= "1161465647580") &&
  ((ServiceID == "ChemicalSensor001") && (Role == "Writer")) ||
  ((ServiceID == "SensorDatabase002") && (Role == "Reader"))
  → "allow";
  
  Signature: "sig-rsa-sha1-base64:XQZopw.."
  ```
Proposed Access Control Mechanism

Advantages - Expressiveness

• Access to **group of services** in a single credential

• Example: 3 Conditions:

 ((app_domain == “SensorNet”) &&
 (Time <= “1151465644580” && Time >= “1161465647580”) &&
 (ServiceClassHierarchy== ^.*Camera$ “) &&
 (Role == “Reader“)) → “allow“;
Proposed Access Control Mechanism

Advantages - Flexibility

- Flexibility - Add/Delete a new attribute
- Example: 4
 - Add the Provider attribute to the action attribute file

Comment: An Organizer collects sensor data from two different providers and maintains a database of his own.

Conditions:

```(( app_domain == "SensorNet" ) & & ( Provider == "EECS" ) & &
(Time <= "1151465644580" & & Time >= "1161465647580") & &
(ServiceID == "TemperatureSensorDatabase") & & (Role == "Reader") ) ->
"allow";
(( app_domain == "SensorNet" ) & & (Provider == "ITTC") & &
(Time <= "1151465644580" & & Time >= "1161465647580") & &
(ServiceID == "ProfileDatabase") & & (Role == "Reader") ) ->
"allow";
(( app_domain == "SensorNet" ) & & (Provider == "KU") & &
(Time <= "1151465644580" & & Time >= "1161465647580") & &
(ServiceID == "SensorDatabase") & & (Role == "Writer") ) ->
"allow";
```

Signature: "sig-rsa-sha1-base64:XQZopw.."
Proposed Access Control Mechanism
Cross Domain Authentication/Authorization

- Use intermediaries
 - Trusted Third Party (TTP)
 - Provide cross-domain authentication
 - Broker to provide authorization
 - Provide cross-domain authorization
Proposed Access Control Mechanism - TTP

• An entity who facilitates authentication between organizations that trust it.
• Issue public key certificates to CAs of the trusting organizations.
• Establish a Chain of Trust provided by the Public Key Infrastructure.
• Must maintain a trusted relationship with the participating organizations.
Proposed Access Control Mechanism
Chain of Trust

\{Pub_{\text{CA-OrgA}}\}K_{\text{TTP}}
\{Pub_{\text{CA-CA}}\}K_{\text{TTP}}
\{Pub_{\text{Alice}}\}K_{\text{CA- OrgA}}
\{Pub_{\text{Bob}}\}K_{\text{CA- OrgB}}

{Pub_X}K_Y denotes Public key of X is signed with Private Key of Y
Proposed Access Control Mechanism - Broker

- An entity that can issue credentials on behalf of a CA.
- Act as the "delegated CA".
- Single point of contact.
- Must maintain a trusted relationship with the participating organizations.
Proposed Access Control Mechanism
Authorization using Broker

1. Request for Credential for devices from Org-B and Org-C
2. Issue the requested credential
3. Use credentials to talk to sensor

Broker - Delegated CA for Org-B and Org-C
User Alice from Org - A
Org - B
Org - C
Certificate Authority of Organization B
Sensor Node
Certificate Authority of Organization C
Sensor Node
Trust
Trust
Trust
Proposed Access Control Mechanism Advantages

• **Scalable**
 - Broker issues only **one credential** when the user requests for access to devices from multiple organizations.

• **Controllable**
 - The organizations can decide the services that are advertised and used by the users of other organizations.
 - The CA of the organization issues credentials to the Broker only for these services, which can be delegated to users of other organization.
 - Organization has control on what services are **external** and **internal** to the organization.
Proposed Access Control Mechanism

Limitations

- Current delegation mechanism makes Broker a valid user of the system
- Broker delegates this authority as a valid user to other principals
- Some situations require separate “delegation” and “usage” rights
- Such a delegation right demands a provision of meta-credentials i.e., credential to provide other credentials
- KeyNote delegation system:
 - Does not have this provision.
 - Does not have the provision to check the validity of the credential during distribution time
 - Faulty credentials are captured during runtime.
• Introduction
• Research Goals
• Multi-Owner Architecture
• Security Requirements
• Available Infrastructure
• Proposed Access Control Mechanism
• Prototype Implementation
• Testing and Results
• Conclusion
• Future work
Prototype Implementation

- **Device Layer**
 - **Cyanose**
 - **Nose Service**
 - Load Profile: Load a new smell profile from the sensor database to the nose
 - Start Identification: Start a new identification in the nose
 - Fetch Results: Retrieve the results of the last identification from the nose.

- **IEEE 1451 Compliant**

- **Repository Layer**
 - Profile Database Service
 - Directory Service
 - Regional Database

- **Application Layer**
 - Nose Client Program
 - Nose Client Program is developed to comply with Model View Controller Paradigm
• Introduction
• Research Goals
• Multi-Owner Architecture
• Available Infrastructure
• Proposed Access Control Mechanism
• Prototype Implementation

• Testing and Results
• Conclusion
• Future work
Testing

• Extensions to Action Attribute Set
 • A set of credentials was generated from a broader level to a very narrow level
 - Parameter level to test specificity
 - Group of services to test Role Based authorization
 • Variety of test cases with each one reflecting specific scenario.

• Cross-Domain authentication
 • Tests to verify “Chain of Trust” between organizations to authenticate different users from different organizations.

• Cross-Domain authorization
 • Tests to verify authorization using Broker with delegation using KeyNote.
Testing and Results

Client A
having Credential:
Role = "Reader" only
- TLS Authentication
- My credential
- Load data in the Sensor

Denied

Client B
having Credential :
Role = "Reader" or
"Writer"
- TLS Authentication
- My credential
- Load data in the Sensor

Allowed

Authentication Check

Integrity Check

Permission Check

Cyranose

Nose Service
Testing and Results
Testing and Results
• Introduction
• Research Goals
• Multi-Owner Architecture
• Available Infrastructure
• Proposed Access Control Mechanism
• Prototype Implementation
• Testing and Results

• Conclusion
• Future work
Conclusion

• The extended action attribute set provided the granularity required for Multi-Owner environment.
• The developed access control framework provides for a flexible security and policy model to support Multi-Owner environment.
• This framework has been successfully designed and tested using a prototype implementation.
• Introduction
• Research Goals
• Multi-Owner Architecture
• Available Infrastructure
• Proposed Access Control Mechanism
• Prototype Implementation
• Testing and Results
• Conclusion
• Future work
Future work

• Several manually implemented components of the prototype can be automated.
• Action attribute set can be extended to include deployment specific attributes.
• Communication using can be re-implemented using a method like XML-RPC to make the system accessible to all programming languages and across all operating systems.
• Experiments to measure performance, scalability and deployment issues to complement prototype demonstrations could be designed.
Questions or Donuts?
Choose One