

© Shilpa Sirikonda

Multihop Routing Optimization in Communication Networks Using Genetic Algorithms

Shilpa Sirikonda

Department of Electrical Engineering & Computer Science Master's Project Defense December 4, 2007

Committee

Dr. James P. G. Sterbenz (Chair) Dr. Alexander M. Wyglinski (Co-Chair) Dr. Victor Frost

4 December 2007

Outline

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Introduction

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Introduction

- Challenges faced by multihop networks
 - Finding the best path between end nodes
 - Achieving all the desired metrics simultaneously
- For example, it is difficult to find a path
 - Minimizing both the number of hops and BER
- Earlier GAs were used for single metric optimization
- Proposed approach
 - Multi-objective GA optimization is proposed
 - Simultaneously optimizes five conflicting metrics

Genetic Algorithms (GA) Overview

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Genetic Algorithms (GA) Overview

- GA is a random search technique
 - Searches for the best fit based on a 'fitness function'
- Search space
 - Population of binary coded configurations
 - Configurations are also called `chromosomes' or `strings'
- Fitness function
 - Evaluated at each individual point in the search space
 - Repeated over several generations
 - A configuration is found that meets the desired objective

Genetic Algorithms (GA) Overview

- Configurations of next generation
 - Selected through a genetic transformation process
 - Transformation done using genetic operators
- Genetic Operators
 - Reproduction
 - Crossover
 - Mutation

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Reproduction

- Individual configurations
 - Copied directly to the next generation
 - Based on their fitness function values
- Configurations with a higher value of fitness function
 - Have higher probability of contributing
 - Usually one or more off-spring copied to next generation
 - Based on biased roulette wheel selection

Crossover

- Recombination operator
- Combines subparts of two parent chromosomes
- Offspring has parts of both parents' genetic material

Mutation

- Mutation introduces variations into the chromosome
- Randomly alters the value of a string position
- In the string shown below second bit is mutated

GA Procedure

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

GA Procedure

4 December 2007

Proposed Approach

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Proposed Approach

- Objective of the project
 - Devise an optimization algorithm based on GAs
 - Search for best possible path between end nodes
- The metrics used in determining the best path
 - minimum end-to-end distance
 - minimum latency
 - minimum bit error rate (BER)
 - minimum number of hops
 - maximum bandwidth

Derivation of Fitness Function

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Derivation of Fitness Function

- Each node is a given binary representation
- Chromosome
 - The path with group of binary represented nodes
 - Ex: 001 | 100 | 101 Chromosome
- Derivation of fitness function
 - Calculate each metric over a particular path
 - Evaluate overall fitness score
- Final fitness score
 - Weighted sum of the individual metrics
 - Path with maximum fitness score is the best path

Derivation of Fitness Function Example

- Binary representation for 5 node distribution
 - 000, 001, 010, 011, 100 used for representing 5 nodes
 - 101, 110, 111 don't care nodes (do not exist in distribution)
 - Don't care nodes keep the chromosome length constant
- Fitness calculation for GA generated example path
 - Ex: 000 | 001 | 100 | 101 | 010
 - Source |Hops in between | Destination
- Chromosome is intermediate path without end nodes 001 | 100 | 101

Ø

Ex: Here hop count = 3

Derivation of Fitness Function End-to-End Distance (meter)

D is represented as the end-to-end distance for a path

$$D = \sum_{i=0}^{N-1} d_i$$

 d_i – Distance between i^{th} and $(i+1)^{th}$ node

 ${\cal N}\,$ – Number of nodes in the distribution

$$\mathbb{D} = \frac{D}{P}$$

- \mathbb{D} Normalized distance
- P Perimeter of the service area

Derivation of Fitness Function End-to-End Latency

L is represented as end-to-end latency for a path

 $L = \sum_{i=0}^{N-1} \ell_i$

 ℓ_i – Latency of i^{th} node in a path

 $N\,$ – Number of nodes in the distribution

$$\mathbb{L} = \frac{L}{N\ell_{\max}}$$

 \mathbb{L} - Normalized latency

 ℓ_{max} – Maximum latency of node distribution

Derivation of Fitness Function Bit Error Rate

B is represented as aggregate BER over a path

 $B = \sum_{i=0}^{N-1} b_i$

 b_i – BER of the link between i^{th} and $(i+1)^{th}$ node

N – Number of nodes in the distribution

$$\mathbb{B} = \frac{B}{\max(B)}$$

$\ensuremath{\mathbb{B}}$ – Normalized BER $\max(B)$ – Maximum BER of the node distribution

Derivation of Fitness Function Bit Error Rate

 b_i is BER of the link between i^{th} and $(i+1)^{th}$ node $b_i = Q(\sqrt{2\gamma})$

 $\gamma = \frac{C_{pl}.P_t}{N_v}$ is signal-to-noise ratio

- C_{pl} Constant of path loss which is proportional to $\frac{1}{distance^2}$
- P_t Power transmitted
- N_v Noise variance

Derivation of Fitness Function Number of Hops

H is one less than the number of nodes in a path

$$\mathbb{H} = \frac{H}{N-1}$$

N – Total number of nodes in the distribution \mathbbmss{H} – Normalized hop count

Derivation of Fitness Function Bandwidth (Rate)

R is minimum link bandwidth over all links in a path

 $R = \min(r_i)$

 r_i – Link bandwidth in a particular path

$$\mathbb{R} = rac{R}{r_{ ext{max}}}$$

 \mathbb{R} – Normalized bandwidth r_{\max} – Maximum bandwidth of the node distribution

Derivation of Fitness Function

 $S = W_D(1 - \mathbb{D}) + W_L(1 - \mathbb{L}) + W_B(1 - \mathbb{B}) + W_H(1 - \mathbb{H}) + W_R\mathbb{R}$

- *S* Fitness score of a particular path
- *D* Normalized end-to-end distance
- L Normalized latency
- *B* Normalized bit error rate
- H Normalized number of hops
- *R* Normalized bandwidth.

 W_D, W_L, W_B, W_H, W_R are the weights assigned to each metric

Simulation Results

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Simulation Results

- Generated random (*x*, *y*) locations for nodes
- Exhaustive search
 - Generated all possible paths between end nodes
 - Calculated fitness score over all possible paths
 - Path which yields high fitness score is chosen best path
- GA search
 - Calculated fitness score over paths chosen in generation I
 - New paths (chromosomes) generated using GA operators
 - Fitness score is calculated over new paths
 - Repeated over 150 generations to find path with high score
 - Crossover rate = 0.6 Mutation rate = 0.001 Population = 50

Simulation Results Test Cases

• Testing with various GA weight vectors $(W_D, W_L, W_B, W_H, W_R)$

(0.2, 0.2, 0.2, 0.2, 0.2) - Equally weighing

- (1, 0, 0, 0, 0) Minimizing distance
- (0, 1, 0, 0, 0) Minimizing latency
 - (0, 0, 1, 0, 0) Minimizing BER
- (0, 0, 0, 1, 0) Minimizing hop count
- (0, 0, 0, 0, 1) Maximizing bandwidth
- Variation of fitness score over generations
- GA over a typical network

Best Path Equally Weighing Metrics $(W_D, W_L, W_B, W_H, W_R) = (0.2, 0.2, 0.2, 0.2, 0.2)$

Best Path Minimizing the Distance $(W_D, W_L, W_B, W_H, W_R) = (1, 0, 0, 0, 0)$

Best Path Minimizing Latency $(W_D, W_L, W_B, W_H, W_R) = (0, 1, 0, 0, 0)$

Best Path Minimizing BER $(W_D, W_L, W_B, W_H, W_R) = (0, 0, 1, 0, 0)$

Best Path Minimizing Number of Hops $(W_D, W_L, W_B, W_H, W_R) = (0, 0, 0, 1, 0)$

Best Path Maximizing Bandwidth $(W_D, W_L, W_B, W_H, W_R) = (0, 0, 0, 0, 1)$

Simulation Results Variation of Fitness Score Over Generations

Simulation Results GA Performance Over a Typical Network

(0, 0, 0, 0, 0.2, 0.8)

 $(W_D, W_L, W_B, W_H, W_R)$

(0, 0, 0, 0.5, 0.5) $(W_D, W_L, W_B, W_H, W_R)$

Research Contribution

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Research Contribution

- Node distribution
 - Generated using 'C' numerical recipes
- Exhaustive search
 - Code written in C
- GA framework has been implemented
 - Sga-c source code available at IlliGAL Institute <u>http://www.illigal.uiuc.edu/web/</u>
 - Modified to work for the proposed approach
- Fitness function for multi-objective optimization

Conclusion

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Conclusion

- The proposed framework
 - Useful for multiple metric optimization in routing
 - Weight factors can be adjusted to match user's requirement
- Best path
 - GA results compare favorably with exhaustive search
- Exhaustive search vs. GA search
 - GA takes lesser time compared to exhaustive search
 - GA searches for best path using fewer configurations
 - Exhaustive search evaluates fitness over all configurations

Future Work

- Introduction
- Genetic Algorithms (GA) Overview
- GA Operators
- GA Procedure
- Proposed Approach
- Derivation of Fitness Function
- Simulation Results
- Research Contribution
- Conclusion
- Future Work

Future Work

- Introduce time-variant node metrics
- Unreachable nodes
- More network topologies
- Larger networks
- Multiple source and destination nodes

Thank You

Questions???