

A Design Workflow for
Software Defined Radios

By

Frederick James Weidling
B.S., Computer Engineering
University of Kansas, 2005

Submitted to the Department of Electrical Engineering
 and Computer Science and the Faculty of the Graduate
School of the University of Kansas in partial fulfillment
of the requirements for the degree of Master’s of Science

Thesis Committee:

 Chairperson: Dr. Gary J. Minden

 Dr. Joseph B. Evans

 Dr. Alexander M. Wyglinski

 Date Defended: August 22nd, 2007

 i

The Thesis Committee for Frederick Weidling certifies
That this is the approved version of the following thesis:

A Design Workflow for
Software Defined Radios

Committee:

 Chairperson

 Date Approved

 ii

Abstract
Current technology and policy have created an apparent spectrum scarcity, a situation in

which it seems there is not enough available RF spectrum to deploy the next generation

of wireless services. It has been shown that this appearance is incorrect because the

majority of licensed spectrum is unutilized. In order to address this problem a new

technology, the spectrum sensing cognitive radio, has been proposed. Such a radio would

be able to locate and use licensed spectrum while avoiding interference with the licensed

user, a technique dubbed dynamic spectrum access. This idea has sparked a range of new

technologies and algorithms for supporting dynamic spectrum access.

Many of the cognitive systems use highly complex algorithms for enabling dynamic

spectrum access. With a variety of hardware systems available to run these algorithms, it

is becoming necessary to have a common interface to the software defined radio. In

order to meet the growing demands for interoperability, this thesis proposes a workflow

for developing new software defined radio platforms. This process is verified through

development of the University of Kansas Agile Radio platform. Using the knowledge

garnered from the development of this system a generic software defined radio control

interface is developed. Such a system will allow the development of a hardware agnostic

cognitive network stack.

 iii

Acknowledgements

I would like to begin by thanking my parents who have supported and encouraged me at

every stage of my life. Without them I would have had neither the confidence nor the

tenacity to have completed this degree.

I would also like to thank Dr. Gary Minden for ensuring I had both a job and a challenge

during my time here at the University of Kansas. He supported my work on the KU

Agile Radio project as well as several other projects such as the GeoWall. Dr. Minden

has always challenged me to explore new ideas and never quit learning.

Dr. Joe Evans made my attendance at the DySpan 2007 conference in Dublin, Ireland

possible and for that I am grateful. I also greatly appreciated Dr. Alex Wyglinski’s sense

of humor, his willingness to help with a problem, and his knack for setting up group

meetings. Additionally, I would like to offer my sincere gratitude to Dr. Erik Perrins and

his class on Implementations of Communications Systems. Both the BPSK and MQAM

systems developed for the KU Agile Radio are based on systems originally developed in

that class.

Additionally, I offer my gratitude to several people on the project. In addition to

designing the digital board, Leon Searl developed much of the KUAR software and

helped refine the systems I developed. Dan DePardo offered me a great deal of

assistance especially when I first started working under Dr. Minden. Finally, Rory Petty

has been a co-worker, an editor, a beta-tester, and someone to bounce ideas off of for the

past several years and without his help much of the work I’ve done here would have been

much more difficult if not impossible.

 iv

Table of Contents
Abstract ... ii
Acknowledgements.. iii
Table of Contents... iv
List of Figures .. vi
List of Tables .. vii
Glossary of Terms.. viii
Chapter 1: Introduction ... 1

1.1 Research Motivation: The Spectrum Scarcity Problem...................................... 1
1.2 Dynamic Spectrum Access ... 3
1.3 Research Objectives.. 5
1.5 Contributions... 6
1.6 Thesis Outline ... 7

Chapter 2: Background Literature .. 9
2.1 Dynamic Spectrum Access Communications... 9
2.2 Software Defined Radios .. 13
2.3 Cognitive Radios... 15
2.4 Current Technology and Research.. 17
2.5 The University of Kansas Agile Radio ... 21

Chapter 3: Designing a Reconfigurable Cognitive Radio Development Stack 26
3.1 Design Overview .. 26
3.2 Enabling Reconfigurable Hardware Optimizations .. 28
3.3 Support for Real-Time Embedded Software... 31
3.4 Managing a Cognitive Radio .. 34

Chapter 4: Implementation of the Development Stack on the KUAR Platform............... 37
4.1 Overview and System Constraints .. 37
4.2 Reconfigurable Hardware Domain ... 39
4.3 Embedded Software Domain .. 51
4.4 Radio Management Domain ... 59
4.5 Design Validation ... 65

Chapter 5: A Hardware Agnostic Cognitive Network Development Stack 70
5.1 Requirements for a Hardware Agnostic Cognitive Network............................ 70
5.2 The Unifying Layer... 75
5.3 The Traffic Scheduler ... 83

Chapter 6: Conclusion... 92
6.1 Achievements and Lessons Learned... 92
6.2 Future Work .. 93

References... 95
Appendix A: VHDL Components .. 99

A.1 Library Component Listing... 99
A.2 Systems ... 109

Appendix B: KUAR SDR API ... 112
B.1 libRFControl ... 112
B.2 libMonitor ... 121
B.3 libfpgaAddr ... 122

 v

B.4 Command Line Utilities.. 123

 vi

List of Figures

Figure 1.1 RF Spectrum Underutilization Example ... 3
Figure 2.1 Spectrum Pooling Example [21] ... 13
Figure 2.2 Ideal and Practical SDR System Diagrams ... 14
Figure 2.3 KUAR Radio [42].. 22
Figure 2.4 KUAR RF Front End Block Diagram [43].. 23
Figure 2.5 Digital Board Block Diagram [44, 45] .. 25
Figure 3.1 Reconfigurable SDR Development Domains.. 27
Figure 3.2 Reconfigurable Hardware Domain Components... 29
Figure 3.3 Embedded Software Domain Components ... 32
Figure 3.4 Radio Management Domain Components... 35
Figure 4.1 SDR Development Stack... 38
Figure 4.2 Xilinx ISE.. 40
Figure 4.3 Simulink QAM Receiver Model ... 41
Figure 4.4 Reconfigurable Hardware Layer Design Workflow.. 44
Figure 4.5 Bus Controller Diagram .. 45
Figure 4.6 Control Register Block.. 46
Figure 4.7 Status Component Block ... 46
Figure 4.8 Example Register Block .. 47
Figure 4.9 Input and Output FIFO Blocks .. 48
Figure 4.10 Input and Output Buffer Blocks .. 49
Figure 4.11 Spectrum Sensing Transceiver Template .. 50
Figure 4.12 KUAR Libraries .. 54
Figure 4.13 RF Control Library Data Flow Diagram ... 56
Figure 4.14 Profile Hierarchy ... 60
Figure 4.15 KUAR Control Panel Main Interface .. 62
Figure 4.16 KUAR Control Panel, Radio Interface Window ... 64
Figure 4.17 KUAR Control Panel Experiment Interfaces .. 68
Figure 5.1 Hardware Agnostic Network Stack ... 70
Figure 5.2 Revised SDR Development Stack... 76
Figure 5.3 Channel Schedule Lists ... 85
Figure 5.4 Assisted Scheduling Algorithm... 87
Figure 5.5 Traffic Scheduler State Diagram... 89
Figure 5.6 Periodic Packet Collision .. 90
Figure A.1 BPSK Receiver Block Diagram ... 110

 vii

List of Tables

Table 2.1 Common Radio Parameter Sets .. 16
Table 3.1 Reconfigurable Hardware Layer Requirements ... 31
Table 3.2 Embedded Software Domain Requirements... 34
Table 3.3 Radio Management Layer Requirements ... 36
Table 4.1 Comparison of KUAR v2.1 and KUAR v3.0 Reconfigurable Hardware......... 39
Table 4.2 Bus Controller Signal Description.. 45
Table 4.3 Control Register Signal Description ... 46
Table 4.4 Status Component Signal Description .. 47
Table 4.5 Comparison of KUAR v2.1 and KUAR v3.0 Processing Environments 52
Table 5.1 Unifying Layer Requirements .. 73
Table 5.2 Traffic Scheduler Requirements ... 74
Table 5.3 Hardware Properties ... 78
Table 5.4 Waveform Protocol Properties.. 80
Table 5.5 Configured Channel Properties... 82
Table 5.6 Unifying Layer API .. 83
Table 5.7 Traffic Scheduler API... 90

 viii

Glossary of Terms

Bit-file – A Xilinx implementation of a Hardware Configuration. A binary file which
contains a description of all the elements in a Xilinx FPGA and how the elements should
be initialized.

Field Programmable Gate Array (FPGA) – A semiconductor device containing
programmable logic blocks.

Hardware Configuration – A reconfigurable hardware circuit description. This is a
fully compiled configuration that is used to configure a reconfigurable hardware block.

KU Agile Radio (KUAR) – The University of Kansas implementation of a
reconfigurable software defined radio.

Primary User – The licensed user of a band of spectrum. A cognitive radio must not
interfere with a primary user.

Reconfigurable Software Defined Radio – A software defined radio containing
programmable logic that is used to optimize waveform transmission and/or reception.

Radio Profile – A logical organization of waveform profiles, structures, and data used to
by one or more radios simultaneously to complete a task.

Secondary User – A radio device using spectrum licensed to another primary user.

Shared Sensing – A methodology for detecting primary user’s signals in a band whereby
two or more nodes listen for primary user signals and notify the other nodes of where
they have sensed the primary user to be transmitting.

Software Defined Radio (SDR) – A radio in which the modulation and demodulation is
controlled by software, such that it may be changed or upgraded without changes any
hardware changes.

VHSIC Hardware Design Language (VHDL) – A software language used to describe
logic circuits which may be used to fabricate circuits or create an FPGA design.

Waveform Profile – A full physical layer implementation. Transforms bits to modulated
analog signals and vice-versa.

 1

Chapter 1: Introduction

1.1 Research Motivation: The Spectrum Scarcity Problem
When Guglielmo Marconi patented a system for transmitting “Hertz oscillations” in 1897

it was the first wireless communication system utilizing radio frequency (RF) spectrum

[1]. A little over one hundred years later wireless communications are ubiquitous. Today

one would be hard pressed to not to use wireless systems, whether listening to the radio,

talking on a cell phone, or browsing the internet through a wireless network. In addition

to the obvious daily uses, there are a plethora of wireless services including emergency

channel communications, amateur radio, and satellite communications that go unnoticed

by most. In order for the wide variety of wireless services to co-exist they must compete

for access to a shared medium: the RF spectrum.

Fortunately the RF spectrum, also known as electrospace or electromagnetic spectrum,

may be effectively shared in three dimensions: space, time, and frequency. Spatial

limitations can be generally enforced through limitations on transmit power and antenna

configuration but exact control is difficult due to the effect that terrain has on the

propagation of electromagnetic waves. Time division of access to the electrospace can be

allotted on scales from years to milliseconds by controlling policy and protocol. Finally

access to frequency is controlled by the center frequency of the transmitter and the

bandwidth of the signal. Although frequency is theoretically infinite, not all RF spectrum

is created equal. As the frequency increases the cost of components increases and the

properties of the waves are altered radically. At frequencies greater than 10 GHz

atmospheric path loss becomes noticeable and above 50 GHz path loss becomes severe

 2

[2]. Furthermore local regulations often stipulate the manner in which blocks of

spectrum may be utilized. [3]

In order to regulate access to the RF spectrum in the United States the Federal

Communication Commission (FCC) was created by the Communications Act of 1934,

later amended by the Telecommunications act of 1996 [4]. Until recently the FCC has

used a “command and control” regulatory structure in which the spectrum is broken into

frequency bands and those bands are licensed to a single entity who is only permitted to

use the spectrum for specific regulated tasks [5]. Initially the FCC granted licenses to

entities through comparative hearings and lottery systems, but due to an increase in

demand of spectrum the FCC converted to an auction based system in 1994. Since that

time sixty-nine auctions have closed for over $59 billion dollars and seven more auctions

are still pending. [6]

Under current regulations it is often only possible for the licensed entity to utilize this

spectrum. The majority of spectrum has been licensed under the command and control

model, leaving little unlicensed spectrum for novel communication systems to be

developed. Although the status quo has lead to an apparent spectrum scarcity, recent

studies show that the majority of spectrum is underutilized in each of the three

electrospace dimensions. In a highly urban area, New York City, New York, it was

found that in the 30 MHz to 3.0 GHz bands the only 13.1% spectrum was utilized in

terms of time and frequency [7]. In a less occupied region, the National Radio

Astronomy Observatory at Green Back, West Virginia the spectrum utilization was about

 3

1% in terms of frequency and time [8]. When investigating these issues the band of

choice has become the television bands due to a fairly low utilization [9] and static

geographical allocation. An example of the unused spectrum present in this band is

shown in Figure 1.1. To make more efficient use of the spectrum, dynamic spectrum

access has been proposed, and is discussed in the following section.

Figure 1.1 RF Spectrum Underutilization Example

1.2 Dynamic Spectrum Access
Dynamic spectrum access is a process in which unused spectrum is located and then used

for transmission by a radio. To accomplish dynamic spectrum access, a new class of

radios is required which may be able to sense and react to spectral utilization. Such a

radio must be able to avoid interference with the licensed owner of the radio spectrum,

referred to henceforth as the primary user. This requires that the radio be able to transmit

over a much broader range of frequencies and also be able to detect both generic spectral

 4

usage and a primary user's signal. A device which can perform this task is defined as a

spectrum sensing cognitive radio by Joseph Mitola [10].

Recently studies have indicated that spectrum sensing cognitive radios can use dynamic

spectrum access techniques. One study showed that unlicensed devices can operate near

digital TV signals without interfering [11] and further demonstrations have shown that

systems may operate without interfering with the primary rights holder in more dynamic

spectrum [12]. As dynamic spectrum access is becoming an increasingly accepted

technique for improving spectrum utilization, a wide variety of spectrum sensing

cognitive radios are being developed.

In general spectrum sensing cognitive radios are implemented on software defined radio

(SDR) platforms with a spectrum sensing component. A software defined radio is a

system in which the modulation and demodulation waveform is implemented in software

or reconfigurable hardware. The most pure implementation would be to connect and

analog-to-digital converter (ADC) and digital-to-analog converter (DAC) directly to an

antenna. However in the majority of situations it is impractical to operate the ADC and

DAC at the frequencies used to transmit data which are commonly in the hundreds to

thousands of megahertz. Instead the ADC and DAC are operated at a lower frequency,

called baseband, and the generated analog signal is multiplied by a higher frequency

signal in order to transmit or receive at the desired frequency. One such SDR platform is

the University of Kansas Agile Radio (KUAR) project. This system will be used for

implementations discussed in this thesis.

 5

With a variety of hardware implementations of spectrum sensing SDR platforms it is

necessary for different platforms to be able to communicate. Making this process more

complex is that cognitive networks are still a relatively new field of research. In order to

allow researchers to investigate novel cognitive networks on different hardware systems,

or mixed hardware systems it is necessary to develop an interface which allows network

code to operate independent of the SDR hardware it is running on.

1.3 Research Objectives
The primary objective of this research is to enable a hardware agnostic cognitive network

stack. For this to be possible an in-depth knowledge of cognitive radios is required. To

better understand the problem at hand and to enable the KUAR to be used for cognitive

network research the first objective will be to specify a reconfigurable SDR design

workflow. Once this has been developed, the API produced along with the API’s of

several other SDR platforms will be analyzed to accomplish the second objective,

designing a generic SDR modem interface for a cognitive network stack. Such an

interface will enable cognitive network code to be written and deployed to a variety of

different hardware nodes which implement the interface.

As previously stated the first objective will be to define a design workflow for a

reconfigurable SDR. The workflow shall be broken into several domains so that different

types of researchers may develop and test their respective systems without an in-depth

knowledge of the workings of other domains. More specifically this shall enable

 6

communications engineers to develop and optimize modulation and demodulation

schemes efficiently. Systems engineers shall be able to manage radio resources and

handle real-time deadlines. Network engineers shall be able to design network protocols

and routing infrastructures. Once the design workflow has been fully specified it shall be

verified through implementations on the KUAR.

Through the implementation of systems on the KUAR utilizing the specified design

workflow a full SDR control interface for the KUAR shall be developed. This interface

along with several pre-existing interfaces will be used to complete the second objective

of enabling hardware agnostic cognitive network development. The interfaces developed

for the KUAR along with other known interfaces will be used to determine a generic

SDR modem interface. Such an interface should allow for generic system development

and support for a wide variety of network implementations, while allowing for specific

hardware optimizations the different platforms offer. The objective of the latter portion

of this thesis is not to define an entire cognitive network stack, but define an SDR

platform independent interface, which would be the lowest level of such a stack.

1.5 Contributions
The first contribution is the design workflow for reconfigurable SDR platforms. The

proposed workflow consists of three semi-independent domains, support for

reconfigurable hardware, support for embedded software, and support for managing a

network of SDRs. The second contribution is a well-define interface for controlling a

network of KUARs implemented using the design workflow. The third contribution of

 7

this thesis is defining the necessary components to enable the development of a hardware

agnostic cognitive network stack. The developed modules will define a generic interface

for accessing custom SDR hardware. Furthermore a component for multiplexing data

streams in time across the shared hardware interface shall be defined.

1.6 Thesis Outline
The remainder of this thesis is organized into five chapters. Chapter two focuses on

background material relative to understanding networking cognitive radios. It includes a

discussion on how spectrum may be utilized in a dynamic nature, what a software defined

radio is, what a cognitive radio is, an overview of the current state of SDR technology

and the KU Agile Radio project. The background literature is intended to be a summary

of the current state of research.

Chapter three answers the question, “How does one develop systems for a reconfigurable

software defined radio?” This question is answered by breaking a reconfigurable

software defined radio into three domains, a reconfigurable hardware domain, an

embedded software domain, and a radio management domain. The requirements for each

domain are then outlined. The culmination of these domains is a design workflow for

software defined radio platforms.

Chapter four investigates the implementation of chapter three's solution on the KU Agile

Radio platform. Components built in each domain have been implemented on the KU

Agile Radio platform and the methodologies used and problems that arose are discussed.

 8

Ultimately the systems designed using the workflow are described, validating the

implementation. The successful implementation and systems derived through its use

indicate that the design workflow proposed in chapter three is valid.

Chapter five extends the infrastructure described in chapter three and incorporates the

lessons learned from the implementation in chapter four to describe a cognitive network

development stack. More specifically the unifying layer and traffic scheduler are

investigated. The unifying layer is used as a generic interface to SDR functionality. The

traffic scheduler is an abstraction used to allow multiple data links to be multiplexed

across the shared hardware. Through the use of the newly proposed interfaces it shall be

possible to develop network and spectrum access protocols across a wide range of

devices.

Chapter six concludes the thesis and poses future improvements to the system. At this

point a process has been developed, implemented, and verified which allows software

defined radio designers to develop and vet new platforms. Additionally, an abstraction

layer has been designed which may allow new cognitive network protocols to be

developed regardless of the physical radios in the network.

 9

Chapter 2: Background Literature

2.1 Dynamic Spectrum Access Communications
Dynamic spectrum access (DSA) is a technique whereby unused spectrum is located and

utilized by an opportunistic radio. In 2002 the FCC formed the Spectrum Policy Task

Force which was charged with the task of evolving the current command and control

policy to more adequately regulate spectrum [13]. This committee soon thereafter

proposed two alternatives to command and control. The first, the exclusive use model,

grants the licensee flexible and transferable use rights within a geographic region and

meeting non-interference requirements. The second, the commons model, allows any

number of unlicensed users to share a band in a co-operative manner without regulatory

protection from interference. The commons model would allow for an etiquette based

DSA in which radios simply tried to avoid each other. In the exclusive model the

licensed holder would be able to allow other parties to use DSA techniques to avoid the

primary license holder. Furthering this idea, in October of 2006, the FCC passed

regulations that would allow unlicensed DSA devices to operate in unused TV channels

[14]. Although being met with some resistance, it is clear that policy is changing to allow

for DSA networks to be formed. [5]

In parallel to the policy advances that are being made for DSA, research has been

ongoing to understand the issues associated with DSA and possible implementations.

One of the most basic requirements of a DSA node is that it be able to sense when a

frequency band is unused in which case it is deemed whitespace. One common approach

to locating whitespace is to use an energy sensor. Studies have shown that this

 10

methodology suffers several problems, one of the most notable being the hidden node

problem. The hidden node problem requires at a transmitter, a receiver and a transceiver.

The receiver is located between the transmitter and the transceiver, the transmitter and the

transceiver are spaced such that, due to either distance or topology, the transceiver can’t

sense the transmitter, and considers the transmitter’s bands to be whitespace. The

receiver is positioned to receive from both the transceiver and the transmitter, but can

receive neither signal because they interfere. In a situation where the transmitter is the

primary user and the transceiver is a secondary DSA node, the hidden node problem can

result in unacceptable levels of interference with the primary user. In order to counteract

this problem is has been suggested that increasing the number of cooperative DSA nodes

decreases the probability of a hidden node [15]. In addition to the hidden node problem,

energy detectors are also “… confounded by in-band interference, not robust against

spread spectrum signals, and [their] performance suffers under fading conditions” [16].

Once again it is shown that algorithms employing a number of co-operative nodes can

reduce these issues to acceptable levels [16]. For the remainder of this thesis networks in

which each node attempts to detect a primary user’s signal and shares this discovery with

the surrounding nodes will be referred to as shared sensing.

One alternative solution is to have a spectrum server which uses a dedicated channel to

assign unused spectrum to different radios. This has been shown by [17] to have a 25-

35% reduction in throughput when compared to coordinated discovery of whitespace.

An extension to this concept is for the primary rights holder to transmit a beacon tone to

indicate that a band is unused [18]. This solution ensures that the secondary user will not

 11

incorrectly identify a primary user’s spectrum as whitespace. Even if the secondary DSA

node is out of range of the primary user’s signal, it will not transmit because it will not

receive the safe-to-transmit tone. Additionally the logic required by the DSA node for

finding whitespace may be greatly decreased.1 This downside of this system is that the

hidden node problem results in underutilized spectrum, because the secondary user won’t

be able to sense the safe to transmit beacon, and an additional burden is placed on the

primary user. Although the additional burden to the primary user is not large, any change

in hardware systems can be costly for widely deployed wireless networks.

Another issue that has been raised with DSA networks operating in the presence of a

primary user is that even if the secondary users’ signal does not directly interfere with the

primary user’s, it may raise the noise floor, degrading the primary user’s signal, or

intermodulation between secondary signals might result in interference with the primary

user’s signal [19]. Two possible modulation schemes have been proposed to meet this

problem, both of which are extensions of current multi-channel code division

multiplexing (MC-CDMA) and orthogonal frequency division multiplexing (OFDM).

The MC-CDMA modulation technique multiplexes communications by using orthogonal

codes whereby multiple transmissions can share the electrospace in both time and

frequency. The OFDM modulation technique multiplexes communications across

orthogonal frequencies, so that transmissions share the electrospace in time. In order to

use either of these techniques certain frequencies, or channels, must be “turned off” in

order to avoid interfering with the primary user, such an extension is known as non-

1 If the DSA node is still using whitespace detection algorithms for avoiding other secondary users, than
there will be little to no decrease in logic complexity.

 12

contiguous resulting in non-contiguous MC-CDMA (NC-MC-CDMA) and non-

contiguous OFDM (NC-OFDM). Although it was initially believed that NC-MC-CDMA

had better error performance for DSA than NC-OFDM, it was later discovered that as the

number of available channels decreases, NC-OFDM shows less degradation than NC-

MC-CDMA, resulting in better performance by an NC-OFDM transceiver in a crowded

medium [20].

Applying NC-OFDM modulation to the DTV bands allows a transceiver to use an

unoccupied band when no neighboring bands are occupied. Furthermore an NC-OFDM

transceiver may utilize a portion of an unoccupied band which neighbors an occupied

band without causing interference [11]. It is also possible to use DSA in more dynamic

frequency bands. In August of 2006 the Shared Spectrum Company (SSC) and the U.S.

Department of Defense’s Defense Advanced Research Project Agency (DARPA)

conducted testing of a Next Generation (XG) radio showed that DSA radios could

operate in a non-interfering manner with existing radio systems [12]. DSA nodes may

use OFDM modulations to operate in unused frequencies in the presence of a primary

user without interfering with the primary user.

For a complete system there must exist a methodology for locating whitespace otherwise

known as an allocation vector, and a method for transmitting in unutilized bands. The

combination of a spectrum access protocol and OFDM modulation is a technique referred

to as spectrum pooling [21]. Spectrum pooling may be used in the presence of legacy

 13

systems without a need for any hardware adaptations to the legacy software, in cases

where the spectrum access protocol does not require beacons.

Figure 2.1 Spectrum Pooling Example [21]

Altogether it DSA is a promising technology that appears to be on the brink of

acceptance. The FCC is in the process of allowing DSA to be employed in unused TV

bands. The IEEE 802.22 standard is being developed to allow communication between

secondary nodes in the TV bands [22]. Finally the DARPA xG program has shown that

there is hardware capable of performing DSA. The actions required to enable DSA

techniques in commercial product are in the process of being finalized in terms of

legality, standards, and prototypes.

2.2 Software Defined Radios
In order to discuss software defined radios (SDRs) the difference between the ideal SDR

and the practical SDR must be defined. The ideal SDR defines all aspects of both the

transmit chain and the receive chain, including modulation, de-modulation, and

frequency band selection, in software [23]. Such a platform is often not feasible for high

frequency transmissions and complex modulation schemes. To accommodate the current

 14

processor limitations the practical SDR, henceforth referred to as SDR, is defined as a

“multi-band radio that is capable of supporting multiple air interfaces and protocols…

using an appropriate mix of ASICs, Field Programmable Gate Arrays (FPGAs), Digital

Signal Processors (DSPs) and general-purpose microprocessors.” [24] The differences

between the two systems is shown in Figure 2.2. In multiple SDR implementations the

analog signal processing is used to convert between a low frequency processing band and

a high frequency transmission band. The specialized processing blocks are then used to

improve physical layer processing efficiency. Although an SDR can be used to improve

hardware reuse by supporting a variety of transmission protocols for the focus of this

thesis it will be discussed as a tool for implementing cognitive radios.

Figure 2.2 Ideal and Practical SDR System Diagrams

 15

2.3 Cognitive Radios
A cognitive radio is generally defined as a radio which reacts to stimuli in order to

improve communications2 in the context of the current environment. A fully cognitive

radio must be able to react to any stimuli that might help it improve its’ communication

scheme. A spectrum sensing cognitive radio only reacts to changes in spectral utilization

using the previously discussed DSA techniques. For the remainder of this thesis the term

cognitive radio (CR) shall refer to any system which at least meets the requirements of a

spectrum sensing cognitive radio. The current definition of CR does not require that it be

implemented on a SDR however for the context of this thesis only implementations on

SDR platforms shall be discussed. [10, 24]

Due to the lack of standards currently developed concerning DSA and that the majority of

DSA systems are being developed in research laboratories there is a need for a high

degree of flexibility in the development tools. For this reason SDR platforms are the tool

of choice for DSA researchers. In order to implement different DSA technologies a

variety of cognitive techniques have been proposed. The simplest spectrum sensing CRs

only avoid colliding with other users, while more advanced systems may adapt variables

such as power level or modulation scheme. One such system uses a different modulation

on each carrier of an OFDM in order to adapt to frequency selective fading [25]. This

system is adjusting a single transmission parameter (modulation type) to adjust of a

single environmental parameter (frequency selective fading) in order to meet a single

performance objective (minimize bit-error-rate). In general a CR can take into account a

2 The metrics used to judge improved communications must be defined by the network, but common
metrics include spectrum utilization, bandwidth, bit error rate, and power.

 16

wide variety of sensed environmental parameters in order to adapt the radio’s

transmission parameters and meet certain performance objectives. These terms are

further defined in Table 2.1. [26]

Table 2.1 Common Radio Parameter Sets

Name Description Examples
Environmental
Measurements (Dials)

Values which may be
sensed, but not directly
altered.

Noise power, battery life,
spectrum occupancy
information

Transmission Parameters
(Knobs)

Parameters which the radio
may alter in order to meet
the performance objectives
based on environmental
measurements.

Transmit power, carrier
frequency, coding rate

Performance Objectives The goals the radio is
optimizing for

Minimize bit-error-rate,
maximize data throughput,
minimize power
consumption

As the number of parameters becomes large, the search space for locating the appropriate

transmission parameters in order to satisfy the performance objectives becomes large.

Several techniques have been suggested in order to locate an effective set of parameters

while meeting soft real-time constraints. One proposed solution is through the use of

expert systems to define a set of rules [27]. However, when the number of stimuli and

responses becomes too large the number of rules required becomes burdensome. In order

to cover a larger search space researchers have combined rule based systems with

ontology based systems [28] and applied genetic algorithms [26] to the search space. The

ability of a CR to adapt to a changing environment allows it to outperform static

implementations across a wide range of situations.

 17

2.4 Current Technology and Research
Both SDRs and CRs are relatively new technologies and as such the current technology

and research projects are highly dynamic. As such many SDR projects have already

come and gone, so this section will attempt to highlight some of the more popular

technologies that have been developed and should not be considered an exhaustive

reference of all SDR related technologies. The section begins by discussing SDR

implementations and then moves onto CR research. In the current state of technology the

majority of CR research is still performed in simulation, and not on hardware, although

there are several SDR projects that are reaching a maturity level that would allow for the

implementation of CR technologies. The field of SDR technology may be broken into

three separate groups, radio frequency (RF) front ends, SDR development tools, and

generic SDR APIs. The remainder of this section discusses some of the most popular

projects.

The first category of functionality, the RF front end, refers to the component that

implements the analog/digital boundary. The goal of the RF front end is to cover as wide

a bandwidth as possible and perform conversions between baseband and the transmission

band. The most ubiquitous implementation of an RF front end is the Universal Serial

Radio Peripheral (USRP). The USRP is broken into two components. The mother board

contains an FPGA, which is generally used only for signal buffering and multiplexing, a

12 bit by 64 MegaSample-per-Second (MSPS) ADC, and a 14 bit by 128 MSPS DAC in

order to implement the digital/analog conversions [29]. The mother board is thus

responsible for producing the baseband signal, in order to convert to transmission bands a

variety of daughter boards with gain and frequency controls are available [30]. This

 18

system allows for a modular design where digital SDR logic can be connected via the

USB interface, or analog RF technologies may be tested by implementing a third party

daughter board. The USRP seems to be rather unique as a stand-alone RF front end, the

majority of other RF front ends are part of an SDR platform.

The SDR development tools are the second category of functionality. These systems are

usually an incorporation of known technologies into a system for implementing digital

waveforms in software. The term software is used loosely here because practical systems

will often incorporate software for general purpose processors, DSPs, and/or FPGAs.

One project which provides SDR development tools in an open source manner is the

GNU Radio project which states its’ purpose as:

… a collection of software that when combined with minimal hardware,
allows the construction of radios where the actual waveforms transmitted
and received are defined by software. What this means is that it turns the
digital modulation schemes used in today's high performance wireless
devices into software problems. [31]

The GNU Radio project uses Python to define data flows and user interfaces, and C++ to

define transmit and receive blocks. Single carrier modulation schemes have been

implemented, but there are currently no multi-carrier schemes implemented. Although it

is not strictly required, the GNU Radio project is assumed to use the USRP for analog

transmission and reception. [32]

Another area of research has been in generic radio API’s. These are interfaces which

describe a methodology for interacting with generic radio hardware, rather than focusing

on a specific hardware platform. One such API was developed for the Global Mobile

 19

(GloMo) Information Systems program in order to handle generic radio interfaces. The

Radio Device API defines primitives for transmitting and receiving packets as well as

some more generalized parameters such as channel and power level selection [33]. This

API provides a simple yet powerful interface for controlling a radio modem, however it

lacks some important functionality required by cognitive radios: access to spectrum

utilization information and a methodology for enumerating radio capabilities. Another

interface designed specifically for generic SDR interfaces is the Software

Communications Architecture (SCA). This system explicitly states that its goal is to

“provide a common infrastructure for managing the software and hardware elements

present in a system and ensuring that their requirements and capabilities are

commensurate” [34]. This being the goal, the SCA clearly defines how different modules

interact, however it does not inherently provide an interface for the transmission or

reception of packets, or specification of the air interface. In order to address this issue,

the Modem Hardware Abstraction Layer (MHAL) API was released. This API provides

specific interfaces for general purpose processors (GPPs, defined as any processors

supporting CORBA), digital signal processors (DSPs), and FPGAs, down to timing

diagrams for communicating with FPGA buffers. The goal of this API is once again to

define the manner in which hardware and software components interact. [35]

In addition to projects that have attempted to fill in a niche in SDR development, there

are also several SDR platforms under development which contain a hardware front end,

software, and an interface. The Joint Tactical Radio System (JTRS) project is funded by

the Department of Defense (DoD) to build an SDR to support a range of interoperable

 20

standards. The JTRS project is built using the SCA to define software and hardware

interfaces and is intended to allow interoperability from the hardware component level to

the network node level. The project’s stated goal is to “develop and produce a family of

interoperable, affordable software defined radios at moderate risk which provide secure,

wireless networking communications capabilities for Joint forces.” [36, 37]

A group at Trinity College in Dublin, Ireland has also done significant work on SDR

platform implementations. Until recently this work was lead by the Network and

Telecommunications Research Group (NTRG) and is now being researched by the

Emerging Networks group. This group developed its’ own SDR test bed and shown that

modulation may be done on a per packet basis for both transmission and reception [38].

More recently the Emerging Networks group has begun to use GNU Radio and the USRP

to implement a reconfigurable platform for dynamic spectrum access and has

implemented multiple single carrier and OFDM modulation schemes [39]. The current

goal of the Emerging Networks group at Trinity is to investigate fixed and wireless

networks for dynamic spectrum access.

The final group discussed in this brief overview of technologies if the University of

Kansas Agile Radio (KUAR) project. This project aims to develop a fully-integrated and

portable SDR platform for research and development. The platform itself is described

extensively in the following section. This system has been used to implement several

single carrier modulation schemes and an OFDM modulation scheme [40]. Furthermore

 21

this system has been used for spectral measurements [41], proving its capability in

spectrum sensing networks.

In conclusion there are a variety of projects aimed to facilitate development of SDRs for

use as spectrum sensing cognitive radios. This section has given an overview of some of

the more widely known technologies. For those interested in learning more about the

subject the SDR Forum3 contains information about the current state of SDR technology.

2.5 The University of Kansas Agile Radio
The University of Kansas Agile Radio (KUAR) project is a project that aims to develop a

fully-functional SDR platform in order to enable the research of both software defined

radios and cognitive radios. Two versions of the radio have been fully developed,

version 2.1 and version 3.0. In both versions the radio is split into three boards, the

power board, the digital board, and the RF front end, as shown in Figure 2.3. The power

board converts standard 12 VDC power to the necessary voltages for the digital and

analog components of the radio. The digital board and RF front-end are described in the

following sections.

3 http://www.sdrforum.org/

 22

Figure 2.3 KUAR Radio [42]

The RF front end was designed to be modular with respect to the digital board, so that

like GNU Radio daughter boards, different RF front ends could facilitate transmissions in

different bands. In addition this modular design allows the RF front end to be nearly

identical on both the version 2.1 and version 3.0 radios. The most widely used RF front

end is the 5.0 GHz front end depicted in Figure 2.4. The transceiver converts a baseband

signal to the UNII band, which is 5.25-5.85 GHz. An intermediate frequency of 1.85-

2.45 GHz is used for quadrature modulation and demodulation and a 3.4 GHz oscillator is

used to translate between the intermediate frequencies and the transmission bands. The

intermediate frequency band is selected by choosing one of the multiplexed phase locked

loops (PLLs) and programming its’ frequency. The receiver has both an attenuator and a

variable gain control block. The attenuator may be used to protect the internal circuitry

from being overdriven, while the gain control handles the amplitude range received by

 23

the ADC. The transmit chain has a single gain control to set the transmit power. The RF

front end controls the various components via a Motorola MC68HC08 microcontroller.

This component is itself controlled by an I2C interface connected to the digital board.

The microcontroller converts the I2C commands to the SPI bus which all the analog

components are connected to. In general signals are produced and received at 80 MHz in

conjunction with a 30 MHz analog filter. Altogether this allows 30 MHz of modulated

signal to be transmitted or received in the UNII band. [42, 43]

Figure 2.4 KUAR RF Front End Block Diagram [43]

 24

The digital board has significant changes between version 2.1 and version 3.0, but both

versions consist of an embedded processor, an FPGA, a DAC, and an ADC. In the

version 2.1 radio the embedded processor is an Intrinsyc Cerfcube 405 which consists of

an IBM PowerPC 405EP, 32 MB of RAM and 32 MB of Flash. The Cerfcube has a

100BaseT Ethernet, 2 RS232 ports, an I2C bus, and a 16 bit external memory bus clocked

at 44 MHz. A Xilinx Virtex II Pro 20 FPGA is connected to the Cerfcube via the

external memory bus. The FPGA is connected to four independent 1 MB SRAMs, dual

14 bit by 80 MSPS ADCs, and a quadrature modulator with dual 16 bit 100 MSPS

DACs. In the KUAR v2.1 the majority of the processing was intended to be done in the

FPGA, with the Cerfcube handling data stream routing and user interface tasks. [44]

The KUAR v3.0 was designed to support waveform processing in both the FPGA and

general purpose software as well as enabling more complex cognitive software. In order

to accomplish this the embedded processing power was greatly increased, and the rest of

the system saw moderate upgrades. The Cerfcube was replaced by the Kontron

ETXexpress, which consists of a 1.4 GHz Pentium-M processor, 1 GB of RAM, and an 8

GB microdrive. The Kontron has 1000BaseT Ethernet, serial ATA bus, PCI express bus,

I2C bus, and USB v2.0. A Xilinx Virtex II Pro 30 FPGA is connected to the Kontron via

the USB and PCI express busses. Once again the FPGA is connected to four independent

1 MB SRAMs and a quadrature modulator with dual 16 bit 160 MSPS DACs. The ADC

has been upgraded to a dual channel ADC with 14 bit resolution and a max sampling rate

of 105 MSPS. In both the KUAR v2.1 and KUAR v3.0 the microcontroller on the RF

front end is connected to the I2C bus. The baseband analog signals coming from the

 25

DAC and going to the ADC via the FPGA are transmitted from the digital board to the

RF front end. A comparison of the system diagrams for both versions is shown in Figure

2.5. The KUAR v2.1 allowed a number of physical layer implementations to be

developed and the KUAR v3.0 extends the v2.1 functionality to allow for complex

cognition using some of the techniques discussed in Section 2.3 to be implemented. [45]

Figure 2.5 Digital Board Block Diagram [44, 45]

The KUAR platform is intended to be used by researchers as a development tool for

novel dynamic spectrum access networks and cognitive radio nodes. In order for this to

be possible a design workflow must be established. The diversity of development tools

required to design systems for a reconfigurable software defined radio makes the

challenge somewhat daunting. The following chapter discusses how to break the

workflow into several different domains, making the problem more manageable.

 26

Chapter 3: Designing a Reconfigurable Cognitive Radio
Development Stack

3.1 Design Overview
As previously discussed a reconfigurable cognitive radio contains a variety of

components working in unison to transmit or receive a waveform, these include analog

components such as phase locked loops (PLL), gain steppers, and attenuators as well as

digital components ranging from general purpose processors (GPPs) to FPGAs. In order

to delegate design responsibilities to different groups, the design workflow may be

broken into three logical domains of development: reconfigurable hardware, embedded

software, and radio management. Each of these domains has varying levels of interaction

with the other domains, but requires a different knowledgebase and set of tools for

development. Therefore it is desirable to define a set of development tools, validation

tools, and support modules for each domain. Stated as requirements, the first requirement

for each domain is that it shall have a well-defined set of development tools. This eases

the co-ordination of a development group, and allows a knowledgebase to be created

around the given tools. The second requirement is that each domain shall incorporate a

set of validation tools that comply with the development tools. This ensures that

developers may validate their systems. The third and final generic layer requirement is

that a set of support modules be created to enable development. Each domain will then

have additional requirements that are designed to support the main task of the domain.

The domains are briefly described in the following diagram and the remainder of this

section.

 27

Figure 3.1 Reconfigurable SDR Development Domains

In the development stack each layer depends on the layer below it. The lowest level, the

reconfigurable hardware domain, has direct access to the analog-to-digital converter

(ADC) and digital-to-analog converter (DAC). Reconfigurable hardware may be used for

highly parallelized mathematical operations allowing for the efficient implementations of

communication blocks such as filters and domain transforms. Therefore, this domain is

aimed at communication engineers looking to develop efficient communication systems.

Above the reconfigurable hardware domain sits the embedded software domain. This is a

low-level software layer that can almost be considered an extension of the operating

system. At this layer all the hardware is directly accessible and real-time scheduling is

 28

possible. This domain is aimed at system engineers, allowing them to synchronize all the

hardware blocks into a useable SDR.

The highest layer is the radio management domain which is where cognition can be

added to the radio. At this level the developer should have access to more abstract

concepts, such as spectrum utilization and waveform profile. This layer is intended for

network engineers and should provide a user interface exposing a set of “knobs and dials”

for the engineer to tweak. The following sections investigate the particular requirements

for each layer.

3.2 Enabling Reconfigurable Hardware Optimizations
As mentioned in the previous section, reconfigurable hardware may be effectively used to

implement mathematical operations in parallel. The reconfigurable hardware is also

directly connected to the analog/digital converters. This makes it the ideal place for

performing operations such as filtering, domain transforms, and channel multiplexing/de-

multiplexing. In general the reconfigurable hardware transforms a bit-stream into an

analog representation. Depending on the complexity of the hardware configuration this

bit-stream may encompass anything from digital symbols representing analog samples, to

data bits that need to be modulated. In general a communication system may be viewed

as a modulator and demodulator connected to a data buffer and containing both status and

control registers. The modulator is then connected to a DAC and the de-modulator is

connected to an ADC to interface the analog domain. The data streams are controlled by

a bus controller. This system is shown in the following figure.

 29

Figure 3.2 Reconfigurable Hardware Domain Components

In the majority of cases the communication engineer will be interested only in the

modulator and demodulator blocks. Therefore the reconfigurable hardware layer has an

additional set of requirements regarding a standard set of modules: a bus controller,

buffers, and data register blocks. In order to support configuration, handshaking, and

status it is required that registers be created. To simplify structure, the registers are

broken into two categories. Control registers are registers used to configure hardware

blocks, they are write-only by the bus controller, and read-only by the block which

contains them. Status registers relay the state of the hardware block, and are read-only by

the bus controller and write-only for the hardware block. A full duplex register may be

 30

created by connecting the output of a control register to the input of a status register. The

separation of registers rather than a single full duplex register is desirable for two

reasons. First, there are many read-only status signals in a hardware block, a full duplex

register would make it more difficult to create a read-only register. Second, the bus

controller and hardware blocks are often in separate clock domains. By clearly marking

one time domain as being a write domain, and the other as a read domain simplifies

register design.

In addition to configuration and status a hardware block usually requires a data stream on

which it operates. Modulators will receive an input data stream and create digital

symbols to be transformed into the analog domain. Demodulators will receive digital

symbols to be transformed into an output data stream. These bit-streams must be

buffered in due to bus and real-time processing limitations of the connected processor(s).

Depending on the requirements of the hardware blocks, these buffers may come in two

forms. The first is serial or FIFO access, which is often useful in time-domain

modulation schemes, such as PSKs and QAMs. In other cases it is useful to have a

random access buffer. This supports frame based processing and frequency domain

transforms, where the required input or produced output may be out of order in the time

domain.

The final block manages communication between the system bus and the internal

hardware components. System busses support a wide range of operations that are often

not required by individual memory elements within the reconfigurable hardware.

 31

Furthermore different hardware versions of the SDR platform may support different

busses, or a single platform may be accessible via multiple busses. In order to simplify

bus access, and make reconfigurable hardware blocks more re-usable a bus controller

should be designed. Such a system should emphasize register and buffer interfaces, as

these are the components that most communication systems will relay data through.

The reconfigurable hardware layer has both generic layer requirements as discussed in

section 3.1 and more specific requirements discussed in this section. These requirements

are listed in the following table.

Table 3.1 Reconfigurable Hardware Layer Requirements

Requirement Description
R3.2.1 There shall be a well-defined set of development tools for creating

hardware configurations.
R3.2.2 There shall be a well-defined set of validation tools which are supported

by the development tools.
R3.2.3 A set of support modules shall be developed to enable development.
R3.2.3.1 A control and status register block shall be designed which allow

communication between the hardware block and bus controller.
R3.2.3.2 A random access and serial access buffer shall be developed to allow bit-

streams to be transmitted between the hardware block and the bus
controller.

R3.2.3.3 A bus controller shall be developed to translate bus commands into
register and buffer reads and writes.

3.3 Support for Real-Time Embedded Software
The layer above the Reconfigurable Hardware Domain is the Embedded Software

Domain. This is the domain where the GNU Radio software might sit. The main

responsibility of this layer is to implement the link layer and complete the portions of the

physical layer not implemented in the Reconfigurable Hardware Layer. At this layer

 32

there are still real-time constraints, but they are slightly laxer than in the Reconfigurable

Hardware Domain. Whereas in the Reconfigurable Hardware Domain there might be a

requirement to produce a sample every N clocks, in the Embedded Software Domain the

requirement would be to fill a buffer within a given amount of time. The culmination of

this layer should expose a set of programming hooks which will henceforth be referred to

as the SDR API. Such an API must expose the basic SDR interfaces which may be split

into three tasks: spectrum sensing, hardware configuration, and waveform profiles, as

shown in the following figure.

Figure 3.3 Embedded Software Domain Components

The previous figure splits the Embedded Software Domain into four components, three of

which compose the SDR API. The remaining component, the dynamic hardware

 33

interface, defines the communication interface to hardware accelerated blocks in the

reconfigurable hardware layer. The dynamic hardware interface enables two basic

functions. The first is reconfiguring the reconfigurable hardware. The second is

interfacing with the configured hardware. This interface allows for generic control of all

configuration profiles, specific control is handled by the waveform interface.

The static hardware interface is the portion of the SDR API that allows the RF front-end

to be controlled, as well as any other hardware components. The RF front-end is the

section that contains the analog hardware for communication. At a bare minimum the

static hardware interface must allow users to set transmit, receive, and sensor frequencies

and gains. In some systems the spectrum sensors is part of the receive chain, in others it

is a stand-alone component. Most hardware will support more operations than this, and

when possible this functionality should be exposed.

The spectrum sensing block is used to determine energy levels in different frequency

bands. At a higher level such information may be utilized to determine spectral

occupancy, or which frequency bands are available for transmission. This block requires

access to the RF front-end via the static hardware interface in order to set the sensor

frequencies, and depending on the SDR platform, may require access to the dynamic

hardware interface to retrieve the data.

The final set of blocks, are the waveform profiles. A waveform profile is a full physical

layer implementation. In the case of complex hardware configuration, the waveform

 34

profile may be a thin wrapper. In the case of a simple hardware configuration, the

waveform profile may hold a large portion of the modulation or demodulation logic. A

waveform profile is capable of transmitting or receiving a packet. The exact properties of

a packet of data are specified by the waveform profile.

The Embedded Software Domain controls access to all aspects of the hardware and

physical layer implementations and exposes access to higher level systems in the form of

an SDR API. The requirements for the Embedded Software Layer are compiled from this

section and Section 3.1 into the following table.

Table 3.2 Embedded Software Domain Requirements

Requirement Description
R3.3.1 There shall be a well-defined set of development tools for developing

waveform profiles.
R3.3.2 There shall be a well-defined set of validation tools which are supported

by the development tools.
R3.3.3 A set of support modules shall be developed to enable development.
R3.3.3.1 A dynamic hardware interface shall be implemented to configure the

reconfigurable hardware and enable access to the current hardware
configuration.

R3.3.3.2 A static hardware interface shall be implemented to allow access to
hardware components, specifically the RF front-end.

R3.3.3.3 A spectrum sensing block shall be implemented which can determine
spectral energy levels in specified bands.

3.4 Managing a Cognitive Radio
The top-level layer is the Radio Management Domain. The Radio Manage Domain

differs slightly from the previous two domains because this is the domain where

experimentation and investigation of cognitive radios takes place. The other two

domains implement the necessary tools for an SDR platform to exist while the Radio

 35

Management Domain allows an SDR platform to be used as a research tool. All the

components of the radio are accessible via the SDR API, and high-level tasks are exposed

via an user interface. The Radio Management Domain consists of four groups of logic:

diagnostic tools, network protocols, spectrum access protocols, and the user interface.

Figure 3.4 Radio Management Domain Components

The user interface gives the user the ability to check the radio status via diagnostic tools,

and to run network experiments based on network protocols and spectrum access

protocols. The actual tools and protocols should allow for innovation and avoid

suggesting an implementation because it is intended to support the development of novel

protocols and networks. This domain is designed to enable users to develop cognitive

networking experiments and execute them. In order to support the development and

testing of new network and spectrum access protocols as well as a variety of diagnostic

tools, the user interface must be extendable. The user needs the ability to add new

 36

functionality to support as of yet undeveloped networking abilities. Furthermore,

networking experiments require the interaction of multiple radios, so there must be a way

for the user to run an experiment simultaneously on different radios. The requirements

for the Radio Management Layer are listed below.

Table 3.3 Radio Management Layer Requirements

Requirement Description
R3.4.1 There shall be a tool that supports the creation of experiments in order to

investigate novel spectrum access protocols, network protocols, and
waveforms.

R3.4.2 There shall be a tool that is able to execute the experiments in parallel on
multiple radios.

R3.4.3 A set of support modules shall be developed to enable development.
R3.4.3.1 Diagnostic tools shall be developed to monitor the SDR state.
R3.4.3.2 A user interface shall be designed that may be extended with new

diagnostic tools, network protocols, and/or spectrum access protocols.

 37

Chapter 4: Implementation of the Development Stack on
the KUAR Platform

4.1 Overview and System Constraints
In order to test and validate the development stack described in Chapter 3, the

development stack was implemented on the KU Agile Radio SDR platform. The KUAR

platform is currently implemented in two different versions, the v2.1 and the v3.0. The

development stack was fully implemented for v2.1 of the platform and most components

of the system have been ported to v3.0, although testing on this version has not been as

extensive. In both versions of the KUAR the Reconfigurable Hardware Layer has a

Virtex II Pro FPGA as the reconfigurable hardware block. Each version is loaded with a

slightly different version of the Linux operating system. The Embedded Software Layer

sits at or slightly above the kernel level. Finally the radio management layer sits in the

visual desktop layer. Due to the lack of system resources on the KUAR v2.1 the visual

user interface must be implemented as a remote interface, this is not the case for the

KUAR v3.0. The entire development stack is shown as a single figure at the end of this

section. In the remainder of this chapter the implementation and validation of this stack

are discussed.

 38

Figure 4.1 SDR Development Stack

As shown in the previous figure, part of the development stack is defining an interface

between each of the development domains. While it would currently be possible to make

the implementation of these interfaces compliant with the SCA requirements that was not

implemented for several reasons. Firstly the SCA describes a strict CORBA adherence

which would have been burdensome for the design team to develop. Secondly the

MHAL extension to the SCA which allows for FPGA and DSP integration was not

 39

released until after the development was completed. Therefore the SCA is not

implemented as the communication interface between blocks in the KUAR.

4.2 Reconfigurable Hardware Domain
The reconfigurable hardware block in the KUAR is a Virtex II Pro. In the KUAR v2.1

the exact part is a Virtex II Pro 20, while in the KUAR v3.0 the size of the FPGA was

increased to the Virtex II Pro 30. In the KUAR v2.1 the FPGA is connected to the host

processor via a 16 bit memory interface clocked at 44 MHz. The KUAR v3.0

incorporates several different bus interfaces: USB, PCI, and PCI Express. The KUAR

v2.1 incorporated an 80 MHz ADC and 80 MHz DAC with quadrature modulation/de-

modulation, coupled with 30 MHz analog baseband filters, for an effective 30 MHz of

baseband bandwidth. The KUAR v3.0 uses the same filters, but upgraded to a 105 MSPS

ADC and a 160 MHz DAC. The following table contains a comparison of the

Reconfigurable Hardware Layer in both the KUAR v2.1 and KUAR v3.0.

Table 4.1 Comparison of KUAR v2.1 and KUAR v3.0 Reconfigurable Hardware

Feature KUAR v2.1 KUAR v3.0
FPGA Virtex2p20 Virtex2p30
Bus Interface Memory bus (16 bits @ 44 Mhz,

88MBps)
USB
PCI (32 bits @ 33MHz, 132 MBps)
PCIe (400 MBps)

ADC Dual 16-bit, up to 80 Mega-
samples-per-second

Dual 16-bit, up to 80 Mega-
samples-per-second

DAC Dual 16-bit, up to 80 Mega-
samples-per-second

Dual 16-bit, up to 160 Mega-
samples-per-second

Due to the use of the Xilinx Virtex II Pro series FPGAs in the radios, the natural choice

for development tools was Xilinx ISE. The Xilinx ISE is an integrated development

 40

environment which supports the compilation of VHDL or Verilog, two hardware

description languages, into a “bit-file”, or circuit layout. Furthermore, it was decided that

VHDL would the development language used, due to developer experience.

Figure 4.2 Xilinx ISE

The use of Xilinx precipitated a need for defining two types of modules, component

modules and top-level modules. A component module is any design that can be a sub-

module of another design. A top-level module links a set of component modules together

into a coherent data processing schema. Additionally a top-level module is required to

define pin to data-path mappings and define the memory map for the component

modules. A further useful rule of thumb was discovered that Xilinx generated

components should only be used in top-level modules when possible. This was often

 41

necessary because the Xilinx generated components had a large number of portability

issues, even when simply changing between projects under the same version of Xilinx.

While Xilinx was an appropriate design tool for implementing hardware configurations,

VHDL is not especially well suited for developing communication systems. As the

purpose of the Reconfigurable Hardware Domain is to support the development of

communication systems, an additional design tool was necessary. The tool of choice for

KUAR developers was the Simulink toolbox for Matlab. This toolbox allowed for the

development of theoretical communication systems which then could be implemented in

VHDL using Xilinx ISE.

Figure 4.3 Simulink QAM Receiver Model

In order to validate the communication systems unit tests needed to be implemented. In

general the unit test for a block is essentially the same for the Simulink model, the VHDL

model, and the hardware configuration model; however access to each requires a

 42

different set of validation tools. At the most abstract level, the Simulink model, the test

stimuli and expected results were generated using Matlab, which is already a requirement

for Simulink. In order to validate the Simulink model, a stream of stimuli, or input data

was devised, and a matching set of expected output data. The Simulink model could then

be run with the stimuli generated in Matlab, and compared to the expected results. After

verification of the mathematical model, the model was then implemented in VHDL using

Xilinx ISE.

In order to verify the VHDL model, the Xilinx Modelsim VHDL simulator was chosen.

Similarly to the mathematical verification a set of stimuli and expected results needed to

be generated and compared to the actual results. To facilitate this process a Matlab script

was written to convert Matlab data into files readable by Modelsim, and a script was

written to convert the output data back to Matlab data. Additionally, a template test

bench was written which read signals from the Matlab generated input files, and created

an output file. This allowed test cases to be generated once and then tested both on the

mathematical model, and the VHDL model.

It was discovered that in the case of more complex blocks, sometimes validation of the

simulated model alone was not sufficient. The generated bit-file would have consistent

aberrations4 resulting in improper function. For these cases it was necessary to develop a

further verification tool was needed to ensure that the module could be correctly

implemented. To do this, another template was developed, called the hardware testbench

4 There were also inconsistent aberrations, but those aberrations had to be fixed in a brute-force manner.

 43

template. This was a top-level design that allowed the unit under test to be inserted and

compiled into a bit-file. The corresponding bit-file would then be loaded onto the FPGA

and fed data through a corresponding software interface. This software interface allowed

the data generated in Matlab to be buffered into the unit under test implemented in

hardware, and the resulting data streams to be saved for comparison with the expected

results.

This set of components and tools allows the unit test data to be designed once in Matlab.

Then by filling out a template test bench at each layer the system can be validated with

the same data as a mathematical model, a VHDL simulation, and as a hardware

configuration. The following figure summarizes this design approach, where one works

left to right, and once the system is verified, moves down to the next level of

implementation. This unified design workflow fulfills requirements R3.2.1 and R3.2.2

by creating a set of design tools which integrate with the corresponding verification tools.

 44

Figure 4.4 Reconfigurable Hardware Layer Design Workflow

The previous figure ends with a block called the “Component Library”. In order to fulfill

requirement R3.2.3, all the component modules were added to a library henceforth

referred to as the Component Library. In order to enable consistent communications

between Embedded Software Domain modules and the Reconfigurable Hardware

Domain configurations, one of the first set of components designed was the bus

controller. This component translates a generic bus into a simple internal data bus

consisting of a read enable, write enable, register selects, data, and address. A base

portion of the memory, specified by a BASE_ADDR generic, is translated into register selects

 45

for registered memories. The additional address bits may then be used for addressable

memories. This system was implemented for the KUAR v2.1 memory bus, KUAR v3.0

USB bus, and the KUAR v3.0 PCI bus. The form and function of this block is

summarized in the following figure and table. This bus controller design fulfill

requirement R3.2.3.3.

Figure 4.5 Bus Controller Diagram

Table 4.2 Bus Controller Signal Description

Generic Type Description
ADDR_WIDTH Natural The width of an address on the system bus.
BUS_WIDTH Natural The width of data on the system bus.
REGISTER_SELECT Natural The number of address bits to translate into

register selects
BASE_ADDR Bit vector The base address range to use for register

selects.
Signal Width Description
Read Enable 1 When high, the bus is requesting data from

the internal components, data will be read
from Register Data.

Write Enable 1 When high, the bus is writing data to internal
components, data on the Bus Data is valid.

Register Select 2REGISTER_SELECT A de-multiplexed version of the base address
range. Only one line will be high at a given
time to select which register the transaction is
intended for.

Bus Data BUS_WIDTH Data from the system bus to the internal
components.

Register Data BUS_WIDTH Data from internal components to the system
bus.

 46

Address ADDR_WIDTH The full external bus address, may be used for
addressable memory.

With a viable bus controller designed there was still a need for the memories to interface

with it. The first components designed were the control register and status component.

The control register is a registered component that allows external bus synchronous data

to be written to it. The status component is not a registered component, but allows data

to be written to the shared register data bus. Figure 4.6 shows the control register block

and Table 4.3 describes the signal functionality. The status component is depicted in

Figure 4.7 and described in Table 4.4.

Figure 4.6 Control Register Block

Table 4.3 Control Register Signal Description

Generic Type Description
DATA_WIDTH Natural The number of bits in the register.
DEFAULT Bit Vector The value to load on reset.
Signal Range Description
Register Enable 1 One of the register selects from the bus controller.
Write Enable 1 The bus controller write enable signal.
Bus Data DATA_WIDTH Data from the external bus.
Data DATA_WIDTH The registered data stored in the control register.

When both Register Enable and Write Enable are
high, Bus Data will be stored in the internal register
and appear on the Data signal.

Figure 4.7 Status Component Block

 47

Table 4.4 Status Component Signal Description

Generic Type Description
DATA_WIDTH Natural The number of bits in the register.
Signal Range Description
Register Enable 1 One of the register selects from the bus controller.
Read Enable 1 The bus controller read enable signal.
Data DATA_WIDTH Data from internal logic. When both Register

Enable and Read Enable are high, the Data signal
will be written to Bus Data.

Bus Data DATA_WIDTH Data to write to the external bus.

A full-duplex register can be created from a control register and status component by

connecting the data output of the control register to the data input of the status

component, as shown in Figure 4.8. In VHDL it is quite easy to perform signal slicing,

where a signal bus is split into individual signals, which allows this system to be used to

create registers in which some bits are read/write and others are read-only. Write-only

bits are also possible but are only desirable in special cases. The control register and

status component fulfill requirement R3.2.3.1.

Figure 4.8 Example Register Block

 48

In addition to single registers, memory buffers are also required. In certain cases it is

desirable to perform stream processing, which is best supported by a serial data source or

sink. In other systems it is desirable to frame based processing, which is better supported

by an addressable memory block. In order to support the serial data case, a Xilinx pre-

generated FIFO was slightly modified in order to support two data flows, data from the

system bus to internal logic (Input FIFO), and data from internal logic to the system bus

(Output FIFO). These two scenarios are shown in the following figure.

Figure 4.9 Input and Output FIFO Blocks

The FIFO blocks can be further enhanced by connecting status components to the Full?,

Empty?, and/or Item Count signals to relay FIFO status to the system bus. These blocks

fill the need for serial access data blocks, but certain systems still require addressable

memory. Once again two types of memories were needed, one for system bus writes and

internal logic reads (Input Buffer) and one for internal logic writes and system bus reads

(Output Buffer).

 49

Figure 4.10 Input and Output Buffer Blocks

In Figure 4.10 the input and output buffer blocks are depicted. The read enable, write

enable, bus address, and bus data signals are the standard signals from the bus controller.

The buffer base address is a constant generic on the block used to determine the address

range for the buffer. The upper portion of the address is used to specify the memory

address, and the lower portion is used to address the RAM. These memories may then be

connected to internal component requiring buffered memory. The buffer and FIFO

blocks together fulfill requirement R3.2.3.2.

With the bus controller, registers, and memory buffers an entire top-level system may be

generated without knowledge of the Embedded Software Domain components. Such a

module is shown in the following figure.

 50

Figure 4.11 Spectrum Sensing Transceiver Template

Figure 4.11 shows the basic set-up for a spectrum sensing transceiver in the

Reconfigurable Hardware Domain. A modulator and a demodulator block are connected

to the system bus via serial memory buffers. A spectrum sensor is connected to the

system bus with a RAM module, because a spectrum sensor usually performs an FFT

which often results in out-of-order data. Additionally, all modules are connected to

control and status registers in order to configure and synchronize the tasks the blocks are

meant to perform. The way in which the bus controller is connected to the various

memories defines the memory map for the system as a whole. Using this methodology

the modulator, demodulator, and spectrum sensor can be re-useable components

embedded in other components. The top-level system, however, is very specific to this

design. A possible future implementation might include a process to automatically

 51

generate the top-level system, but at this point it must still be generated by the system

designer.

In addition to the bus controller, registers, and memories a large number of

communication blocks including a direct digital synthesizer (DDS), complex multiply, a

variety of error detectors, simple modulators and demodulators were generated to support

communication system design. A selected listing of the modules created for the KUAR

component library are listed in Appendix A.1. Together this created a framework to

enable the development of cognitive transmitters and receivers. In Appendix A.2 a brief

overview of several of the systems created using these modules is given. With the ability

to create hardware accelerated communication systems the next step was linking this data

path to the software.

4.3 Embedded Software Domain
The Embedded Software Domain is the point at which all the hardware capabilities of the

radio are integrated into a cohesive interface known as the Software Defined Radio

platform Application Programming Interface (SDR API). The KUAR v2.1 Embedded

Software Domain consists of an Intrinsyc CerfCube 405EP which consists of an IBM

PowerPC 405EP clocked at 266 MHz with 32 MB of RAM and 32 MB of flash. It also

includes a 100BaseT Ethernet connection, 2 RS232 ports, an I2C bus, and an external

memory mapped 16 bit bus running at 44 MHz. The CerfCube runs a 2.4 Linux Kernel.

The KUAR v3.0 has a considerably upgraded processing environment in the form of the

Kontron ETXexpress. This system consists of a 1.4 GHz Pentium-M processor with 1

GB of RAM and an 8 GB microdrive. The Kontron has a 1000BaseT Ethernet, serial

 52

ATA bus, PCI express bus, I2C bus, and USB v2.0. The KUAR v3.0 is currently running

a 2.6 Linux Kernel.

Table 4.5 Comparison of KUAR v2.1 and KUAR v3.0 Processing Environments

Feature KUAR v2.1 KUAR v3.0
Processor 266 MHz IBM PowerPC

405EP
1.4 GHz Intel Pentium-M

RAM 32 MB 1 GB
Long Term Storage 32 MB Flash 8 GB Microdrive
Network Interface 100 Mbps Ethernet 1 Gbps Ethernet
IO Busses I2C, external memory bus I2C, USB, PCI, PCIe,

SATA

Despite the disparities in the processing power, both versions have very similar RF front-

ends and dynamic hardware blocks, so there is currently little difference between the

SDR API for both radios. The majority of the KUAR SDR API consists of two

interfaces, the static hardware interface which includes access to the RF front-end and

monitoring sensors, and the dynamic hardware interface which allows for configuration

and communication with the onboard FPGA. The remainder of this section discusses the

design of these components.

The first step in development of these libraries was to choose the development tools. Due

to the real-time processing requirement, the requirement to interface with the Linux

Kernel and hardware components, and the limited processing power of the KUAR v2.1, it

was decided that the KUAR SDR API should be developed in the C programming

language. Furthermore the use of C allows the SDR API to be interfaced through a

 53

variety of other languages5. The de facto choice for C development under Linux is the

GNU C Compiler (gcc) tool-chain. Due to resource constraints the binaries for the

KUAR v2.1 were cross-compiled on the developer’s machine. For the KUAR v3.0

binaries could either be cross-compiled or compiled directly on the radio. To manage

compilation of the various binaries, the GNU Makefile system was used. The choice of

development environment was left to the developer as multiple environments support the

tool-chain used. The decisions to develop in C, compile with gcc, and co-ordinate

building with GNU make fulfill requirement R3.3.1.

The choice of verification tools was difficult because the majority of functions affect a

change in hardware status which often needed external verification. For this reason

testing was often done through the combination of a command-line diagnostic tool and

user validation of the physical parameters. For example one such tool to test proper

functionality of the RF front-end control code was a command line program named hop.

This program caused a tone to move, or “hop”, between different frequency and power

levels. The user could then verify that a tone appeared at the proper frequency and power

level through the use of a spectrum analyzer. For functionality that could be tested

internally the verification tool of choice was originally system logging and user

verification of test cases. More recently integration with the CUnit testing framework

project6 has been investigated. These methodologies fulfill requirement R3.3.2.

5 C++, Java, Python, Fortran, Ruby, PHP, and many others
6 http://cunit.sourceforge.net/index.htm

 54

Figure 4.12 KUAR Libraries

Figure 4.12 shows that the KUAR SDR API may be broken into three separate libraries.

The libraries are named libRFControl, libFPGA, and libMonitor and they interact with

the RF front-end, FPGA, and temperature sensors respectively. Both libRFControl and

libMonitor communicate across an I2C bus on both versions of the radio, and therefore

required little adaptation between versions of the radio. The bus connecting the FPGA,

however, changed from a 16 bit memory bus in KUAR v2.1 to a selection of USB, PCI,

or PCIe busses in KUAR v3.0. At the time this thesis was written libFPGA had been

implemented for USB communications, and the majority of the PCI bus communication

 55

had been implemented. The remainder of this section shall refer to the KUAR v2.1

unless otherwise noted.

In order to create a cognitive transceiver one of the most basic requirements is to be able

to control the spectrum that data is transmitted over, often referred to as a channel in

communication protocols. In order to achieve this functionality on the KUAR the

RFControl library was written by the author based on an initial RFControl program

written by Leon Searl. This library defines an RF front-end state known as

KUAR_rf_settings_t in the library code and henceforth referred to as RF settings. The

RFControl library allows the user to query the RF hardware abilities as well as configure

the receive and transmit frequencies and gains through the RF settings structure. The

KUAR RF front-end consists of five configurable phase locked loops (PLLs), three

variable gain components, as well as multiple other static components. Additionally a

MC68HC08 Microcontroller translates I2C commands to an SPI bus that the configurable

components are connected to. Configuring the transmit or the receive chain to a specified

frequency and/or gain requires coordinating each of these devices in a certain manner.

The RFControl library translates an action such as “set transmitter to 5.5 GHz with 3 dB

power” into a set of commands like “turn off TxLoA, turn on TxLoB, tune TxLoB to

intermediate frequency 2.1 GHz, set transmit gain to 20%”. Each of those instructions

requiring one or more I2C commands. The data flow diagram for the RF Control library

is shown below.

 56

Figure 4.13 RF Control Library Data Flow Diagram

Under the normal flow when using the RF Control library the user may begin by

retrieving an RF Abilities structure which contains the physical limitations of the

hardware as a range of valid receive and transmit frequencies and gains. The user then

goes on to create an RF Settings structure which may be used to set and retrieve the more

abstract notions of frequency or gain. Each RF Settings structure has an internal HW

Settings structure associated with it. In the given methodology the set and get functions

require a translation between RF Setting and HW Settings. This is done to optimize

 57

frequency hopping, in this manner a number of RF Settings may be generated and

configuring the hardware with those settings will be as quick as possible.

The second major library is the FPGA library. This library allows access to dynamic

hardware. In this case the term library is used loosely as it actually consists of a

command line program and a library both written by Leon Searl. The command line

program is called fpgaCnfg and allows the FPGA to be configured with a bit-file or the

name of the current configuration to be queried. The library portion s used to

communicate with the current FPGA configuration. For the KUAR v2.1 and the KUAR

v3.0 USB interfaces, the library exposes the FPGA configuration registers and memories

as an array. The onus is on the developer to check what configuration is loaded to

determine what addresses are valid. The extended capabilities of the PCI bus allow some

of this process to be more automated on the KUAR v3.0 PCI interface, but that portion of

the library is still under development. This interface fulfills R3.3.3.1.

The third library is a minor addition which allows the temperature of the FPGA and

digital board to be monitored. This library contains functions to retrieve the status and

configuration of the temperature sensor and functions to retrieve the value of the FPGA

temperature sensor and the digital board temperature sensor. The combination of the

Monitoring library and the RF Control library allows access to all the SDR static

hardware, thus fulfilling R3.3.3.2

 58

The final requirement for the Embedded Software Domain is an interface to enable

access the spectrum sensing block. On both versions of the KUAR the only access to

spectral measurements is through the ADC via the reconfigurable hardware.

Therefore, support for spectral sensing has to be developed in the Reconfigurable

Hardware Domain. To this end the spectrum analyzer module was added to the

component library and the spectrum analyzer configuration was added to the set of

waveform profiles. The spectrum analyzer module is simply an FFT of run-time

configurable length. The module contains an input to begin processing a spectral frame

(the start signal) and a transform size register. The status signal busy is high when a

spectral frame is being processed and low when the data is valid. The module must be

connected to a random-access memory large enough to accommodate MAX_TRANSFORM_SIZE,

which is a generic determining the largest transform size of the FFT. In order to use the

system the user first writes the transform size to the associated register and then toggles

the start signal high. The busy signal will go high until the last of the transformed data

has been written to the memory at which point the data may be processed. The spectrum

analyzer configuration is a top-level configuration that exposes the modules functionality.

In that configuration the MAX_TRANSFORM_SIZE is 8192, yielding a minimum distance

between frequency samples of less than 10 KHz. The use of the spectrum analyzer

configuration, or the inclusion of the spectrum analyzer module in any other

configuration allows the spectral sensing to be performed, fulfilling requirement

R3.3.3.3. The interfaces described in this chapter are included as Appendix B.

 59

The tools enumerated in the previous portions of this section would enable a system

engineer implement a variety communication systems. A standard set of development

and validation tools have been discussed. Furthermore there exist support libraries for

configuring the dynamic hardware and communicating with those hardware accelerated

blocks through the fpgaCnfg program and the FPGA library. The RF Control library and

the Monitoring library give access to the RF front end and the ability to monitor system

status. With this domain defined it is possible to define the Radio Management Domain

and begin to perform experiments with the KUAR.

4.4 Radio Management Domain
It was decided that The Radio Management Domain should be implemented as a remote

interface for two reasons. The first being that running cognitive radio experiments often

requires coordinating the actions of several radios, putting the onus on the user to

properly configure each radio separately was error-prone and in certain time-sensitive

case, not feasible. The second reason was that the KUAR v2.1 had no video display and

attempting to create a remote video interface would have unnecessarily taxed the limited

resources. The use of a video display simplifies a user interface and is necessary for

common wireless communication tasks, such as displaying spectral graphs. A remote

interface offered a simple solution to both of these issues.

Based on developer experience and available support libraries the interface was

developed in Java and named the KUAR Control Panel. In order to communicate with

the radios a secure shell (SSH) library was employed. Using this library it was possible

to remotely execute scripts and executables on the radio. In order to expose the KUAR

 60

API a Radio object was defined which defined function calls similar to those in the

KUAR API. To allow for extensions to the base set of operations the object also made

several more advanced calls available to execute arbitrary commands on the radio. This

infrastructure exposed the KUAR API of multiple radios to a single interface, and

allowed extensions of this API in order to execute more complex tasks. However this

system still did not have a methodology for presenting the user with experiments to

execute. In order to do this a profile hierarchy was defined.

Figure 4.14 Profile Hierarchy

Early in development it was found that a centralized repository was needed to give all the

radios access to hardware configurations, control scripts, and data. This was further

refined into a directory structure where each radio system was given a directory. A radio

system contained hardware configurations, scripts, and data to perform a given task or set

of tasks. For example each communication system developed was its own radio system

as well as others including several diagnostic systems, demonstration systems, and a

 61

spectrum analyzer system. This well-defined structure allowed the systems to be

enumerated by the KUAR Control Panel, but there was still not a methodology for

automating a task or experiment. Although each radio system consisted of a set of tools,

waveform profile, scripts, and data, there was no machine readable information on how to

use them to perform a task.

In order to fill this niche, the radio profile was developed. A radio profile describes the

required set-up, execution, and tear-down to perform an experiment. What the

experiment consists of depends on the information associated with the radio profile; it

could be to act as a transceiver, a spectrum analyzer, a diagnostic tool, or some other such

module. As the radio profile is intended to be written by a human and executed by the

KUAR Control Panel, it was decided that it should be implemented in an xml format.

The radio profile allows an experiment to be run on a single radio, but the majority of

interesting network experiments require at least two radios. For this reason the network

profile was designed. A network profile allows the user to define a set of radio profiles to

be run simultaneously on several radios. Methodologies for synchronizing the different

radio profiles may be defined within each radio profile. Once again the implementation

of a network profile is defined in XML. The network profile and radio profile allow the

user to define experiments fulfilling requirement R3.4.1.

There are two methodologies for the experimenter to analyze the results of an

experiment. The first is to configure the radio profile to store data in the associated data

directory and then use post-processing on this data in a program such as Matlab. The

 62

second option is to use a KUAR Control Panel configuration. The ProgramUI interface

is an extension point for runtime interfaces. This interface allows the implementing class

to be configured with the XML profile, connected to a radio, and given a display pane.

The user may define additional XML properties to help configure the interface as needed.

Using this interface several generic components have already been created including an

eye diagram plotter, a constellation plotter, and a simple messaging interface for testing

data connections. The network and radio profiles allow experiments to be defined in an

XML format. By extending the Control Panel in Java direct access is given to control the

radios and allow novel experiments to be run, as required by R3.4.1.

Figure 4.15 KUAR Control Panel Main Interface

 63

The Control Panel allows the user to interface with multiple KUARs simultaneously.

This interaction is handled by a multi-window system. The main window, shown

previously in Figure 4.15, lists the known radios on the network in the left panel, the

upper portion displays status information for the radio currently selected from the left

panel, and the network experiments are listed hierarchically by the radio system they

belong to. Each radio that the user is currently connected has a window associated with

it. The main portion of the window is a tabbed interface on the left side. One tab lists all

the radio profiles, bit files, and scripts in a hierarchical manner, the other tab exposes the

RF control interface. The right side of the window is the area where an experiment

interface may be display as annotated in Figure 4.16. The radio profiles and network

profiles may be activated by double-clicking on the profile name, meeting requirement

R3.4.2.

 64

Figure 4.16 KUAR Control Panel, Radio Interface Window

Requirement R3.4.3 describes the types of modules that are required in order for the

system to be complete. The diagnostic tools described by requirement R3.4.3.1 are filled

by several different components. For the task of monitoring temperature and radio

connectivity the Control Panel displays these indicators in several places. Additionally

there is an RF Control pane which allows the RF front-end to be controlled and for status

to be retrieved, shown in Figure 4.16, allowing for some simple diagnostic tasks. For

more complex tasks a combination of software, external testing tools, and sometimes

waveform profiles are required. A diagnostic test may then be coordinated using a radio

or network profile in the same way that a single radio experiment may be run. The final

requirement, R3.4.3.2 requires that the user interface be extendable for new diagnostic

 65

tools and experimentation. This is possible through the ProgramUI interface, which has

been previously described. The KUAR Control Panel and the associated XML files

allow network experiments utilizing one or more radios to be executed, as required by the

Radio Management Domain requirements.

4.5 Design Validation
In order to verify the development stack several systems were developed for each domain

using the development stack. For the Reconfigurable Hardware Domain the author

developed a BPSK transmitter and receiver, an MQAM transceiver, and a spectrum

analyzer system. Jordan Guffey developed an OFDM transceiver which implemented a

subset of the 802.16-2004 OFDM PHY standard [40]. For the Embedded Software

Domain several programs to interact with Reconfigurable Hardware Domain

configurations were written by the author, Leon Searl, and Victor Petty, including a

program to control the RF front-end, generic FPGA communication tools, and several

programs intended to help receive and transmit data through specific hardware

implementations in the FPGA. Using the Radio Management Domain tools several

diagnostic and verification experiments were developed by the author and Victor Petty to

monitor various signal properties. In addition a simplistic whitespace detector was

implemented as a proof of concept for the implementation of more advanced cognitive

network protocols using the aforementioned tools. The remainder of this section details

these systems, which as a whole verify the development stack.

The lowest layer of the development stack was the Reconfigurable Hardware Domain. In

this domain the goal was to create efficient physical layer acceleration blocks. The first

 66

successful transceiver implemented on the KUAR was a BPSK system designed by the

author using the design workflow shown in Figure 4.4. This system was later extended

by the author into an M-ary quadrature amplitude modulation (MQAM) transceiver. This

system allowed the number of available symbols to be varied so that a controller could

trade-off between transfer speed and error rate. The possible values for M were 2, 4, 8,

16, 32, 64, and 128, although transmissions were never successfully completed for values

of M larger than 16. While the author was developing the MQAM transceiver Jordan

Guffey was developing an OFDM transceiver using the design workflow shown in Figure

4.4. In addition to the transceivers, a spectrum analyzer configuration was also

developed by the author to allow spectrum sensing for cognitive tasks to be implemented,

as described at the end of Section 4.3. Altogether these implementations used a variety

of transmission and reception techniques, some implemented in the time domain, and

other in the frequency domain, making for a thorough verification of the Reconfigurable

Hardware Domain design workflow.

The verification of the Embedded Software Domain was done through the development

of several command line programs that utilized the Embedded Software Domain libraries.

Leon Searl wrote the initial rfControl program, which is a diagnostic tool that allows the

user to tweak settings of the individual components on the RF front-end. The author

wrote a secondary utility, called rfControl2, which utilized the RF Control library and

filled a different set of requirements, allowing the user to specify receive/transmit

frequencies and gains rather than addressing individual components. Leon Searl also

wrote the fpgaCnfg and fpgaRW programs, the fpgaCnfg program is part of the FPGA

 67

library, allowing users to configure the FPGA on the KUAR. The fpgaRW is a command

line utility that allows generic access to the FPGA memory so that interactions with

certain hardware configurations can be scripted. Leon Searl also wrote a thermal

program to retrieve the temperatures of the various hardware components from the

command line. In addition to these generic command line utilities, several programs

were written to specifically interface with the hardware configurations. Receive and

transmit programs were written by the author for the BPSK and MQAM implementations

to allow for socket-like communications between radios using the aforementioned

programs. The programs discussed here validated the proper operation of the libraries

and were used extensively for debugging and communication between the radios.

For the highest layer of the development stack, the Radio Management Domain,

experiments were developed using XML defined profiles and the KUAR Control Panel.

In order to test physical layer waveforms plotters were developed for common

communication systems tasks such as constellation plots and eye-diagrams. An interface

was developed to connect to the spectrum analyzer and display spectral plots. This

module alerted the design team to a hardware related I-Q imbalance in the quadrature de-

modulator. Furthermore the author and Victor Petty developed a simple whitespace

detection algorithm using this set-up. The algorithm extended the spectrum analyzer

interface and looked for channels that had power levels near or below the noise floor.

The probability that a channel was not occupied was calculated using a weighted mean of

the old probability the channel was not occupied and the current measurement of the

channel. A graph was then created where red indicated the current power level at a given

 68

frequency, and blue indicated the probability that the channel was not occupied. While

this algorithm may not be robust enough for a cognitive network, it shows how the

Control Panel can easily be extended. The code to create the new experiment interface

required a single Java class that was about 170 lines of code and a single XML file to

describe the profile which was less than 15 lines long. Examples of all the plotters are

shown in the following figure.

Figure 4.17 KUAR Control Panel Experiment Interfaces

This section used examples of systems developed using the design stack posited in

Chapter 3 and implemented on the KUAR. In the Reconfigurable Hardware Domain

 69

several communication systems were implemented as well as a spectrum measurement

system. Multiple command line utilities and transceiver support programs were

implemented using the Embedded Software Domain libraries and diagnostic tools and

cognitive network experiments were implemented using the KUAR Control Panel in the

Radio Management Domain. These implementations verify that the design workflow

may be used to generate valid systems. To further vet the development stack it should be

implemented on another system, but that is beyond the scope of this thesis.

 70

Chapter 5: A Hardware Agnostic Cognitive Network
Development Stack

5.1 Requirements for a Hardware Agnostic Cognitive Network
The previous two sections have formulated and discussed the implementation of a

development stack from the point of view of a SDR platform developer. However with

the continuously increasing number of SDR platforms in development, it has become

clear that the cognitive network layer will span across multiple hardware

implementations. In order to meet this goal the idea of a hardware agnostic cognitive

radio has been suggested. The general structure would resemble what is shown in Figure

5.1.

Figure 5.1 Hardware Agnostic Network Stack

 71

Starting from the bottom and working to the top, the SDR Platform API is the platform

specific API described in Section 3.3. This API allows the radio to be configured and

used for transmission, reception, and spectrum sensing. The Unifying Layer is a thin

wrapper to the SDR Platform API exposing a more generic, radio platform independent

API similar to that of the GloMo Radio API. In addition to GloMo Radio API

capabilities this block is also able to list what abilities the underlying system is capable of

as well as manage the physical layer protocols available. Above the Unifying Layer sits

the Traffic Scheduler which creates a generic and abstract interface to the radio hardware.

This layer can also be thought of as a virtual link layer, it is the job of the Traffic

Scheduler to track data links and control the hardware state such that multiple

intermittent data streams may use the same hardware. The next layer is the Hardware

Agnostic Cognitive Network. Implementations of this layer are beyond the scope of this

thesis; the purpose of this chapter is to define the Unifying Layer and the Traffic

Scheduler thereby enabling implementations of this layer. The highest layer is the

Application Layer where applications may make use of a cognitive network to relay

information. The SDR Platform API and Unifying Layer are platform dependent and

must be implemented by the platform developer. The Traffic Scheduler, Hardware

Agnostic Cognitive Network, and Application Layer are all independent of the SDR

platform. The remainder of this chapter shall focus on the Unifying Layer and Traffic

Scheduler as this enables others to begin developing cognitive networks.

The main purpose of the Unifying Layer is to expose and describe the SDR Platform API.

With this in mind, one of the primary objectives is to expose as much of the possible

 72

platform specific API with care not to introduce too much overhead. The basic radio

modem functionality is well defined by the GloMo Radio API and the reader is

encouraged to read [33]. One limitation of the given API is that there is no way to

determine the transmit and receive bands the radio is capable of at run-time. While this

was not a necessity for the GloMo API it is necessary for a generic spectrum sensing

algorithm. The radio must be able to determine what spectrum it can sense and what

spectrum it is physically capable of transmitting in. Therefore the first requirement of the

Unifying Layer is that it be able to enumerate the hardware capabilities of the radio. This

includes listing properties like receive and transmit frequency ranges and power levels.

The KUAR uses independent transmit and receive chains, however several SDR

platforms have been proposed which have one or more hardware chains which can either

transmit or receive. In order to describe these systems a channel is defined as containing

an antenna and either an analog to digital receiver chain or a digital to analog transmitter

chain, or both. A channel must be able to translate from digital sample to transmitted

energy or from received energy to digital sample or both. The number of receive and

transmit channels the radio contains must also be included in the hardware capabilities.

Once the physical limitations of the radio hardware are determined, it is necessary to

know what types of communications are possible through the radio. As discussed in

Section 3.3, the physical layer should be fully implemented within the SDR Platform

API, so it is the responsibility of the Unifying Layer to enumerate the various

communication protocols supported by the platform. Each protocol must also contain a

list of configurable properties and a methodology for configuring a channel with a

protocol. Another aspect critical to a cognitive radio is the ability to sense spectral usage.

 73

Therefore the Unifying Layer must include access to the SDR platform’s spectrum

sensor. Finally, the Unifying Layer needs to allow data to be transmitted through and

received from the physical layer. These requirements are stated formally in the following

table.

Table 5.1 Unifying Layer Requirements

Requirement Description
R5.1.1 The Unifying Layer shall enumerate the hardware limitations.
R5.1.1.1 The Unifying Layer shall list the minimum, maximum, and precision of

transmit, receive, and spectrum sensing frequencies.
R5.1.1.2 The Unifying Layer shall list the minimum, maximum, and precision of

transmit and receive power levels.
R5.1.1.3 The Unifying Layer shall list the number of simultaneous receive and

transmit channels.
R5.1.2 The Unifying Layer shall manage physical layer protocols.
R5.1.2.1 The Unifying Layer shall list the possible physical layer protocols.
R5.1.2.2 Each physical layer profile shall contain a set of configurable properties.
R5.1.2.3 There shall be a method to configure a channel with a profile.
R5.1.3 The Unifying Layer shall interface with the SDR spectrum sensing

capabilities.
R5.1.4 The Unifying Layer shall maintain a transmit and receive buffer for each

configured transmit and receive channel.

The Unifying Layer provides a generic interface to a wide variety of possible SDR

platforms. However, this still places the burden of determining what capabilities are

available and managing the current hardware configuration on the user. In order to ease

this burden, the Traffic Scheduler sits between the Unifying Layer and the cognitive

network. The Traffic Scheduler is a reservation system for the RF front end. It allows

packets to be scheduled for reception and transmission. Strict time requirements are

necessary in order to enable time slice based protocols. The scheduler handles the

transmission and reception of multiple data streams across the shared hardware interface

and is intended to take advantage of temporal and spectral openings in order to transmit

 74

data. At a certain point there is a limit on the amount of data that may be transmitted

both in terms of hardware and available spectrum, however, the Traffic Scheduler

attempts to optimize the transmission of data to utilize as much of the available

bandwidth as possible. The Traffic Scheduler must expose an interface which allows

multiple data streams to be multiplexed in time to the hardware. Furthermore the Traffic

Scheduler must attempt to parallelize the data streams as much as possible. Two or more

streams may be transmitted or received simultaneously when they do not cause mutual

interference and there are as many or more hardware channels than streams. In general

mutual interference is caused when two or more streams attempt to use the same

frequency at the same time however in the case of modulation schemes such as CDMA

multiple streams may use the same frequency. In order to support a wide variety of

protocols the scheduler needs to be able to support both one time and periodic tasks. The

following table summarizes these requirements.

Table 5.2 Traffic Scheduler Requirements

Requirement Description
R5.1.5 The Traffic Scheduler shall perform time multiplexing of data streams to

allow more data streams than hardware channels to be
transmitted/received.

R5.1.6 The Traffic Scheduler shall attempt to maximize spectrum utilization by
multiplexing data streams across hardware in time.

R5.1.7 The Traffic Scheduler shall support both one time and recurring
transmissions.

Together the Unifying Layer and Traffic Scheduler create a generic interface to the SDR

platform. The Unifying Layer enumerates abilities and gives generic access to the

underlying platform API and the Traffic Scheduler abstracts the hardware channels into a

 75

shared resource. Using these interfaces a cognitive network might perform the following

set of actions:

1. Find open spectrum to transmit in (Electro-Space Manger performs sweeps using
the spectrum sensor)

2. Get the fastest OFDM modulator (Data-Link Manager searches the waveform
listings)

3. Transmit my data to radio X (Data-Link Manager queries the Topology Manager
for how to address radio X, Data-Link Manager sends request to the Traffic
Scheduler to transmit the specified data across the open spectrum using the
OFDM modulation scheme)

4. Wait for a response from radio X (Data-Link Manager sends a request to the
Traffic Schedule to listen for data on the open spectrum, using the OFDM
modulation scheme)

While the previous scenario glosses over some of the finer issues of a cognitive network,

it also shows how one would go about writing hardware agnostic cognitive networks

using the interfaces described herein.

5.2 The Unifying Layer
The Unifying Layer must be implemented by the SDR Platform developer, so it is helpful

to see how the Unifying Layer fits into the previously defined SDR development stack.

In the hardware agnostic cognitive network all of the network and spectrum protocol

work is moved out of the Radio Management Layer and into the cognitive network layer.

However, an SDR platform will often need diagnostic tools unique to the platform. Also

a user interface for interacting with lower level components is still useful for physical

layer development. The following figure shows a revised SDR development stack, taking

into account the Unifying Layer.

 76

Figure 5.2 Revised SDR Development Stack

The GloMo Radio API and the KUAR SDR API are nearly orthogonal, the GloMo API

attempts to describe how to receive/transmit a packet or frame whereas the SDR API

describes how to configure the radio with a receive/transmit data stream. To create a

generic interface, a hybrid of the two API’s is proposed. The two fundamental blocks in

this system are physical layer protocols or waveform protocols and channels. A

waveform protocol describes the physical layer communication scheme, including

 77

parameters such as modulation, framing, and coding. A channel is a hardware receive or

transmit chain on the radio. A channel may be receive, transmit, or bi-directional, and

has parameters such as center frequency, maximum bandwidth, and gain. A novel API is

developed which allows hardware capabilities to be enumerated in terms of channels,

physical layer implementations to be enumerated in terms of protocols, a channel to be

configured with a protocol, and spectrum utilization to be monitored.

The API has been broken into four logical tasks: the hardware manager, the protocol

manager, the data stream manager, and the spectrum sensor. The first set of logic is the

hardware manager. This block is used to list what the physical hardware limitations of

the system are and configure the RF front-end. This block would wrap most of the

functionality of the RF Control library on the KUAR. As was discovered when

developing the KUAR libraries, the hardware limitations can be well represented as a set

of properties. Requirements R5.1.1.1 through R5.1.1.3 describe what parameters these

properties must include. When the frequency tuner or gain stepper is linear, then three

properties are required: minimum, maximum, and precision. The minimum and

maximum represent the bounds and the precision describes the smallest unit that the

property may be incremented in. For example the KUAR RF front-end frequency tuners

have a precision of 4 MHz. The receive frequency may be set to 5.250 GHz, 5.254 GHz,

5.258 GHz, etc. These properties cover many of the cases and can be used to calculate

valid values quickly; however some devices do not have linear increments between valid

values. It is common for gain components to be very non-linear in regards to stepping

increments. For this reason the possible values should also be contained as a sorted list to

 78

support searching. Additionally some platforms, such as the KUAR, have independent

receive and transmit channels while other platforms may have multiple channels which

may be used for either receive or transmit. To address there is further defined a channel

structure which contains an id to identify the channel, a Boolean value to indicate

whether it may be used for transmitting and a Boolean value to indicate whether it may

be used for receiving. It is conceivable that a radio could be created in which different

channels had different transmit/receive bands or gains. In order to support such a system

the API could be updated to use a per-channel value enumeration. The following table

describes each of the properties for the hardware manager.

Table 5.3 Hardware Properties

Property Name Property Description
Max Rx Frequency The maximum receive frequency of the RF front-end.
Min Rx Frequency The minimum receive frequency of the RF front-end.
Rx Frequency
Precision

The granularity of the receive frequency stepper.

Rx Frequency List A sorted list of the possible receive frequencies for the RF front-
end.

Rx Frequency
Linear?

A Boolean property, if it is true then Min Rx Frequency, Max Rx
Frequency and Rx Frequency Precision may be used to calculate
valid receive frequencies, if it is false the Rx Frequency List must
be used to find valid receive frequencies.

Max Tx Frequency The maximum transmit frequency of the RF front-end.
Min Tx Frequency The minimum transmit frequency of the RF front-end.
Tx Frequency
Precision

The granularity of the transmit frequency stepper.

Tx Frequency List A sorted list of the possible receive frequencies for the RF front-
end.

Tx Frequency
Linear?

A Boolean property, if it is true then Min Tx Frequency, Max Tx
Frequency and Tx Frequency Precision may be used to calculate
valid transmit frequencies, if it is false the Tx Frequency List must
be used to find valid transmit frequencies.

Max Spectral
Frequency

The maximum frequency of the spectral sensor.

 79

Min Spectral
Frequency

The minimum frequency of the spectral sensor.

Spectral Frequency
Precision

The granularity of the spectral frequency stepper.

Spectral Binwidth The frequency range of a single spectral measurement.
Spectral Bin Count The number of measurements a spectral sweep returns.
Max Rx Gain The maximum receive gain for the RF front-end.
Min Rx Gain The minimum receive gain for the RF front-end.
Rx Gain Precision The granularity of the receive gain stepper.
Rx Gain List A sorted list of the possible receive gains for the RF front-end.
Rx Gain Linear? A Boolean property, if it is true then Min Rx Gain, Max Rx Gain

and Rx Gain Precision may be used to calculate valid receive gains,
if it is false the Rx Gain List must be used to find valid receive
gains.

Max Rx
Attenuation

The maximum receive attenuation for the RF front-end.

Min Rx
Attenuation

The minimum receive attenuation for the RF front-end.

Rx Attenuation
Precision

The granularity of the receive attenuation stepper.

Rx Attenuation
List

A sorted list of the possible receive attenuations for the RF front-
end.

Rx Attenuation
Linear?

A Boolean property, if it is true then Min Rx Attenuation, Max Rx
Attenuation and Rx Attenuation Precision may be used to calculate
valid receive attenuations, if it is false the Rx Attenuation List must
be used to find valid receive attenuations.

Max Tx Gain The maximum transmitter gain for the RF front-end.
Min Tx Gain The minimum transmitter gain for the RF front-end.
Tx Gain Precision The granularity of the transmitter gain stepper.
Tx Gain List A sorted list of the possible transmit gains for the RF front-end.
Tx Gain Linear? A Boolean property, if it is true then Min Tx Gain, Max Tx Gain

and Tx Gain Precision may be used to calculate valid transmit
gains, if it is false the Tx Gain List must be used to find valid
transmit gains.

Channels A set containing the possible channel structure, each structure
consisting of a channel id, if it can be used for transmitting,
receiving or both.

The hardware manager lists the capabilities of the hardware, but does not describe the

physical layer networking implementations. The primary role of the protocol manager is

to list all of the available waveform protocols. Each protocol has a set of associated

properties, including modulation name, sub-carriers, bit rate, coding rate, and error

 80

coding rate, these properties are taken from the GloMo API, with the addition of

modulation name and sub-carriers. These properties are added because multi-carrier

modulations schemes have become the standard for cognitive radios and certain proposed

cognitive algorithms make use of the modulation and number of carriers [25, 26] when

adjusting to the environment. However it is difficult to find a set of parameters to

describe modulation [3] and therefore modulation is simply provided as a human readable

string. One attempting to write generic code to change modulation could check for

common id’s such as QPSK or OFDM without forcing the system to attempt to describe

such modulation schemes in terms of their attributes. Each protocol listing contains a list

of possible values for each of the aforementioned properties. If some of the properties of

a protocol are exclusive, then that protocol listing should be broken into multiple protocol

listings. As an example the MQAM implementation on the KUAR would have the

following properties: the modulation type would be square QAM, the sub-carriers would

be 1, the bit rate would be 64 bps, 128 bps, 512 bps, 1024 bps or 4096 bps, and both error

coding rate and coding rate would be 0. This is a fairly simple example because only the

bit rate may be varied however a fully implemented OFDM system would likely have

multiple valid values for each of these parameters. The protocol listings with the

associated parameters fill requirements R5.1.2.1 and R5.1.2.2.

Table 5.4 Waveform Protocol Properties

Property Name Property Description
Modulation Name A string name for the modulation, such as BPSK or OFDM.

Intended more as a generic identifier or system descriptor. High
level algorithms with knowledge of a modulation scheme’s
spectral utilization, BER, and other properties may also be able to
use this information.

Subcarriers The number of subcarriers in a multi-carrier modulation scheme.

 81

Bit Rate The raw bit rate of the modulation scheme.
Coding Rate The protocol’s code rate.
Error Coding Rate The protocol’s error code rate.

The next component in the Unifying Layer is the data stream manager which allows bits

to be transmitted and received. In order to accomplish this, there first needs to be a

method for mating a protocol with a channel. The function, called configure protocol,

takes a channel, a waveform profile, and a set of properties to configure the waveform

profile with, and configures the hardware appropriately to use the waveform profile

returning a handle for referencing the configured channel. The configure profile function

fills requirement R5.1.2.3. Once configured the majority of operations that are defined in

the GloMo API may then be applied to a configured channel. Most notably this includes

a transmit packet and receive packet function, but also includes the ability to get and set

protocol properties. Once a channel is configured several properties relating both to the

channel and the protocol may be set and retrieved, these are listed in Table 5.5. The

transmit function takes a byte buffer of data to transmit and the handle for the configured

channel to transmit on. The channel must be capable of transmitting and must be

configured with a waveform protocol. The receive function takes a byte buffer to fill

with received data, a channel to receive data from, and a timeout and returns the number

of bytes read. The channel must be capable of receiving and be configured with a

waveform profile. This functionality fulfills requirement R5.1.4. The general API is

listed in the following table.

 82

Table 5.5 Configured Channel Properties

Property Name Property Description
Modulation A string identifier for the modulation type, examples would be

bpsk, qpsk, mqam. Refers to the carrier modulation. Valid
values are defined by the protocol.

Carriers The number of carriers in a multi-carrier modulation scheme.
Valid values are defined by the protocol.

Bit Rate The raw bit rate of the protocol. Valid values are defined by the
protocol.

Code Rate The coding rate. Valid values are defined by the protocol.
FEC Rate The forward error correction rate. Valid values are defined by the

protocol.
Frequency The center frequency/channel to transmit/receive at. The

effective transmit/receive frequency and bandwidth will be
protocol dependent. Valid frequencies are defined by the
hardware manager, see Table 5.3.

Gain The channel gain. Valid gains are defined by the hardware
manager, see Table 5.3.

Attenuation The front-end, pre-filter attenuation. Valid only for receive mode
channels. Valid attenuations are defined by the hardware
manager, see Table 5.3.

Mode The channel mode: receive or transmit. Valid modes are defined
by the hardware manager, see Table 5.3.

The final component is the spectral sensing component. The abilities of the spectrum

sensor are listed by the capabilities enumerator, so the spectrum sensor itself only has one

function, sweep. The sweep function takes a center frequency to sweep and returns a set

of measurements centered on that frequency. If the user desires to measure a range larger

or smaller than the spectral sensors bandwidth then this may be handled by the Traffic

Scheduler. One additional function is added to support the Traffic Scheduler, which is a

function call that returns the worst case amount of time to switch between two protocols.

This functionality meets the requirements specified by R5.1.3. The commands available

to the entire API are listed below.

 83

Table 5.6 Unifying Layer API

Function Description
Get HW Abilities Retrieves the hardware abilities or properties as described in Table

5.3.
Get Protocols Returns a set of protocol listings. A protocol listing contains the

possible property values for a waveform profile.
Configure Protocol Takes a channel, a transmit/receive mode, a protocol listing, and the

selected properties for that listing and configures the hardware
appropriately.

Sweep Takes a center frequency and returns a set of spectral measurements
centered on the specified frequency. The spectral width of each
measurement is specified by Spectral Binwidth and the number of
measurements is specified by Spectral Bin Count which are both
properties of the hardware.

Get Channel Mode Gets the mode of a channel. A channel may be set to transmit,
receive, or duplex mode by configure profile.

Transmit Takes a buffer of data to transmit and a channel to transmit it on,
and transmits the data.

Receive Takes a received data buffer, a channel to receive data on and a
timeout. This function fills the receive data buffer with received
data. This function waits until data is received or timeout has been
passed and returns the number of bytes received.

Get Channel
Property

Takes a configured channel handle and a property and returns the
value.

Set Channel
Property

Takes a configured channel handle, a property, and a value and
attempts to set the value. This will return an error if the value is not
valid.

Get Configure
Rate

Takes two waveform protocols and returns the worst case length of
time to switch from the first to the second.

The majority of the Unifying Layer is dedicated to describing the available features of the

SDR platform. The actual functionality is fairly simple, configure and communicate.

This simple but powerful API is further extended by the traffic scheduler to create a

suitable interface to begin building generic cognitive networks.

5.3 The Traffic Scheduler
The purpose of the Traffic Scheduler is to manage access to the RF front-end, which is a

shared resource. The Traffic Scheduler coordinates multiple data streams that desire

 84

simultaneous access to a limited resource (the RF front end). These data streams are

often periodic in nature and complete in a fixed amount of time. Each data stream is an

independent communication channel and it may be unicast or multicast but each stream is

unidirectional. Full duplex communication is possible by using two data streams. Using

this ideology there is a one-to-one relationship between an active (in the process of

transmitting or listening) data stream and a hardware channel.

Unlike an OS scheduler where threads compete for processor time, the Traffic Scheduler

uses an atomic scheduling unit, the packet. Transmission protocols usually have strict

windows dictating when packets may be sent or received and for how long. For this

reason the Traffic Scheduler looks more like a calendaring or reservation system then a

real-time OS scheduler. The channel is the base schedulable resource and therefore

schedulable timeslots are associated with each channel. Each channel has a reserved and

free time slot list, each of which is sorted by time. Entries in the free time slot list

contain a start time and an end time. Entries in the scheduled list contain a start time, an

end time, and a reference to a scheduled packet. A schedulable packet is a data structure

that contains all the necessary information to transmit or receive a data packet, this

includes the data buffer, the center frequency, the gain, and the protocol. A scheduled

packet is a data structure which references a schedulable packet and also contains the

start time, end time, and channel that the packet will be transmitted or received on. The

following figure shows an example of the free list and the scheduled list when no packets

have been scheduled, and when several packets have been scheduled.

 85

Figure 5.3 Channel Schedule Lists

In order to ease the burden on the Traffic Scheduler there is a finite limit on how far

ahead of time a packet may be scheduled. In order to support transmissions which

usually last on the order of milliseconds a minute long window would be sufficiently

large. The base time unit must also be chosen. If it were chosen to be a microsecond this

would allow the window timestamps to be stored within a 32-bit number and have greater

precision than the clock skew between known systems. Although the author suggests a

scheduling window of one minute and a scheduling precision of one microsecond, these

values are based off of the KUAR operating parameters, and will likely need to be

adjusted as technology improves and a wider range of systems are supported.

Additionally, as Figure 5.3 suggests there is no buffer space required between one

scheduled packet and another. A buffer zone is needed between the switching of two

protocols which is system dependent. In order to handle this set-up time it is subtracted

from the start time of each scheduled packet. Thus the scheduled packet start time is

 86

when the system must begin configuring the profile so that it is ready to transmit or

receive by the requested start time. In some systems the amount of time to switch

between two protocols may be large7, while others may require very little time. For this

reason another call is added to the Unifying Layer which returns the worst case time to

switch between to scheduled packets. This buffer may then be added on a per-channel

basis, depending on the previous packet in the schedule.

The Traffic Scheduler allows for both assisted and unassisted scheduling. When

performing unassisted scheduling, the requesting entity must specify which channel the

packet should be scheduled on. The scheduler then only needs to ensure that the channel

is free at the specified time. During assisted scheduling the requesting entity allows the

Traffic Scheduler to choose the channel. In order to perform this, the scheduler first

determines what channels have free slots matching the required time slot. If there are no

available slots then the scheduler returns an error state. When more than one channel has

a valid slot then the scheduler must decide which slot to use. The choice of slot affects

fragmentation and is discussed below. The basic algorithm is shown in Figure 5.4.

7 Switching between two protocols which used different FPGA configurations can take on the order of
milliseconds.

 87

Figure 5.4 Assisted Scheduling Algorithm

Fragmentation occurs when a contiguous block of resource (in this case the channel’s

time slots) are broken into chunks. There is left over space between the allocated chunks,

but contiguous blocks are needed for new allocations. In memory management schemes

the allocated blocks may be moved together, however in the current scenario the times

have significant meaning and can’t be shifted. Which channel a packet is scheduled for

may be switched if there is an available slot. Two generally accepted algorithms for

reducing fragmentation are known as best fit and worst fit. Best fit chooses the smallest

available slot in an attempt to utilize small unused fragments. Worst fit chooses the

largest available slot because the unused portion will hopefully be large enough for the

next packet. In addition compacting schemes could be used to re-arrange which channels

the packets were scheduled on, however such algorithms are beyond the scope of this

thesis. [46]

 88

Up to this point the focus has been on the external interface, now the Traffic Scheduler

algorithm is briefly discussed. The Traffic Scheduler must continually change the

configured profile, adjust the sliding scheduling window, reschedule recurring packets,

and handle new requests. In general the sliding window may be adjusted by

decrementing the start time and the amount of available space of the first entry on the free

list, and incrementing the amount of space on the last entry of the empty list. There are a

few caveats to this procedure however. If the start of the window is allocated to a

scheduled packet then the first entry does not need to be adjusted, and if the end of the

window is allocated to a scheduled packet then the last entry does not need to be

adjusted. The window may be adjusted either as a periodic task or “lazily” whenever a

scheduling request is made to the Traffic Scheduler. When the Traffic Scheduler is

started it idles until a packet is scheduled. If this operation is successful then the Traffic

Scheduler waits until the start time of that packet while accepting any other scheduling

requests. When the start time of the scheduled packet is reached the Traffic Scheduler

configures that profile. If the scheduled packet is a recurring packet than it is

rescheduled, if there are more pending packets the system waits for the start time of the

next one, or if there are none then it returns to idle. The following state diagram

illustrates this description.

 89

Figure 5.5 Traffic Scheduler State Diagram

The final set of functionality for the Traffic Scheduler is an asynchronous callback

interface. This is required for several cases. The first case is when a packet is at the end

of the scheduled packet window. Some entity will often need to be notified whether or

not packet transmission was successful, or a packet was received in a receive time slot.

Furthermore, there are cases where the scheduler may find a new conflict when it

reschedules a packet. Some of these situations could be avoided by rescheduling the

packet before any other packets could be scheduled in that time slot. This would prevent

the system from scheduling a packet in a periodic packet’s slot, however it would

increase the overhead of the scheduler by forcing it to run every time slot to check for

new scheduled packets. Even then it would not handle collisions due to multiple periodic

tasks. This case occurs from the case where one scheduled packet is periodic with period

A and a second is periodic with period B. Even if A and B do not conflict in the initial

window, they may conflict at a later point in time, as shown by Error! Reference source

 90

not found.. For this reason there must also be a call back for notification of a scheduling

collision. The current scheduler does not include a priority system for scheduled packets,

and collisions must therefore be handled by another entity.

Figure 5.6 Periodic Packet Collision

The Traffic Scheduler described herein allows multiple data streams to be multiplexed

across hardware channels in terms of both time and physical channel, meeting

requirement R5.1.5. The assisted channel selection attempts to minimize fragmentation,

therefore optimizing utilization as required by R5.1.6. Finally, both single shot and

periodic packets may be scheduled as specified by R5.1.7. The full API is listed in the

following table.

Table 5.7 Traffic Scheduler API

Function Description
Get Free List Takes a channel and returns a list of time slots in the current window

which are unused. This list is read only.
Get Scheduled
List

Takes a channel and returns a list of scheduled packets in the current
window. This list is read only.

Schedule Packet Takes a schedulable packet and returns a scheduled packet.
Optionally a channel may be specified, otherwise the Traffic
Scheduler will choose the appropriate channel. If the packet can’t be
scheduled then an error code is returned.

 91

Remove Packet Takes a scheduled packet and removes it from the scheduled list,
returning its time slots to the free list.

Register State
Listener

Registers a state listener to listen for asynchronous events. The state
listener is a callback which accepts a scheduled packet and a state.
The valid states are: Transmit Success, Transmit Failed, Receive
Success, Receive Failed, Scheduling Error.

 92

Chapter 6: Conclusion

6.1 Achievements and Lessons Learned
Spectrum sensing cognitive radios are a promising solution to the apparent spectrum

scarcity problem. However, a wide range of both hardware and software technologies are

coming into existence and compatibility between these systems is currently limited at

best. In order to enable research and develop systems capable of communicating in a

cognitive network there needs to be a methodology for developing software independent

of the software defined radio platform it is implemented on.

This thesis accommodates such systems by addressing the problem from two points of

view. The first contribution is the development and verification of a design workflow for

a generic software defined radio. Many of the current software defined radio platforms

contain a complex variety of tools, and this thesis defines a model for which developers

may work in their own area of expertise. The second contribution is a hardware agnostic

SDR API. This API combines two proven API’s, the GloMo Radio API for controlling

generic communication channels, and the KUAR SDR API for enumerating the radio’s

capabilities and managing the current hardware configuration. In addition a variety of

systems were developed for the KUAR making it a viable research tool.

In addition to the contributions made by this thesis there are several points to take away

as well. One of the biggest challenges of this work has been dealing with the issue that

RF engineers describe their systems in terms of modulation scheme, SNR, power levels,

and frequencies while network engineers describe their systems in terms of bit rates, bit

 93

error rates, power per bit, and channels. In the SDR these two worlds collide and

exposing an interface in terms of network properties that control analog RF properties in

not a menial task. While the API developed, and the GloMo API may seem simple but

correctly determining the least number of necessary control parameters is difficult. From

the most simplistic point of view the task of an SDR is threefold, transmit bits, receive

bits, and measure spectrum, any API built around such a platform should therefore center

on those three tasks.

6.2 Future Work
Several regions for future improvement are possible. With regard to the design workflow

it should be further validated through an implementation on another SDR platform than

the KUAR. Furthermore, more extensive use of the Control Panel in implementing

cognitive network tests would further validate the Radio Management Domain. Finally

the development process in the Embedded Hardware Domain shows some clear repetitive

patterns for which a software support tool could reduce development time. The first case

is in the design of top level modules, a program which allowed a user to specify the

embedded components and their memory maps/ports would be useful. The second case

would be software which transformed the Simulink test harness into a VHDL test

harness, which would eliminate the need for a user to manually duplicate the test

benches.

In terms of the Hardware Agnostic Network Stack there are also works to be done. The

primary future work would be to implement the Unifying Layer and Traffic Scheduler.

 94

Additionally, the creation of a wireless network simulator which implemented the

Unifying Layer API would be an invaluable development tool for researchers. Finally, it

is possible by adapting the Traffic Scheduler from a per-packet scheduler, to a buffer

based scheduler might improve performance. In networking terms a packet is

synonymous to an atomic action, while a buffer may continually be filled and emptied.

Such a change might improve throughput by reducing the overhead of protocol

switching, but it would add complexity to the Traffic Scheduler. In order to meet real-

time deadlines and implement stream priorities the Traffic Scheduler would become

preemptible. In general this work may be continued by implementing the processes

described herein on more SDR platforms.

 95

References

[1] Marconi, G., “Transmitting Electrical Signals,” US Patent 586,193, July 18, 1897.

[2] Kopp, C., “Microwave and Millimetric Wave Propagation,” Comms World, May
2000.

[3] Matheson, R., “The Electrospace Model as a Frequency Management Tool,” NTIA
SP-03-401: Proceedings of the International Symposium on Advanced Radio
Technologies, pp 126-132, March 4-7, 2003.

[4] Telecommunication Act of 1996, Pub. LA. No. 104-104, 110 Stat. 56, 1996.

[5] Federal Communications Commision, “Spectrum Policy Task Force Report,” ET
Docket No. 02-135, November, 2002.

[6] “FCC Auctions Home,” http://wireless.fcc.gov/auctions, accessed July, 2007.

[7] McHenry, M., McCloskey, D., Lane-Roberts, G., “Spectrum Occupancy
Measurements, Location 4 of 6: Republican National Convention, New York City,
New York, August 30, 2004 - September 3, 2004, Revision 2,” Shared Spectrum
Company Report, August, 2005.

[8] McHenry, M., Steadman, K., “Spectrum Occupancy Measurements, Location 5 of 6:
National Radio Astronomy Observatory (NRAO), Green Bank, West Virginia,
October 10 -11, 2004, Revision 3,” Shared Spectrum Company Report, August,
2005.

[9] Scott, B., Calabrese, M., “Measuring the TV ‘White Space’ Available for Unlicensed
Wireless Broadband,” Free Press and the New America Foundation Report,
December, 2005.

[10] Mitola, J., “Cognitive Radio: An Integrated Agent Architecture for Software Defined
Radio,” PhD Dissertation for the Royal Institute of Technology (KTH) Stockholm,
Sweden, May, 2000.

[11] Petty, V., Rajbanshi, R., Datla, D., Weidling, F., DePardo, D., Kolodzy, P., Marcus,
M., Wyglinski, A., Evans, J., Minden, G., Roberts, J., "Feasibility of Dynamic
Spectrum Access in Underutilized Television Bands," in Proceedings of the 2nd
IEEE International Symposium on New Frontiers in Dynamic Spectrum Access
Networks (DySpan 2007), April, 2007.

[12] Seelig, F., “A Description of the August 2006 XG Demonstrations at Fort A.P. Hill,”
in Proceedings of the 2nd IEEE International Symposium on New Frontiers in
Dynamic Spectrum Access Networks (DySpan 2007), April, 2007.

[13] Federal Communications Commission, “FCC Chairman Michael K. Powell
Announces Formation of Spectrum Policy Task Force,” FCC News Release, June 6,
2002.

 96

[14] Federal Communications Commission, “Unlicensed Operation in the TV Broadcast
Bands,” Notice of Proposed Rule Making ET Docket No. 04-186, May, 2004.

[15] Visotsky, E., Kuffner, S., Peterson, R., “On Collaborative Detection of TV
Transmissions in Support of Dynamic Spectrum Sharing,” Proceedings of the 1st
IEEE Internationl Symposium on New Frontiers in Dynamic Spectrum Access
Networks (DySPAN 2005), pp. 338-343, November, 2005.

[16] Olivieri, M., Barnett, G., Lackpour, A., Davis, A., Ngo, P., “A Scalable Dynamic
Spectrum Allocation System With Interference Mitigation for Teams of Spectrally
Agile Software Defined Radios,” Proceedings of the 1st IEEE Internationl
Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN
2005), pp. 170-179, November, 2005.

[17] Zhao, J., Zheng, H., Guang-Hua, Y., “Distributed Coordination in Dynamic
Spectrum Allocation Networks,” Proceedings of the 1st IEEE Internationl
Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN
2005), pp. 259-268, November, 2005.

[18] Mangold, S., Jarosch, A., Monney, C., “Operator Assisted Cognitive Radio and
Dynamic Spectrum Assignment with Dual Beacons – Detailed Evaluation,”
Proceedings of the 1st International Conference on Communication System Software
and Middleware (Comsware 2006), January, 2006.

[19] Rhodes, C., “Interference Between Television Signals due to Intermodulation in
Receiver Front-Ends,” IEEE Transactions on Brodcasting, vol. 51, pp. 31-37, March,
2005.

[20] Rajbanshi, R., Chen, Q., Wyglinski, M., Minden, G., Evans, J., “Quantitative
Comparison of Agile Modulation Techniques for Cognitive Radio Transceivers,”
Proceeding of the IEEE Consumer Communications and Networking Conference pp
1144-1148, January, 2007.

[21] Weiss, T., Jondral, F., “Spectrum Pooling: An Innovative Strategy for the
Enhancement of Spectrum Efficiency,” IEEE Radio Communications, March, 2004.

[22] Cordeiro, C., Challapali, K., Birru, D., Shankar, S., “IEEE 802.22: The First
Worldwide Wireless Standard based on Cognitive Radios,” in Proceedings of the 1st
IEEE Internationl Symposium on New Frontiers in Dynamic Spectrum Access
Networks (DySPAN 2005), pp 328-337, November, 2005.

[23] Mitola, J., “Software Radio Architecture: A Mathematical Perspective,” IEEE
Journal on Selected Areas in Communications, Vol. 17, No. 4, pp 514-538, April,
1999.

[24] Mitola, J., “Cognitive Radio for Flexible Mobile Multimedia Communications,”
Journal of Mobile Networks and Applications, Vol. 6, No. 5, Sepctember, 2001.

[25] Czylwik, A., “Adaptive OFDM for Wideband Radio Channels,” Proceedings of
Global Telecommunications Conference (GLOBECOM ’96), pp 713-718,
November, 1996.

 97

[26] Newman, T., Rajbanshi, R., Wyglinski, A., Evans, J., Minden, G., “Population
Adaptation for Genetic Algorithm-based Cognitive Radios,” Presented at Second
International Conference on Cognitive Radio Oriented Wireless Networks and
Communications (CrownCOM 2007), August, 2007.

[27] Barker, B., “An Expert System Approach to Defining Initial Configurations for
Software-Defined Radios”, M.S. Thesis for the University of Kansas, April 2007.

[28] Ginsberg, A., Poston, J., Horne, W., “Experiments in Cognitive Radio and Dynamic
Spectrum Access using An Ontology-Rule Hybrid Architecture”, Presented at the
Second International RuleML-2006 Conference, 2006.

[29] Ettus Research, “Universal Software Radio Peripheral,”
http://www.ettus.com/downloads/usrp_v4.pdf, accessed July, 2007.

[30] Ettus Research, “Transceiver Daughterboards,”
http://www.ettus.com/downloads/transceiver_dbrds_v3b.pdf, accessed July, 2007.

[31] GNU Radio Project, “GNU Radio,” http://www.gnuradio.org/, accessed July, 2007.

[32] Blossom, E., “Exploring GNU Radio,”
http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html, accessed July,
2007.

[33] Beyer, D., Lewis, M., “Radio Device API,”
http://www.ir.bbn.com/projects/udaan/radio_api_v18.pdf, April, 1998.

[34] JTRS Standards Joint Program Executive Office Joint Tactical Radio System,
“Software Communications Architecture Specification,”
http://jtrs.spawar.navy.mil/sca/_downloads.asp?folder=SCAv2_2_2&file=SCA_versi
on_2_2_2.pdf, May, 2006.

[35] JTRS Standards Joint Program Executive Office Joint Tactical Radio System, “Joint
Tactical Radio System (JTRS) Standard Modem Hardware Abstraction Layer
Application Program Interface (API),”
http://jtrs.spawar.navy.mil/sca/_downloads.asp?folder=MHAL&file=ModemHardwa
reAbstractionLayer_API.pdf, May, 2007.

[36] Colucci, F., “Joint Tactical Radio Expected to Meet Special-Warfare Needs,”
National Defense Magazine, February, 2002.

[37] Space and Naval Warfare Systems Command (SPAWAR), “JPEO JTRS –
Organization Info,”
http://entrprise.spawar.navy.mil/body.cfm?type=c&category=27&subcat=0, accessed
July, 2007.

[38] Mackenzie, P., Doyle, L., O’Mahony, D., Nolan, K., “Software on General-Purpose
Processors,” Proceedings of the First Joint IEI/IEE Symposium on
Telecommunications Systems Research, November, 2001.

 98

[39] Nolan, K., Sutton, P., Doyle, L., “Dynamic Spectrum – The Reconfigurable
Platform,” http://www.ctvr.ie/en/pages/reconfigurableplatform.htm, accessed
August, 2007.

[40] Guffey, J., “OFDM Physical Layer Implementation for the Kansas University Agile
Radio,” M.S. Thesis for the University of Kansas, April, 2007.

[41] Petty, V., “A Framework for R.F. Spectrum Measurement and Analysis,” M.S.
Thesis for the University of Kansas, pending defense August, 2007.

[42] Minden, G., Evans, J., Searl, L., DePardo, D., Rajbanshi, R., Guffey, J., Chen, Q.,
Newman, T., Petty, V., Weidling, F., Lehnherr, M., Cordill, B., Datla, D., Barker, B.,
Wyglinski, A., Agah, A., “An Agile Radio for Wireless Innovation,” IEEE
Communications Magazine, Vol. 45, Issue 5, pp 113-121, May, 2007.

[43] DePardo, D., “KU Agile Radio 5 GHz 3.0 RF Module Description,” KUAR
Documentation, January, 2007.

[44] Searl, L., Guffey, J., “Agile Radio Digital Board Design Version 2.0.0,” KUAR
Documentation, January, 2006.

[45] Searl, L., “Agile Radio Digital Board Design Version 3.0 Rev 0,” KUAR
Documentation, February, 2007.

[46] Silberschatz, A., Galvin, P., Gagne, G., Operating Systems Concepts, 6th Edition, pp
285-287, 2002.

 99

Appendix A: VHDL Components
This appendix lists the components used for signal processing written for the Virtex II

Pro on the KUAR. The first section lists the components written or edited by the author

in the KUAR component library. The second section shows several of the top-level

systems developed by the author.

A.1 Library Component Listing
The following tables contain the component name and short description for the

components in the KUAR component library written or edited by the author. Modules

are grouped by functionality.

Accumulators - Devices which add an input value to an internal register each clock

cycle. These components are used extensively in the phase lock loop (PLL) components.

Module Description

Accumulator

An accumulator. This accumulator requires that the user
to properly account for the max width by setting
PRECISION. I is added to the internal sum every clock
cycle.

ConstantMultiplyAccumulator

A multiply accumulator with a constant gain. If this
component needs to have registered input, set the
generic DELAY to true, if the register is instantiated
outside this component Xilinx will not synthesize
properly. This accumulator requires that the user to
properly account for the max width by setting
PRECISION. I is added to the internal sum every clock
cycle.

Counters – Components which are incremented by a constant value each clock cycle.

Module Description

Modulo1Counter This system represent a modulo-1 counter, with a
generic internal increment, and an external increment.

 100

Decision Modules – Modules which translate a digital value into a symbol space. For

example the BPSK decision module translates all digital values into 0 or 1.

Module Description

BPSK_DM A BPSK decision module. Decision = AMPL *
SIGN(I+Q).

MUX_DM
A multiplexed DM with decision modules for bpsk,
qpsk, 16-QAM and 64-QAM. Specifically designed for
MQAM_Rx.

PAM_DM

A pulse-amplitude modulated decision module.
Assumes an even number of legal amplitudes, with a
matching number negative and positive. i.e. States = [(-
M+1)A, ..., -3, -1, 1, 3, ... (M-1)A] This block has a
delay of 1.

PAM_DM_tb Testbench for the PAM_DM module.

Square_MQAM_DM

A decision module for square MQAM constellations.
Both the estimated symbol and bit representation of that
symbol are generated. TODO grey code the bit
decisions. The generics describe the constellation. For
example, if a QPSK constellation is being transmitted
with a receiver bit width of 16, and each point at +/-
0.9*2^15, then WIDTH=16, SQRT_M=2, MAX_A=0.9,
and DELAY and PRECISION would be at the discretion
of the engineer. If a 64-QAM constellation was used
with a receiver bit-width of 20 and the transmitted
symbols range from 1.0*2^19 to -1.0*2^19 then
WIDTH=20, SQRT_M=8, and MAX_A=1.0.

Delays – Delay a bit or bits by a given number of clock cycles.

Module Description
Delay_1b_ns Delays a single bit n clock cycles.
Delay_nb_ms Delays m bits n clock cycles.

Digital Filters – Components which filter a stream of digital samples.

Module Description

Flat_Filter_nb_ns Implements an n-length FIR filter with all coefficients
equal to 1.

Flat_Filter_nb_ns_tb Test bench for Flat_Filter_nb_ns

 101

LoopFilter

A second-order, proportional-plus-integrator, loop filter
with generic K1 and K2, for use with PLLs. If the
generic DELAY is set to true, then the results of the
multiplies are registered, resulting in a single delay.
Otherwise the system has no delays. If DELAY is false,
the enable and reset signals only affect the internal state
of the integrator. If DELAY is true, then Enb and Reset
are applied to the registered multiplier results.

Loop_Filter_tb A test bench for the Loop_Filter component.

Fixed Point Math – Components which perform fixed point math. Fixed point math is

the use of integers to represent fractional numbers.

Module Description

FixedPointComplexMultiply Fixed point complex multiply. Pr+jPi =
(Ar+jAi)*(Br+jBi)

FixedPointGain

This block is a fixed gain, for which the input and output
is in the range [-1.0, 1.0). The gain, however is not
limited to this range, but the fractional portion of the
gain's precision is limited by the generic WIDTH.

FixedPointGain_tb This is a test-bench for the FixedPointGain Module.

FixedPointMultiply

Implements a fixed point multiply block, with generics
for input width, output precision, and rounding. TODO
if the OUTPUT_WIDTH < INPUT_WIDTH we don't
need a full precision multiply (however this would be a
rare case, I think)

FixedPointRound

This block rounds an N-bit 2's complement fixed point
number down to an M-bit 2's complement fixed point
number, where M<N. This block should be used when
truncation has undesirable affects on accuracy.

FixedPoint_tb This is a test-bench for the modules in the
FixedPointMath "package".

Gain Control – Components intended to maintain an average output amplitude

regardless of the input amplitude.

Module Description
GainControl A gain control loop.
GainFilter A simple integrating filter for gain control.

 102

MED

This is a magnitude error detector. It uses a squared
function which is approximately linear when the error is
close to 0, however the absolute value of the error will
be smaller when the magnitude is too large then when it
is too small.

Interpolation Control – Modules intended to determine the proper interpolation point.

Module Description

Modulo1_Interpolation_Control

A component intended for interpolation control.
The sample now signal (Sample) will go high every
SAMPLES_PER_SYMBOL clocks. This can be
moved earlier or later by the filtered error signal
(V). The sample now signal gives coarse-grained
sample selection, the incremental offset (M) may
then be used with an interpolater to get the ideal
sample that falls between two physical samples.

Modulo1_Interpolation_Control_tb A test bench for the
Modulo1_Interpolation_Control component.

KUAR Bus Utilities – Generic bus utilities for the KU Agile Radio.

Module Description

Address_Decoder.vhd

This module takes a memory address bus and uses a
generically defined range to create register enables. This
is a more generic extension of
KUAR_CP_Address_Decoder.

Bus_Control_Signals.vhd

This module takes a read-not-write (RNW) signal and a
chip enable (Enb) signal and creates a read enable and a
write enable. This is a generalization of the
KUAR_CP_Bus_Control_Signals module.

Bus_Controller.vhd

This modules converts a generic external control
processor-FPGA bus into an internal bus which operates
on seperate input and output data busses and allocates
register enables rather than an address. This is a more
generic implementation of KUAR_CP_Bus_Controller.

PCI_Parity

A module which calculates the parity across the PCI
bus. Note, that this module also registers the data on the
address/data bus and the command/byte-enables as this
is necessary to properly calculate parity.

PCI_State A state machine for PCI transactions.
PCI_State_tb This is a test-bench for the PCI_State statem achine

 103

Bus_Data.vhd

This modules creates a disconnect between the external
control bus and the internal data bus which is transparent
when all modules are functioning correctly. However, if
there is an error in one of the components connected to
the bus, and it creates a load when it should not, this
module decouples that load from the external bus to
ensure that the external bus is not corrupted. This is a
more generic implementation of KUAR_CP_Data which
may be used with different external tri-state busses.

KUAR Registers – Status and control registers for the KU Agile Radio.

Module Description

KUAR_Control_Reg
Register designed to be written to by the internal FPGA
bus, and read by the component instantiating
KUAR_Control_Reg.

KUAR_Status_Signal

This module used to be known as
KUAR_Status_Register, however it is no longer a
registered device, so that name was confusing. This
module allows an asynchronous, or registered signal to
be read from the generic bus.

KUAR_Read_Reg
Register that is intended to be written to by
asynchronous signals, and then registered on the bus
clock.

Pipeline_Register

A register used for implementing variable stage
pipelines. It can be used for pipeline delay matching, or
systems with configurable length pipelines, by adjusting
the DELAY variable from 0 to N.

Pipeline_Register_tb
Test bench for the Pipeline_Register, all tests are done
using asserts. If no assertions fail then the component
works properly.

Reg A register. Note the full name register is a reserved word
in vhdl.

Shift_Register A register capable of shifting the bit contents left or
right.

Unique_Word_Shift_Register

A register that detects a serialized unique word, or it's
inverse. If an exact match is found, Match will pulse
high. If an inverse match is found, then NotMatch will
pulse high.

 104

KUAR SRAM – Interfaces to interact with the SRAMs connected to the KU Agile

Radio.

Module Description

FIFO_SRAM_Rd

Allows a FIFO-like read-back interface to the static
RAMs connected to the FPGA. This is a read-only
interface. Data will not be "ready" until 2 clocks after
the address has been set/reset. However, data may be
read back every clock cycle after that. This currently
connects to a 32-bit SRAM interface, and a 16-bit
readback interface.

FIFO_SRAM_Wr

Allows a FIFO-like write-only interface to the static
RAMs connected to the FPGA. Data may be written
every clock cycle. This currently connects to a 32-bit
SRAM interface and a 16-bit internal interface.

Multiplexed_SRAM

A module that allows the FPGA or the CPH access to
the SRAM. The selection is controlled by FPGA_Sel,
with '1' meaning FPGA has control, and '0' meaning the
CPH has control.

KUAR Transceiver – Interface to the ADC and DAC on the KU Agile Radio.

Module Description
KUAR_Tx_DAC An interface to the DAC.

RadioV21_ADC An interface to the ADC which compensates for known
analog errors in the version 2.1 radio.

Phase Error Detectors (PEDs) – Components which detect the phase error of a

modulated signal.

Module Description

BPSK_2_PED

A BPSK phase error detector. The BPSK phase error
detector in BPSK_PED is for a system where I should
be +/-1, and Q should always be 0, i.e. Symbol1 (+1, 0),
Symbol2(-1, 0). This PED is for systems where I and Q
should be equal, i.e. Symbol1 (+A, +A), Symbol2 (-A, -
A). In this system, error is based on the difference
between I and Q. E = sign(I)*Q-sign(I)*I

 105

BPSK_PED

This module is an implementation of a binary PSK
phase-error detector. The output signal is the sign of the
I-side decision (+1, -1) times the magnitude of the Q-
side data. This is based on the principle that I should be
maximum when Q is minimum.

MQAM_PED

An MQAM phase error detector. The generics describe
the constellation. For example, if a QPSK constellation
is being transmitted with a receiver bit width of 16, and
each point at +/-0.9*2^15, then WIDTH=16,
SQRT_M=2, MAX_A=0.9, and DELAY and
PRECISION would be at the discretion of the engineer.
If a 64-QAM constellation was used with a receiver bit-
width of 20 and the transmitted symbols range from
1.0*2^19 to -1.0*2^19 then WIDTH=20, SQRT_M=8,
and MAX_A=1.0.

MQAM_PED_tb Test bench for the MQAM timing error recovery block.

MUX_PED A multiplexed PED with PEDs for bpsk, qpsk, 16-QAM
and 64-QAM. Specifically designed for MQAM_Rx.

Generic_PED A generic phase error detector for quadrature based
signals.

Phase Locked Loops (PLLs) – Components which lock onto the phase and frequency of

a modulated signal.

Module Description

BPSK_Carrier_Phase_Correction_PLL

Creates a phase correction index suitable for a
LUT based on the current phase error. The
decision(I) and value(Q) are used to determine
phase error, and generate the correction factor.
The system may be pipelined with 0-4 delays.
For high-speed designs it is suggested that a
pipeline factor of 2 be used, because both
multiplies will then be registered.

BPSK_Timing_Error_Recovery

This is a BPSK timing error recovery block
based on a zero-crossing timing error detector,
and a modulo-1 decrementing register. This
block operates on 2 samples-per-symbol, and
outputs a sample now flag and an incremental
interpolation offset. For proper operation this
block should be clock at >=
PIPELINE*2*symbol rate. If it is clocked at
exactly that rate, enable may be left high

MQAM_CPC_tb Test bench for the MQAM carrier phase
recovery block.

 106

MQAM_Carrier_Phase_Correction

Detects phase error in the I and Q samples of
an MQAM signal, and removes it. TODO
several single pipeline delay stages were
changed to double delays, the max delay is
now actually 7 stages, need to update generics
to reflect that.

MQAM_TER_tb Test bench for the MQAM timing error
recovery block.

MQAM_Timing_Error_Recovery

This module creates a sample clock and an
incremental sampling offset for an arbitrary
MQAM system. The symbol rate must be an
even factor of the sample rate (i.e. 4, 6, 8, ...).
The PLL constants may be used to control
lock-time/lock-accuracy. This system uses
Gardner timing error-detectors, so it is very
resilient to phase error.

Read Only Memory (ROM) – Used for look-up tables.

Module Description

ROM

This entity contains a completely generic ROM. Due to
the fact that all the entries are specified via a generic, it
is likely that this component will only be useful for
fairly small ROMs. Be sure to add use
work.ROM_TYPE.all; TODO build a ROM that reads
it's entries from a file.

Receivers – Fully implemented receivers.

Module Description
BPSK_Rx A BPSK receiver.

Carrier_Compensation Compensates for carrier phase, timing, and magnitude
issues for a generic quadrature single carrier system.

Carrier_Compensation_tb This is a test-bench for the Carrier_Compensation
Module.

MQAM_Rx
An MQAM receiver which currently handles BPSK (for
initial phase & timing lock) and M values of (4, 16, 32,
and 64)

MQAM_Rx_tb Test bench for the MQAM receiver block.

 107

Sampler – Signal samplers.

Module Description

DownSample_VariableOffset

A down sampler, with a variable sample offset. There
are two clock domains, clk_in, or the sample clock, and
clk_out, the frame clock. There will always be one
sample per-frame. The output O should be registered
with the frame clock (clk_out) as the output may be
valid for as little as one half clock period of the sample
clock (clk_in). The easiest way to due this is by setting
REGISTER_OUTPUT to TRUE, but in certain
situations this may lead to an undesirable extra delay.
The input I is in the sample clock domain. The output O,
and the inputs Offset and Offset_Wr_Enb are all in the
frame clock domain, and as such the Offset is latched on
the rising edge of the frame clock (clk_out). This
ensures that exactly one sample from any given frame
will be sampled.

Signal_Scope

This is a module that is intended to be used for
analyzing signals in the FPGA. The system can handle
up to 8 independent signals and provides "real-time"
registers for checking instantaneous data values, a signal
sampler to capture signal sweeps, and a triggering
system.

Serializer – Components used to convert between parallel and serial data streams.

Module Description

Deserializer

Not really a deserializer (need a better name), more of a
bit accumulator. This block takes an M-bit input and
creates an N-bit output (where N>M), every N/M clocks
on average. So the input is not truly serial, but it does
output a parallel signal of proper bitwidth.

Serializer_nb_1b

Serialize an N-bit parallel signal into a 1-bit serial
signal. The system is prepared for new data on I every
N-clocks, and this will be signalled by Rd_H going
high. I is not registered, so data must stay constant every
N clocks. Data is serialized LSB to MSB.

VariableWidthDeserializer

Not really a deserializer (need a better name), more of a
bit accumulator. This block takes an M-bit input and
creates an N-bit output (where N>M), every N/M clocks
on average. This differs from the Deserializer block, in
that M is a runtime configurable parameter. However,
changing this parameter will reset the block.

VariableWidthDeserializer_tb Testbench for the VariableWidthDeserializer module.

 108

VariableWidthSerializer This block takes an M-bit input and creates an N-bit
output (where M>N), every clock.

VariableWidthDSerializer_tb Testbench for the VariableWidthDeserializer module.

Sine Generator – Components for generating sine waves.

Module Description

DDS

This is a DDS which takes as an input a signed 2's
complement phase, integrates over the phase, and
quantizes the output to be an unsigned index into a look-
up table, of the form sine(theta) where theta =
2*pi/(2^LUT_WIDTH)*Index.

sin_cos_lut A parameterizable sin/cos look-up table with a
parameters for

sin_cos_lut_tb Test bench for the sin cos lut component.

Timing Error Detectors (TEDs) - Components designed to detect a timing error in the

sampling time of a modulated stream.

Module Description

GardnerTED This is an implementation of a Gardner timing error
detector it is suitable for M-PSK, and M-QAM systems.

QuadratureTED

A TED for Quadrature modulated signals. For each type
of TED there should be a different architecture for this
system. Currently only implemented for Gardner. The
error is the average of the error on each branch.

ZCTED
This is a zero-crossing timing error detector. The error
output is not valid until the second rising edge after the
first input.

Transmitters – Fully implemented transmitters.

Module Description
bpsk_tx A 1.25 Mbaud BPSK transmitter.

Binary_MQAM_LUT

A look-up table for semi-square MQAM constellations.
This block is a helper block for Square_MQAM_LUT,
unlike Square_MQAM_LUT which produces
constellations that must have a square number of points,
this block produces constellations that have 2^N (where
N is an integer) points. This block uses the full bitwidth.
This block has a single clock delay.

 109

MQAM_Tx
An configurable M-Ary QAM transmitter which
currently supports BPSK, QPSK, 8-QAM, and 16-
QAM.

MQAM_Tx_tb This is a test-bench for the MQAM_Tx Module.

PAM_LUT

A pulse-amplitude modulated look-up table or encoder.
Assumes an even number of legal amplitudes, with a
matching number negative and positive. i.e. States = [(-
M+1)A, ..., -3, -1, 1, 3, ... (M-1)A] This block has a
single clock delay.

PAM_LUT_tb Testbench for the PAM_DM module.

Square_MQAM_LUT

A look-up table for square MQAM constellations. For
example, if a QPSK constellation is being transmitted
with a sample bit width of 16, and each point at +/-
0.9*2^15, then WIDTH=16, SQRT_M=2, MAX_A=0.9.
If a 64-QAM constellation was used with a sample bit-
width of 20 and the transmitted symbols range from
1.0*2^19 to -1.0*2^19 then WIDTH=20, SQRT_M=8,
and MAX_A=1.0. All even values for SQRT_M are
supported, currently no odd values are supported,
although that may change in the future. This block has a
single clock delay.

A.2 Systems
The following section gives a brief overview of several of the top-level systems

generated by the author.

BPSK Transceiver

The binary phase shift keying transceiver uses an alphabet of two symbols, representing

either a 0 or a 1. The symbol rate is 1.25 MHz but the sampling rate is 80 MHz. Due to

the high ratio between sampling rate and processing rate, timing error correction is done

by choosing the proper sample rather without the use of any interpolation. In order to

decrease the sampling rate, or increase the symbol rate it would be necessary to add an

interpolator which used the sample timing control block’s remainder to choose the

incremental offset. The block diagram of this system is shown below.

 110

Figure A.1 BPSK Receiver Block Diagram

M-QAM Transceiver

The M-QAM transceiver supports alphabets of 2, 4, 16, 32, 64, and 128 symbols,

although there haven’t been any successful communications above 32-QAM. This

system has a similar structure to the BPSK system, only with different error detectors. In

order to support the different alphabets the phase error detector is a MUX with which the

proper symbol space may be chosen. In order for the receiver to determine the value of

M the header of each packet is transmitted using BPSK and following the unique word is

a number identifying the value of M.

 111

Spectrum Analyzer

The spectrum analyzer consists of a Xilinx generated Fast Fourier Transform (FFT)

block. This block is connected to a memory for storing samples and a state machine to

synchronize signaling. Using this block it is possible to signal a sweep to be taken and

wait for it to complete. In addition to being a highly useful diagnostic tool, this image

has been incorporated with the Spectrum Miner software [41] in order to take spectral

measurements.

Hardware Testbench

Although this component can’t be used in by itself, and requires some user

customization, it has also been highly useful. The testbench itself simply consists of a

user specified number of input FIFOs, output FIFOs, and a go signal. The user then

embeds the component to be tested between the FIFOs and can use the associated script

template to generate a system which will write Matlab samples into the input FIFOs, run

the system, and then format the data from the output FIFOs into a Matlab readable file.

 112

Appendix B: KUAR SDR API
This appendix contains the libraries and command line programs that compose the

KUAR SDR API.

B.1 libRFControl
The RF Control library is written in C, and is accessible through several header files.

Using the KUAR.h will include all of these, but the individual headers are

KUAR_types.h which defines basic types, KUAR_frequency.h which defines frequency

handling mechanisms, and KUAR_rfControl.h which is the main RF Control API. These

headers are included below.

KUAR_types.h:

/* Copyright (c) 2000 The Information and Telecommunication Technology Center
 * (ITTC) at the University of Kansas
 * ALL RIGHTS RESERVED
 *
 * Purpose: Definitions for KUAR types, logging functions, and error reporting
 * functions. By default log information is sent to stdout and stderr.
 *
 * Author: Ted Weidling, 20060629
 * $Revision: 1.0 $
 */
#ifndef _KUAR_TYPES_H_
#define _KUAR_TYPES_H_

#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>

/*### Macros/Objects/Structures/Types #################################*/

/* Define boolean */
#ifndef bool
define bool int
define TRUE (1 == 1)
define FALSE (0 == 1)
#endif

/* Units of gain in centi-deciBells */
#define gain_cdB int16_t

/* Error numbers, note only the absolute value is considered
 * If you add an error, be sure to add a description in the
 * KUAR_strerror function */
typedef enum {
 SUCCESS=0,
 EBOUNDS,
 ENOTIMPLEMENTED,

 113

 ERFBOARD,
 EMCU,
 EWRONGDEV,
 EWRONGVER
} KUAR_status;

/* Logging levels from most verbose to most critical */
typedef enum {
 VERBOSE,
 MESSAGE,
 WARNING,
 ERROR,
 CRITICAL
} KUAR_log_level;

/**
 * DEBUGF is a macro for printf that can be used for debugging. If the
 * macro DEBUG is defined, then DEBUGF turns into printf, otherwise
 * DEBUGF statements are removed.
 *
 * For useage see printf in stdio.h
 */
#ifndef DEBUG
define DEBUGF(_format_, ...)
#else
define DEBUGF(_format_, ...) printf(_format_, ## __VA_ARGS__); fflush(stdout)
#endif

/*### Entry Function Declaration ##*/

/**
 * Sends a message to the log stream, based on current settings. In general
 * there are two log streams, std (standard) defaults to stdout and err (error)
 * defaults to stderr. Which stream the message prints to is based on the
 * urgency level. The mapping is shown below:
 * VERBOSE - std
 * MESSAGE - std
 * WARNING - std
 * ERROR - err
 * CRITICAL - err
 *
 * urgency (in) The level of urgency of the log message.
 * msg (in) The message to log.
 * returns Returns the number of bytes printed excluding the terminating
 * null on success, or a negative error number for an error. The error returned
 * will be a standard ANSI errno not a KUAR_status.
 */
int log(KUAR_log_level urgency, char * msg);

/**
 * Same as log, only with a printf style formatting.
 * urgency (in) The level of urgency of the log message.
 * format (in) A printf style format string.
 * ... (in) A printf parameter list.
 * returns Returns the number of bytes printed excluding the terminating
 * null on success, or a negative error number for an error. The error returned
 * will be a standard ANSI errno not a KUAR_status.
 */
int logf(KUAR_log_level urgency, char * format, ...);

/**
 * Sets the lowest level of urgency that logged messages will be displayed.
 * urgency (in) Lowest level messages to log.
 */
void set_log_level(KUAR_log_level urgency);
/**
 * Sets the std and err log streams.
 * std (in/out) The stream that VERBOSE and MESSAGE level logs are printed
 * to.
 * err (in/out) The stream that WARNING, ERROR, and CRITICAL level logs are
 * printed to.

 114

 */
void set_log_stream(FILE *std, FILE *err);
/**
 * Returns a descriptive null-terminated string of the error. Note that since
 * the -KUAR_status is often returned to indicate error, the absolute value
 * of errno is used.
 * errno (in) The status to get a description of.
 * return Description of the error.
 */
const char * KUAR_strerror(KUAR_status errno);

#endif //_KUAR_TYPES_H_

KUAR_frequency.h

/* Copyright (c) 2000 The Information and Telecommunication Technology Center
 * (ITTC) at the University of Kansas
 * ALL RIGHTS RESERVED
 *
 * Purpose: Functions for manipulating frequencies.
 *
 * Author: Ted Weidling, 20060531
 * $Revision: 1.0 $
 */

#ifndef _KUAR_FREQUENCY_H_
#define _KUAR_FREQUENCY_H_

#include <stdint.h>
#include <stdio.h>
#include "KUAR_types.h"

/*### Macros ##*/
/* SI unit definitions, be careful about type when using them,
 * easy to cause over/under-flow */
#define GIGA 1000000000
#define MEGA 1000000
#define KILO 1000
#define CENTI (1/100)
#define MILLI (1/1000)
#define MICRO (1/1000000)
#define NANO (1/1000000000)

/*### Objects/Structures/Types ##*/
typedef struct _KUAR_frequency_ {
 uint16_t GHz;
 uint16_t MHz;
 uint16_t KHz;
 uint16_t Hz;
} KUAR_frequency_t;

#define KUAR_frequency KUAR_frequency_t

/*### Entry Function Declaration ##*/

/* Functions to build frequencies */

/**
 * Sets the frequency of a KUAR_frequency object. Memory for data must
 * be allocated.
 * @param data (out) The KUAR_frequency structure to store the information in.
 * @param frequency_GHz (in) The GHz component of the frequency (i.e. 1=1GHz)
 * @param frequency_MHz (in) The MHz component of the frequency (i.e. 1=1MHz)
 * @param frequency_KHz (in) The KHz component of the frequency (i.e. 1=1KHz)
 * @param frequency_Hz (in) The Hz component of the frequency (i.e. 1=1Hz)
 */
void KUAR_make_frequency(KUAR_frequency * data,

 115

uint16_t frequency_GHz,
 uint16_t frequency_MHz,
 uint16_t frequency_KHz,
 uint16_t frequency_Hz);
/**
 * Sets the frequency of a KUAR_frequency object. Memory for data must
 * be allocated. Helper function for KUAR_make_frequency(data, frequency_GHz,
 * 0, 0, 0).
 * @param data (out) The KUAR_frequency structure to store the information in.
 * @param frequency_GHz (in) The GHz component of the frequency.
 */
void KUAR_make_frequency_GHz(KUAR_frequency * data, uint16_t frequency_GHz);
/**
 * Sets the frequency of a KUAR_frequency object. Memory for data must
 * be allocated. Helper function for KUAR_make_frequency(data, 0,
 * frequency_MHz, 0, 0).
 * @param data (out) The KUAR_frequency structure to store the information in.
 * @param frequency_MHz (in) The MHz component of the frequency.
 */
void KUAR_make_frequency_MHz(KUAR_frequency * data, uint16_t frequency_MHz);
/**
 * Sets the frequency of a KUAR_frequency object. Memory for data must
 * be allocated. Helper function for KUAR_make_frequency(data, 0,
 * 0, frequency_KHz, 0).
 * @param data (out) The KUAR_frequency structure to store the information in.
 * @param frequency_KHz (in) The KHz component of the frequency.
 */
void KUAR_make_frequency_KHz(KUAR_frequency * data, uint16_t frequency_KHz);
/**
 * Sets the frequency of a KUAR_frequency object. Memory for data must
 * be allocated. Helper function for KUAR_make_frequency(data, 0,
 * 0, 0, frequency_Hz).
 * @param data (out) The KUAR_frequency structure to store the information in.
 * @param frequency_Hz (in) The Hz component of the frequency.
 */
void KUAR_make_frequency_Hz(KUAR_frequency * data, uint16_t frequency_Hz);
/**
 * Sets the frequency of a KUAR_frequency object. Memory for data must
 * be allocated. frequency_Hz is interpreted as a frequency in Hz.
 * @param data (out) The KUAR_frequency structure to store the information in.
 * @param frequency_Hz (in) The frequency defined in Hz.
 */
void KUAR_make_frequency_long_Hz(KUAR_frequency * data, uint64_t frequency_Hz);

/* Functions to inspect frequencies */

/**
 * Gets the GHz portion of the frequency, if data was 2.58 GHz, this function
 * would return 2.
 * @param data (in) The frequency to read the GHz value of.
 * @return The GHz component for the frequency.
 */
uint16_t KUAR_get_frequency_GHz(KUAR_frequency * data);
/**
 * Gets the MHz portion of the frequency, if data was 2.58 GHz, this function
 * would return 580.
 * @param data (in) The frequency to read the MHz value of.
 * @return The MHz component for the frequency.
 */
uint16_t KUAR_get_frequency_MHz(KUAR_frequency * data);
/**
 * Gets the KHz portion of the frequency, if data was 59.7 KHz, this function
 * would return 59.
 * @param data (in) The frequency to read the KHz value of.
 * @return The KHz component for the frequency.
 */
uint16_t KUAR_get_frequency_KHz(KUAR_frequency * data);
/**
 * Gets the Hz portion of the frequency, if data was 59.7 KHz, this function
 * would return 700.

 116

 * @param data (in) The frequency to read the Hz value of.
 * @return The Hz component for the frequency.
 */
uint16_t KUAR_get_frequency_Hz(KUAR_frequency * data);
/**
 * Compares to frequencies.
 * @return 0 iff freq1 == freq2
 * -1 iff freq1 < freq2
 * +1 iff freq1 > freq2
 */
int KUAR_compare_frequency(const KUAR_frequency * freq1, const KUAR_frequency * freq2);
/**
 * Prints a frequency to the given stream in MHz. In the form
 * #,###.###### MHz.
 * print (in) The frequency to print.
 * stream (in/out) The stream to print the frequency to.
 * return The number of characters printed to the stream.
 */
int KUAR_fprint_frequency(KUAR_frequency * print, FILE * stream);
/**
 * Prints a frequency as a String including the null character, to buf. In
 * the form #,###.###### MHz.
 * print (in) The frequency to print.
 * buf (in/out) The string to print the frequency to, must be at least
 * 18 characters long.
 * return The number of character written to the buffer.
 */
int KUAR_sprint_frequency(KUAR_frequency * print, char * buf);

/* Functions to manipulate frequencies */
/**
 * Adds two frequencies.
 * sum = term1 + term2
 * The function is designed so that sum may point to
 * term1, term2, neither, or both.
 * @param sum (out) The frequency to store the result in.
 * @param term1 (in)
 * @param term2 (in)
 */
void KUAR_add_frequency(KUAR_frequency * sum,
 KUAR_frequency * term1,
 KUAR_frequency * term2);
/**
 * Subtracts term2 from term1, term1 must be greater than term2.
 * difference = term1 - term2
 * The function is designed so that difference may point to
 * term1, term2, neither, or both.
 * @param difference (out) The difference between term1 and term2.
 * @param term1 (in) The operand to subtract term2 from.
 * @param term2 (in) The operand to be subtracted from term1.
 */
void KUAR_subtract_frequency(KUAR_frequency * difference,
 KUAR_frequency * term1,
 KUAR_frequency * term2);
#endif //_KUAR_FREQUENCY_H_

KUAR_rfControl.h

/* Copyright (c) 2000 The Information and Telecommunication Technology Center
 * (ITTC) at the University of Kansas
 * ALL RIGHTS RESERVED
 *
 * Purpose: The RF board control library software.
 *
 * Author: Ted Weidling, 20060614
 * $Revision: 1.0 $
 */

 117

#ifndef _KUAR_RFCONTROL_H_
#define _KUAR_RFCONTROL_H_

// #define DEBUG
#include "KUAR_frequency.h"
#include "KUAR_types.h"

/* library specific type definitions */
/* Structure defining the current RF hardware settings.
 * This should be initialized with KUAR_rf_init_settings, when
 * creating a new structures it should be set equal to NEW_SETTINGS
 * or initialized before being used. */
typedef struct _KUAR_rf_settings_ {
 bool internal_allocated;
 bool initd;
 void * data;
} KUAR_rf_settings_t;
#define NEW_SETTINGS {FALSE, FALSE, NULL}

#define KUAR_rf_settings KUAR_rf_settings_t

/* Structure describing the hardware abilities of a given RF board */
typedef struct _KUAR_rf_abilities_ {
 KUAR_frequency Rx_min_frequency;
 KUAR_frequency Rx_max_frequency;
 KUAR_frequency Rx_frequency_delta;
 gain_cdB Rx_min_gain;
 gain_cdB Rx_max_gain;
 gain_cdB Rx_gain_delta;
 KUAR_frequency Tx_min_frequency;
 KUAR_frequency Tx_max_frequency;
 KUAR_frequency Tx_frequency_delta;
 gain_cdB Tx_min_gain;
 gain_cdB Tx_max_gain;
 gain_cdB Tx_gain_delta;
} KUAR_rf_abilities_t;

#define KUAR_rf_abilities KUAR_rf_abilities_t

/* Version information
 format, first two bytes major version, second two bytes minor version */
#define VER 0x0002
#define VER_HUMAN "0.2"

/*### Library Function Definitions #################################*/
/**
 * Returns the library version as a uint32_t for internal comparison
 */
#define KUAR_rf_raw_lib_ver() (uint32_t)VER
/**
 * Returns the library version as a human readable string, for
 * display to the user.
 */
#define KUAR_rf_lib_ver() VER_HUMAN

/**
 * Returns the hardware abilities (limitations) which all settings
 * must abide by.
 */
const KUAR_rf_abilities * KUAR_rf_get_abilities();

/**
 * Initializes KUAR_rf_settings with the default values. Must be
 * called before settings are used. Allocates memory for the internal
 * data structure, and for the settings object if needed.
 * WARNING: calling this function on the same structure without first
 * calling KUAR_rf_free_settings will result in a memory leak
 * @param settings (in/out) The settings to initialize.
 * @return SUCCESS on success
 * EMCU if contact with the rf board MCU can't be created
 */

 118

KUAR_status KUAR_rf_init_settings(KUAR_rf_settings * settings);
/**
 * Frees the internal memory allocated for data. Settings object
 * is no longer valid after this function is called.
 * WARNING: calling this function on a settings structure without first
 * calling KUAR_rf_init_settings will result in a SEGFAULT or worse...
 * @param settings (in/out) The data structure to free the internal memory of.
 */
void KUAR_rf_free_settings(KUAR_rf_settings * settings);

/**
 * Commits the settings to the hardware. Only the settings that differ
 * from the current hardware settings will be sent.
 * @param settings (in) The settings to send to the hardware.
 * @return SUCCESS on success
 * EMCU if contact with the MCU has been lost
 * ERFBOARD if there is an error configuring one of the RF components
 */
KUAR_status KUAR_rf_configure(KUAR_rf_settings * settings);
/**
 * Commits all settings to the hardware, regardless of the hardware's current
 * state.
 * @param settings (in) The settings to send to the hardware.
 * @return SUCCESS
 */
KUAR_status KUAR_rf_forceconfigure(KUAR_rf_settings * settings);

/**
 * Gets the current state of the hardware. If the hardware hasn't been configured
 * yet, then the state is unknown, and NULL is returned.
 * @return The current hardware state, or NULL if the state is unknown.
 */
const KUAR_rf_settings * KUAR_rf_get_configuration();

/**
 * Returns TRUE if the RF receive hardware has locked onto (finished setting
 * itself) a frequency.
 * return TRUE if the Rx plls in the selected path all have a lock signal,
 * FALSE otherwise.
 */
bool KUAR_rf_Rx_has_lock();
/**
 * Returns TRUE if the RF tranamsit hardware has locked onto (finished setting
 * itself) a frequency. This function returns FALSE if transmit power is turned
 * off.
 * return TRUE if the Rx plls in the selected path all have a lock signal,
 * FALSE otherwise.
 */
bool KUAR_rf_Tx_has_lock();

/**
 * Sets the frequency that a received signal will be tuned to 0 Hz.
 * @param settings (in/out) The settings to update the receiver frequency of.
 * @param frequency (in) The frequency to set the receiver to.
 * @return SUCCESS on success
 * EBOUNDS if frequency is outside the bounds defined by
 * KUAR_rf_get_abilities
 */
KUAR_status KUAR_rf_Rx_set_frequency(KUAR_rf_settings * settings, KUAR_frequency *
frequency);
/**
 * Sets the gain/attenuation of the receiver. A negative value represents
 * attenuation, while a positive value represents gain. NOTE: This value may
 * be overridden by the hardware if the auto-gain jumper is set.
 * @param settings (in/out) The settings to update the receiver gain of.
 * @param gain (in) The gain in centi-dBs to set the receiver to.
 * (i.e. 1025 cdB = 10.25 dB)
 * @return SUCCESS on success
 * EBOUNDS if gain is outside the bounds defined by
 * KUAR_rf_get_abilities
 */

 119

KUAR_status KUAR_rf_Rx_set_gain_cdB(KUAR_rf_settings * settings, gain_cdB gain);
/**
 * Sets the gain/attenuation of the receiver. The gain parameter refers to a gain device,
 * while the attenuation parameter refers to a seperate attenuation device.
 * @param settings (in/out) The settings to update the receiver gain of.
 * @param gain (in) The gain in centi-dBs to set the receiver to.
 * (i.e. 1025 cdB = 10.25 dB)
 * @param atten (in) The attenuation in centi-dBs to set the receiver to.
 * @return SUCCESS on success
 * EBOUNDS if gain is outside the bounds defined by
 * KUAR_rf_get_abilities
 */
KUAR_status KUAR_rf_Rx_set_gain_atten_cdB(KUAR_rf_settings * settings, gain_cdB gain,
gain_cdB atten);
/**
 * Gets the frequency that the receiver is set to in the given settings. For the
 * meaning of this frequency see KUAR_rf_Rx_set_frequency.
 * @param settings (in) The settings to read the receiver frequency from.
 * @return The frequency of the receiver in the given settings.
 */
KUAR_frequency KUAR_rf_Rx_get_frequency(KUAR_rf_settings * settings);
/**
 * Gets the gain of the receiver in centi-dB.
 * @param settings (in) The settings to read the receiver gain from.
 * @return The gain in centi-dB of the receiver.
 */
gain_cdB KUAR_rf_Rx_get_gain_cdB(KUAR_rf_settings * settings);
/**
 * Gets the gain and attenuation of the receiver as seperate attributes
 * in centi-dB.
 * @param settings (in) The settings to read the receiver gain from.
 * @param gain (out) A pre-allocated gain to place the receiver gain in.
 * @param atten (out) A pre-allocated gain to place the receiver attenuation in.
 */
void KUAR_rf_Rx_get_gain_atten_cdB(KUAR_rf_settings * settings, gain_cdB * gain, gain_cdB
* atten);
/**
 * Sets the frequency that a DC (0 Hz) signal will be transmitted at.
 * @param settings (in/out) The settings to update the transmitter frequency of.
 * @param frequency (in) The frequency to set the transmitter to.
 * @return SUCCESS on success
 * EBOUNDS if frequency is outside the bounds defined by
 * KUAR_rf_get_abilities
 */
KUAR_status KUAR_rf_Tx_set_frequency(KUAR_rf_settings * settings, KUAR_frequency *
frequency);
/**
 * Sets the gain/attenuation of the transmitter. A negative value represents
 * attenuation, while a positive value represents gain.
 * @param settings (in/out) The settings to update the transmitter gain of.
 * @param gain (in) The gain in centi-dBs to set the receiver to.
 * (i.e. 1025 cdB = 10.25 dB)
 * @return SUCCESS on success
 * EBOUNDS if gain is outside the bounds defined by
 * KUAR_rf_get_abilities
 */
KUAR_status KUAR_rf_Tx_set_gain_cdB(KUAR_rf_settings * settings, gain_cdB gain);
/**
 * Sets the transmit power on/off. If the transmit power is off, no signals from
 * the fpga will be sent.
 * @param settings (in/out) The settings to turn the transmitter on/off for.
 * @param power_on (in) TRUE to turn power on, FALSE to turn power off.
 */
KUAR_status KUAR_rf_Tx_set_power_on(KUAR_rf_settings * settings, bool power_on);
/**
 * Gets the frequency that the transmitter is set to in the given settings. For
 * the meaning of this frequency see KUAR_rf_Tx_set_frequency.
 * @param settings (in) The settings to read the receiver frequency from.
 * @return The frequency of the transmitter in the given settings.
 */
KUAR_frequency KUAR_rf_Tx_get_frequency(KUAR_rf_settings * settings);

 120

/**
 * Gets the gain of the transmitter in centi-dB.
 * @param settings (in) The settings to read the transmitter gain from.
 * @return The gain in centi-dB of the transmitter.
 */
gain_cdB KUAR_rf_Tx_get_gain_cdB(KUAR_rf_settings * settings);
/**
 * Determines whether or not the transmitter is turned on in the given settings.
 * @param settings(in) The settings to read the transmitter power setting from.
 * @return TRUE if the transmitter power is set to on, FALSE if the transmitter
 * power is set to off.
 */
bool KUAR_rf_Tx_is_power_on(KUAR_rf_settings * settings);

/**
 * Prints a human readable description of the current settings.
 * @param settings (in) The settings to print.
 * @param stream (in/out) The stream to print the settings to.
 */
void KUAR_rf_print_settings(KUAR_rf_settings *settings, FILE *stream);

/**
 * Writes a portable and human readable/editable form of an RF settings
 * structure. This is intended for long-term storage and portability. For
 * efficient short-term storage see KUAR_rf_serialize_settings.
 * @param dest (out) The file to write the settings to.
 * @param src (in) The settings structure to serialize.
 * @return The size in bytes written to dest, or a negative
 * KUAR_status code if there was an error.
 */
size_t KUAR_rf_fwrite_settings(FILE * dest, KUAR_rf_settings * src);
/**
 * Reads a portable and human readable/editable form of an RF settings
 * structure. This is intended for long-term storage and portability. For
 * efficient short-term storage see KUAR_rf_serialize_settings.
 * @param dest (in/out) A place-holder for the unserialized settings object.
 * @param src (in/out) A character buffer to read the settings from. Some
 * characters may be modified according to the xml standard.
 * @param len (in) The length of the character buffer.
 * @return SUCCESS on success
 * EBOUNDS if the system does not support one of the specified ranges
 */
KUAR_status KUAR_rf_sread_settings(KUAR_rf_settings * dest, char * src, unsigned int
len);
KUAR_status KUAR_rf_fread_settings(KUAR_rf_settings * dest, const char * filename);

/**
 * Copies a KUAR_rf_settings object to a FILE that may be stored
 * for later deserialization. This function is intended for local high-speed
 * serialization, not for platform portability. The serialized form will not
 * be portable across different versions of the KUAR.
 * @param dest (out) The file to write the settings to.
 * @param src (in) The settings structure to serialize.
 * @return The size in bytes written to dest, or a negative
 * KUAR_status code if there was an error.
 */
size_t KUAR_rf_serialize_settings(FILE * dest, KUAR_rf_settings * src);
/**
 * Copies a serialized form of the settings object from a source
 * file to a KUAR_rf_settings object.
 * WARNING: calling this function on an initialized structure without first
 * calling KUAR_rf_free_settings will result in a memory leak.
 * @param dest (in/out) A place-holder for the unserialized settings object.
 * @param src (in) The stream to read the settings from.
 * @return SUCCESS on success
 * EWRONGDEV if the connected RF hardware is different from the
 * hardware that the settings were serialized with.
 * EWRONGVER if the software version of the RF hardware has
 * changed since the structure was serialized.
 */
KUAR_status KUAR_rf_unserialize_settings(KUAR_rf_settings * dest, FILE * src);

 121

#endif //_KUAR_RFCONTROL_H_

B.2 libMonitor
This library currently monitors temperatures on the KUAR but in the future will be

extended to include battery life, or other system parameters.

/* Copyright (c) 2005 The Information and Telecommunication Technology Center
 * (ITTC) at the University of Kansas
 * ALL RIGHTS RESERVED
 *
 * Purpose: Creates hooks to monitor system devices.
 *
 * Author: Ted Weidling, 20050714
 */

#ifndef MONITOR_H
#define MONITOR_H

#ifdef __cplusplus
extern "C" {
#endif

/*### Includes ##*/

/*### Macros ##*/

// status masks
#define BUSY 0x80
#define LHIGH 0x40
#define LLOW 0x20
#define RHIGH 0x10
#define RLOW 0x08
#define OPEN 0x04
#define RTHRM 0x02
#define LTHRM 0x01

/*### Objects/Structures/Types #################################*/

/**/
char
getStatusFlags();
char
getConfigFlags();
/**
 * @return Estimated temperature of the FPGA sensor in
 * degrees Celcius.
 */
int
getFpgaTemp();
/**
 * @return The temperature of the FPGA sensor in degrees
 * Celcius. More accurate than getFpgaTemp()
 */
float
getPrecFpgaTemp();

/**
 * @return The temperature of the sensor in degrees Celcius.
 */
int

 122

getSensorTemp();

#ifdef __cplusplus
}
#endif

#endif

B.3 libfpgaAddr
Access to the FPGA through a memory map. Memory can be accessed by words or

bytes.

/* Copyright (c) 2005 The Information and Telecommunication Technology Center
 * (ITTC) at the University of Kansas
 * ALL RIGHTS RESERVED
 *
 * Purpose: DEFINES and structures for FPGA addressing.
 *
 * Author: Leon S. Searl,
 * $Revision: 1.2 $
 */

#ifndef FPGAADDR_H
#define FPGAADDR_H

#ifdef __cplusplus
extern "C" {
#endif

/*### Includes ##*/

#define FPGA_BASE_ADDR 0xF9000000

/*### Macros ##*/

/*### Objects/Structures/Types #################################*/

/* structure of the FPGA control and status registers */
 typedef struct fpgaRegisters_ {
 union {
 unsigned char bytes[0x00100000]; /* 4 MB */
 unsigned short int words[0x00080000]; /* 2 MWords */
 } join;
 } fpgaRegisters_t;

 /* structure for memory on the digital board */
 typedef struct fpgaGeneric_ {
 union {
 unsigned char bytes[0x00040000]; /* 1 MB */
 unsigned short int words[0x00080000]; /* 2 MWords */
 } join;
 } fpgaGeneric_t;

 /* structure for addresses into and through FPGA */
 typedef struct fpgaAddr_ {
 fpgaRegisters_t registers;
 fpgaGeneric_t generic;
 } fpgaAddr_t;

/*
 * Initializes the FPGA memory map.
 * @return The initialized memory map.
 */

 123

fpgaAddr_t * initFpgaAddr ();

#ifdef __cplusplus
}
#endif

#endif

B.4 Command Line Utilities
In addition to the libraries much of the functionality is exposed via user space command

line programs. The next table contains a listing of the programs with a brief description.

Program Name Description
fpgaCnfg Configures the FPGA with a specified bit-file, or returns the name

of the current configuration.
fpgaRW Reads or writes data to the FPGA.
rfControl A program for controlling the individual components on the RF

front-end.
rfControl2 An interface to the libRFControl. Allows users to edit RF front-end

parameters in terms of frequencies in MHz and gains in dBm.
thermal A program to return the temperature sensor readings.

