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Abstract

Improving the behavior of the IP protocol suite for new applications with real-time
network requirements is an area of considerable interest for researchers in the networking
research community. With an eye towards ubiquitous IP networks, researchers have been
involved with evaluating the application and performance of various Quality of Service
protocols. One of the key requirements to improving these protocols is testing them in
large-scale computer networks. Most of the relevant studies have been conducted using
small-scale networks or discrete-event simulation due to the expense of setting up large-
scale networks. This research presents an application of virtualization of IP network
elements to emulate large-scale networks. In this work, Virtual Network extensions to
Linux were used to create large-scale virtual networks on top of a smaller set of physical
machines. Various approaches to virtualization of generic IP networks are considered
with different scaling abilities and emulation results from Diffserv and Intserv based
network testing are compared with physical network test results.
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Chapter 1

Introduction

The ubiquity of IP networks has led to new applications being developed which use

the IP protocol stack to support new services. These new services include various

streaming audio and video services used for interactive messaging, videoconferencing

and IP telephony. Legacy application protocols like ftp, telnet and http now coexist with

newer protocols like RTP (Real Time transport protocol), RTSP (Real Time Streaming

Protocol), H.323 ∗ (for videoconferencing) and various other telephony protocols, which

have different bandwidth, latency and jitter requirements.

The legacy IP-based networks provide best-effort data delivery which ensures that

the complexity stays in the end-hosts and the core network stays relatively simple (edge-

to-edge). As more hosts are connected, demands on the network eventually exceed ca-

pacity, but service is not denied; it degrades gracefully. But the resulting packet loss

and variability in delay (jitter), though not a problem for legacy applications such as

email, file transfer and web applications, causes havoc for the newer real-time applica-

tions, the most demanding of which are interactive two-way videoconferencing and IP

telephony. Increasing the bandwidth will improve the situation to a certain extent but it

soon becomes economically inviable for the network provider because the spare network

capacity lies unused most of the time. And even on a relatively unloaded IP network,

there can be enough jitter to trouble real-time applications [?]. What’s needed is a

way to provide predictability and control beyond the current best-effort service. This

∗RTSP and H.323 use RTP.
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requires extending the IP protocol to distinguish real-traffic from legacy traffic that can

tolerate delay and jitter. This is what Quality of Service (QoS) protocols are designed

to do.

Quality of service is a broad term used to describe the performance attributes of

an end-to-end network connection. These attributes which affect the predictability of

a service include bandwidth (throughput), latency (delay) and error rate (packet loss).

QoS is used to specify the traffic parameters which guarantee certain service levels to

the application in terms of available bandwidth, maximum delay, allowed jitter etc. One

of the important roles of QoS is to improve handling of sensitive streams such as video

and voice traffic during periods of network congestion or at network bottlenecks such

as routers. Most QoS techniques involve prioritizing of sensitive or premium network

traffic.

The evaluation of QoS architectures is subject to a lot of research among the

academia as well as network equipment-vendor communities. A typical network is com-

prised of three major elements: hosts, routers and links. There are many questions

regarding predictability of bounds on network characteristics such as delay, latency and

jitter when customer traffic flows pass through the core routers in the providers’ net-

work. Network providers need to know if other traffic flowing over the network can

impact certain privileged flows, and if so, by how much. There is also a need to study

the complexity involved in implementing and managing these QoS networks. Measure-

ment of this complexity is the topic of our current research [34, 42] and improving the

scalability of the experiments is the problem that this work attempts to solve.

Various studies have been carried out to study these networks but they have been

limited either by the scale of experiments [34, 42, 41, 13] or suffer from oversimplification

of the simulations [24]. Besides, computer simulations of QoS networks do not address

an important factor in QoS deployment: Management Complexity. Hosts and Routers

are expensive hardware and require significant amounts of space. They also need a non-

trivial amount of configuration. These drawbacks limit their numbers in an experimental

setup in academic and research organizations. This in turn limits the size of networks

that can be built when experimenting with new network technologies using physical
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models.

We present a new approach which attacks both these problems using existing oper-

ating system protocol stacks (thereby preventing oversimplification) and increasing the

scale of experiments without a proportional increase in the number of machines. This

gives us a measure of the management complexity of the control plane of such networks

without compromising on the data plane results. Our approach has created Virtual

Network Elements to address this problem.

1.1 Motivation

The motivation for this work comes from observing current network protocol evaluation

strategies which can be characterized [44] into three broad classes:

• Simulation: This involves constructing a simulation model of the network pro-

tocol using software tools like ns and Opnet [24, 1] and constructing a network

model to test the protocol.

• Live testing: This involves writing code to implement the network protocol and

configuring a test network of hosts and routers to use and test the protocol.

• Emulation: This approach lies somewhere in between simulation and live test-

ing. It involves running real code on test machines, but recreates certain network

characteristics in software. These characteristics involve those that are difficult or

expensive to test with real hardware. e.g. delaying every packet by 400 millisec-

onds to simulate a satellite link.

Simulations have the following drawbacks:

1. Re-implementation of software: Software has to be adapted or re-implemented

to become part of the simulator. e.g. Ns-2 requires (re)implementation of the new

protocol code in C++ and the models to be written in Object Tcl.

2. Oblivious to OS interactions: Simulations do not take into account the com-

plex interactions inside a real operating system that could change the nature of

3



the real network. e.g. Consider the simulation of a streaming video protocol which

is deployed on server. When a client connects to this server, this server reads the

video file from the hard-drive and starts streaming it to the client after chopping it

into packets of ∆ bytes each. Although simulations can successfully implement the

part where packets of size ∆ bytes are sent out according to a certain frequency

distribution, they most often do not take into account the subtle but complex

interactions with the OS in reading the file from the disk.

3. Poor representation of real environment: The simulation environment may

be considerably different from or poorly represent the real-life environment.

4. Change of focus: The simulation environment changes the focus from debugging

and evaluating the protocol to first debugging and evaluating the accuracy of the

model.

5. No metrics for Management Complexity: Simulations do not address con-

figuration management complexity. e.g. setting up a network, configuring the

routing tables, setting up QoS on routers and automation of these tasks. Very

often this information is invaluable to networking companies in taking business

decisions about supporting a new protocol.

Despite these drawbacks, simulations are important in situations where the protocol

software does not yet exist or it is infeasible to carry out live testing or to do cheap,

quick and reproducible proof-of-concept tests that need not be very accurate.

Live testing on the other hand, has the following drawbacks:

1. Equipment costs: This could very well be the number one drawback of live

testing. Very often, the cost of hosts and routers limits their numbers in live

testing. Due to budget constraints, it becomes infeasible to perform large-scale

live testing.

2. Infrastructure costs: Adding to the cost of the equipment is the infrastruc-

ture cost accrued in terms of storage space for additional hosts and routers and

operational facilities like electricity and air-conditioning.
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3. Extrapolation of results of small tests: Due to the cost drawbacks, very

often results of smaller-scale tests are wrongly(erroneously) extrapolated to large-

scale scenarios.

Our approach is a kind of emulation where we emulate the basic network elements in

software to emulate a network. However, whereas emulation artificially recreates certain

network characteristics in software (e.g. packet loss, delay, reordering) to emulate a real

network, we do not introduce any artificial conditions. Instead, we create multiple

(software) instances of the basic network elements (host and router) which transmit

and receive packets in exactly the same way as physical hosts and routers.

1.2 Virtual Network Elements

Virtual Network Element A virtual network element (VNE) is a software object

that emulates the functions of network elements such as hosts and routers. It can

emulate the common tasks performed by network elements such as transmitting

packets generated by application programs as well as receiving and processing the

packets sent over the network by other application programs.

We want to test real networks, but it is hard and expensive to do so as seen in Sec-

tion 1.1. Virtual Network Elements offer an attractive alternative since they offer a

common software framework which can be used to test a variety of network software

while still remaining cost-effective. We are interested in emulating the network element

only so much so as to be able to faithfully reproduce its interactions with the network

which in its most basic form involves exchanging packets with other network elements.

These interactions on a typical host could be familiar interactions such as file transfer

through FTP or HTTP or newer ones such as watching a streaming video clip or IP

telephony. On servers, these interactions could be serving hundreds of file transfer re-

quests simultaneously or acting as a proxy for all the HTTP traffic of an organization

or acting as a mail server and exchanging emails with other mail servers. On a router,

these interactions can be commonplace routing of all incoming traffic or in case of newer

routers classifying incoming traffic according to certain preconfigured management rules
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and according due priority to certain forms of traffic. We do not care about emulating

non-network interactions such as for example, reading a file from a disk or executing

a program, etc. In the case of VNEs, these non-network interactions take place auto-

matically as a side effect of the emulated network interactions. In short we want to

emulate a host and a router in software and be able to configure these virtual hosts and

virtual routers to form a virtual network. We are then interested in using these virtual

networks to test new network technologies without having to setup large networks of

physical machines. We are also interested in making multiple VNEs coexist in a single

box to improve hardware utilization. Multiple virtual hosts can emulate a subnet while

multiple virtual routers can effectively represent a core network.

Chapter 2 discusses some of the previous work that uses the concept of virtualization

or virtual devices as well as the level of virtualization achieved and it’s effectiveness.

Chapter 3 describes the design and implementation of Virtual Network Elements. Chap-

ter 4 is an overview of standard and hybrid QoS models which is the subject of this

research and their implementation in Linux. Chapter 5 discusses the adaptations made

to the QoS software to enable it to run in a virtualized environment along with the tools

that were developed and improved to perform our experiments. Chapter 6 discusses the

results of the virtualization experiments in contrast to live physical experiments. Fi-

nally, Chapter 7 lists the conclusions of this research and possible future extensions or

improvements to the system.
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Chapter 2

Related Work

2.1 NIST Network Emulation Tool

NIST Network Emulation Tool (NIST Net)[44] is a network emulation package that runs

on Linux. NIST Net allows a single Linux PC set up as a router to emulate a wide variety

of network conditions. The tool is designed to allow control of experiments involving

network performance sensitive/adaptive applications protocols in a simple laboratory

setting. NIST Net tries to emulate the critical end-to-end performance characteristics

imposed by various wide area network situations such as packet delays, congestion loss,

bandwidth limitation, and packet reordering or duplication.

NIST Net is a nifty emulation tool for emulation of certain conditions in a laboratory

setting by inserting the NIST Net kernel module into the Linux kernel. However, it is

typically intended to be used as a router that besides forwarding packets also subjects

the packets flowing through it through a pre-configured series of conditions. Therefore,

it only aims to emulate certain conditions in the network, not the network itself. Also,

because of the way it is implemented, it only affects traffic coming into the machine, not

the traffic leaving the machine. This is not helpful in cases where we need to study the

output queuing properties of a router, for instance, in the case of Linux Traffic control.
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2.2 IP Infusion

IP Infusion[33] is a provider of intelligent network software for enhanced IP services.

Their specialty lies in building PC-based routers with advanced control plane software

running on Linux, FreeBSD and Solaris. They have implemented a feature known an

virtual routing that is defined to be an emulation of a physical router at the software

levels. It has exactly the same mechanisms as a physical router, and therefore inherits

all existing mechanisms and tools for configuration, deployment and operation.

Their implementation of virtual routing runs multiple instances of router and pro-

tocol code on a single box, each operating independently from one another and for a

different purpose. Each instance maintains it’s own routing information base (RIB)

and forwarding information base (FIB), thus isolating the actions of one virtual router

from another. IP Infusion sells virtual routing solutions to service providers who can

then compartmentalize their different customer networks onto different virtual routers

thereby reducing deployment costs and improving management ability.

IP Infusion’s implementation of Virtual routing is extremely interesting and some

of their features would be a nice addition to our vnet implementation. However, their

goals are very different from ours: whereas they merely want to isolate different customer

networks being served by a single router, we aim to be able to emulate any physical

IP network for evaluation purposes. We would eventually like to be able to implement

multiple FIB and RIBs corresponding to each virtual router emulated on a machine.

This would allow our virtual routers to directly interact with most routing software

available.

2.3 Proportional Time Emulation and Simulation

Proportional Time Emulation and Simulation (ProTEuS) is a network evaluation frame-

work developed at The University of Kansas[28, 29] for simulation of ATM networks

using a concept of proportional time. If was designed to simulate complex ATM networks

by virtualizing the time line in which the simulation is performed.

ProTEuS uses virtual ATM devices to emulate the ATM sources and sinks and
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virtual switches device to emulate the ATM cell switch along with real-time extensions

to Linux, KU Real Time (KURT), which allows it finer-grained control over network

events and simulation execution. It is one of the projects besides the RDRN project[20],

to utilize the concept of virtual devices successfully. ProTEuS uses the concept of an

epoch to virtualize time. An epoch of execution in ProTEuS is the real time it takes to

simulate a virtual time interval.

Since ProTEuS simulates ATM networks, the virtual ATM devices it uses are simpler

than virtual Ethernet devices. The ProTEuS framework too has certain drawbacks some

of which are listed below.

1. ATM networks have reached a dead-end in terms of technology and popularity.

Most research is currently being carried out on IP networks with a dream to make

them ubiquitous.

2. Virtual ATM devices have to handle fixed-length 53-byte cells; Virtual Ethernet

devices have to handle packets of variable lengths between 46∗ and 1500 bytes.

3. Virtual ATM devices like their physical counterparts are essentially point-to-point

devices. Thus, they are aware of their own address and the address of the peer

device they are communicating with. These peer relationships are established as

part of the initial virtual circuit (VC) setup. Virtual Ethernet devices aim to help

emulate IP networks. Therefore, similar to a IP host, they only know about their

next-hop destination for sending packets to different networks. IP routing takes

over from there to eventually forward the packet toward it’s destination through

intermediate routers.

4. By design, ATM networks were designed to be switching networks, with high

speed switches rapidly switching 53-byte cells. Hence the virtual switch used by

ProTEuS simply has to keep a table of the VC connections established a priori,

thus keeping the code simple. Switching is simply a matter of receiving a cell on

one port, looking up the outgoing port in the table and sending it out via that port.

∗The minimum size of an Ethernet frame is 46 bytes
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Virtual routers on the other hand, only have a idea of their next-door neighbors.

Thus, they have to run routing protocols to discover the network topology. Virtual

routers also have to perform expensive longest-prefix match on the destination IP

address in the packet to determine the best neighbor to use from the forwarding

table to forward the packet toward it’s ultimate destination.

5. The virtual switch implementation in ProTEuS uses independent implementations

of various output scheduling algorithms such as Weighted Round Robin(WRR).

These implementations are not very configurable and lack in performance. Virtual

routers use the standard scheduling algorithms that are part of the Linux kernel,

collectively called as Linux Traffic Control.

Despite these drawbacks, ProTEuS provides and excellent framework to simluate

large and complex networks. Ultimately, we wish to integrate the virtual time prop-

erties of ProTEuS with our Virtual Ethernet devices (hosts and routers) to be able to

simulate arbitrarily large and complex IP networks. We now look at the design and

implementation of Virtual Network Elements over Ethernet in the next chapter.
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Chapter 3

Virtual Network Elements

3.1 Overview

A typical network is comprised of three major elements: hosts, routers and links. Hosts

and Routers are expensive hardware and require significant amounts of space. These

drawbacks limit their numbers in a realistic experimental setup in academic and research

organizations. This in turn limits the size of networks that can be emulated while

experimenting with new network technologies.

We defined a Virtual Network Element (VNE) as a software object which emulates

the functions of network elements such as hosts and routers. We have also hinted at the

need for two kinds of virtual elements, a virtual host and a virtual router, to accomplish

our goals of emulating larger networks. The concept of being able to put multiple virtual

hosts and virtual routers on a single machine is a powerful one. It enables us to set

up a comparatively larger and more complex virtual networks over a set of physical

machines in a simple switched network. Combining many such virtual elements onto a

single physical machine has the obvious advantage of reducing the number of machines

required for an experiment, thereby reducing the cost of conducting an experiment.

Figure 3.1 shows a simple virtual network consisting of two subnets 10.1.0.0/16

and 10.2.0.0/16. Notice how multiple virtual hosts coexist on a single machine to form

a subnet in the emulated network. Each of these virtual hosts have a unique virtual IP

address so that they can communicate with each other unambiguously. This network is
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Figure 3.1: A simple virtual network

emulated over three machines: testbed1, testbed2 and testbed3 and all the virtual

network traffic is multiplexed over the physical ethernet interfaces of the machines. A

reader might question this design in which a single physical interface is carrying the

traffic of multiple virtual interfaces. But we have to bear in mind, that the problem

of QoS occurs only when a high-speed network (100 Mbps Ethernet intranet) has to

send traffic over a low-speed link (e.g. 1.5 Mbps T1 link) to the core network.Thus, the

virtual hosts represent the high-speed intranet which are vying for the capacity of the

throttled, low-speed physical ethernet link.

Hosts and Routers communicate with the rest of the physical network through phys-

ical network interfaces; also called ports in routers. The task of a physical network

interface is to send and receive packets over the network. These interfaces can run

any link-layer technology (such as Ethernet, ATM, Token ring) as long as the operat-

ing system has a module to support the link-layer protocol. To be able to emulate a

physical network element such as a host or a router, we need to be able to emulate in

software their most basic component: the Network Interface. This software, the Virtual

Network Interface, can run any link-layer protocol and multiplexes all its traffic over

the underlying physical interface in the machine. Figure 3.2 shows the family of virtual

network interfaces classified on the basis of the underlying physical interface and the
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virtual interface software layer above. Thus we get four different combinations with the

Ethernet and ATM link-layers: veth over Ethernet, vatm over Ethernet, veth over

ATM and vatm over ATM. Various projects at the University of Kansas have utilized

virtual devices in various forms such as ProTEuS [28] and Rapidly Deployable Radio

Network [20]. Our choice of Ethernet as the underlying physical link-layer medium is

motivated by its widespread, almost omnipresent deployment and lower costs as com-

pared to technologies such as ATM. Since it runs Ethernet at the virtual layer too,

our virtual network interfaces are veth over Ethernet; simply known as the Virtual

Ethernet device (veth device) for the sake of brevity.

Ethernet ATM

ATMEthernetATMEthernet

Physical

Virtual

Figure 3.2: Family of Virtual devices

A veth device has the same interface and data structures as the driver of a typical

physical network interface whose only task is to send and receive packets over the

network. Hence if each virtual network element has a veth device associated with it,

it provides a way for these virtual network elements to communicate. In other words,

once we can create veth devices which can send and receive packets, then combined

with some private data structures and some book-keeping in the virtual network layer

code, we can emulate virtual hosts and virtual routers. These data structures would be

those that facilitate the multiplexing and de-multiplexing of packets for different VNEs

onto the physical interfaces in the machine and those that store routing information for

the virtual network.

We now look at the working of a network device driver to understand its internals. In

particular, we are interested in the way in which the device driver receives and transmits

packets, since that is the primary task of a veth device.
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3.2 Packets inside Linux

Before understanding how network device drivers manipulate packets, we present a

quick overview of how packets are stored in Linux. Each packet handled by the Linux

kernel is contained in a socket buffer structure, struct sk buff. The structure gets

its name from the Unix abstraction used to represent a network connection, the socket.

The same sk buff structure is used to hold network data throughout the Linux network

subsystems, but it is a packet as far as the interface is concerned.

data
tail
end

head

transport header
network header

link header

Memory
Block

Control
Structure

IP T
C

P

len
struct sk_buff

Real

Packet

Data

Figure 3.3: The sk buff structure

Thus, when a socket application sends some data over the socket, a sk buff buffer is

allocated enough space to store the data as well as corresponding protocol headers that

are added as the packet travels down the protocol stack to the network device. A sk buff

provides a control structure with a block of memory attached. The control structure

includes pointers which point to various parts of the attached memory block to denote

the start of various protocol headers and data. As shown in Figure 3.3, the beginning
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and ending of the memory block is denoted by the head and end pointers respectively,

while the beginning and ending of the real packet data is denoted by the data and tail

pointers in struct sk buff. The data and tail pointers are modified as the headers

and trailers are appended to the packet as it travels inside the protocol stack. Other

control structures point to the network layer header (TCP, UDP or ICMP), transport

layer header (IP, IPv6 or ARP) and link layer header (RAW or Ethernet) inside the

packet data. Thus, a packet just about to be transmitted (hence at the link layer), will

have the data pointer pointing to the same location as the link layer header pointer.

Similarly, in the transport layer, the data pointer will point to the same location in the

packet as the transport layer header, say TCP header.

3.3 The Linux Network bottom-half

In subsequent sections, we will discuss the movement of packets in the network protocol

stack of Linux. The concept of bottom-halves is very important to understand packet

arrival in Linux. Packet arrival takes place in two stages: at the network interface level

(hardware) and at the kernel level (software).

When a packet arrives at the network interface, the interface triggers a hardware

interrupt which causes the CPU to temporarily suspend its work to handle the interrupt.

In order to do so, the CPU disables all other interrupts∗, and calls the interrupt handler,

which is a routine in the device driver of the network interface that transfers the packet

from the network interface’s hardware queue to a software queue inside the network

stack for further processing. Since the interrupts are disabled, all interrupts of the

same or lower priority are ignored. This could mean that the kernel might miss other

incoming packets. In order to minimize the chances of missing a packet, the interrupt

handler has to be an extremely fast and efficient routine.

Instead of further analyzing the packet to send it to the correct protocol handler, the

interrupt handler simply puts the packet onto the backlog queue by calling netif rx,

marks the network bottom-half flag and exits. Thus the packet is held for further pro-

∗unless they have a higher-priority than the network interrupt
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cessing and the interrupts are re-enabled. Now, Linux periodically checks the bottom-

half flags of various sub-systems to check if any of them need processing. When it finds

the network bottom-half flag set, it calls net bh which then analyzes the packet and

passes it off to the correct protocol handler.

This technique avoids extended interrupt disabling and offers an overall optimum

processing for incoming packets.

3.4 Overview of a Linux network device driver

A network interface communicates with the operating system through software modules

known as device drivers∗. The device driver hides the specifics of a particular network

interface’s hardware from the operating system. Due to the variety of network interfaces

available in the market with different hardware architectures, the Linux kernel uses

an object-oriented methodology to provide a common interface (struct device) to

the device drivers to communicate with it. Thus struct device (Program 3.1) is an

abstraction through which the kernel communicates with the network interface. The

device driver implements themethods defined in the data structure (as function pointers)

and fills in data pertaining to the capabilities of the device. Every network interface

(hardware) thus has an instance of struct device (software) associated with it in the

Linux kernel.

The device driver defines a receive (RX) routine which responds to interrupts from

the hardware. It also defines a transmit (TX) routine which is called by the IP layer

when it has a packet to transmit through that device. Figure 3.4 shows a schematic of

the working of RX and TX in the driver. It does not show the queues associated with

each device and the packet scheduling routines used to service those queues since they

are not relevant until later (discussed in Section 3.7).

Once the network device driver has filled in all the fields in Program 3.1 besides a

few others pertaining to memory addresses, I/O addresses and IRQ numbers to use,

it registers itself with the kernel by making a call to register netdevice(). This

∗Refer to Rubini’s excellent book Linux Device Drivers [48] for details on device drivers
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Program 3.1 Important members of struct device

struct device

{

char *name;

unsigned long tbusy; /* transmitter busy */

/* Device initialization function */

int (*init)(struct device *dev);

/* Interface index. Unique device identifier */

int ifindex;

int iflink;

struct net_device_stats* (*get_stats)(struct device *dev);

unsigned long trans_start; /* Time of last Tx */

unsigned long last_rx; /* Time of last Rx */

unsigned short flags; /* interface flags */

unsigned mtu; /* interface MTU */

unsigned short type; /* hardware type */

unsigned short hard_header_len;

void *priv; /* pointer to private data */

/* Interface address info */

unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */

unsigned char dev_addr[MAX_ADDR_LEN]; /* hw address */

unsigned char addr_len; /* hw addr len */

struct Qdisc *qdisc;

struct Qdisc *qdisc_sleeping;

struct Qdisc *qdisc_list;

unsigned long tx_queue_len;

/* Pointers to interface service routines */

int (*open)(struct device *dev);

int (*stop)(struct device *dev);

int (*hard_start_xmit) (struct sk_buff *skb, struct device *dev);

int (*hard_header) (struct sk_buff *skb, struct device *dev,

unsigned short type, void *daddr,

void *saddr, unsigned len);

int (*rebuild_header)(struct sk_buff *skb);

int (*do_ioctl)(struct device *dev, struct ifreq *ifr, int cmd);

int (*neigh_setup)(struct device *dev, struct neigh_parms *);

};
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Figure 3.4: Working of RX and TX in a network driver

completes the initialization of the device and it can now be configured using a user-level

program such as ifconfig. Socket applications should now be able to use this device,

provided that the routes corresponding to the device are present in the kernel’s routing

table (see Section 3.6).

Figure 3.5 shows the path of packet on its way from the application layer to the

data-link layer. Depending on the type of socket created in the application layer, the

packet takes different paths to the IP layer. At the IP layer, the following operations

are performed in order:

1. The link-layer-specific header is prepended to the packet by dev->hard header().

2. ip route output() uses the destination address of the packet to find its route

(outgoing interface).

3. The packet is scheduled to be transmitted through the device returned by the

route lookup using dev queue xmit().

4. The device queue is polled in qdisc restart() and depending on the scheduling
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Figure 3.5: Packet flow down the Linux protocol stack

discipline associated with the device, the packet is kicked out of the queue onto

the link by calling the device-driver-specific routine, dev->hard start xmit().

The code in the device driver corresponding to dev->hard start xmit() takes care

of the details of transmitting a packet through the network interface onto the physi-

cal medium. Thus it will be hardware-dependent and change with different network

interfaces.

Figure 3.6 shows the path of the packet to the application layer after it is received

by the network interface. The device driver receives an interrupt when a packet arrives

on the wire. It then does the following:

1. The driver allocates a socket buffer for the packet through dev alloc skb() and

queues the packet in the backlog queue and marks the network bottom half for

later processing in netif rx().

2. The network bottom-half, net bh(), on being scheduled by the Linux scheduler,
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Figure 3.6: Packet flow up the Linux protocol stack

determines the protocol of the packet and passes the packet to the appropriate

protocol handler e.g. ip rcv() for IP packets.

3. The ip rcv() routine determines whether the packet is to be locally delivered or

forwarded (in case of routers) by calling ip route input().

(a) If the packet is to be forwarded, it is processed (TTL decrement, fragmenta-

tion etc.) and eventually sent out via dev->hard start xmit().

(b) In case of local delivery, depending on the transport protocol, either the TCP

or UDP receive function is called and the packet added to the socket queue.

A read() call by the application then reads data corresponding to the socket.

Armed with knowledge of the working of a network device driver and flow of packets

through the Linux protocol stack, we are now ready to look at the design of a Virtual

Network Interface which can then be used to realize Virtual Hosts and Virtual Routers.
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3.5 Design of a Virtual Ethernet Device Driver

We start by identifying the features and goals of the veth device:

1. Creation/Deletion: Ability to add and destroy veth devices at will from user-

space programs.

2. Configurability : Ability to configure the properties of the veth device.

3. Socket layer compatibility : Ability to use existing socket-based applications with

a veth device with little or no modifications.

As alluded to previously, a correctly initialized struct device represents a real

network interface to the protocol stack. The veth device driver uses this property of

the kernel to instantiate and register multiple instances of struct device thus lead-

ing the kernel, and therefore the applications, to believe that there are more network

interfaces available on the machine than there really are. In addition to instantiating

struct device, it adds some book-keeping code which we call the Virtual Network

Layer (vnet). The vnet layer is inserted between the IP and device-driver layers.

This is by far the most convenient and flexible place in terms of modifications to the ex-

isting kernel source code: it requires none! All the vnet layer code is self-contained and

provides hooks to both the IP layer and device-driver layer, forming a bridge between

them.

If we had tried to move the vnet layer above the IP layer, we would have to make

it behave like a transport protocol layer and make modifications to IP to understand

the new protocol. If we had moved the vnet layer to the device-driver layer, we would

have been constrained to use only a particular network device driver without the ability

to use different cards.

The power of virtual devices lies in the fact that from the protocol stack entry-point

and up (qdisc restart() in Figure 3.5), kernel and user-level entities are oblivious

to the fact that the devices are virtual; they do not know or care. Similarly, from the

physical device driver entry-point and down, the physical devices have no idea that the

virtual devices are not actually protocols. In short, the IP protocol stack and socket
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layer think of the vnet layer as a real physical interface and the device drivers for the

physical interfaces think of it as a protocol.

The ability to create, delete and configure veth devices from user-space requires us

to use ioctl() calls from user-level programs to exchange data with predefined routines

in the kernel-space. To achieve this, we first create a permanent virtual device, vnet,

in drivers/net/Space.c which is initialized at the time of kernel bootup. It gives us a

master device which initializes the vnet layer through a call to vnet layer init() in

drivers/net/vnet/vnet.c. The initialization provides vnet ioctl() as the routine to

handle all subsequent ioctl() calls from user-space. This bootstrapping process now

allows us to pass information back and forth between user-level programs and the vnet

device. We can thus write ioctl() calls to add, delete and configure veth devices or

other virtual elements. Actual details about each ioctl is documented elsewhere [30].

Figure 3.7 shows how the virtual network layer fits into the protocol stack.

Network layer
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Socket layer

APPLICATIONS

Link layer

KERNELSPACE

USERSPACE

Virtual Network layer

SYSTEM CALLS

TCP/UDP

IP

RAW

eth0

vnet

Figure 3.7: The Virtual Network layer in the Protocol Stack

Once the devices are created, a user-level program such as ifconfig can be used

to configure their IP addresses, netmask and gateway addresses. These veth devices

in this form will behave like ordinary interfaces, in that the socket applications can use

the bind(), connect(), accept(), etc. system calls on them. But they cannot be
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employed in useful applications due to the following problems:

1. There is no way to transmit packets over the network to other veth devices on

other machines over the physical medium.

2. Since this is a software-only implementation, it cannot receive interrupts from the

hardware on packet arrival.

3. There is no way to distinguish packets meant for the virtual network from other

packets arriving at the physical interfaces.

Since the veth device driver is not associated with any real hardware, in order for

it to be able to transmit packets, it will have to use the physical interfaces present

on the machine. In essence, what this means is that when a packet is scheduled to

be transmitted through the veth device∗ the hard start xmit() code of the veth

device driver should call the corresponding transmit routine belonging to the underlying

physical interface’s device driver. In short, the veth devices will use the underlying

physical interfaces to carry their packets.

Once we gain the ability to transmit a packet over veth devices by multiplexing

them over the physical interface, we need the ability to receive these packets on other

machines and be able to distinguish these packets as belonging to the virtual network.

Our solution is to define a new Ethernet packet type, ETH P KUVNET, defined in

include/linux/if ether.h, which denotes a packet belonging to the virtual network.

Linux uses a table of predefined Ethernet packet types and their corresponding packet-

handling routines (receive routines of the respective protocols) to hand-off the various

incoming packets to the correct protocol handlers. Hence the advantages of adding a

new packet type are twofold:

1. It allows unambiguous identification of packets meant for the virtual network.

2. Adding a new packet type allows us to specify its corresponding protocol handler.

Thus the network bottom half which processes the queue of incoming packets di-

∗How the IP layer chooses the veth device for transmission is discussed in Section 3.6.
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rectly hands-off these packets to our veth device driver’s receive routine thinking

of the vnet layer as another layer 3 protocol like IP, ARP, etc.

Having acquired the ability to send and receive packets over veth devices, we intro-

duce vnet xmit() and vnet recv() as the transmit and receive routines of the vir-

tual network layer respectively. The new packet type is registered using dev add pack()

and associated with the vnet recv() routine which is therefore designed to receive all

packets belonging to the virtual network. Similarly, the transmit routine, vnet xmit(),

is added to accept all packets originating from the socket layer with a destination IP

address in the virtual network. All packets meant for a node of the virtual network

are multiplexed and de-multiplexed at the vnet device as shown in Figure 3.8. Thus if

two veth devices veth1 and veth2 are both receiving packets, then all their packets

would first arrive at the vnet recv() routine where they would be de-multiplexed by

destination address and sent to the respective veth devices.

To summarize the solutions to the aforementioned problems in using veth devices:

1. Definition of a new packet type, ETH P KUVNET, for the virtual network, which

allows us to unambiguously distinguish incoming packets meant for the virtual

network.

2. Multiplexing all the packets for the veth devices onto the physical interfaces of

the machine.

3.6 The Routing Table

The Linux kernel maintains a routing table which lists all the hosts and networks that

can be reached via the physical interfaces connected to the machine; either directly or

through a gateway. It may also contain generic entries for default gateways which are

routers to which it can send all packets which cannot be routed using the more specific

entries in the local routing table. When the IP layer needs to transmit a packet, it looks

in the routing table to find the best path available through which to send the packet.

The ip route output() routine provides information about the outgoing interface over

which the packet should be transmitted to reach its destination.
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When a veth device is activated using the ifconfig command such as

ifconfig veth0 10.1.1.1 up

it adds to the routing table a host entry corresponding to the IP address of the interface

and a network entry to the 10.0.0.0 network via veth0. Now if we initialize another

veth device veth2 (10.2.1.1), we get a host entry corresponding to 10.2.1.1, but

we also get another network entry to 10.0.0.0, this time via veth2. This method of

configuring the routing table for the virtual network has the following drawbacks:

1. We pollute the system routing table with entries for the virtual network.

2. There is no way to have distinct sets of routing entries for different sets of interfaces

on the machine.

3. As a corollary to the second drawback, we cannot emulate a real host having its

own routing table. e.g. If we have two veth devices each acting as an interface

of a different virtual host, then, for the two virtual hosts to realistically emulate

two physical hosts, a routing table should be associated with each of the veth

devices.

Thus, creating multiple virtual devices is only part of the problem; making them

communicate and behave like hosts (virtual hosts) is a new problem. This problem is

amplified because we want to avoid manipulating the IP layer of Linux to achieve our

objectives and avoid using the IP layer route lookup to find the route for a packet in

the virtual network.

To alleviate these drawbacks we introduce the concept of virtual routing tables. A

virtual routing table has the following features:

1. It can be associated with a veth device.

2. It reflects only the virtual network atop the physical network.

3. It can be shared between multiple veth devices. This feature is useful in emulating

a multi-homed host or a router since they have a single routing table with multiple

interfaces listed in it.
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An entry in the virtual routing table is of the form <Destination, Gateway,

Netmask, Flag, Interface>, similar to a kernel routing table. We have written rou-

tines to search these virtual routing tables and come up with a best-prefix match. With

the introduction of virtual routing tables, we now needed a mechanism to effectively

bypass the IP layer’s route lookup i.e. we want to find the routes in the virtual network

using the virtual routing table associated with the veth device from where the packet

originated∗. We achieve this by using the following mechanism:

• First select an IP address range which we want to use in virtual network for our

experiments. e.g. 10.0.0.0/8.

• Define a single entry in the kernel routing table for this network with vnet as the

outgoing interface. e.g. route add -net 10.0.0.0/8 dev vnet

Whenever a packet with a destination address in the 10.0.0.0/8 network has to

be transmitted, the IP layer route lookup selects vnet as the outgoing interface and

calls its corresponding hard start xmit() routine, which happens to be vnet xmit().

Thus, as shown in Figure 3.8 on Page 25, all packets transmitted via veth devices

enter the virtual network book-keeping code through a single routine, vnet xmit().

Once the packet enters vnet xmit(), we can then find out the correct source† address

of the packet, use it to query the correct virtual routing table and find the egress virtual

interface for the packet. Thus we succeed in bypassing the IP level route lookup by

forcing the IP layer send all packets in the 10.0.0.0/8 range to the vnet book-keeping

code. Once we get control, we can process the packet according to the virtual network

book-keeping rules. We are thus in a position to make a veth device behave like an

interface of a virtual host. A note of caution is in order here; If the IP layer finds the

destination or next-hop IP address in the packet to be associated with an interface on

the same machine, it short-circuits the normal path taken by the packet to the link

layer and directly transfers the packet from the sender’s queue into the receiver’s queue.

This has important consequences for designing a virtual network since we now have

∗or from where it entered the virtual network
†or entry-point into the virtual network
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the following limitations while designing the mapping of the virtual network to a set of

physical machines. Two important limitations of the existing implementation are:

Same host limitation A source and destination host in a virtual network cannot be

hosted on the same machine. If a source and destination host are on the same

machine, the IP layer would transfer the packet from the source queue to the

destination queue without bothering to check for the next-hop.

Connected-elements limitation Two directly connected network elements may not

be hosted on the same machine if we want the packets to pass through the traffic

control code for implementing QoS. In case of two connected routers hosted on the

same machine, packets between the connected ports will not go down the protocol

stack to the traffic control layer.

Due to the routing capabilities added due to virtual routing tables, we added two

more goals to the original set of goals for the veth device:

4. Communication: The veth devices should be able to communicate with each

other, even across physical machine boundaries

5. Network emulation: Ability to emulate arbitrary, non-trivial network topologies

on fewer physical machines

Just the virtual routing tables are not sufficient to be able to communicate with

veth devices across physical machine boundaries. This is due to the fact that veth

device do not support the Address Resolution Protocol (ARP)∗. Without ARP, it is

impossible for the transmitting side to know which machine is hosting the destination

veth devices. Since packets for the virtual network flow via the physical interfaces, we

need to know the IP addresses and link-layer addresses of all the machines which host

the virtual network. We bypass the need for ARP by using a simple table containing

IP address and link-layer address† pairs of all the machines hosting the virtual network.

This table is loaded into the memory of each of these machines. Now, although we

∗See [?] for notes on why ARP is not supported
†MAC address in case of Ethernet
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know the identities of all the machines participating in hosting the virtual network,

we still cannot answer the query of a transmitting veth device: Which machine hosts

a veth device with the IP address 10.2.1.1? This is because the virtual network

has a different structure atop the physical network. What we need is a map of the

virtual network as emulated on the physical network. Consider Figures 3.9 and 3.10

to understand this problem. Figure 3.9 depicts a emulation target network and the

physical network hosting the virtual network while Figure 3.10 depicts two ways to

virtualize the target network. We take into account the limitations in designing virtual

networks alluded to previously.
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(a) Emulation Target Network
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(b) Physical network hosting the virtual network

Figure 3.9: Goals of virtualization

Figure 3.9(a) shows the target network to be emulated which consists of two sub-
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(b) A function-based virtual network mapping

Figure 3.10: Virtualization of the sample network
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Destination Gateway Netmask Flag Interface

10.1.1.1 0.0.0.0 255.255.255.255 H veth1

10.1.0.0 0.0.0.0 255.255.255.255 N veth1

0.0.0.0 10.1.0.254 0.0.0.0 G veth1

Table 3.1: Virtual routing table for virtual host A

nets 10.1.0.0/16 and 10.2.0.0/16 connected through a router. Let us assume hosts

A and D to be servers for clients pairs [F, E] and [B, C] respectively. Also assume

that servers A and D need to do CPU intensive tasks, so that they benefit by using

faster machines. Figure 3.9(b) shows the physical network comprising of three machines

testbed1, testbed2 and testbed3. Each of these machines has a single Ethernet in-

terface (eth0) and all of them are plugged into a single Ethernet switch. Assume that

testbed1 is a high speed machine. Figure 3.10(a) shows the most obvious mapping of

the sample network over the physical network. Each subnet is mapped onto one of the

machines while the router is hosted on the remaining machine. In this case, each of

the virtual hosts will have a virtual routing table similar to that shown in Table 3.1.

The first entry is the host entry used to describe the virtual interface itself, the second

is the network entry used to describe a directly connected network. In this case, since

10.1.1.1 is on the 10.1.0.0/16 network, it is directly connected. The third entry

is a gateway entry specifying routes to networks that are not directly connected. In

this case, anything other than 10.1.0.0/16 is not directly connected and should be

redirected to the router on port 10.1.0.254. Table 3.2 shows a similar virtual routing

table for the router, the only difference being that this routing table is shared by the

two ports of the virtual router similar to what happens on a real router. Hence we

Destination Gateway Netmask Flag Interface

10.1.0.254 0.0.0.0 255.255.255.255 H vport1

10.2.0.254 0.0.0.0 255.255.255.255 H vport2

10.1.0.0 0.0.0.0 255.255.255.255 N vport1

10.2.0.0 0.0.0.0 255.255.255.255 N vport2

Table 3.2: Virtual routing table for virtual router
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see entries for both interfaces vport1 and vport2 showing up in the routing table. We

could also configure the virtual network as shown in figure 3.10(b) with both the servers

on testbed1 to be able to take advantage of its faster CPU.

Destination Gateway Netmask Flag Interface

10.1.0.0 129.237.125.1 255.255.0.0 P vport1

10.2.0.0 129.237.125.3 255.255.0.0 P vport2

Table 3.3: Subnet Map table for virtual router in Figure 3.10(a)

Destination Gateway Netmask Flag Interface

10.1.1.1 129.237.125.1 0.0.0.0 P vport1

10.2.1.1 129.237.125.1 0.0.0.0 P vport1

10.1.0.0 129.237.125.3 255.255.0.0 P vport2

10.2.0.0 129.237.125.3 255.255.0.0 P vport2

Table 3.4: Subnet Map table for virtual router in Figure 3.10(b)

These different configurations for the virtual network show that we need to supple-

ment the virtual routing tables with more information about the topology of the virtual

network to be able to identify the physical machine hosting a given veth device. This

information is known as the subnet map. A subnet map is very similar to the virtual

routing table in structure except that there is only one type of entry: the physical entry

denoted by ’P’. There is one subnet map for each routing table and it contains infor-

mation about where certain subnets or hosts are located. Tables 3.3 and 3.4 show the

subnet map for the virtual router for virtual network architectures in figures 3.10(a)

and 3.10(b) respectively.

3.7 Virtual Host and Virtual Router

We now have all the information we need associated with a veth device. Using this

information, a veth device in the form of a virtual host or virtual router can emulate

a physical host or a physical router. But the internals of the virtual network layer code

need to change to accomodate the added complexity of supporting these virtual network
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Figure 3.11: Functioning of the Virtual Network layer (modified)
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elements. Thus the vnet recv() and vnet xmit() routine have to be intelligent enough

to determine whether the packet should be associated with a virtual host or a port of the

virtual router, since they can coexist on the same machine. The modified virtual network

layer is shown in Figure 3.11. The dotted lines show packets being transmitted from the

machine and solid lines show packets being received by the machine. A packet received

by a machine enters the virtual network layer of a machine through vnet recv()∗ and

is checked for its next-hop IP address. If the next-hop address belongs to a veth

device (interface of a virtual host), the packet has reached its final destination and is

passed to veth recv() which executes the book-keeping code for the particular veth

device and passes the packet to the IP layer. If the next-hop address belongs to a

vport device (port of a virtual router), it needs to be forwarded in the virtual network

toward its ultimate destination. Thus, it is passed to port recv() and then onto

router fwd() which sends it on its way out according to the information in the virtual

routing table. A packet originating from a machine and destined to the address range

designated for the virtual network† makes it’s way to vnet xmit() from the IP layer.

In vnet xmit(), depending on whether the source of the packet was a veth device or a

vport device, the packet is passed to veth start xmit() or port start xmit() which

calls dev queue xmit() to schedule the packet‡ to be transmitted over the physical

interfaces associated with the virtual elements.

Table 3.5 lists some of the ioctl() calls used to setup and configure virtual hosts

and virtual routers. These include calls to create a virtual host (SIOCCREATEVETH,

SIOCCREATEVRT and SIOCCREATEMAP), create a virtual router (SIOCCREATEVROUTER,

SIOCADDPORT and SIOCCREATEROUTERRT) and calls to query information from user-space

(SIOCGETROUTE and SIOCGETROUTERPORT). We have created a Netspec daemon nsvethd

that parses a virtual network configuration script and calls the correct ioctls to con-

figure the virtual network. It is discussed in greater detail in Section 5.2.2. Section

6.1 describes a physical network topology and the process of the setting up an equiva-

lent virtual network topology. It also describes the pros and cons of various equivalent

∗because it is of type ETH P KUVNET
†As described in Section 3.6
‡According to the scheduling disciplines attached to the devices
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VNET layer ioctls

SIOCCREATEARPTAB Create an ARP table for use by virtual network elements

SIOCGETROUTE Find outgoing interface for a packet given it’s final destination

Virtual Host ioctls

SIOCCREATEVETH Create Virtual Ethernet Device

SIOCCREATEVRT Create a Routing Table associated with a particular device

SIOCCREATEMAP Create a table depicting Virtual to Physical mapping.

SIOCLINKRT Allow virtual routing table to be shared by multiple similar
VNEs.(to create multi-homed hosts or routers)

SIOCGETVETHPARMS Return VNE configuration to a user-space program

SIOCDELVETH Delete a VETH device

Virtual Router ioctls

SIOCCREATEVROUTER Create a Virtual router structure

SIOCADDPORT Add a new port to the virtual router

SIOCCREATEROUTERRT Create the router’s routing table

SIOCGETROUTERPORT Return ports associated with a particular router

SIOCDELVROUTER Delete a router and its associated ports

SIOCGETVROUTERPARMS Returns the configuration information of a router

Table 3.5: List of ioctl calls defined for Virtual Network Elements
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virtual network topologies that exist for a given physical network topology. The next

section considers some limitations of virtual network elements.

3.8 Limitations of Virtual Network elements

The current implementation of the vnet software is limited by an inherent property of

the Linux IP protocol stack. When a packet originates on a machine and is destined to

an interface on the same machine, typically it would be sent out the source interface from

where it will be picked up by the destination interface on the same machine. Linux does

not bother to send the packet down to the outgoing interface, instead, it directly puts

the packet into the receive queue of the destination interface, thereby short-circuiting

the path of the packet through the protocol stack.

Since Linux treats the virtual interfaces similarly, if source and destination virtual

hosts are emulated on the same machine, the packet will be directly transferred to the

destination virtual host without reaching the vnet layer where the packet might have

been routed to a gateway in the virtual network, possibly on another physical machine.

This limitation puts some restrictions on the topology of the virtual networks. These

restrictions can be kept in mind by following a few rules in designing virtual networks

as follows:

1. The source and destination virtual hosts for a traffic flow cannot be emulated on

the same machine.

2. If a packet needs to flow through two virtual network elements in sequence, and it

needs to be treated by the layers below the vnet layer (e.g. Traffic control layer

in Linux), then those elements cannot be emulated on the same physical machine.

There are two possible combinations: (virtual host ↔ virtual router) and (virtual

router↔ virtual router). This is currently a limitation of the vnet software logic.

Eventually, we can make the vnet layer send the packet down the protocol stack

through the first virtual element and get it back again through the second virtual

element as a normal virtual network packet..
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Source Route Destination

Figure 3.12: Trivial physical network

For trivial experiments such as that shown in Figure 3.12, vnet offers few advan-

tages, since all the components have to be on different physical machines. The only

advantage is that one can emulate virtual subnets of clients on one machine communi-

cating through a virtual router on the second machine to a virtual subnet of servers on

the third machine.

Net−1 Router−A Router−B Net−2

Net−4Router−CNet−3

Figure 3.13: More complex physical network

But as the networks to be emulated are scaled up, such as the one shown in Figure

3.13, depending on the traffic flow through the network, one can have different virtual

network topologies emulating the target network. Once again, this depends on the

nature of traffic flow through the network. Figure 3.13 shows that Net-1 communicates

only with Net-2 and Net-4. Similarly, Net-3 communicates only with Net-2. The

following is a list of some of the possible virtualization topologies based on these traffic

patterns:

1. Net-3 can be emulated on the same machine as Net-1.

2. Net-1 can be emulated on the same machine as Router-B or Router-C but not
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both since Router-B cannot be on the same machine as Router-C.

3. Similarly, routerA and routerC can be on the same machine, since they do not

communicate directly. The user might choose to emulate Net-2 on the same

machine too, if he/she so desires.

Thus, emulation of a physical network using virtual network elements is currently

dependent on the traffic flow in the network to be emulated. Thus, it is quite possi-

ble that sometimes there can be only one virtualized network topology: a one-to-one

physical-to-virtual mapping which would require the same number of machines in the

emulation as in the real network. This is a limitation which can be fixed in subsequent

versions of the vnet software by modifying the IP routing code to remove the code

that short-circuits the path of a packet if its destination is on the same machine as its

source.
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Chapter 4

Quality of Service

4.1 Quality of Service Models

Based on the level of QoS stringency required by the applications, there are three ways

[4, 3] to tackle the QoS problem:

• Overprovisioning: This is the obvious solution to handle the high-demand pe-

riods, since the surplus network capacity can handle the peak data rates. But

it quickly becomes economically inviable for network operators because the spare

network capacity lies unused for long periods of time.

• Explicit Reservations: This solution has its roots in the telecommunications

industry where an explicit path is established during call-setup before the call

is allowed into the network. Network resources are apportioned according to an

application’s QoS request, and subject to a bandwidth management policy.

• Prioritization: This solution marks different classes of traffic with different pri-

orities and gives high priority to flows that are apportioned better QoS according

to bandwidth management policy, also called as service level agreement (SLA).

QoS models can be characterized on the basis of how they handle individual appli-

cation flows [25, 3] as follows:

Fine-grained QoS architectures: Reservations are guaranteed to individual flows

and resources are established through a signaling protocol. These architectures
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have problems with scalability as the number of flows goes up since the core

network has to manage resources and keep state information for each flow.

Coarse-grained QoS architectures: Multiple streams are grouped into classes and

the flow aggregates are provided service guarantees instead of individual flows.

Since the resources are shared by streams within a class, no deterministic guaran-

tees can be provided.

Two contrasting efforts by the Internet Engineering Task Force (IETF) which ad-

dress QoS mechanisms and architectures are Integrated Services(Intserv) [15] and Dif-

ferentiated Services(Diffserv) [12]. While Intserv is an example of a fine-grained QoS

architecture involving explicit reservations for each flow, Diffserv is an example of a

coarse-grained QoS architecture using prioritization of flow aggregates. More recently,

there have been efforts to merge these two architectures and create a hybrid architec-

ture which uses Intserv at the edge of networks and Diffserv in the core [11, 10]. In

the following sections, we describe each of these QoS architectures in some detail. For So many

references look

ugly. Put in only

the important

ones? Or is this

sentence

redundant?

more details, the reader is urged to consult [31, 12, 43, 27, 18, 8, 13] for the Diffserv

architecture, its implementations and evaluation, [32, 15, 14, 2, 53, 51, 52, 50, 37] for

the Intserv architecture, RSVP and implementations and finally [11, 10, 34, 42, 7, 45]

for the hybrid architectures and their implementations.

4.1.1 Integrated Services

The Integrated Services (Intserv) architecture [15], developed by the IETF Integrated

Services Working Group [32] is based on a fine-grained QoS approach for real-time ap-

plications where explicit reservation is made for each real-time flow as is done in the

telephony world. The service model is concerned almost exclusively with the time-of-

delivery of packets. Thus, per-packet delay is the central quantity about which the

network makes quality of service commitments. This involves a priori traffic char-

acterization through significant control plane signaling which triggers admission con-

trol, classification and resource reservation mechanisms before the actual data can be

transmitted. Integrated Services recommends the use of Resource Reservation Protocol
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(RSVP), as the signaling protocol. The working group produced a service specification

and a reference implementation framework which we discuss briefly.

4.1.1.1 Intserv model

Intserv characterizes two types of applications: elastic and real-time. Elastic appli-

cations which include Email, FTP and DNS do not care too much about when packets

arrive; arrived packets are processed immediately. TCP-based applications are almost

always elastic since TCP does not lend itself to real-time service due to its depen-

dence(??) on handshaking, ACKing(??) and round-trip times. In contrast, real-time

applications such as IP telephony and streaming multimedia require that packets must

reach the destination within some bounded period of time after the previous packet,

otherwise the packet is useless. Jitter∗ in packet arrival is handled by using play-out

buffers.

Real-time applications are further classified into tolerant and intolerant real-time

applications. Tolerant real-time applications can handle infrequent emptying of play-

out buffers due to excessive jitter by fabricating filler packets. They can also calculate

typical end-to-end delay values to get away with smaller buffers and lower latency at

the cost of infrequent degradation of application performance. Intolerant real-time ap-

plications on the other hand require the calculation of a strict worst-case end-to-end

latency to ensure adequate buffering since they cannot tolerate degradation of applica-

tion performance. An example of intolerant real time application is circuit emulation,

that is, setting up a telephone circuit over a data network.

Based on the above characterization of traffic, Intserv defines two types of services:

• Controlled Load Service [51]: Under this service, applications would receive

service atleast equivalent to best-effort even under peak load conditions. This

service was developed for tolerant real-time applications and elastic applications

which can adapt to changes in latency and jitter. e.g. streaming audio and video

applications.

∗Change in the temporal characteristics of a sequence of packets
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• Guaranteed Load Service [52]: Under this service, a flow conforming to its

negotiated traffic specifications will receive service with bounded delay and no

datagram loss. This service was intended for intolerant real-time applications

which needed a rigid bound on end-to-end latency. e.g. Interactive videoconfer-

encing, IP telephony.

Intserv−enabled network
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Figure 4.1: A sample Intserv network

Supporting these two services requires all network elements along the end-to-end

path to implement Intserv mechanisms. Figure 4.1 shows a typical Intserv network

architecture. The cloud of routers constitute one or more service provider networks

and all routers perform all the tasks required by the Intserv specification - there is no

distinction in the roles of the routers. The end-to-end path from the client to the server

is denoted by the arrows. All network elements along this end-to-end path are required

to implement Intserv mechanisms as mentioned previously. Also, the end hosts need to

implement the signaling mechanism to request either CL or GL service from the Intserv

network. The number of flows that the network needs to keep track of increases linearly

as the number requests to the network.

Whereas Controlled Load (CL) service lends itself easily to statistical multiplexing

of resources allocated for CL service by allowing for infrequent degradation of service,

Guaranteed Load (GL) service isn’t so flexible. More formally, the CL service defines
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the end-to-end behavior provided by the series of network elements to the application’s

data packets as follows:

• The transit delay experienced by a high percentage of packets will not greatly

exceed the minimum end-to-end delay of a successfully delivered packet which in

turn is always within the bounds experienced in best-effort conditions.

• A high percentage of packets will be successfully delivered, approximately equal

to the percentage of packets successfully delivered under lightly-loaded conditions.

r Token Bucket Rate (bytes/s)

b Token Bucket Size (bytes)

p Peak Data Rate (bytes/s)

m Minimum policed Unit (bytes)

M Maximum datagram size (bytes)

Table 4.1: TSpec parameters

To request a CL service, the application provides the network elements with an esti-

mate of the traffic it will generate, the traffic specification(TSpec). The parameters of

a TSpec are shown in Table 4.1. These parameters are used to specify the maximum

burst size and transmission rate required by the application’s data flow. Flows under

CL service experience little or no average packet queuing delay over all timescales sig-

nificantly larger than the burst time. Burst time is defined as the time required for the

flow’s maximum size data burst to be transmitted at the flow’s requested transmission

rate [51]. If the flow characteristics exceed the values of the parameters specified in

the TSpec, it exhibits the characteristics of overload including a large number of de-

layed packets. Hence, CL service is only specified for flows conforming to their traffic

specification.

The GL service on the other hand, is designed to provide firm guarantees on the

bandwidth available and end-to-end delay experienced by all its flows. If the flow’s traffic

stays within its specified traffic parameters then GL service guarantees that datagrams

will arrive within the guaranteed delivery time and will not be discarded due to queue

overflows. This guarantee is provided to the end-to-end delay, not the jitter or minimum
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delay. To request a GL service, the application, in addition to the TSpec provides the

network elements with the desired service specifcation, RSpec. RSpec consists of a rate

term R and slack term S. Each network element receives a service request of the form

(TSpec, RSpec), where RSpec is (Rin, Sin). The network element processes the request

and either rejects it or accepts it and returns a new RSpec of the form (Rout, Sout).

4.1.1.2 Reference Implementation Framework

The reference implementation framework for Integrated Services consists of the packet

scheduler, the admission control routine, the classifier, and the reservation setup proto-

col. The first three are usually part of the traffic control layer in a router which is the

software function which creates different classes of services in an otherwise egalitarian

IP network. We briefly consider each of the traffic control components and their roles.

Packet Scheduler: The packet scheduler manages the forwarding of different packet

streams using a set of queues and mechanisms such as timers. The packet scheduler

must be implemented at the point where packets are queued; this is usually just

before the packet is transferred onto the link by the network device driver in a

typical operating system (before hard start xmit in Figure 3.5).

Classifier: For the purpose of traffic control (and accounting), each incoming packet

must be mapped into some class; all packets in the same class get the same treat-

ment from the packet scheduler. This mapping is performed by the classifier.

Choice of a class may be based upon the contents of the existing packet header(s)

and/or some additional classification number added to each packet.

Admission Control: Admission control implements the decision algorithm that a

router or host uses to determine whether a new flow can be granted the requested

QoS without impacting earlier guarantees. At the time a host requests a real-time

service along a path through the Internet, the Admission control is invoked at

each and every node along the path to make a local accept/reject decision.

The final component of the implementation framework is the signaling protocol. The

Intserv Working Group has recommended the use of the Resource Reservation Protocol
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(RSVP) as the signaling protocol for resource reservation in an Intserv network[14, 53].

We consider RSVP in greater detail in the next (sub?)section.

4.1.1.3 RSVP signaling

The Resource Reservation Protocol (RSVP) is a signaling protocol designed for Intserv

networks to request QoS for simplex flows from the underlying network.[14]. It supports

dynamic multicast groups and various routing protocols. RSVP protocol mechanisms

facilitate the creation and maintenance of a dynamic and distributed reservation state

across a mesh of multicast or unicast delivery paths. To account for changing network

topologies and the resulting changes to routing topologies and multicast trees, RSVP is

designed to be a soft state protocol; it requires periodic refresh messages in the absence

of which the reservation state automatically times out and is deleted. Another feature

is that RSVP is receiver-oriented, in that, it is the job of the receiver of a data flow to

initiate and maintain the resource reservations used for that flow.

RSVP makes resource reservations for a session, which is defined to be a data flow

with a particular destination address and transport-layer protocol. Thus an RSVP

session can be defined by a triple: (DestinationAddress, ProtocolId [, DestPort]), where

DestPort is optional. A reservation request for a session consists of a flowspec and a

filterspec. The flowspec, which includes a service class along with the TSpec and RSpec,

defines the desired QoS. It is used by RSVP to configure the packet scheduler in the

traffic control layer at each network element if the resource reservation request succeeds.

The filterspec together with the session specification defines the flow that is to receive

the QoS. It is used to configure the packet classifier in each node.

RSVP defines 7 signaling messages, two of which are PATH and RESV (reservation)

messages. The others are management and notification messages to signal errors and

tear down reservations along a path. These messages carry the traffic control and policy

control parameters as opaque objects; they are only interpreted and modified by the

admission control and traffic control mechanisms at each network element, and not by

the RSVP process. All the messages are send as raw IP datagrams∗. The PATH message

∗The RSVP daemon opens a raw socket with protocol id 46 to send and receive these messages.

45



which originates from the traffic source is composed of the TSpec and ADSpec objects,

TSpec being used to inform the receiver and the intermediate network elements of the

traffic characteristics required and ADSpec being updated at each network element

to describe the QoS parameters it can guarantee. When the PATH message reaches

the receiver, the RSVP process at the receiver decides on the reservation parameters

based on the ADSpec object and sends back a RESV message along the path taken

by the PATH message. The RESV message is composed of the flowspec and filterspec.

The network element passes the flowspec information to the local admission control

to calculate if it can support the required QoS. If successful, the packet classifier is

configured using the filterspec to identify the flow and the flowspec parameters are

passed to the traffic control layer to obtain necessary QoS support. If unsuccessful, an

error message is sent to the receiver. Thus, if the RESV message reaches the traffic

source, it is guaranteed that each network element along the path has reserved some

bandwidth to provide the flow with the desired QoS.

4.1.1.4 Disadvantages of Intserv

Intserv requires significant changes to the Internet infrastructure. It is a highly intrusive

mechanism to provide Quality of service and thereby entails a significant investment of

the part on the whole Internet community for successful deployment. The Intserv model

has not yet been widely deployed due to the following limitations:

1. Since Intserv requires tracking of the commitments made to each flow through the

network as part of its state information, it puts storage and processing burden

on the core routers. This directly affects the Internet service providers’ costs of

running the network.

2. Both Controlled Load and Guaranteed Services require all network elements (routers

and end hosts) along the path to implement Intserv mechanisms, otherwise they

cannot provide the expected delay bounds.
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4.1.2 Differentiated Services

The Differentiated Services (Diffserv) architecture[12], developed by the IETF Differen-

tiated Services Working Group[31], tries to solve the QoS problem using a contrasting

approach to the Intserv architecture. One of the major drawbacks of Intserv is its lack

of scalability due to the amount of state information that needs to be maintained for

each flow passing through the core network. Diffserv attacks this problem by aggre-

gating flows at the edge of the provider’s network, thus keeping complexity at bay in

the core network. The aggregated flows are mapped to traffic classes at the edges and

this information, in the form of 6-bit Diffserv code point(DSCP), is carried in the IP

header’s Type of Service (TOS) field which is redefined for use by Diffserv [43]. DSCP

occupies the first 6 bits of the TOS byte; bits 7 and 8 are set to zero.

4.1.2.1 Diffserv model

The Diffserv model reduces complexity at the core network by aggregating multiple

traffic flows into behavior aggregates (BA) by marking each packet with one in a finite

set of DSCPs. Thus depending on the service level agreement (SLA) with the customer,

certain types of flows get better priority through the provider network than others. Each

DSCP value signifies a BA which gets a pre-defined treatment at the interior routers

in the network. This pre-defined treatment is known as per-hop behavior (PHB). Of

course, the service providers have their own control mechanisms in place to check if the

users’ traffic adheres to the traffic conditioning agreement (TCA)∗ before entering their

network which is a Diffserv domain (DS domain).

Figure 4.2 depicts a typical Diffserv network architecture in which the customer

networks on either end are connected through one or more DS domains. These DS

domains could belong to a single or multiple service providers, though typically each

provider would have a single DS domain. The figure also shows the details of one

of the DS domains. It shows many traffic flows entering the ingress router of the

domain. For the purposes of this example, they are classified by the ingress router into

∗The TCA is agreed upon by the customer as part of the SLA
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two distinct behavior aggregates: real-time and best-effort, shown by the red and blue

arrows respectively. Each of these BAs, which are now marked with different DSCP

values, are serviced by different PHBs which dictate how each interior router (Core)

processes them. In this case they take a different path through the network, with the

real-time BA having to pass through only two routers before reaching the egress router.

Thus, in order to offer QoS, the Diffserv model defines the following functions:

Classifier: The classifier function reads the classification key in the packets on the

input stream to assign the packets to various output flows. The classification

key is different depending on where the router is in the Diffserv network. Ingress

routers (at the entry to a provider network) have a multi-field classifier which use

the source and destination IP address and port pairs along with the protocol id

to classify a packet. Interior routers on the other hand, have a behavior aggregate

classifier which classifies packets based on the Diffserv code point (DSCP) in the

IP header’s TOS field which is marked by the ingress routers.

Conditioner: The conditioner function is charged with task of ensuring that the clas-

sified traffic adheres to the traffic conditioning agreement (TCA). This ensures

that on an average each behavior aggregate gets the service promised to it by

the SLA, while also ensuring that it does not starve other BAs though the core

network. The conditioner uses meters, markers, policers, shapers and droppers to

enforce the TCA. The meter compares the actual traffic against the traffic profile

expected according to the TCA. All conforming traffic is called as in-profile and

everything else is marked as out-of-profile. The out-of-profile packets are queued

until they are marked as in-profile by the policer/shaper or dropped by the drop-

per. All in-profile packets may be allowed to enter the DS domain as-is, or they

may by remarked with new DSCP values by the marker.

Forwarding Behavior: Diffserv allows for different PHBs for various behavior aggre-

gates. A PHB defines the forwarding behavior adopted by the interior routers

for a particular BA. Currently, the IETF Diffserv group has standardized on two

PHBs, the Expedited Forwarding PHB (EF) and the Assured Forwarding PHB
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(AF) which are discussed in the next section.

4.1.2.2 Expedited Forwarding and Assured Forwarding

The Expedited Fowarding (EF) PHB[18] provides the building blocks for a service which

minimizes packet loss, delay and jitter. To minimize delay and jitter, the traffic under

EF PHB should encounter small or empty queues. To ensure small queue lengths, the

EF queues are serviced at a rate greater than the EF class’ arrival rate. This in turn

requires that the BA expecting EF is strictly policed at the ingress router. Packet losses

can be minimized by keeping the buffer length much larger than the expected queue

length.

The conditioner for EF at the ingress router aggressively shapes or drops traffic to

ensure that EF class does not get congested in the interior routers. EF PHB can be

implemented in routers in the following ways:

• Priority Queuing: EF flows get a higher priority than non-EF flows. This can

cause starvation for non-EF flows.

• Weighted-Fair Queuing (WFQ): Using WFQ between EF and non-EF flows with

appropriate weight to the EF flow resolves the problem of starvation of non-EF

flows while ensuring an adequate service for EF flows.

The Assured Fowarding (AF) PHB[27] provides a flexible framework to service

providers to address different forwarding needs of their customers. It provides four

classes for traffic classification, and each class in turn has three drop precedences. These

drop precedences are the probabilities of dropping of dropping the packet in a congested

network. The DSCP for the four classes and their three drop precedences (DP) are

shown in Table 4.2.

At the ingress router, a flow needing AF is mapped with a DSCP value for one of

the four AF classes (001, 010, 011 or 100). It is then metered according to the TCA to

mark their drop precedence (010, 100 or 110). Traffic that is in-profile will be marked

with the lowest DP - DP1, while out-of-profile traffic is marked with a higher DP -

DP2 or DP3. This way, when there is congestion in the interior routers, packets with
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DP1 DP2 DP3

AF1 001010 001100 001110

AF2 010010 010100 010110

AF3 011010 011100 011110

AF4 100010 100100 100110

Table 4.2: DSCP values for Assured forwarding

a higher DP are more likely to be dropped. On the other hand, when the network is

lightly loaded, even packets with a high DP will successfully pass through it allowing

for statistical multiplexing for optimal utilization of resources.

The AF PHB is most often implemented in routers using the Random Early Detec-

tion (RED) queuing discipline. RED provides two important thresholds for the average

queue length in the router - MINin and MINout with respect to the corresponding

dropping probability of in-profile and out-of-profile packets where MINout < MINin.

Thus, as the queue length increases, out-of-profile packets have a higher probability of

being dropped due to a lower queue length threshold the that of in-profile packets.

4.1.2.3 Disadvantages of Diffserv

Despite easing the burden on the core routers through traffic aggregation, Diffserv

introduces new problems in the quest to find a perfect QoS mechanism. Some of the

problems associated with the Diffserv architecture can be summarized as follows:

1. While Intserv was too fine-grained leading to high resource requirements, Diffserv

is too coarse-grained in its attempt to provide QoS through traffic aggregation.

e.g. If a BA consists of x flows, and one of them misbehaves by violating the SLA,

then the other x− 1 flows are needlessly penalized by the interior routers just for

being a part of the misbehaving BA.

2. Diffserv networks by their very nature are statically provisioned through man-

ual configuration that reflect the SLAs. They lack dynamic admission control

or policy-based admission for a user or application. Thus they cannot respond
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intelligently to the changing conditions inside the network for optimal resource

utilization.

3. Diffserv cannot easily support specialized flows such as IP-tunneled flows or others

which encrypt or modify their headers since Diffserv requires access to the IP

header to mark, remark and read the DSCP values in the TOS byte of the IP

header

4. Dropping packets in the interior nodes has a more adverse effect on connection-

oriented flows such as TCP flows than on connection-less flows such as UDP.

This is due to the flow (congestion?) control mechanisms of TCP that respond to

packet losses in the network by drastically reducing their sending rate. Thus, if an

interior router experience congestion and drops a TCP packet in a BA containing

both TCP and UDP flows, the TCP flow will receive unfair treatment.

4.1.3 Hybrid Qos Architectures

With the individual drawbacks of the Diffserv and Intserv models as discussed in previ-

ous sections, a body of researchers were drawn to the obvious question -Was it possible

to take the salient features of both the models and integrate them into a hybrid model?

This question led to two the development of two hybrid models. From a abstract

point of view, these hybrid models do not attempt to design a new protocol, per se.

They both use the Diffserv and Intserv models in their original form and only differ in

the way that the Intserv-Diffserv service mapping is done and the role of the border

elements. Both the models suggest the use of the Intserv model in the edge networks of

the customer for fine-grained QoS control and Diffserv model in the core networks of the

service provider for a coarser QoS control in terms of behavior aggregates. This approach

allows enhanced control inside customer networks while keeping out that complexity

from the provider network.

The first hybrid model, which is widely known as Microsoft model [11], defines

an Intserv-provided edge network (customer) that has static service mappings to the

Diffserv-provided core network (provider). The second hybrid model, which is widely
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know as Tunneled Aggregate model [10], defines an Intserv-provided edge network with

dynamically assigned service mappings to the Diffserv-provided core network. Figure

4.3 depicts a network to deploy hybrid QoS models. The two models only differ in

the way the Diffserv core network responds to the resource reservation requests flowing

between two Intserv networks on opposite ends.

The main task in hybrid models is the mapping of the Intserv flowspec parame-

ters onto Diffserv PHBs and vice versa. This task is assigned to the mapping node,

which could be the edge router of customer’s Intserv network or the edge router of

the provider’s Diffserv network. That tasks that such a router would have to perform

include the following:

Traffic conditioning: The router would have to classify, police and shape the traffic

and mark it with an appropriate DSCP.

Admission control: The router would have to implement a policy-based admission

control or a rigid SLA-based one. This admission control would in effect be re-

sponsible for the service mapping by selecting the appropriate PHB in the Diffserv
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network.

PHB selection: Once an Intserv flow is admitted, the router would have to map it to

an appropriate Diffserv PHB depending of whether the flow requires CL or GL

service. GL service due to its very nature maps naturally to the EF PHB, while

the CL service could map to either AF or EF PHBs.

The following sections consider the differences in the hybrid models in some detail.

4.1.3.1 Microsoft Model

The Microsoft model describes the simplest possible integration of Intserv and Diffserv

possible. The edge routers in the Intserv network are statically provisioned with a pre-

defined SLA. These routers are responsible for traffic conditioning, admission control

and shaping to meet the Diffserv region requirements. The core routers in Diffserv

network are pure Diffserv routers which receive aggregated traffic from the edge routers

in the Intserv networks.

Figure 4.3 depicts a typical network deploying the Microsoft model. The various

customer networks deploy Intserv and the edge router of the Intserv network or the edge

router of the Diffserv provider network is responsible for mapping the Intserv service

available to the flows to the corresponding Diffserv classes in the provider network. This

edge router understands RSVP signaling to deal with Intserv flows and maps them to

the corresponding DSCP to form BAs which are then injected into the Diffserv core

network. On the other side, the edge router does a reverse mapping from a Diffserv

DSCP to an Intserv flow corresponding to the parameters that were used to make

resource reservations during admission control initially. At the beginning when the

resource reservations are established in the source and destination networks, the RSVP

signaling messages are passed through the Diffserv as-is. Thus the Diffserv core is

unaware of the service commitments made by the Intserv networks and is thus said to

be RSVP-unaware in the Microsoft model.

The Microsoft model has a key drawback, in that, it does not make efficient use of

the resources in the core network. Since the Diffserv core is statically provisioned for
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the Intserv mapping, any changes in the Intserv resource reservations cause undesired

behavior. If the Intserv resources exceed the static Diffserv provisioning for Intserv

traffic, then packets are dropped at the conditioner even if there is spare capacity in the

core. If the static Diffserv provisioning for Intserv traffic exceeds the real Intserv traffic,

that capacity lies unutilized even when the core is overloaded. There exist a couple of

practical implementations of the Microsoft model that can be referred for details of the

mapping mechanisms[34, 47].

4.1.3.2 Tunneled Aggregate Model

The Tunneled Aggregate model is a more sophisticated hybrid QoS model that tries

to solve the fundamental drawback of the Microsoft model: inefficient use of the core

network capacity. It does this by using an intelligent core network which takes part in

the resource reservation process between two Intserv networks.

In the Tunneled Aggregate model,the Diffserv routers in the core also understand

RSVP signaling. Hence, they can use RSVP signaling to inform the Intserv edge net-

works about the condition of the core network leading to better network utilization.

But there are two kinds of RSVP signals in a Tunneled Aggregate model:

End-to-end signaling: This RSVP signaling is the same as in the Microsoft model

between the two Intserv nodes on either side of the Diffserv core network. These

messages are passed through the core unmodified, albeit with a different protocol

id (134).

Aggregated signaling: This signaling takes place inside the Diffserv network. The

edge routers of the Diffserv region which handle the end-to-end signaling are known

as the aggregator and de-aggregator. They map individual Intserv flows to cor-

responding Diffserv classes and only pass the aggregate reservation messages to

the core routers while protecting them from each individual resource reservation

message coming from the Intserv networks.

There exists a practical implementations of the Tunneled Aggregate model that can

be referred for details of the mapping mechanisms[42].
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4.2 Quality of Service support in Linux

4.2.1 Linux Traffic control
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Figure 4.4: Packet processing inside the kernel

Starting from the 2.2.x kernels, Linux offers a rich set of traffic control (tc) functions

that can be used to implement QoS mechanisms [5]. The software consists of a kernel-

based traffic control layer and user-space programs to control and configure these layers.

The traffic control layer supports the link-sharing mechanisms described in [26] and

those required to support the architectures developed by the IETF Intserv and Diffserv

groups [12, 15].

Figure 4.4 shows how network packets are processed inside the kernel. Packets

entering a machine are checked for their IP destination address. If it matches one of

the interfaces of the machine, the packet is sent to the upper layers which send it to the

application layer. Otherwise the packet needs to be forwarded to the network through

another interface (in case of a router). Applications on the machine might also generate

packets which need to be transmitted onto the network. These packets are queued at

the outgoing interface. Traffic control decides how to transmit these packets queued at

all the interfaces. It can choose to do any of the following:

• Drop packets (for queue exceeding rate limit or length limit)
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• Reorder packets (to give priority to certain flows)

• Delay packets (to rate limit the outbound traffic)

• Mark/Modify packets (to signal certain behavior to downstream routers)
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Figure 4.5: Example of qdiscs, classes and filters

The tc suite consists for four types of components: queuing discplines (qdiscs),

classes, filters and policers. A qdisc is a software module inserted into the Linux IP

stack to alter queuing behavior. Every network interface has a qdisc associated with

it which controls how packets queued at the device are treated. Some qdiscs may use

filters to distinguish among different types of traffic and classify it into different classes.

Classes use qdiscs to store packets in them. The qdisc can process each class in a

specific way, e.g. by prioritizing one class over the other. Thus there exists a parent-

child relationship between qdiscs and classes and this nesting of qdiscs and classes

can be arbitrarily deep. Some of the common qdiscs used in Linux are Class-based

queuing(CBQ), Token bucket filter(TBF), Simple Priority scheduler(PRIO), First-in First-

out(FIFO), Hierarchical Token bucket(HTB) and Diffserv marker(DSMARK). Figure 4.5

shows a simple configuration consisting of a PRIO qdisc with three filters, two of them

classifying to the high priority class being serviced by a TBF qdisc and the remaining one

redirecting its traffic to a low priority class being serviced by a best-effort FIFO qdisc.

Additional information about the design of the tc suite can be found in [5, 8, 19].

The kernel-space Linux Traffic control (tc) is configured using a user-space program
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tc provided in the iproute2 package[39]. tc allows a user to create qdiscs, associate

filters and classes with these qdiscs and view statistics of all components. The iproute2

package contains documentation on usage of these features and more information about

specific examples can be found on the Linux Advanced Routing and Traffic control

website[19].

When a qdisc is attached to a device, it initializes the device data structure∗ with

a pointer to the qdisc code. When a packet is enqueued on an interface by a call to

dev queue xmit() the enqueue function of the root qdisc of the device is invoked. Af-

ter queuing the packet, the queues are activated by calling qdisc wakeup() and all

the device queues are polled for any packets to send by calling qdisc restart(). If

qdisc restart() obtains a packet from the device’s qdisc, it calls the hard start xmit()

routine of the device to actually transmit the packet onto the link. Sections 3.4 and 3.5

discuss additional details of packet flow inside the Linux protocol stack.

In the following sections we take a look at the features provided by Linux Traffic

Control for implementation of Intserv and Diffserv.

4.2.2 Intserv and RSVP

An Intserv implementation needs RSVP for signaling and a native traffic control mech-

anism to implement admission control, filtering and policing of traffic. The University

of Southern California’s Information Sciences Institute provides an implementation of

RSVP on Linux[2]. This code has been integrated with the Linux kernel’s traffic control

layer to offer a full-fledged RSVP/Intserv implementation on Linux[40].

The RSVP daemon runs in user-space and provides the following three interfaces:

Application Programming Interface: This interface is used to communicate with

applications desirous of using Intserv. It includes functions to request resource

reservations, tearing down of existing reservations and other management tasks.

Traffic Control Interface: This interface is used to establish reservations by creating

qdiscs, classes and filters which are later used to implement admission control,

∗See Section 3.4 for details of a device data structure
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classification and scheduling of flows.

Routing Interface: This interface communicates with the routing protocols to get

notifications of route updates made by protocols such as OSPF, RIP or BGP.

Any updates result in establishment of new reservations paths and tear down of

existing ones.

Class Id Traffic Type Characteristics Defmap (TOS) Priority

1:2 Best effort Unclassified 0x3d 6

1:3 Interactive burst High priority 0xc0 2

1:4 Asynchronous Bulk Low priority, high reliability 0x02 8

1:7FFE Intserv managed Reserves bandwidth RSVP filters Various

Table 4.3: Classification of traffic in Intserv nodes

The RSVP daemon classifies its traffic into four classes as shown in Table 4.3. The

queue structure in Intserv nodes to service these classes is shown in Figure 4.6. The

non-intserv traffic is classified on the basis of its TOS field in the IP header, also known

as defmap. Intserv traffic is classified using the RSVP filters that are dynamically estab-

lished to classify each flow that has been admitted. Thus the class 1:7FFE, henceforth

known as the Intserv class, handles all the Intserv traffic. Intserv utilizes the CBQ qdisc

and class to implement resource reservation. The Intserv class contains other classes to

differentiate between guaranteed service flows and controlled load flows. Each GL flow

is associated with a RSVP filter and assigned its own class inside the Intserv class. All

CL flows are mapped by their RSVP filters to one of two CL classes. If the packets are

in-profile, they are directed to the adaptive first CL class (1:x), else they are redirected

to fixed second CL class (1:7FFF). The bandwidth allocated to the first CL class is

changed dynamically as resource reservations for CL flows are set up and torn down.

The fixed, second CL class has the same priority as best-effort traffic to ensure that

excessive out-of-profile packets will not affect the best-effort traffic in class 1:2.

The RSVP package provides a real-time application program, RTAP, which uses the

RSVP API to communicate with the RSVP daemon process. RTAP provides a command-

line interface for interactively exchanging Intserv messages (e.g. PATH, RESV, etc.)
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with other Intserv-capable hosts. A typical sequence of actions to configure an Intserv

capable network would be as follows:

1. Configure an RSVP daemon on each host that needs to participate in the Intserv

network.

2. Set up routes so that traffic from the source host, SRC, can reach the destination

host, DEST. Routes can be statically configured or dynamically determined using

various routing protocols.

3. Calculate the traffic characteristics of the application that generates the traffic

4. Start RTAP on SRC and send a PATH message to DEST which contains the traffic

characteristics of the application requesting the resources.

5. When the request is successful, the RSVP daemon on all routers on the path be-

tween SRC and DEST will create the filters required to classify this application flow

and allocate resources for it. If unsuccessful, RTAP will receive an error message.

6. Once the reservation is established, start the application on SRC to send its traffic.

4.2.3 Diffserv

Linux provides a robust Diffserv implementation by extending the existing traffic control

implementation to add the Diffserv Marking(DSMARK) and Generalized Random Early

Detection(GRED) qdiscs and the tcindex classifier[8, 23]. This code is kernel-based with

user-space configuration provided through tc in the iproute2 package.

The Diffserv specification assigns different roles to the edge router and the core

router to provide the required end-to-end QoS required by the application as shown

in Figure 4.2. Typically, the edge router is assigned the complex task of classifying

various flows from customer networks, metering them for compliance with the traffic

conditioning agreement (TCA) and then marking (or re-marking) them with a Diffserv

Code Point(DSCP) into a fixed number of behavior aggregates (BA). This involves the

use of a classifier, a meter, a marker, a scheduler and possibly a shaper. The core router

on the other hand simply reads the DSCP in the marked packets and schedules them
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according to the per-hop behavior (PHB) expected by a BA with that DSCP. This

involves using of a simpler classifier to read DSCP and a scheduler to implement the

PHB.

The three additions to the Linux traffic control implementation for implementing

Diffserv have the following functions:

DSMARK: The DSMARK qdisc is used to retrieve and manipulate the DSCP in the IP

header. It is the root queuing discipline on a Diffserv router. It has the following

specific functions:

1. Retrieval of DSCP from IP header and saving it in the skb→tc index field

of struct sk buff. This saves the expensive DSCP retrieval task in future

processing of the packet.

2. Mapping a DSCP to its corresponding class in the queuing structure in the

router.

3. Re-marking a DSCP in a packet if required.

GRED: The GRED qdisc is used to implement the three drop probabilities required for

each AF class in the AF PHB.

tcindex: The tcindex classifier is used for simpler, single-field classification of packets

using skb→tc index field of struct sk buff. This classifier depends upon a

parent DSMARK qdisc to fill-in the skb→tc index field.

We are primarily interested in the Assured Forwarding (AF) PHB of Diffserv. Figure

4.7 shows an example queue structure in a edge router providing the AF PHB. The figure

shows a DSMARK root qdisc 1:0 which contains three other DSMARK qdiscs. There are

three classifiers associated with the root qdisc: in-profile, out-of-profile and best-effort.

The classifiers can be either the rsvp∗ or u32 classifiers from the tc suite. This example

classifies the traffic into only three BAs: DSCP 0x28 for in-profile packets, 0x38 for

∗This rsvp classifier is simply used to classify packets based on a certain destination, port pair and
the traffic profile. There is no need to run the RSVP daemon for it to work.
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Out−of−profile packets

In−profile packets

BE Packets

DSCP = 0x28

DSCP = 0x38

DSCP = 0x00

DSMARK qdisc − 1:1

DSMARK qdisc − 1:2

DSMARK qdisc − 1:3

DSMARK qdisc − 1:0

Figure 4.7: Queue structure in Diffserv edge router

Name DSCP TOS Field tc index Virtual class AF class Drop Priority

NA 0x00 00000000 0 NA 0 0

AF11 0x28 00101000 10 111 1 1

AF12 0x30 00110000 12 112 1 2

AF13 0x38 00111000 14 113 1 3

AF21 0x48 01001000 18 121 2 1

AF22 0x50 01010000 20 122 2 2

AF23 0x58 01011000 22 123 2 3

AF31 0x68 01101000 26 131 3 1

AF41 0x88 10001000 34 141 4 1

where,
tc index = (TOS&0xFC)À 2

AF class = (virtualclass&0xF0)À 4

Drop priority = (virtualclass&0x0F)

Table 4.4: Relation between DSCP, tcindex, AF classes and drop priority
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out-of-profile packets and 0x00 for best-effort packets. More complex networks could

define up to 14 BAs: 12 for AF flows, 1 for EF flows and 1 for BE flows.
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Figure 4.8: Queue structure in Diffserv core router

Figure 4.8 shows an example queue structure in a core router providing AF PHB.

There is a DSMARK root qdisc to retrieve the DSCP from the packet and put it in

the skb→tc index field. The root qdisc contains a child qdisc which implements link

sharing principles. Linux provides a choice between Hierarchical Token Bucket(HTB)

and CBQ qdiscs to implement link sharing as outlined in [26]. Link sharing allows traffic

classes to isolate or borrow bandwidth. Isolation is useful to provide services such as

EF PHB which require a dedicated bandwidth, whereas borrowing allows a class to

temporarily borrow unused bandwidth from its parent class. The HTB qdisc 2:0 used in

Diffserv can contain up to four AF classes and a BE class. The AF class and the drop

probability inside the AF class is selected based on the value of skb→tc index.

Table 4.4 shows the relation between the DSCP, TOS, Virtual Diffserv classes, AF

class and drop priority of a BA. In step 1 in Figure 4.8, the tcindex classifier retrieves
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the DSCP from the packet and copies it to skb→tc index. For instance, a DSCP of

0x28 corresponds to a TOS byte of 00101000 in binary and tc index of 10 as shown

below.

tc index = (TOS&0xFC)À 2

= (00101000&0xFC)À 2

= (00101000&11111100)À 2

= (00101000)À 2

= 001010

tc index = 10 (4.1)

Once the tc index handle is obtained, it is mapped to a virtual Diffserv class by

the tcindex classifier. Hence tc index handle 10 corresponds to classid 1:111, 12 →

1:112, 18 → 1:121, 22 → 1:123, and so and so forth. So, tc index is set to the minor

number of the virtual class. Hence, from Equation 4.1,

tc index = 0x0111 (4.2)

This mapping is not arbitrary. It is designed so that further processing on the

tc index field returns the AF class and corresponding drop priority (DP) inside the

class. Steps 2 and 3 in Figure 4.8 involves mapping the packet to a particular AF class

or BE class and it’s DP.

AFclass = (tc index&0xF0)À 4

= (0000000100010001&11110000)À 4

= (00010000)À 4

= 0001
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AFclass = 1 (4.3)

DropPriority = (tc index&0x0F)

= (0000000100010001&00001111)

= (00000001)

DropPriority = 1 (4.4)

Thus, the Diffserv core router only has to perform three inexpensive ANDing and

right-shift operations to classify a previously marked packet into its AF class and DP,

in this case AF11.

4.3 Problems with testing QoS networks

Testing of QoS networks has been going on for sometime now. In particular, a lot of

testing has been conducted on Linux [13, 41, 4, 7, 45, 47, 34, 42] because of its open

source nature which allows researchers to modify its robust network protocol stack to

add new functionality. But all of these evaluations suffer from one or more the following

drawbacks:

Cost of infrastructure: Testing protocols on real networks is an expensive proposi-

tion due to the number of machines and supporting infrastructure required. Most

service providers have networks consisting of millions of dollars worth of equip-

ment, something that most research labs will not have.

Small scale of experiments: As a direct result of the previous drawback, most ex-

perimental setups consist of a small number of machines, ranging from 3 machines

to more elaborate experiments with 7-8 machines that we have performed[34, 42].

But this is too small a scale to test protocols which we want to become an Internet

standard!

Unavailability of equipment: The hybrid networks which we designed and tested

require uncommon functionality from routers. e.g. Tunneled Aggregated RSVP
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requires routers in the Diffserv core to take part in the RSVP signaling too. This

kind of equipment has not hit the market because these architectures still require

extensive testing.

Lack of testing standards: Currently, there exist no testing standards for evaluating

data plane and control plane in QoS networks. Lack of these standards hampers

widespread testing.

Lack of Control Plane complexity evaluation: Although a lot of research has been

done in evaluating the performance of a new protocol at the data plane, very lit-

tle has been done to measure the impact of control plane. Though a lot of data

plane results can be obtained through network simulations on sophisticated simu-

lators such as NS-2[24] and OPNET[1], these simulations cannot predict impact of

complexity of a protocol in terms of different configuration commands, signaling

messages through the network and the training required for operators to utilize

the protocol effectively.

We hope to address these problems using virtual network elements(VNE). VNEs

allow us to increase the size of the experiments without a linear increase in the number

of machines required. Also, since we are using public domain software whose source code

is available, we can modify the source to implement new protocols or variants for testing

without waiting for supporting equipment to be available in the market. Since VNEs

utilize the real protocol stack and also require the same configuration as a real network,

the same commands that would be used to configure a physical network element are

used to configure the VNE which gives us the opportunity to measure the control plane

complexity of the protocol.

67



Chapter 5

Implementation

Performing reproducible experiments required the creation of a simulation infrastruc-

ture, Virtual Network Elements (VNE), modification of existing tools and creation of

several new tools. This chapter talks about the software development undertaken to

reach our ultimate goal: Emulation of non-trivial IP networks using virtual network

elements. Effective emulation of Intserv and Diffserv networks proves the efficacy of

our approach. We discuss the modifications to Diffserv and RSVP code to work with

Virtual network elements and changes to Netspec to automate the experiments.

5.1 Modifications to QoS software to work with VNET

To be able to use the power of Virtual network elements (VNE) to emulate Intserv or

Diffserv network required us to be able to use the VNEs to emulate Intserv network

elements and Diffserv routers respectively. The original VNE code was generic enough

to be used without major enhancements with the QoS software in Linux. The fact

that very minor changes were required to the Diffserv and Intserv code to work with

VNEs proves the effectiveness of utilizing our methods for general purpose IP network

emulation.
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5.1.1 Enhancements to VNET code

In the original design, the virtual network (vnet) layer was unobtrusive to the IP layer.

A packet belonging to the virtual network (of type ETH P KUVNET), when received by a

machine, was sent to the vnet layer that stripped off the vnet header before sending

it up to the IP layer. Hence, the IP layer did not know of the existence of the virtual

network and the vnet layer did not manipulate any IP layer data. While this approach

was effective to virtualize most applications, it did not work for some applications that

used the IP options field in the IP header. We need to be able process IP options like

the IP Router Alert option in the vnet layer for special handling of certain packets in

the virtual network.

Typically, routers process packets at the IP layer and make a forwarding decision if

the final destination in the IP header is not one of the interfaces of the router. The IP

Router Alert option is a mechanism used by routers to pass on packets to layers above

the IP layer even when it is not the final destination of the packet. This packet would

typically be passed to a user-space application listening for a particular protocol by

establishing a raw socket. This mechanism is used by the RSVP daemon to ensure that

the RSVP signaling messages reach each Intserv router (or more correctly the RSVP

daemon on each Intserv router) on the end-to-end path. The daemon can then make

modifications to the signaling messages (e.g. modifying the ADSPEC in a PATH message)

and forward the packet along its way to the final destination.

Thus, the vnet code was modified to check if the IP header was longer than 20

bytes∗, in which case, the IP options were used to populate the skb→cb member of

struct sk buff. Then, if a virtual router received a packet with the IP Router Alert

option set, it was passed up the stack instead of being forwarded.

5.1.2 Modifications to iproute2 package

The Linux Traffic Control system consists of two parts: kernel-space packet queuing

data structures and user-space tools. The kernel-space code is manipulated using the

∗Standard IP header length without IP options
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user-space tools provided by the iproute2 package[39].

The iproute2 package consists of the tc tool that is used to create, delete and

modify traffic control classes, queuing disciplines and filters. tc needs to specify the

packet type or protocol that these queues, classes and filters will act on. Hence, it is

obvious that they will not work with the new packet type (ETH P KUVNET) created for

the vnet packets.

Fortunately, getting tc to work with ETH P KUVNET packets requires trivial code

changes in two locations. It requires the addition of ETH P KUVNET in list of packet types

supported by tc in lib/ll proto.c in the iproute2 package as shown in Program B.1.

This packet type is referenced by the name vnet in the tc commands. Also, the system

headers provided by the glibc for user-space programs must contain a reference to the

packet type in include/linux/if ether.h.

These changes allow the creation of classes, qdiscs and filters that act on the vnet

packets. This in turn allows the creation of virtual networks that use traffic control

mechanisms.

5.1.3 Modifications to Diffserv code

The Diffserv code is part of the Linux Traffic Control system in the kernel. It defines

a DSMARK qdisc that is used for DSCP marking. The code for DSMARK qdisc checks for

skb→protocol to be set to ETH P IP or ETH P IPV6 to get or set the skb→tc index

field i.e. it processes only IPv4 and IPv6 packets. We added another condition to do

the same for packets of type ETH P KUVNET. Now, when we create a DSMARK qdisc using

tc, we can specify the vnet packet type for correct treatment by the qdisc.

The original software for Diffserv[8] used CBQ qdiscs and classes to queue Diffserv

behavior aggregates. The CBQ implementation in Linux is not very precise and has been

known to give inaccurate results during link sharing. When we were evaluating Diffserv

with CBQ, we came across a new qdisc, HTB, which stands for Hierarchical Token Bucket

that implements the same concept of link sharing the CBQ attempts to implement. We

made some measurements using HTB and found it to be very accurate and easier to setup

than CBQ. Hence we started using HTB for our experiments and over time HTB grew in
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popularity in the Linux community and was incorporated into the Linux kernel.

5.1.4 Modifications to RSVP daemon

The Intserv implementation on Linux comprises of the user-space RSVP daemon that

uses the CBQ qdisc and classes in the kernel to serve Intserv flows. CBQ supports vnet

packets by specifying vnet when creating the qdiscs and classes. To truly emulate a

Intserv network on fewer nodes we need to be able to run multiple RSVP daemons on

the multiple virtual routers on a physical host. This was perhaps the most complex

change required to enable virtualization. The following is the list of modifications made

to the RSVP daemon to enable multiple instances of the daemon to run on a single

machine, each instance bound to a different virtual router.

Addition of ioctl(SIOCGETROUTE): The original vnet code did not provide any mech-

anism to find the next-hop for a packet in the virtual network from the user-space.

This is required since the RSVP daemon fills the packet headers in user-space be-

fore forwarding it. This was fixed by adding ioctl(SIOCGETROUTE) in the vnet

code to find the next-hop from a given virtual interface for a given destination.

The next-hop is found by consulting the virtual routing table of the router or

host to which that virtual interface belongs and returning that address to the

user-space.

Use of ioctl(SIOCGETROUTE): The ioctl is used in all the places where the RSVP

daemon tries to query the kernel routing tables. e.g. unicast route().

Enabling command-line parameters: By default, the RSVP daemon associates all

the sockets to INADDR ANY thereby using any interface address on a router. This

needs to be changed since we should be able to specify which virtual router should

be associated with each instance of the RSVP daemon. Hence, we changed all

socket bind() calls to attach to the device specified on the command-line of rsvp

daemon, instead of INADDR ANY. Similarly, the api port, encapsulation port,

lock port and status port are specified on the command-line instead of being

fixed so that no two RSVP daemons on a machine have these ports in common.

71



Processing of IP options in vnet layer: As described in Section 5.1.1, the vnet

code now processes the IP options to see if the IP Router Alert option is set. If

set, the packet is sent up the stack to the RSVP daemon attached to the router.

More intelligent packet receiving: Since multiple RSVP daemons can be running

on a single physical box, a packet with a protocol id of 46 was sent to all the RSVP

daemons. Since some RSVP daemons were not expecting it due to the topology of

the virtual network, they could not handle the packet and crash. So changes were

made so that the daemon recognizes if the raw packet is meant for it. Now, the

receive() routine checks if the incoming interface is port of the router to which

the RSVP daemon is bound, or the interface of the end host. If it belongs to the

router, the packet continues its normal path into RSVP else we return zero so

that the packet is not processed. This was necessary because the bind() system

call does not bind to a particular interface in the presence of the IP Router Alert

option∗.

Dynamic filenames: Since multiple RSVP instances can exist on a machine to sup-

port a virtual network, fixed filenames cannot be used. Hence a facility was created

to generate dynamic filenames for storing process ids, unix socket, pipe names,

etc.

5.2 Netspec

Netspec[35, 36] was developed at the University of Kansas as a tool for network exper-

imentation and measurement. It’s strength lies in it’s ability to perform a distributed

experiment involving multiple machines running various processes, co-ordinating the

processes, generating results and displaying them to the user. All of these activities can

be specified in a Netspec script that is then passed to the central Netspec controller.

The controller breaks up this script into chunks meant for each process on each machine

in the experiment and distributes the tasks. These processes executing on the various

∗This fact is mentioned in the manual pages - man 7 ip
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machines are the Netspec daemons each of which has a specific task in the experiment.

These daemons run in phases controlled by the centralized controller daemon allow-

ing for co-ordination of the various phases of various Netspec daemons across various

machines through a string of phase commands from the controller and corresponding

acknowledgments from the various daemons on completion of the phase.

Various daemons written to use with Netspec include the following:

Test daemon(nstestd): This versatile daemon can be a traffic source and sink. It

can generate TCP or UDP traffic, emulated traffic such as FTP, Telnet, Voice,

and traffic with special properties e.g. TOS of 0x28

Report daemon(reportd): This daemon generates reports at each machine and then

sends them to the controller daemon.

Corba daemon(nscorbad): This daemon is used to setup and execute CORBA∗ based

programs.

We decided to use the Netspec framework to automate our experiments to make

them repeatable and infinitely less tedious to setup. But very soon, we found some of

the features of Netspec inadequate for our purposes. This included the fixed number of

phases in a daemon and no support for serialized execution. These are discussed in the

next section.

5.2.1 Variable-phase Netspec

Though the original Netspec architecture supported execution in phases, there was

no concept of execution order ; phase X in all daemons on all machines was executed

together and all daemons had to implement phase X. There was no way to specify that

Phase X of daemon D1 should be executed before Phase X of daemon D2. Also, the

number of phases were hard-coded into Netspec, so we had to build our experiment into

those fixed number of phases regardless of our requirements. Very soon these became

major hindrances that needed to be fixed without breaking existing daemons.

∗Component Object Request Broker Architecture
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Slot D1 phases D2 phases D3 phases

1 D1-P1 D2-P1 -

2 - - D3-P1

3 D1-P2 - D3-P2

4 D1-P3 D2-P2 -

5 D1-P4 D2-P1 D3-P3

6 - D2-P2 -

Table 5.1: Slot-based execution in Variable-phase Netspec

As part of a semester project we re-engineered the Netspec controller daemon to

accept an arbitrary number of phases in the variable-phase mode. We also introduced

the concept of slots so that a user could specify the exact order of execution in terms

of slot and phase names. This allowed the user to design experiments with arbitrary

execution ordering similar to that shown in Table 5.1. Thus, the user was freed from

the requirement of having the same number of phases for each daemon and executing

only a certain phase at a time. As shown in Table 5.1, daemon D1 has 4 phases and

daemons D2 and D3 have 2 phases each. Also, the user has specified that the first phase

of D3 (D3-P1) should be executed after the first phase of daemons D1 and D2 (D1-P1,

D2-P1).

These changes improved the usability of Netspec tremendously. All that was now

necessary was to write new daemons to automate our tasks. Three new daemons were

written: RSVP daemon(nsrsvpd)[42], Diffserv daemon(nsdiffd)[34] and VNET dae-

mon(nsvethd). The VNET daemon is described in greater detail in the next section.

5.2.2 VNET Netspec daemon

Initially, the virtual network elements were created using user-space programs that

passed the characteristics of the network element such as its name, IP address and

routing table on the command-line. This approach to setting up a virtual network

was tedious, time consuming and prone to errors since it required the commands to be

executed several times each, on multiple machines with different command-line param-

eters. So we developed the VNET Netspec daemon called nsvethd. All the parameters
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of a virtual network configuration are written in a single script that is then passed by

the Netspec controller to the various nsvethd daemons on various machines. These

daemons then create the required virtual hosts and virtual routers.

Program 5.1 shows a Netspec script used to setup a virtual network on three physical

machines: testbed40, testbed41 and testbed42. The string nsveth testbed40 denotes

that the nsvethd daemon on testbed40 is instructed to execute the commands in

between the braces. This script creates a virtual host on testbed40 and testbed42 and

a virtual router on testbed41. The virtual network uses the 10.0.0.0/16 address space

as shown in the script. Each virtual network element has a routing table and a routing

subnet map associated with it that tells it where to route packets in the virtual network

and also informs it of the mapping between the virtual and physical network. The

arptable entries are used to send a packet to a particular machine participating in the

experiment without calling the ARP routines.

5.2.3 System command daemon

There are many occasions when we need to execute a sequence of commands over a

large number of machines. This typically requires logging in to the machine, typing the

commands and logging out. This gets cumbersome very quickly, especially if a large

number of machines are involved. We encountered this requirement numerous times

during the course of our experiments. The result is the Netspec System Command

daemon, nssyscmd.

Program 5.2 shows a Netspec script using nssyscmd to setup queues on routers. The

first cmd statement deletes all the existing queues, and the second command establishes

the queues by running a shell script. Thus any number of commands can be executed

on each testbed by listing each command in a cmd=" " directive. This Netspec daemon

allowed us to completely automate experiments by automating the setup of data collec-

tion points of various machines, copying the data to a central location, processing the

data and outputting the results.

In the next chapter, we look at the various experiments carried out to show the

efficacy of our approach in emulating Diffserv and Intserv networks using virtual network
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Program 5.1 Netspec script to setup a 2-host, 1-router virtual network

cluster

{

nsveth testbed40

{

vdev = create(vdeviface="veth0", phydevname="eth0", vipaddr=10.40.1.1,

netmask="255.255.0.0", vmacaddr="12:34:43:21:12:34");

routing = create(dev="veth0",

entry=new(dest=10.40.1.1, gw=0.0.0.0,i

netmask=255.255.255.255, flag="H", dev="veth0"),

entry=new(dest=10.40.0.0, gw=0.0.0.0,

netmask=255.255.255.255, flag="N", dev="veth0"),

entry=new(dest=0.0.0.0, gw=10.40.0.254,

netmask=255.255.0.0, flag="G", dev="veth0"));

routing = subnet_map(dev="veth0",

entry=new(dest=10.40.0.254, gw=129.237.127.241,

netmask=255.255.0.0, flag="P", dev="veth0"));

arptable = create(entry=new(ip=129.237.127.241, mac="00:E0:81:01:31:A8"));

}

nsveth testbed42

{

vdev = create(vdeviface="veth1", phydevname="eth0", vipaddr=10.42.1.1,

netmask="255.255.0.0", vmacaddr="12:34:43:21:12:34");

routing = create(dev="veth1",

entry=new(dest=10.42.1.1, gw=0.0.0.0,

netmask=255.255.255.255, flag="H", dev="veth1"),

entry=new(dest=10.42.0.0, gw=0.0.0.0,

netmask=255.255.255.255, flag="N", dev="veth1"),

entry=new(dest=0.0.0.0, gw=10.42.0.254,

netmask=255.255.0.0, flag="G", dev="veth1"));

routing = subnet_map(dev="veth1",

entry=new(dest=10.42.0.254, gw=129.237.127.241,

netmask=255.255.0.0, flag="P", dev="veth1"));

arptable = create(entry=new(ip=129.237.127.241, mac="00:E0:81:01:31:A8"));

}

nsveth testbed41

{

router = create(routername="vrouter0", routermac="22:22:22:22:12:34",

routerip=10.100.100.254,

vdev = create(vdeviface="vport0", phydevname="eth0", vipaddr=10.40.0.254,

netmask="255.255.0.0", vmacaddr="12:34:56:78:12:34"),

vdev=create(vdeviface="vport1", phydevname="eth0", vipaddr=10.42.0.254,

netmask="255.255.0.0", vmacaddr="22:24:56:78:12:34"),

routing = create(dev="vport0",

entry=new(dest=10.40.0.254, gw=0.0.0.0,

netmask=255.255.255.255, flag="H", dev="vport0"),

entry=new(dest=10.42.0.254, gw=0.0.0.0,

netmask=255.255.255.255, flag="H", dev="vport1"),

entry=new(dest=10.40.0.0, gw=0.0.0.0,

netmask=255.255.0.0, flag="N", dev="vport0"),

entry=new(dest=10.42.0.0, gw=0.0.0.0,

netmask=255.255.0.0, flag="N", dev="vport1"),

entry=new(dest=0.0.0.0, gw=10.40.0.254,

netmask=255.255.0.0, flag="G", dev="vport0")),

routing = subnet_map(dev="vport0",

entry=new(dest=10.40.0.0, gw=129.237.127.240,

netmask=255.255.0.0, flag="P", dev="vport0"),

entry=new(dest=10.42.0.0, gw=129.237.127.242,

netmask=255.255.0.0, flag="P", dev="vport1")));

arptable = create(entry=new(ip=129.237.127.240, mac="00:E0:81:01:31:61"),

entry=new(ip=129.237.127.241, mac="00:E0:81:01:31:A8"),

entry=new(ip=129.237.127.242, mac="00:E0:81:01:BC:29"));

}

}
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Program 5.2 Netspec script using nssyscmd to setup queues on routers

cluster {

nssyscmd testbed40 {

cmd="/usr/bin/tc qdisc del dev veth2 root";

cmd="/users/amitk/expt/vnet-testing/data-plane/diffserv/mark-RT.sh";

}

nssyscmd testbed42 {

cmd="/usr/bin/tc qdisc del dev veth1 root";

cmd="/users/amitk/expt/vnet-testing/data-plane/diffserv/mark-test.sh";

}

nssyscmd testbed43 {

cmd="/usr/bin/tc qdisc del dev r1p4 root";

cmd="/users/amitk/expt/vnet-testing/data-plane/diffserv/diff-core-r1p4.sh";

}

nssyscmd testbed44 {

cmd="/usr/bin/tc qdisc del dev r2p2 root";

cmd="/users/amitk/expt/vnet-testing/data-plane/diffserv/diff-core-r2p2.sh";

}

nssyscmd testbed45 {

cmd="/usr/bin/tc qdisc del dev r3p2 root";

cmd="/users/amitk/expt/vnet-testing/data-plane/diffserv/diff-core-r3p2.sh";

}

}
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Chapter 6

Evaluation

The network architectures we are interested in emulating were developed for experi-

ments on physical machines as part of research on Hybrid QoS architectures[34, 42].

The research studied the management and complexity of Hybrid Intserv-Diffserv QoS

architectures and focused on control-plane complexity of these architecture i.e. number

of signaling messages, number of lines of configuration on routers, CPU and memory

usage in routers, etc. In emulating the Diffserv and Intserv architectures using virtual

network elements, we are merely concerned about the data-plane results since the con-

trol plane complexity remains the same in the emulated model. If we can verify that

the emulated network has the same data-plane characteristics (throughput, latency) as

the real network, we would have opened up a way to emulate larger networks without

the requirement of corresponding physical resources.

Before we started emulating Diffserv and Intserv networks using virtual network

elements (VNEs), we had to iron out all the wrinkles in setting up a simple no-frills

virtual IP network. Section 6.1 discusses some of the technical performance issues and

configuration issues encountered while setting up a simple virtual network. Section

6.2 and 6.4 discuss the experimental results of emulating Diffserv and Intserv network

respectively.
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6.1 Faithfully emulated virtual networks

The first task in trying to emulate any phenomenon is to confirm the verity of the emu-

lation. The emulation should be checked against the real phenomenon in behavior and

characteristics. Though minor difference in results can be attributed to experimental

error there has to be one-to-one correspondence between both sets of results.

When the task is to emulate networks, the following characteristics would be ex-

pected from(of?) the emulation:

1. All packets inserted into the network by a host should be accounted for in the

virtual network as they are in the physical network.

2. All conditions remaining the same, a packet traveling through a virtual network

should experience the same latencies as that experienced by a packet traveling

through a physical network.

3. The virtual network should use the same application logic as the physical network

it emulates; the semantics of the applications should not change, otherwise the

emulated network might behave differently.

4. The results from a virtual network experiment must be reproducible when the

same parameters are re-applied to the emulation.

Although these rules might seem self-evident, they need to be vigorously applied to

test any emulation framework to prove its veracity. We now discuss our efforts to test

our emulation framework for conformity to these rules. We also discuss few of the issues

we encountered along the way and solutions for them.

6.1.1 Test network topology

To test our emulation framework we need a network topology that is not trivial, emulates

a realistic network, is complex enough to stress all parts of the system code but not too

complex to debug for performance issues. Figure 6.1 shows the network topology we

used for our evaluation of our emulation framework based on virtual network software.
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Figure 6.1: Network Topology to test Emulation Framework

It shows subnets A and B connected to router R1 and subnet C connected to router

R3. R1 and R2 are connected through R3.

The network topology depicted in Figure 6.1 can stress test the following parts of

the vnet software:

Multiple subnets on a physical host: The vnet software can emulate multiple IP

subnets on a single physical host. In this case, virtual hosts of subnets A and B

will be emulated on a single host.

Multiple routers on a physical host: Like virtual hosts, virtual routers can be em-

ulated on a single physical host. In this case, virtual routers R1 and R3 are

candidates for emulation on a single host. See Section 3.6 (Page 24 for an expla-

nation on why (R1, R2) or (R2, R3) cannot be emulated on the same physical

host.

Subnet splitting: The vnet software also allows the user to split up a single IP subnet

to emulate parts of it on different physical machines. This feature is convenient in

situations where there are many hosts to be emulated in the subnet and utilizing

multiple CPUs would speed up the experiment.

Host-to-router communication: The proposed network topology will test host-to-
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router and router-to-host communication and well as allows us to see results of

multiple virtual hosts sending packets to a single router.

Router-to-router communication: Since R1 can communicate with R3 only through

R2, it allows us to test the forwarding code of the virtual routers.

Our experiments involved sending traffic from subnets A and B to subnet C and

vice versa. The next section discusses some of the virtual network topologies that can

emulate the network topology shown in Figure 6.1.

6.1.2 Virtual network topologies

The vnet code offers a lot of flexibility to the user in designing the topology of the

virtual network that emulates the real one. Hence, a real network can be emulated in

more than one ways, depending on various factors such as number of nodes and routers

to emulate, patterns in the real network, CPU usage by emulated hosts and applications,

etc.

Figure 6.2 shows the physical emulation testbed used to conduct the experiments.

The ITTC network denotes the student workstations from where the experiments on

testbeds (TB) are controlled. TB40, TB41, TB42 and TB46 are used as traffic sources

and sinks while TB43, TB44, TB45 are used for emulating routers. All the testbeds

used are 1GHZ Intel PIII machines with at least 256Mb RAM. The eth0 interfaces of

all machines are used only for connectivity to the ITTC network. The experimental

traffic flows on the eth1 and eth2 interfaces of the machines. Hence, the traffic flowing

inside the emulation testbed does not affect the ITTC network and vice versa i.e. the

emulation testbed is isolated from external traffic. The eth1 interfaces of the sources

and sinks (TB40, TB41, TB42 and TB46) are connected to a 100Mbps Ethernet switch.

TB43, TB44 and TB45 are connected to a separate switch. TB43 and TB45 are the border

routers which connects to both the edge network on eth1 as well as the core network

on eth2. TB44 is a core router. Traffic enters and leaves the sources and sinks on their

eth1 interfaces. This traffic then enters TB43 on it’s eth1 interface and then continues

onto TB44 before leaving TB45 on it’s eth1 interface. This model ensures that the traffic

on the core network is isolated from the edge network.
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Figure 6.3: Various virtual network topologies
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Figure 6.3 shows three different virtual network topologies to emulate the test net-

work shown in Figure 6.1. Figure 6.3(a) shows an emulated virtual network that is a

one-to-one mapping to the physical network in that subnets A, B and C are emulated

on separate physical boxes and so are the routers R1, R2 and R3. A point to be noted

though is that there is some amount of virtualization since each subnet, which can con-

tain many hosts, is being emulated on a single physical machine using virtual hosts.

Figure 6.3(b) shows a more aggressively virtualized network, in that subnet A and B

are simulated on the same physical machine and so are routers R1 and R3. Note that

we cannot send traffic from subnet A to B in this case since the source and destinations

hosts are on the same physical machine as mentioned in Section 3.6 (Page 24). Fig-

ure 6.3(c) shows a virtualized network in which the emulation of subnets B and C are

split up and emulated on two physical machines. If necessary, they could be split up

into smaller subnets to be emulated on more machines. These different virtual network

topologies allow the users to choose the best topology to suit the physical network to

be emulated. There are pros and cons in selecting each topology as shown in Table 6.1.

Typically, if possible, one should start virtualizing a network by virtualizing a subset of

the network with a one-to-one mapping. Once all the problems have been ironed out,

one can move to a many-to-one or split-subnet topology.

VNET Topology Pros Cons

One-to-one Simple to visualize, maintain and
configure

Requires more machines

Easier to debug for potential
problems due to virtualization

Many-to-one Requires fewer machines More difficult to setup correctly;
complex subnet mapping

More difficult to observe obscure
problems

Split-subnet Allows load balancing by utiliza-
tion of multiple CPUs

More difficult to setup correctly;
complex subnet mapping

Table 6.1: Pros and Cons of various virtual network topologies

The next section discusses the results of performing experiments using virtual net-

work elements and some of the difficulties encountered along the way.
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6.1.3 Evaluation and Results

We performed extensive testing on the three virtual network topologies depicted in

Figure 6.3 to study the effectiveness of network emulation using our virtual network

element framework. We were interested in understanding the difficulties in setting up

virtual networks, performance characteristics of these networks and any unexpected be-

havior resulting from virtualization. For our experiments we ensured that each physical

machine (testbed) was running a Network Time Protocol (NTP) daemon so that all the

machines were fairly∗ synchronized.

The traffic on the virtual network was generated through the Netspec nstestd

daemon. Initially, the traffic was uni-directional, flowing from subnet A and B to subnet

C and care was taken to ensure that the aggregate traffic sent from subnet A and B did

not exceed 100Mbps†. The virtual network was configured using the nsvethd daemon

and scripts similar to that shown in Program 5.1. Each of the subnets had variable

number of virtual hosts in them (2-10). The aggregate traffic flowing through the

virtual network was varied from 10Mbps to 100Mbps with each virtual host generating

different amounts of traffic.

As we cranked up the data-rates, we noticed that we did not receive the expected

throughput when packets were sent through the virtual devices. When the same data-

rates were send on a physical network, we received the expected throughput. This

led to a belief that the virtual network elements were somehow dropping packets. After

spending an extensive amount of time trying to debug the vnet code, it was determined

that the NetGear switch was acting as a hub and broadcasting the traffic to all ports.

More investigation showed that the reason for this was the inability of the switch to

determine the MAC addresses of the machines connected to it because of a lack of ARP

packets on the network. Apparently, the switch learns the MAC address of the hosts

connected to it’s ports by reading the ARP request and reply packets. In the case of the

virtual network, all the MAC addresses are available to the virtual network elements

through configuration. Therefore, the machines do not send out ARP requests. We fixed

∗NTP can be accurate to within a few milliseconds
†Virtual network traffic is multiplexed over 100Mbps physical interfaces.
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the problem by running a small script on each testbed that sends out ARP requests to

each testbed participating in the experiment. This ensured that the switch recognized

which ports those machines were connected to before the start of the experiment.

Once the ARP problem was solved, the virtual network behaved as expected and

we received the expected throughput over the virtual network. We found no packet

losses and the effective end-to-end latency was almost the same as that observed over

the physical network. With the successful testing of a simple case of network emulation

using virtual network elements, we turned our attention to emulating QoS networks.

6.2 Emulation of 9-element Diffserv network

The Diffserv network architecture we are interested in emulating was developed for

experiments on physical machines as part of research on Hybrid QoS architectures[34,

42]. The research focused on control-plane complexity of this architecture while in

emulation we are merely concerned about the data-plane results. Our goal is to verify

that the emulated network has the same data-plane characteristics for the real-time

behavior aggregates (BA) passing through the Diffserv core network.

Emulation of a Differv network over a virtual network requires minor changes to

the traffic control code inside the kernel and tc utility in user-space as discussed in

Section 5.1.3 and Section 5.1.2 respectively. These changes allow the Linux traffic

control framework to recognize packets of the virtual network.

6.2.1 Architecture of Physical 9-element Diffserv network

Traffic type Source Sink DSCP

Best effort TB11 TB17 0x00

Real time TB40 TB41 0x38

Test TB42 TB46 0x28

Table 6.2: Traffic generated in Physical Diffserv network

The Diffserv network architecture used for physical testing in [34, 42] is shown in

Figure 6.4. It consists of nine network elements: 6 hosts and 3 routers. TB43, TB44
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Figure 6.4: Physical Network Architecture for 9-element Diffserv network test

and TB45 form the Diffserv core routers. The others machines are used to generate

background best-effort(BE) load, background real-time(RT) load and the test load as

shown in Table 6.2. The background BE and RT flows are used to simulate network

traffic that is competing with the test traffic for link bandwidth in the Diffserv core.

Also, the outgoing links on all core routers are capped at 10Mbps using a HTB class:

6Mbps for RT and 4 Mbps for BE traffic. This ensures that when an aggregate traffic

greater than 10Mbps enters the Diffserv core network, it gets congested causing loss or

re-prioritizing of packets.

The test load is fixed at 4Mbps (Program B.5 in Appendix B) while the BE and RT

loads are each varied from 0-10Mbps as shown in Programs B.3 and B.4 and Tables B.3

and B.4. Since test traffic is fixed at 4Mbps, that leaves about 2Mbps of background

RT traffic to go through without causing congestion in the RT queues of the routers.

Background RT traffic greater than that causes congestion in the RT queues.

The test and background RT traffic streams are marked with a Diffserv code point

(DSCP) at their sources (Programs B.10 and B.9) depending on whether they are in-

profile (DSCP=0x28) or out-of-profile (DSCP=0x38) at a given instant as shown in
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Figure 4.7. This DSCP marking is achieved by initially characterizing the test and

background RT traffic using token bucket parameters and the result is then passed to

the filter in the tc scripts. The traffic characterization parameters are shown in Table

6.3.

Traffic type Rate Burst
(bytes/s) (bytes)

Background RT 202355 1514

Test 542078 1514

Table 6.3: Traffic characterization - Token bucket parameters (Physical)

The Diffserv core routers are configured (Program B.13)with a queue structure sim-

ilar to the one shown in Figure 4.8, so that the RT and BE traffic are serviced by

different classes thus isolating them. The steps involved in automated testing of a

Diffserv network are as follows:

1. Setup routes so that,

• TB43 is the next-hop gateway for TB11, TB40 and TB42,

• TB45 is the next-hop gateway for TB17, TB41 and TB46,

• TB44 is next-hop gateway for TB43 and TB45.

2. Configure Linux traffic control to mark packets on TB40 and TB42 and apply

Diffserv PHBs on core routers TB43, TB44 and TB45.

3. Setup tcpdump to capture transmitted packets on TB42 and received packets on

TB46.

4. Start the background BE and RT traffic sources and let them fill up the queues

in the network.

5. Start the test traffic source and measure the throughput received by the test traffic.

6. Post-process the tcpdump traces to find the end-to-end delay encountered by the

packets of the test flow through the Diffserv network.
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BG-RT BG-BE Thruput Mean Delay Max Min Variance Std. Dev
(Mbps) (Mbps) (Mbps) (µs) (µs) (µs)

0 4 3.9910 0.00123 0.00354 0.00114 5.96e-08 0.00024
6 3.9907 0.00126 0.00398 0.00115 6.78e-08 0.00026
8 3.9910 0.00131 0.00422 0.00119 7.79e-08 0.00028
10 3.9907 0.00134 0.00404 0.00122 8.14e-08 0.00029

1.5 4 3.9907 0.00130 0.00340 0.00123 4.19e-08 0.00020
6 3.9910 0.00145 0.00406 0.00134 6.67e-08 0.00026
8 3.9907 0.00152 0.00399 0.00143 5.58e-08 0.00024
10 3.9910 0.00160 0.00412 0.00149 7.06e-08 0.00027

4 4 3.4750 0.01550 0.05133 0.00100 5.64e-05 0.00749
6 3.4385 0.01554 0.05234 0.00100 6.62e-05 0.00807
8 3.4967 0.01380 0.03638 0.00102 4.73e-05 0.00688
10 3.4490 0.01525 0.06454 0.00109 8.38e-05 0.00914

6 4 3.4607 0.01399 0.03849 0.00119 4.01e-05 0.00633
6 3.4577 0.01395 0.03870 0.00114 3.97e-05 0.00630
8 3.4750 0.01388 0.03815 0.00108 3.95e-05 0.00628
10 3.4797 0.01369 0.03820 0.00103 3.95e-05 0.00628

8 4 3.5490 0.01381 0.03141 0.00099 3.58e-05 0.00598
6 3.5430 0.01588 0.03715 0.00105 4.44e-05 0.00661
8 3.5473 0.01384 0.03122 0.00106 3.53e-05 0.00595
10 3.5483 0.01386 0.03082 0.00105 3.51e-05 0.00593

10 4 3.5107 0.01384 0.03142 0.00104 3.37e-05 0.00581
6 3.5123 0.01801 0.03460 0.00411 3.32e-05 0.00576
8 3.5153 0.01386 0.03218 0.00110 3.39e-05 0.00582
10 3.5163 0.01389 0.03230 0.00110 3.37e-05 0.00580

Table 6.4: Results - 9-element Physical Diffserv network test
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6.2.2 Conclusions from 9-element Physical Diffserv network testing

Table 6.4 shows the throughput and delay results obtained for a test flow of 4Mbps

that was sent through the Diffserv network in the presence of varying background BE

and RT traffic. Each row is a mean of the results of 3 iterations with the same traffic

parameters. The graphs for throughput received by test flow for varying background BE

and RT traffic are shown in Figures 6.5(a) and 6.5(c). The graphs for delay experienced

by packets of the test flow for varying background BE and RT traffic is shown in

Figure 6.6(a). The two throughput graphs show that for background RT traffic under

2Mbps, the test flow receives the expected 4Mbps throughput. As the background

RT traffic increases to 10Mbps, thereby overloading the RT class inside the Diffserv

core routers, some packets are reclassified with a higher drop precedence and some are

dropped. As a result, the test flow receives reduced throughput(3.4-3.6Mbps). It has

been experimentally seen that the Diffserv router provides the test flow a much better

quality of service than a best-effort router[34, 42]. A point to be noted is that the

background BE traffic does not affect the test traffic since it is serviced by a different

queue. In the next section, we consider the results from the emulated Diffserv network

and compare both the results.

6.2.3 Architecture of 9-element Virtual Diffserv network

Traffic type Source Sink DSCP

Best effort TB40-veth1 TB41-veth1 0x00

Real time TB40-veth2 TB41-veth2 0x38

Test TB42 TB46 0x28

Table 6.5: Traffic generated in Virtual Diffserv network

The Diffserv network architecture used for virtual network emulation is based on

Figure 6.4 and is shown in Figure 6.7. This is a minimally virtualized topology in which

the hosts generating the background traffic are emulated on a single pair of nodes instead

of two pairs. That leads to a saving of two nodes for the experiment. TB43, TB44 and

TB45 emulate one Diffserv core router each. The others machines are used to emulate
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hosts that generate background best-effort(BE) load, background real-time(RT) load

and the test load as shown in Table 6.5.

The traffic load is the same as in the physical testing i.e. the test load is fixed at

4Mbps (Program B.8 in Appendix B) while the BE and RT loads are each varied from

0-10Mbps as shown in Programs B.6 and B.7 and Tables B.3 and B.5.

The test and background RT traffic streams are marked with a Diffserv code point

(DSCP) at their sources (Programs B.12 and B.11) depending on whether they are in-

profile (DSCP=0x28) or out-of-profile (DSCP=0x38) at a given instant. This DSCP

marking is achieved due to traffic characterization using token bucket parameters which

is then passed to the filter in the tc scripts. The traffic characterization parameters

which are different from those in physical experiment are shown in Table 6.6.

Traffic type Rate Burst
(bytes/s) (bytes)

Background RT 205817 1514

Test 548161 1514

Table 6.6: Traffic characterization - Token bucket parameters (Virtual)

The emulated Diffserv core routers are configured (Program B.14)with a queue struc-

ture similar to the one shown in Figure 4.8, so that the RT and BE traffic are serviced

by different classes thus isolating them. The steps involved in automated testing of a

Diffserv network are as follows:

1. Setup virtual network so that,

• TB43 has a virtual router with four ports: three for background BE, RT and

test traffic source networks and one to exchange traffic with the virtual router

on TB44,

• TB45 has a virtual router with four ports: three for background BE, RT and

test traffic destination networks and one to exchange traffic with the virtual

router on TB44,

• TB44 has a two-port virtual router, one exchanging traffic with the virtual
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router on TB43 and the other with the virtual router on TB45.

2. Configure Linux traffic control on the correct virtual interfaces to mark packets on

TB40-veth2 and TB42-veth1 and apply Diffserv PHBs on core routers TB43-r1p4,

TB44-r2p2 and TB45-r3p4.

3. Setup tcpdump to capture transmitted packets on TB42-veth1 and received pack-

ets on TB46-veth1.

4. Run a script on each machine to send MAC requests for each of the other machines

in the experiment to avoid problems with the switch as discussed in Section 6.1.3.

5. Start the background BE and RT traffic sources and let them fill up the queues

attached to the virtual interfaces in the network.

6. Start the test traffic source and measure the throughput received by the test traffic.

7. Post-process the tcpdump traces to find the end-to-end delay encountered by the

packets of the test flow through the Diffserv network.

6.2.4 Conclusions from 9-element Virtual Diffserv network test

Table 6.7 shows the throughput and delay results obtained for a test flow of 4Mbps that

was sent through the emulated Diffserv network on top of virtual network elements in

the presence of varying background BE and RT traffic. The graphs for throughput re-

ceived by test flow for varying background BE and RT traffic are shown in Figures 6.5(b)

and 6.5(d). The graph for delay experienced by packets of the test flow for varying back-

ground BE and RT traffic is shown in Figure 6.6(b). The two throughput graphs show

that for background RT traffic under 2Mbps, the test flow receives the expected 4Mbps

throughput. As the background RT traffic increases to 10Mbps, thereby overloading

the RT class inside the emulated Diffserv core routers, some packets are re-classifed and

eventually dropped. Thus the test flow receives only 3.4-3.6Mbps throughput.
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BG-RT BG-BE Thruput Mean Delay Max Min Variance Std. Dev
(Mbps) (Mbps) (Mbps) (s) (s) (s)

0 4 3.9900 0.00219 0.00490 0.00197 2.29e-07 0.00047
6 3.9900 0.00191 0.00481 0.00173 1.82e-07 0.00043
8 3.9887 0.00187 0.00405 0.00168 1.77e-07 0.00042
10 3.9900 0.00183 0.00534 0.00151 3.87e-07 0.00061

1.5 4 3.9897 0.00149 0.00337 0.00136 1.14e-07 0.00034
6 3.9900 0.00151 0.00447 0.00132 1.95e-07 0.00044
8 3.9887 0.00147 0.00381 0.00131 1.45e-07 0.00038
10 3.9900 0.00151 0.00402 0.00131 1.94e-07 0.00044

4 4 3.4763 0.01515 0.03749 0.00133 4.49e-05 0.00670
6 3.4460 0.01698 0.04977 0.00135 6.04e-05 0.00775
8 3.4567 0.01579 0.04825 0.00134 5.75e-05 0.00753
10 3.4673 0.01530 0.04078 0.00132 4.79e-05 0.00691

6 4 3.4440 0.01543 0.03887 0.00132 3.31e-05 0.00575
6 3.4343 0.01528 0.05157 0.00128 4.70e-05 0.00678
8 3.4553 0.01514 0.04308 0.00123 3.72e-05 0.00610
10 3.4477 0.01697 0.04001 0.00119 4.18e-05 0.00644

8 4 3.5207 0.01507 0.04165 0.00118 4.14e-05 0.00638
6 3.5423 0.01487 0.03451 0.00121 3.52e-05 0.00593
8 3.5180 0.01503 0.03368 0.00128 3.40e-05 0.00583
10 3.5237 0.01729 0.03859 0.00317 3.88e-05 0.00618

10 4 3.4657 0.01636 0.04663 0.00150 4.52e-05 0.00666
6 3.4883 0.01506 0.03233 0.00168 3.02e-05 0.00550
8 3.4670 0.01620 0.04143 0.00201 4.20e-05 0.00635
10 3.4773 0.01503 0.03249 0.00180 3.07e-05 0.00554

Table 6.7: Results - 9-element Virtual Diffserv network test
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6.2.5 Comparison of physical and virtual 9-element Diffserv results

The physical experiment and the virtual experiment show similar throughput and delay

results for the test flow through a Diffserv network. The throughput results in both

cases are between 3.4 and 3.6Mbps for background RT traffic over 2Mbps. Similarly, the

delay results are between 1.4 and 1.8ms when background RT traffic exceeds 2Mbps. It

should be pointed out, that in the virtual experiment, all the rate limiting and scheduling

algorithms act on the virtual host interface or the virtual router ports. Thus the Linux

Traffic control can be effectively used in network emulation experiments using virtual

network elements. This similarity in results substantiates our efforts to create a faithful

network emulation platform using virtual network elements.

6.3 Emulation of 17-element Diffserv network

Now that we confirmed the efficacy of using virtual network elements to emulate IP

networks (a 9-element Diffserv network example in the previous section), we would like

to use this powerful concept to emulate larger networks, the biggest advantage of VNE.

Our goal is to emulate a 17-element Diffserv network as shown in Figure 6.8. The figure

shows four autonomous networks NW1, NW2, NW3 and NW4 communicating through the

Diffserv core network. NW1 sends traffic to NW2 and NW3 sends traffic to NW4. Both pairs

of networks negotiate a SLA with the Diffserv core network provider under which other

traffic inside the core should not affect metered traffic from their networks. In the event

of any pair of networks overloading their negotiated SLA, the Diffserv provider is free

to mark the overload with high drop probability and drop it too. Each pair of networks

is similar to the example seen in the previous section (Figure 6.4), in that they have

background BE and RT traffic streams and a test traffic stream. The background RT

and test traffic streams are marked with DSCP values as shown in Table 6.8. Thus,

at the Diffserv border router on TB43, the traffic for the two networks is segregated

based on its DSCP and each of the networks’ packets follow different paths through the

Diffserv core.

97



Test src−1

RT src−1

BE src−1

Test src−2

BE src−2

RT src−2

BE sink−1

Test sink−1

RT sink−1

BE sink−2

Test sink−2

RT sink−2

eth1

eth2

Stream 1−2
Stream 3−4

Diffserv core

NW1 NW2

NW4NW3

R1

R2 R3

R4 R5
TB43

TB42

TB40

TB11

TB1

TB2

TB3

TB17

TB46

TB41

TB6

TB7

TB8

TB44 TB45

TB4 TB5

Figure 6.8: Physical Network Architecture for 17-element Diffserv network test

Traffic type Belonging to DSCP

In-profile NW1-2 0x28

Out-of-profile NW1-2 0x38

In-profile NW3-4 0x48

Out-of-profile NW3-4 0x58

Table 6.8: DSCP values assigned to traffic in 17-element Diffserv network
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6.3.1 Architecture of 17-element Virtual Diffserv network
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Figure 6.9: Virtual Network Architecture for 17-element Diffserv network test

We emulated the 17-element physical Diffserv network with a virtual network on 7

physical machines, the configuration of which is shown in Figure 6.9. As seen in the

figure, the four background traffic sources are emulated on a single physical machine

TB40, while the four sinks are emulated on TB41. Similarly TB44 and TB45 are configured

with two emulated routers, one belonging to each of the paths taken by packets through

the Diffserv network. TB43 carries the maximum load since all the packets from both NW1

and NW3 flow through it. Depending on the overall load and the load of the individual

networks, it might drop some traffic and forward the remaining traffic to the respective

routers emulated on TB44.

Each of the two source networks generates a 4Mbps test traffic stream. The back-

ground RT traffic is varied from zero to 6Mbps and the background BE traffic is varied

from zero to 4Mbps in each of the networks. We configured the Diffserv border router

emulated on TB43 to have an outgoing link bandwidth of 16Mbps: 12Mbps reserved for

RT traffic and 4Mbps reserved for BE traffic. This should allow both the test flows

(8Mbps) to pass through unaffected along with a total of 4Mbps background RT traffic

without any packet losses. Similarly a total of 4Mbps background BE traffic will pass

through unaffected. The emulated Diffserv routers R1-R5 are configured similar to the
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9-element Diffserv network described in the previous section except for the DSCP which

is different for the two networks as shown in Table 6.8.

The results of the experiments are shown in Table 6.9. Each result is a mean of 3

iterations of the experiment. For purposes of tabulation, NW1-2 is denoted by E2E NW

1 and NW3-4 is denoted by E2E NW 2. Results 1-6 use the same background RT and

BE traffic in both the networks, so the test traffic stream in both networks is impacted

similarly. Results 7-8 show an instance of a badly behaved neighbor, in this case E2E

NW 2, that sends more traffic than specified in the SLA.

Sr. E2E BG-RT BG-BE Thruput Mean Delay Max Min
NW (Mbps) (Mbps) (Mbps) (s) (s) (s)

1 1 0 2 3.9901 0.00153 0.00400 0.00136
2 0 2 3.9901 0.00151 0.00401 0.00136

2 1 0 4 3.9904 0.00156 0.00340 0.00140
2 0 4 3.9901 0.00158 0.00358 0.00140

3 1 1.5 2 3.9901 0.00164 0.00506 0.00129
2 1.5 2 3.9901 0.00170 0.00514 0.00129

4 1 1.5 4 3.9900 0.00219 0.00488 0.00183
2 1.5 4 3.9897 0.00225 0.00495 0.00183

5 1 4 4 3.4735 0.01519 0.03756 0.00173
2 4 4 3.4648 0.01686 0.04584 0.00173

6 1 6 6 3.4752 0.01505 0.03879 0.00163
2 6 6 3.4551 0.01602 0.03991 0.00158

7 1 1.5 2 3.9901 0.00226 0.00639 0.00186
2 4 4 3.4799 0.01558 0.03887 0.00186

8 1 1.5 4 3.9901 0.00215 0.00571 0.00181
2 6 6 3.4591 0.01529 0.04077 0.00187

Table 6.9: Results - 17-element Virtual Diffserv network test

6.3.2 Conclusions from 17-element Virtual Diffserv network test

Table 6.9 shows the throughput and delay results obtained for the two test flows of

4Mbps flowing through each E2E Diffserv network. Results 1-6 show that as the back-

ground BE and RT traffic in each network is increased, the test flow gets impacted

similarly in both networks as expected. Results 1-4 shows that when the total real-

100



time traffic is below 12Mbps (Σ test-1, test-2, BG-RT-1, BG-RT-2), the test flow passes

through unaffected (3.99Mbps throughput). Even overloading the background BE class

in results 2 and 4 does not impact the RT traffic.

Results 5 and 6 show both E2E networks overloading their BE and RT traffic classes.

This causes the Diffserv routers to drop packets from both classes. Even under such

a overloaded network, the test flows receive QoS similar to results obtained in the 9-

element Diffserv test (∼ 3.5Mbps).

Results 7 and 8 bring out a as-of-yet untested property of Diffserv. When multiple

customers share a Diffserv core network, a bad neighbor - a customer transmitting more

traffic from his network than the negotiated SLA should not affect the good citizens of

the network. In our case, E2E NW 2 overloads the RT and BE traffic classes, while E2E

NW 1 transmits only its share of traffic. As seen from the results, the test flow from

NW 1 passes through unaffected, while the background RT flow from NW 2 undergoes

traffic conditioning at border Diffserv router on TB43. Even then the test flow from NW

2 receives QoS from the Diffserv core network (∼ 3.5Mbps).

Figure 6.10 shows the graphs for the throughput results 1-6 obtained for the 17-

element Diffserv network. Figures 6.10 and 6.10(b) show the throughput results plotted

against different scales on the Z-axis for different BG-RT and BG-BE traffic. Figures

6.10(c) and 6.10(d) show the same results plotted in a 3D perspective to clarify the

results further. As the RT class gets overloaded when background RT traffic on both

networks exceeds 2Mbps, we see a small drop in throughput received by the test flows

in both networks due to the dropping of packets. However, as seen before in the 9-

element Diffserv network, the test flow in the Diffserv network receives a better QoS

than it would have in a best-effort IP network. This is seen by the leveling off of the

throughput results plane in Figure 6.10(d) after the drop.

In this experiment, we correctly emulated a 17-element Diffserv network on just 7

physical machines. This reaffirms our assertion that virtualization of network elements

is not difficult and can be used to perform larger experiments that yield correct results

without a corresponding increasing in the required hardware.
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Diffserv(17 elements): Test flow throughput(4 Mbps) vs. Best-effort background load 
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(b) Diffserv Throughput Zoomed

Diffserv (17 elements): Test flow throughput(4 Mbps) vs. Real-time background load 
for varying Best-effort background load
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(c) Diffserv Throughput - 3D

Diffserv (17 elements): Test flow throughput(4 Mbps) vs. Real-time background load 
for varying Best-effort background load
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Figure 6.10: Throughput in 17-element Diffserv network
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6.4 Emulation of Intserv network

The Intserv network architecture we emulate is very similar to the 17-element Diffserv

network that we tested in the previous section. The only difference is that a RSVP

daemon is configured on each network element to carry messages for a priori signaling

and resource reservation before sending the data traffic. Hence each (virtual) host

and (virtual) router in the emulated network is associated with a RSVP daemon. In

cases where multiple virtual elements are being emulated on the same physical machine,

there exist multiple RSVP daemons, each associated with one of the network elements.

Although the physical testing in the research focused on control-plane complexity of this

architecture, in emulation we are merely concerned about the data-plane results. Our

goal is to verify that the multiple RSVP daemons are faithful to the Intserv standard

and that the emulated Intserv network has the same data-plane characteristics for the

real-time traffic passing through Intserv-capable routers as the physical Intserv network.

Emulation of an Intserv network over a virtual network requires major changes to

the RSVP daemon as discussed in Section 5.1.4. These changes allow multiple instances

of the RSVP daemon to execute on a single physical machine by being bound to the

multiple virtual routers and hosts being emulated on the machine. However, RSVP has

built-in code which uses the CBQ queuing discipline and class in Linux to schedule the

real-time controlled load flows. As mentioned before, CBQ does not produce accurate

data-plane results and was replaced in our Diffserv tests with HTB which does a better

job of accurate packet scheduling. Modification of the RSVP daemon to use HTB is a

significantly large project which was beyond the scope of the current work. Our goal was

to show the efficacy and ease of our approach in virtualization of IP networks. Hence

we will just describe the configuration of a virtual Intserv network without looking at

the results of these experiments.

The emulated Intserv network looks exactly the same as in Figure 6.9, except that

the Diffserv queuing disciplines are replaced by RSVP daemons for each virtual element;

thus we have 17 instances of RSVP daemons in the virtual network. The following are

the sequence of steps to configure a virtual Intserv network with RSVP signaling:

103



Program 6.1 RSVP commands

Host:

-----

rsvpd -D -i veth1 -a 11000 -e 11001 -p 11002 -S 11003 -L 11004

Router:

-------

rsvpd -U -D -i vrouter1 -a 11000 -e 11001 -p 11002 -S 11003 -L 11004

Identification of interfaces:

-----------------------------

22:42:29.039 Physical, Virtual, and API interfaces are:

22:42:29.040 0 vnet 10.0.0.1/8 NoIS

22:42:29.040 1 vrouter3 10.254.3.254/8 NoIS

22:42:29.040 2 r3p1 10.20.0.254/8 NoIS

22:42:29.040 3 r3p2 10.2.0.254/8 NoIS

22:42:29.040 4 r3p3 10.40.0.254/8 NoIS

22:42:29.040 5 r3p4 10.101.1.254/8 NoIS

22:42:29.040 6 API 0.0.0.0/0 NoIS

PATH command:

-------------

dest udp 10.2.1.1/4444

sender 10.1.1.1/4444 [t 30000 300 30000 64 1500]

Actual path message sent:

-------------------------

Register sender: 10.1.1.1/4444 T=[30K(300) 30KB/s 64 1.5K]

path_set_laddr: Enter

00:11:36.311| Rcv API PATH 10.2.1.1/4444[17] <API ttl=/63

PATH: Sess: 10.1.1.1/4444[17] R: 30000 PHOP: <0.0.0.0 LIH=1>

10.1.1.1/4444 T=[30K(300) 30KB/s 64 1.5K]

Adspec( 0 hop InfBW 0us 65535B, G={br!}, CL={br!})

PATH message received by router R1:

-----------------------------------

00:27:10.384| Rcv Raw PATH 10.2.1.1/4444[17] r1p2<=3 < 10.1.1.1/64

PATH: Sess: 10.2.1.1/4444[17] R: 30000 PHOP: <10.1.1.1 LIH=1>

10.1.1.1/4444 T=[30K(300) 30KB/s 64 1.5K]

Adspec( 0 hop InfBW 0us 65535B, G={br!}, CL={br!})

RESV command:

-------------

reserve ff 10.1.1.1/4444 [cl 30000 300 30000 64 1500]
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1. Configure the 17-element virtual network as shown in Figure 6.9.

2. Setup an RSVP daemon attached to each virtual element in the network. The

command to setup RSVP on a virtual host is shown in Program listing 6.1. The

-U option tells the daemon that it is being configured on a router, hence the RSVP

seeks all the ports of the router to bind to, as shown in the Program 6.1. The

-D option puts the daemon in debug mode so that we can interactively enter the

signaling commands.

3. Send PATH messages from all the sources in the network an example of which

is shown in Program 6.1. The dest message establishes a new session and the

sender message sends the PATH message with the requested traffic parameters in

the square brackets. A flow is uniquely identified by its source and destination IP

address and port numbers and protocol. In the example shown, the flow is a UDP

flow from 10.1.1.1/4444 to 10.2.1.1/4444

4. The PATH message flows across the virtual network after being modified by each

router in its path. An example message received by virtual router R1 is shown

in the Program. In cases where there are two virtual routers on a single physical

machines, the message reaches both the RSVP daemons but is processed only by

the daemon which is attached to the network element whose IP address is in the

next-hop field of the packet.

5. Once the PATH message reaches its ultimate destination (10.2.1.1 in the above

example), we send a RESV message confirming the reservation parameters to all

the intermediate network elements as shown in the Program 6.1.

6. This sequence of steps is carried out for each traffic source and sink pair till all

the reservations are established. All the reservation classes can be seen using the

tc utility.

7. Once all the reservations are established, the traffic is sent through the network

and the received throughput is measured.
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We successfully configured an Intserv network that created reservations for the real-

time traffic. But since RSVP uses the CBQ queuing discipline, the throughput results

were found to be inaccurate. This is no way implies a failure of the virtual network.

It merely implies limitations of the existing RSVP daemon software that shows these

inaccurate measurements even in a physical network.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The communications and networking industry is experiencing an explosion of new ideas

to bring better communication facilities to the end user. This ranges from end-to-end

ubiquitous IP networks to providing quality of service over these networks. Efforts are

underway to evaluate these technologies to learn about their scaling properties in com-

plex scenarios. Evaluating communication networks has been a difficult problem due to

our current inability to study networks of significant size and complexity without access

to the real networks. Most often, large and complex networks are production networks

which are not available for testing and experimentation. Currently, the only alternatives

available to researchers are to either simulate the networks using software (OPNET, ns2)

or study scaled down versions of these networks so that they can be setup or emulated

in their laboratories. Both approaches allow the researcher to get acquainted with a

new technology and are useful for rapid prototyping. Both approaches, however, have

their shortcomings; simulation ignores the control plane complexity of configuring a

real network and makes simplifying assumptions about the interactions between net-

work software in the simulations while scaled down networks are very often not able to

highlight the performance penalties on network software as the network is scaled.

The real problem is how to efficiently simulate large, complex networks without

requiring to buy expensive hardware and without resorting to simplifications in the
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software or scale of the target network. We have proposed a new form of emulation

which emulates the basic elements of the network, namely the host and the router. Our

approach aims to create a Scalable Emulation Framework to emulate IP networks using

virtualization.

Emulation through virtualization tries to improve on the inherent drawbacks of other

methods of evaluating networks; it tries to maintain real-world complexity and scale of

a network. By configuring virtual hosts and virtual routers of a set of physical ma-

chines, we understand the control plane complexity of networks, while putting multiple

virtual network elements on a single physical machine allows us to carry out large-scale

experiments without requiring the corresponding hardware. Futhermore, networks em-

ulated using virtual network elements use the real code that operating systems and

network use, without having to resort to abstractions that lead to skewing of the re-

sults. Hence, the results that we see are very close to those seen on real networks.

Most user-space applications should be able to use virtual network elements with minor

modifications. Complex user-space applications like RSVP that make routing decisions

in user-space only require to use the virtual routing table to route packets instead. Sim-

ilarly, kernel-space code simply requires the ability to recognize a new packet type for

virtual networks.

This work has demonstrated the ability of virtual network elements to emulate IP

networks faithfully, giving extremely similar, arguably identical results to those obtained

using conventional means. It has also shown examples of emulation of QoS networks

which use more software than conventional best-effort IP networks. We have successfully

adapted Diffserv and Intserv code in Linux to use virtual network elements with little or

moderate effort not exceeding a week’s worth of coding. It is worth mentioning that due

to the open source and modular nature of implementation it could be easily enhanced to

support more complex network features some of which are outlined in the next section.

7.2 Future Work

We realize the potential applications of virtual network elements in researching more

complex problems such as routing, congestion control, flow control, etc. Clearly, the
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current implementation does not handle them currently, but could be easily enhanced

to support these features. The following is a brief list of enhancements and optimiza-

tions that we have managed to come up with for newer applications of virtual network

elements.

Optimizations

• Optimize the packet flow path in the current implementation by removing the

redundant paths and merging paths which execute the same code.

• Study hashing mechanism inside the virtual routing code more closely for possible

optimization when using a larger pool of IP addresses.

• Optimize critical paths of execution by providing more efficient methods of de-

multiplexing virtual network traffic and optimizing the virtual router’s forwarding

code.

Enhancements

• Research the possibility of maintaining the virtual routing table for each virtual

host and virtual router on a physical machine as an independent forwarding infor-

mation base (FIB) inside the Linux kernel. Besides optimizing the vnet code due

to removal of virtual routing house-keeping code this will lead to easier adaptation

of existing network applications to use virtual network elements.

• Add support for dynamic virtual route updates through routing daemons such as

zebra. This would involve hacking the routing daemon to enable it to discover

virtual network topology and then install this information into the virtual routing

tables. This would enable emulation of more complex networks running dynamic

routing software.

• Hack the IP layer code to prevent short-circuit delivery of packets produced on an

interface and destined to another interface on the same machine. This enhance-

ment would allow tighter virtualization.
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• Currently even the vnet layer short-circuits the path of the packet, in that, if

the next hop (virtual router port) is on the same machine, the packet is directly

delivered to that virtual router. We can change this and allow the packet to go

out of the machine through the sending virtual interface and then come back as

a normal virtual network packet that is then sent to the receviving port of the

virtual router.

• Add ARP protocol support to virtual network elements so that they can request

and reply to ARPs from other virtual network elements. This would do away

the requirement of having to send out ARP messages for all physical machines

before the start of an experiment. Failing this, write a Netspec daemon to send

out ARP requests to all machine every few minutes during the duration of the

experiment. The switches remember the MAC addresses of attached machines for

about 4 minutes. Currently, if an experiment runs for more than 4 minutes, the

switch will start behaving as a hub suddenly unless we re-run the ARP script.

• Introduce the concept of a virtual link. This concept could be used to divide the

bandwidth of a physical interface among all the virtual network elements using

that interface to multiplex their traffic. This could be a configuration option when

creating a virtual network element or an explicit option without which the element

cannot use the physical interface.

• Create topology visualization and script generation tools. As the networks being

emulated get larger, writing scripts to configure these networks becomes cum-

bersome and error-prone. Thus front-end applications can be written that allow

users to specify a network topology graphically and then generates the required

configuration scripts.

• Add virtual network elements to the ProTEuS[28] framework. This in considered

briefly in the next section.
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7.3 Virtual Network Elements and ProTEuS

ProTEuS stands for Proportional Time Emulation and Simulation. It is a network

evaluation framework developed at The University of Kansas[28, 29] for simulation

of ATM networks using a concept of proportional time. In short, ProTEuS simulates

networks by modifying the time-line in the life of a running network. It uses virtual ATM

devices to emulate the ATM sources and sinks and virtual switches device to emulate

the ATM cell switch along with real-time extensions to Linux, KU Real Time (KURT),

which allows it finer-grained control over network events and simulation execution.

ProTEuS would allow us to simulate extremely complex networks in which events are

too closely spaced to be successfully emulated using simple virtual network elements.

It introduces another level of virtualization: virtual time. ProTEuS can modify the

time-scale to expand or reduce it to successfully simulate the network. The ProTEuS

framework has a heartbeat: the epoch. This is the most basic unit of time in a ProTEuS

simulation and can be modified by the user. An epoch of execution is the real time it

takes to simulate a virtual time interval.

Currently, the ProTEuS code makes assumptions of an ATM network layer and is

tightly coupled to the concepts of cell switching. It has been the desire of many to be

able to use ProTEuS to simulate IP networks. With ProTEuS, a researcher can simulate

a large network using virtual hosts, virtual routers and virtual links on a virtual time

scale. Currently virtual time is the missing piece in the solution to solve the problem

of emulating arbitrarily large and complex networks. As of this writing, there exists an

incomplete effort to port ProTEuS for use with virtual network elements using Ethernet

interfaces and an IP network layer.
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Appendix A

Important Linux functions

Program A.1 lists some of the important functions in the Linux protocol stack. All the

filenames are referenced relative to the top-level directory of the Linux kernel.
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Function name Task Source filename

netif rx Network top half: Receive a packet
from a device driver and queue it in
backlog queue for the upper pro-
tocol levels (interrupts disabled).

/net/core/dev.c

net bh Network bottom half: Process each
packet in the backlog queue, de-
termine its type (IP, ARP, etc.)
and hand it over to correct protocol
handler (interrupts enabled).

/net/core/dev.c

dev queue xmit Queues a packet on a interface’s
queue when it is ready to be trans-
mitted and calls the transmit func-
tion for the network device.

/net/core/dev.c

qdisc wakeup Wakes up a device queue when-
ever a packet is enqueued on
it (by dev queue xmit) and calls
qdisc restart.

include/net/pkt sched.h

qdisc restart Dequeues a packet from the queue
according to the characteristics of
the attached queuing discipline and
transmits it onto the wire.

net/sched/sch generic.c

device→hard header Called by the neighbor routines
to add a hardware header to the
packet after having determined
which interface the packet will go
out on.

include/linux/netdevice.h

Table A.1: Important functions in the Linux network stack

113



Appendix B

Patches and Scripts

This appendix lists all the scripts and code patches to run the experiments described

in Section 6. Listed in the following sections are the Netspec scripts used for traffic

generation, tc scripts to configure the Linux traffic control system, patches to tools to

get them to work with Linux and Linux kernel patches.

B.1 Patches

All the experiments were performed on 1GHZ Intel PIII machines with at least 256Mb

RAM. They are running the Linux kernel version 2.2.18 with various patches as listed

in Table B.1. This sections lists the patches applied to various tools or the kernel to

enable certain features or to improve performance.

Patch URL

Diffserv http://www.ssi.bg/∼ja/ds9/

HTB3 http://www.ssi.bg/∼ja/ds9/

KURT http://www.ittc.ku.edu/kurt/

Table B.1: Patches applied to Linux kernel
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Patch name Applied to Description Reference

iproute2 vnet

patch
iproute2 Enables tc to recognize vir-

tual network packets of type
ETH P KUVNET

Program B.1

Traffic control
UTIME patch

Linux kernel Allows Linux traffic control
to use real-time scheduling
through UTIME

Program B.2

Table B.2: Miscellaneous Patches

Program B.1 iproute VNET patch

diff -BburN clean-iproute2-2.2.4-now-ss991023/lib/ll\_proto.c \

iproute2-2.2.4-now-ss991023/lib/ll\_proto.c

--- clean-iproute2-2.2.4-now-ss991023/lib/ll\_proto.c Fri Apr 26 02:40:01 2002

+++ iproute2-2.2.4-now-ss991023/lib/ll\_proto.c Thu Apr 25 18:20:56 2002

@@ -67,6 +66,7 @@

\_\_PF(CONTROL,control)

\_\_PF(IRDA,irda)

+{ ETH\_P\_KUVNET, "vnet" },

{ 0x8001, "802.1Q" },

{ ETH\_P\_IP, "ipv4" },

};

Program B.2 Traffic control UTIME patch

--- pkt_sched.h.old Wed May 29 18:16:26 2002

+++ pkt_sched.h Wed May 29 18:16:37 2002

@@ -5,7 +5,7 @@

#define PSCHED_JIFFIES 2

#define PSCHED_CPU 3

-#define PSCHED_CLOCK_SOURCE PSCHED_JIFFIES

+#define PSCHED_CLOCK_SOURCE PSCHED_CPU

#include <linux/pkt_sched.h>

#include <net/pkt_cls.h>
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B.2 Scripts

This section lists the various scripts used to run the experiments described in Section 6.

These include the Netspec scripts used for traffic generation and tc scripts to configure

the Linux traffic control system. In the case of traffic generation using Netspec scripts,

traffic is generated using the formula:

datarate(bps) =
packetsize(bits)
period(seconds)

Data Rate Packet size
(Mbps) (bytes)

4 5243

6 7865

8 10486

10 13108

Table B.3: Packet sizes for background BE traffic (period = 10ms)

Data Rate Period
(Mbps) (µs)

1.5 7487

4 2808

6 1872

8 1404

10 1123

Table B.4: Period for background RT traffic (Packet size = 1472 bytes)

To generate background best-effort (BE) traffic, we keep the period constant at 10

milliseconds. Therefore, for generating various background BE data rates, the packet

size is varied as shown in Table B.3. The values of the packet size from the table are

used for the value of blocksize parameter (blocksize=X) in all Background BE scripts.

To generate background real-time (RT) traffic, we keep the packet size constant at

1472 bytes (for physical network testing) or 1456 bytes (for virtual network testing).

Therefore, for generating various background RT data rates, the period is varied as

116



Data Rate Period
(Mbps) (µs)

1.5 7405

4 2777

6 1851

8 1389

10 1111

Table B.5: Period for background RT traffic (Packet size = 1456 bytes)

shown in Tables B.4(physical network) and B.5(virtual network). The values of the

period from the table are used for the value of period parameter (period=Y) in the

Background RT scripts.

Program B.3 Netspec script for generating Background BE traffic - Physical Network

cluster {

test testbed11 {

type = burst(blocksize=X,period=10000, duration=30);

protocol = udp;

own = testbed11:9009;

peer = testbed17:9009;

}

test testbed17 {

type = sink (blocksize=X, duration=30);

protocol = udp;

own = testbed17:9009;

peer = testbed11:9009;

}

}
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Program B.4 Netspec script for generating Background RT traffic - Physical Network

cluster {

test testbed40 {

type = burst(blocksize=1472,period=Y, duration=30);

protocol = udp;

own = 192.168.10.10:6610;

peer = 192.168.10.11:6610;

}

test testbed41 {

type = sink (blocksize=1472, duration=30);

protocol = udp;

own = 192.168.10.11:6610;

peer = 192.168.10.10:6610;

}

}

Program B.5 Netspec script for generating Test traffic - Physical Network

cluster {

test testbed42 {

type = burst(blocksize=1472,period=2807,duration=10);

protocol = udp ;

own = 192.168.10.1:9001;

peer = 192.168.10.4:9001;

}

test testbed46 {

type = sink (blocksize=1472, duration=10);

protocol = udp ;

own = 192.168.10.4:9001;

peer = 192.168.10.1:9001;

}

}
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Program B.6 Netspec script for generating Background BE traffic - Virtual Network

cluster {

test testbed40 {

type = burst(blocksize=X, period=10000, duration=30);

protocol = udp;

own = 10.10.1.1:6609;

peer = 10.20.1.1:6609;

}

test testbed41 {

type = sink (blocksize=X, duration=30);

protocol = udp;

own = 10.20.1.1:6609;

peer = 10.10.1.1:6609;

}

}

Program B.7 Netspec script for generating Background RT traffic - Virtual Network

cluster {

test testbed40 {

type = burst(blocksize=1456, period=Y, duration=30);

protocol = udp;

own = 10.30.1.1:6610;

peer = 10.40.1.1:6610;

}

test testbed41 {

type = sink (blocksize=1456, duration=30);

protocol = udp;

own = 10.40.1.1:6610;

peer = 10.30.1.1:6610;

}

}
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Program B.8 Netspec script for generating Test traffic - Virtual Network

cluster {

test testbed42 {

type = burst(blocksize=1456,period=2777,duration=10);

protocol = udp;

own = 10.1.1.1:9001;

peer = 10.2.1.1:9001;

}

test testbed46 {

type = sink (blocksize=1456, duration=10);

protocol = udp;

own = 10.2.1.1:9001;

peer = 10.1.1.1:9001;

}

}

Program B.9 TC script for marking background RT traffic - Physical Network

#! /bin/sh

TC=/usr/bin/tc

DEVICE=eth1

$TC qdisc add dev $DEVICE handle 1:0 root dsmark indices 64

$TC class change dev $DEVICE parent 1:0 classid 1:1 dsmark mask 0x3 value 0x28

$TC class change dev $DEVICE parent 1:0 classid 1:2 dsmark mask 0x3 value 0x38

$TC class change dev $DEVICE parent 1:0 classid 1:3 dsmark mask 0x3 value 0x00

$TC filter add dev $DEVICE parent 1:0 protocol ip prio 1 rsvp ipproto \

udp session 192.168.10.11/6610 police rate 202355bps burst 1514 \

continue flowid 1:1

# filter for real time BG traffic

$TC filter add dev $DEVICE parent 1:0 protocol ip prio 2 rsvp ipproto \

udp session 192.168.10.11/6610 flowid 1:2

$TC filter add dev $DEVICE parent 1:0 protocol ip prio 3 u32 match ip \

tos 0x00 0x00 flowid 1:3
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Program B.10 TC script for marking test traffic - Physical Network

#! /bin/sh

TC=/usr/bin/tc

DEVICE=eth1

$TC qdisc add dev $DEVICE handle 1:0 root dsmark indices 64

$TC class change dev $DEVICE parent 1:0 classid 1:1 dsmark mask 0x3 value 0x28

$TC class change dev $DEVICE parent 1:0 classid 1:2 dsmark mask 0x3 value 0x38

$TC class change dev $DEVICE parent 1:0 classid 1:3 dsmark mask 0x3 value 0x00

$TC filter add dev $DEVICE parent 1:0 protocol ip prio 1 rsvp ipproto \

udp session 192.168.10.4/9001 police rate 542078bps burst 1516 \

continue flowid 1:1

# filter for real time BG traffic

$TC filter add dev $DEVICE parent 1:0 protocol ip prio 2 rsvp ipproto \

udp session 192.168.10.4/9001 flowid 1:2

$TC filter add dev $DEVICE parent 1:0 protocol ip prio 3 u32 match ip \

tos 0x00 0x00 flowid 1:3
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Program B.11 TC script for marking background RT traffic - Virtual Network

#! /bin/sh

TC=/usr/bin/tc

DEV="dev veth2"

# !!! IMPORTANT - For virtual network

# ’rsvp’ filter does NOT require protocol to be changed from ’ip’ to ’vnet’

# ’u32’ requires it.

$TC qdisc add $DEV handle 1:0 root dsmark indices 64

$TC class change $DEV parent 1:0 classid 1:1 dsmark mask 0x3 value 0x28

$TC class change $DEV parent 1:0 classid 1:2 dsmark mask 0x3 value 0x38

$TC class change $DEV parent 1:0 classid 1:3 dsmark mask 0x3 value 0x00

# Mark traffic destined for 10.40.1.1/6610

# In-profile packets are marked with TOS=0x28

# Policing rate is used to determine whether traffic is in-profile

$TC filter add $DEV parent 1:0 protocol ip prio 1 rsvp ipproto \

udp session 10.40.1.1/6610 police rate 205817bps burst 1514 \

continue flowid 1:1

# Out-of-profile packets are marked with TOS=0x38

$TC filter add $DEV parent 1:0 protocol ip prio 2 rsvp ipproto \

udp session 10.40.1.1/6610 flowid 1:2

# All other traffic is marked with TOS=0x00

$TC filter add $DEV parent 1:0 protocol vnet prio 3 u32 match ip \

tos 0x00 0x00 flowid 1:3
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Program B.12 TC script for marking test traffic - Virtual Network

#! /bin/sh

TC=/usr/bin/tc

DEV="dev veth1"

# !!! IMPORTANT - For virtual network

# ’rsvp’ filter does NOT require protocol to be changed from ’ip’ to ’vnet’

# ’u32’ requires the change

$TC qdisc add $DEV handle 1:0 root dsmark indices 64

$TC class change $DEV parent 1:0 classid 1:1 dsmark mask 0x3 value 0x28

$TC class change $DEV parent 1:0 classid 1:2 dsmark mask 0x3 value 0x38

$TC class change $DEV parent 1:0 classid 1:3 dsmark mask 0x3 value 0x00

# Mark traffic destined for 10.2.1.1/9001

# In-profile packets are marked with TOS=0x28

# Policing rate is used to determine whether traffic is in-profile

$TC filter add $DEV parent 1:0 protocol ip prio 1 rsvp ipproto \

udp session 10.2.1.1/9001 police rate 548161bps burst 1514 \

continue flowid 1:1

# Out-of-profile packets are marked with TOS=0x38

$TC filter add $DEV parent 1:0 protocol ip prio 2 rsvp ipproto \

udp session 10.2.1.1/9001 flowid 1:2

# All other traffic is marked with TOS=0x00

$TC filter add $DEV parent 1:0 protocol vnet prio 3 u32 match ip \

tos 0x00 0x00 flowid 1:3
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Program B.13 TC script for core Diffserv routers - Physical Network

#!/bin/sh -x

TC="/usr/bin/tc"

DEV="dev eth1"

BW="bandwidth 10Mbit"

AVPKT="avpkt 1514"

#################################################################

# Class Structure

#################################################################

# DSMARK qdisc to classify packets according to their TOS bits

$TC qdisc add $DEV handle 1:0 root dsmark indices 64 set_tc_index

# HTB qdisc

$TC qdisc add $DEV parent 1:0 handle 2:0 htb

# Real-time class (6Mbit)

$TC class add $DEV parent 2:0 classid 2:1 htb rate 6Mbit ceil 6Mbit

# Best-effort class (4Mbit)

$TC class add $DEV parent 2:0 classid 2:2 htb rate 4Mbit ceil 4Mbit

# GRED qdisc in real time class

$TC qdisc add $DEV parent 2:1 gred setup DPs 3 default 2 grio

# 3 GRED qdiscs for the 3 drop priorities of real time packets

$TC qdisc change $DEV parent 2:1 gred limit 12KB min 3KB max 9KB \

burst 20 $AVPKT $BW DP 1 probability 0.02 prio 2

$TC qdisc change $DEV parent 2:1 gred limit 12KB min 3KB max 9KB \

burst 20 $AVPKT $BW DP 2 probability 0.04 prio 3

$TC qdisc change $DEV parent 2:1 gred limit 12KB min 3KB max 9KB \

burst 20 $AVPKT $BW DP 3 probability 0.06 prio 4

# Best effort class is served using a RED qdisc

$TC qdisc add $DEV parent 2:2 red limit 12KB min 3KB max 9KB \

burst 20 $AVPKT $BW probability 0.4

###################################################################

# Filters for classifying the packets

###################################################################

# Filter to get 6 TOS bits from packet

$TC filter add $DEV parent 1:0 protocol ip prio 1 \

tcindex mask 0xfc shift 2 pass_on

# Change the skb->tcindex of packets to the correct class.

# skb->tcindex is "changed" only if the parent qdisc of the filter

# is ’dsmark’

$TC filter add $DEV parent 1:0 protocol ip prio 1 \

handle 10 tcindex classid 1:111

$TC filter add $DEV parent 1:0 protocol ip prio 1 \

handle 12 tcindex classid 1:112

$TC filter add $DEV parent 1:0 protocol ip prio 1 \

handle 14 tcindex classid 1:113

$TC filter add $DEV parent 1:0 protocol ip prio 2 \

handle 0 tcindex classid 1:1

# Filter to get first 2 bits which denote AF class

$TC filter add $DEV parent 2:0 protocol ip prio 1 \

tcindex mask 0xf0 shift 4 pass_on

# Put packets of AF1 into real time class

$TC filter add $DEV parent 2:0 protocol ip prio 1 \

handle 1 tcindex classid 2:1

# Put other packets into best effort class

$TC filter add $DEV parent 2:0 protocol ip prio 1 \

handle 0 tcindex classid 2:2
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Program B.14 TC script for core Diffserv routers - Virtual Network

#!/bin/sh -x

TC="/usr/bin/tc"

DEV="dev r1p4"

BW="bandwidth 10Mbit"

AVPKT="avpkt 1514"

#################################################################

# Class Structure

#################################################################

# DSMARK qdisc to classify packets according to their TOS bits

$TC qdisc add $DEV handle 1:0 root dsmark indices 64 set_tc_index

# HTB qdisc

$TC qdisc add $DEV parent 1:0 handle 2:0 htb

# Real-time class (6Mbit)

$TC class add $DEV parent 2:0 classid 2:1 htb rate 6Mbit ceil 6Mbit

# Best-effort class (4Mbit)

$TC class add $DEV parent 2:0 classid 2:2 htb rate 4Mbit ceil 4Mbit

# GRED qdisc in real time class

$TC qdisc add $DEV parent 2:1 gred setup DPs 3 default 2 grio

# 3 GRED qdiscs for the 3 drop priorities of real time packets

$TC qdisc change $DEV parent 2:1 gred limit 12KB min 3KB max 9KB \

burst 20 $AVPKT $BW DP 1 probability 0.02 prio 2

$TC qdisc change $DEV parent 2:1 gred limit 12KB min 3KB max 9KB \

burst 20 $AVPKT $BW DP 2 probability 0.04 prio 3

$TC qdisc change $DEV parent 2:1 gred limit 12KB min 3KB max 9KB \

burst 20 $AVPKT $BW DP 3 probability 0.06 prio 4

# Best effort class is served using a RED qdisc

$TC qdisc add $DEV parent 2:2 red limit 12KB min 3KB max 9KB \

burst 20 $AVPKT $BW probability 0.4

###################################################################

# Filters for classifying the packets

###################################################################

# !!!!!!! IMPORTANT: For virtual network !!!!!!!

# Notice that for ’tcindex’ filters, the protocol is NOT ’ip’, it is ’vnet’

# This requires a special version of ’tc’ with 2 lines added to the code to

# register the vnet packet type

# Filter to get 6 TOS bits from packet

$TC filter add $DEV parent 1:0 protocol vnet prio 1 \

tcindex mask 0xfc shift 2 pass_on

# Change the skb->tcindex of packets to the correct class.

# skb->tcindex is "changed" only if the parent qdisc of the filter

# is ’dsmark’

$TC filter add $DEV parent 1:0 protocol vnet prio 1 \

handle 10 tcindex classid 1:111

$TC filter add $DEV parent 1:0 protocol vnet prio 1 \

handle 12 tcindex classid 1:112

$TC filter add $DEV parent 1:0 protocol vnet prio 1 \

handle 14 tcindex classid 1:113

$TC filter add $DEV parent 1:0 protocol vnet prio 2 \

handle 0 tcindex classid 1:1

# Filter to get first 2 bits which denote AF class

$TC filter add $DEV parent 2:0 protocol vnet prio 1 \

tcindex mask 0xf0 shift 4 pass_on

# Put packets of AF1 into real time class

$TC filter add $DEV parent 2:0 protocol vnet prio 1 \

handle 1 tcindex classid 2:1

# Put other packets into best effort class

$TC filter add $DEV parent 2:0 protocol vnet prio 1 \

handle 0 tcindex classid 2:2
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