
University of Kansas

Real-Time Networking for Quality of
 Service on TDM based Ethernet

Badri Prasad Subramanyan
Master’s Thesis Defense

26th Jan 2005

Committee:
Dr. Douglas Niehaus
Dr. David Andrews

Dr. Jerry James

University of Kansas

Presentation Outline

• Introduction
• Related Work
• Objectives
• Background Information
• Implementation Details
• Performance Evaluation
• Conclusion
• Future Work

University of Kansas

Introduction

• Real-time applications span across multiple systems.

• Network delays have to be predictable to enable
real-time applications.

• Present technology - Ethernet
• CSMA/CD protocol.

• Collisions – retransmissions.

• Not deterministic.

• Cannot support real-time applications.

University of Kansas

Related Work

• Hardware Solutions
• Shared Memory Methods

• Switched Ethernet

• Token Passing Protocols

• Software Solutions
• RTnet – Hard real-time network protocol stack for RTAI.

• Rether – Real-time Ethernet protocol.

• Traffic Shaping

• Master/Slave Protocols

University of Kansas

Objectives

• Support real-time applications which span across multiple
systems in a LAN.

• Predictable end-to-end packet transfer time.

• Devise a software based solution which works using the
present Ethernet hardware.

• Modifications should not affect existing protocols.

• Proposed Solutions
• Provide Quality of Service for real-time processes.

• Time Division Multiplexing to make the network deterministic.

• Use the framework provided by KURT-Linux.

University of Kansas

Background Information

• UTime

• DSKI/DSUI

• Netspec

• Group Scheduling Framework

• Linux Traffic Control

• Linux Network Stack
• Transmit packet flow

• Receive packet flow

University of Kansas

UTime

• Periodic interrupt at a rate of once for every 10ms in
Linux 2.4.x

• Timer resolution not sufficient for real-time
requirements.

• One-shot mode – interrupts the kernel at specified
times.

• Timer bottom half execution in the hardirq context.

• Utime timers were used for accurate control over
time.

University of Kansas

DSKI / DSUI

• Debugging kernel code is complex
• Kernel source code is very big and complex.

• Large amount of concurrency

• Kernel does not/cannot provide usage of break points in the code.

• Data Stream Kernel Interface (DSKI)
• Instrumentation points in the kernel to log an event.

• Interface should be configured to log events as desired.

• Post processing filters.

• Data Stream Visualizer.

• Data Stream User Interface (DSUI)
• Log events in user space.

University of Kansas

Netspec

• Provides a framework to centrally control daemons
running on other systems.

• Control distributed applications.

• Transfer of files to and from daemons.

• Takes a script to specify experimental parameters.
• Scalable

• Reproducible

• Used to control different experiments in a LAN.

University of Kansas

Group Scheduling Framework

• Linux scheduler is a priority-based scheduler.

• Computational Components
• HardIrqs – executed at the earliest.

• SoftIrqs – deferrable functions.

• Process – scheduled by the scheduler.

• Each process has a static and dynamic priority.

• Process scheduled based on the goodness value.

• No direct control over the scheduling policy.

University of Kansas

Group Scheduling Framework

• Group Scheduling framework provides Unified
scheduling model.

• Configurable hierarchic decision structure which
decides which computation to execute.

• Explicit control of computational components.

University of Kansas

Group Scheduling Framework

• Group – Place holder for
other entities.

• Member – Computational
component which can be
a hardirq, softirq, process
or a group.

• Scheduler – Decision
routine which chooses a
component for execution.

University of Kansas

Group Scheduling Framework

• Function pointer hooks to control scheduling and
execution.

• Each of the hooks point to the Vanilla Linux
routines by default.

• These hooks can be mapped to other routines to
define customized routines.

• Gives the flexibility to control scheduling and
execution of selective computational components.

University of Kansas

Linux Traffic Control

• Tools for managing & manipulating the transmission
of packets.

• Net_device_layer of Linux protocol stack.

University of Kansas

Linux Traffic Control

• Components of Traffic Control
• Queuing Discipline – a set of queues which are used to

hold packets.

• Classes – a class represents a class of packets and is
associated with a queuing disciplines.

• Filters – filters are used to classify packets.

University of Kansas

Linux Network Stack

• Explanation can be split into 2 main parts
• Transmit side – The code which transmits the locally

generated packet out of the system. This code splits the
message to be transmitted, embeds it into a packet and
transmit it out of the system.

• Receive side – The code which processes a packet
received by the system. This code de-fragments the
received packet and sends it to the appropriate user-level
process.

• DSKI instrumentations were used to understand the
packet flow through the Linux network stack.

University of Kansas

Transmit Packet flow

• The Application layer uses a system call to transmit
a packet.

• The Transport layer (TCP/UDP) protocol stores the
message in the sk_buff structure.

• The Network layer (IP) protocol does a route lookup
based on the destination IP address.

• The Data Link layer transmits the packet out of the
device.

University of Kansas

Transmit Packet Flow

University of Kansas

Receive Packet Flow

• The Application layer uses a system call to receive a
packet. The process waits in the Transport layer
queue till the packet arrives.

• The Data Link layer receives a packet.
• The Network layer (IP) protocol verifies that the

packet is destined to this system.
• The Transport layer (TCP/UDP) protocol adds the

packet to the Transport layer queue and schedules
the process which is waiting for this packet.

University of Kansas

Receive Packet Flow

University of Kansas

Implementation Details

• Transmit side
• Classification of packets
• Processing of real-time packets

• Receive side
• Classification of packets
• Processing of real-time packets

• User Interface
• Setting priority on Transmit side
• Setting priority on Receive side
• Adding/Removing real-time processes

University of Kansas

Linux Softirqs

• Softirqs in Linux 2.4.x
• HI_SOFTIRQ – processes the high priority bottom halves

and tasklets.

• NET_TX_SOFTIRQ – transmits a packet out of the
system.

• NET_RX_SOFTIRQ – processes a packet which is
received on the system.

• TASKLET_SOFTIRQ – processes the low priority
tasklets.

University of Kansas

Classification on Transmit side

• Packet classification was done in the Linux Traffic
Control.

• Connection or flow was identified uniquely using
port numbers.

• A new queuing discipline – TDM queue was
developed.
• Contains a single FIFO queue by default.
• Can be configured to contain more than one queue.
• Each queue is associated with a particular priority.
• Each queue enqueues packets pertaining to a connection.

University of Kansas

TDM queue

• Packets are enqueued in
different queues based on
their priority.

• Dequeueing of packet
starts from the queue with
the highest priority.

• The default queue is the
last queue to be processed.

University of Kansas

Group Scheduling Framework - TDM

• Timer_BH is processed
first.

• NET_TX_SOFTIRQ has
the highest priority
during transmission time
slot.

• Other softirqs are
processed sequentially

• NET_KFREE_SKB_SO
FTIRQ frees the packet
after transmission.

University of Kansas

Receive side

• Classification of packets.

• Reduce the real-time packet processing time.
• Processing the real-time packets before the non real-time

packets.

• Reduce the wait time for a real-time packets in the
Transport layer queue.

University of Kansas

Classification on Receive side

• Packet classification was done using a queuing
discipline on the receive side.

• Connection or flow was identified using the port
numbers.

• The queuing discipline on receive side
• Contains a single FIFO queue by default.

• Can be configured to contain more than one queue.

• Each queue is associated with a particular priority.

• Each queue enqueues packets pertaining to a connection.

University of Kansas

Modifications to Receive Softirq

• NET_RX_SOFTIRQ was split into 3 parts
• NET_RX_SOFTIRQ – responsible for classifying a

packet and enqueuing it appropriate queue.

• NET_RX_PRIORITY_PROCESS_SOFTIRQ –
responsible for processing the priority packets present in
the priority queues.

• NET_RX_NORMAL_PROCESS_SOFTIRQ –
responsible for processing the non-priority packets
present in the default queue.

University of Kansas

Queue on Receive Side

• Packets are enqueued in
different queues based on their
priority.

• Dequeueing takes place based
on the priority of the queue –
NET_RX_PRIORITY_PROCE
SS_SOFTIRQ.

• The default queue is scheduled
to be processed after all the
priority queues are processed –
NET_RX_NORMAL_PROCE
SS_SOFTIRQ.

University of Kansas

Priority Group

• Reduce the wait time in the Transport layer queue.

• Addition of Priority Group to the Group Scheduling
Framework.

• Contains all real-time processes.

• A process in the ‘Priority’ group is scheduled once
the packet corresponding to this process reaches the
transport layer queue.

University of Kansas

Real-Time Networking Model

University of Kansas

User Interface

• User interface in TDM
• /dev/tdm_controller – pseudo device.

• The loadable module to interface with the device.

• This module was enhanced to configure the device
for QoS changes.

• User-level program with command line options.
• Set priority on the transmit side.

• Set priority on the receive side.

• Add/remove processes from the Priority group.

University of Kansas

Setting Priority on Transmit/Receive side

• Command:
tdm send <# of queues> <list of (port# priority)>

tdm recv <# of queues> <list of (port# priority)>

• tdm – user-level routine.

• send/recv – set the transmit/receive queues.

• # of queues - Number of queues to create on the transmit
side.

• Port# - the port number which needs to be prioritized.

• Priority – the priority of the port number. (Smaller number
has higher priority)

University of Kansas

Add/Remove prioritized process

• Command:
tdm add process <list of process Ids>

tdm remove process <list of member Ids>

• Tdm – user-level routine.

• Add process – adds a process to the ‘Priority’ group.

• Remove process – removes a process from the ‘Priority’
group.

• Process ID – Unique identifier for each process on Linux.

• Member ID – Unique identifier for a Group Scheduling
member.

University of Kansas

Performance Evaluation

• End-to-End packet transfer time for a single real-
time process.

• End-to-End packet transfer time for a single real-
time process with background processes.

• End-to-End packet transfer time for different TDM
schedules.

• Packet processing time on the transmit and receive
side of the network stack.

• Visualization of the output.

University of Kansas

Test Setup

• LAN with 4 systems
connected using a 100
Mbps hub.

• Time synchronization
master.

• Transmission slot time –
260s (220 s transmission
time + 40 s buffer time).

• Total transmission cycle of
1040 s.

• 64 bytes of data.

University of Kansas

End-to-End Packet Transfer Time

• Single real-time application.

University of Kansas

End-to-End Packet Transfer Time

• Real-time/non real-time process with other background
processes.

University of Kansas

Packet Processing Time

• Packet processing time in the kernel.

University of Kansas

Pipeline Computation

• 3-stage pipeline computation.

• LAN with 4 systems using a 100 Mbps hub.

• Time synchronization master.

• Transmission slot time – 260s (220 s transmission time +
40 s buffer time)

• Total transmission cycle of 1040 s.

University of Kansas

Pipeline Computation Visualization

University of Kansas

Pipeline Computation
• Pipeline computation gives a real-world distributed

application scenario.

• The packet processing time on the transmit side varies
depending on the availability of the transmission time slot.

• The packet processing time on the receive side does not
vary much.

• The end-to-end packet transfer time is comparable to half
total transmission time cycle.

University of Kansas

Conclusion

• Differentiation of real-time and non real-time
packets in the network stack was achieved.

• Predictable end-to-end transfer time was achieved in
a LAN.

• This software solutions was implemented on the
standard Ethernet hardware.

• The changes do not require any modifications to the
protocols used in Linux.

University of Kansas

Future Work

• Time Constraint in Quality of Service
• Each process has a set of QoS parameters.

• Each process should negotiate QoS with the system based on its QoS
parameters.

• System should commit to provide desired QoS only when it has the
resources.

• Resource Reservation Protocol (RSVP)
• Extend QoS beyond a single LAN.

• RSVP reserves resources in the intermediate nodes for an Internet
connection.

• The real-time networking module can interact with the RSVP
protocol to reserve resources on nodes beyond the LAN.

University of Kansas

Thank you

