
TIME FREQUENCY ANALYSIS – AN APPLICATION TO 

FMCW RADARS 

by 

BALAJI NAGARAJAN 

 

B.E., Electronics and Communication Engineering 

Hindustan College of Engineering, University of Madras 

Chennai, India – 2001 

 

Submitted to the Department of Electrical Engineering and Computer 

Science and the Faculty of the Graduate School of the University of Kansas  

in partial fulfillment of the requirements for the degree of 

Master of Science 

 

Committee: 

                                _____________________ 

      Glenn Prescott: Chairperson 

                     _____________________ 

                       Christopher Allen         

             ____________________                        

          Swapan Chakrabarti 

                 Date of Defense:27th Jan,2004 



   

ii 

ABSTRACT 

The Fourier transform of a signal defines the frequency domain representation 

of the signal in that it specifies relative amplitudes of the various frequency 

components of the signal. However, the Fourier transform is not always the best tool 

to analyze ‘real-time signals’ which have frequency components that change over 

time. Joint time-frequency techniques were developed for characterizing the time-

varying frequency content of the signal.  

This project presents an overview of the basic concepts and well-tested 

algorithms for joint time-frequency analysis with particular reference to their 

application to radar signals. The time-frequency techniques can be classified into two 

types: linear (e.g., short-time Fourier transform, Gabor expansion, Wavelet transform) 

and quadratic (e.g., Wigner-Ville distribution, Cohen’s class of distributions, Time-

frequency distribution series). The aforementioned techniques are discussed in detail 

and are tested first against ideal simulations of normal cosine and chirp signals and 

then with the radar beat signal. A brief description of FMCW sea-ice radar developed 

in RSL, University of Kansas is given, and the data from this radar is used as 

experimental data to compare simulation results with measured sea-ice thickness 

levels. One of the important applications of time-frequency analysis is to exactly 

predict the occurrence of surface return layers and to distinguish it from noise signals 

and multiples. These techniques are also investigated for time-variant filtering of 

noise from the radar echogram and suitable recommendations are provided. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 What is Time-Frequency Analysis? 

The Fourier transform has become one of most widely used signal-analysis tools in 

real-time signal analysis. The fundamental idea behind the Fourier transform is that 

any arbitrary signal can be decomposed as a superposition of weighted sinusoidal 

functions. Its value at a particular frequency is a measure of the similarity of the 

signal to the sinusoidal basis at that frequency and hence the frequency attributes of 

the signal are exactly described. While the Fourier transform is a very useful concept 

for stationary signals, many signals encountered in real-world situations have 

frequency content that changes over time. One of the most common applications is 

speech & music signal processing, where the harmonic content of the acoustic signal 

changes for different notes. To represent signals of this nature, Joint time-frequency 

transforms were developed which characterized the exact behavior of the time-

varying frequency content of the signal.  

 

The most common time-frequency techniques such as Gabor expansion, wavelets [9] 

and time-dependant spectra have been developed and widely studied. In addition to 

being used for studying the time-dependant spectra, Joint Time-Frequency Analysis 

(JTFA) is also a very powerful tool for removing noise and interference from a signal.  
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In general, random noise tends to spread evenly in the joint time-frequency domain, 

while the signal itself concentrates in a relatively small range. Consequently, the 

signal-to-noise ratio (SNR) can be substantially improved in the joint-time frequency 

domain.  

1.2 Applications of JTFA to Radar Signal Processing 

Radar is an electromagnetic instrument used for the detection and location of targets, 

such as aircraft, ships and ground vehicles. Here, in our application, it is used to 

determine the thickness of sea-ice. It transmits electromagnetic energy to a target and 

processes the reflected signal from the target and clutter to produce a high-resolution 

image of the target. Any unwanted radar return that can interfere with the detection of 

the desired targets is referred to as clutter. To obtain a high-resolution radar image, a 

wide signal bandwidth and long imaging time are required. However, due to the time-

varying behavior of the returned signal and due to the multiple scattering behavior of 

the target, the radar resolution can be significantly degraded and the image becomes 

blurred.  

 

Conventional radar processing uses the Fourier transform to identify Doppler 

frequencies. In order to apply the Fourier transform, the Doppler frequency content of 

the radar data should be stationary over a given time interval. To satisfy these 

constraints and to obtain an exact image, complicated motion-compensation 
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algorithms are necessary to be implemented. Otherwise, the Fourier transform can 

cause the Doppler frequency spectrum to become smeared. Recently, Chen [2] 

introduced an approach using joint time-frequency transform to overcome the 

limitations caused by the Fourier transform. Replacing the conventional Fourier 

transform with a joint time-frequency transform, a high-resolution radar image can be 

achieved without applying complicated motion-compensation algorithms.  

 

The development of high-resolution radar techniques has made it possible to generate 

a 1D down-range map of the target called the ‘range profile’. Similarly, by observing 

a target in relative motion with respect to the radar over a sufficient time interval, it is 

possible to generate a 1D cross-range map of the target. In simple targets, a range 

profile typically consists of a series of distinct peaks that can be related spatially to 

the isolated scattering centers on the target. These features are often utilized for target 

recognition features. In real targets, however, the scattering from some components 

on a target is not always well localized in time and may give rise to range-extended 

returns. The interpretation of these dispersive scattering phenomena is difficult to be 

handled in the time-domain range profile. Hence, joint time-frequency techniques are 

used for analyzing these range profiles by exactly characterizing the top & bottom of 

the range profiles over all instances of time at a given frequency.   
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1.3 FMCW radars to measure sea ice thickness 

Sea ice thickness measurements play an important role in monitoring global climate 

change. Recently, there has been a considerable thinning of the artic sea ice as 

indicated by studies using submarine sonar profiling. But, these measurements suffer 

from limited temporal and spatial coverage. Air borne measurements using Very High 

Frequency (VHF) pulse radars did not have sufficient range resolution to resolve the 

ice-water interface and air-ice interface for ice with a thickness of less than 2m i.e. 

the earlier radars used were not optimized for the application. 

 

The Radar Systems and Remote Sensing Laboratory (RSL) at the University of 

Kansas have been successful in designing and developing a Frequency Modulated 

Continuous Wave (FMCW) radar system that can achieve the required resolution. 

The electromagnetic simulations suggested operating an FMCW radar over 50-250 

MHz for measuring thick first-year or multiyear sea-ice thickness in the Arctic region 

and 300-1300 MHz for measurements in the Antarctic region and thin sea ice in the 

Arctic. The system was successfully tested through numerous field trials.  

1.4 Organization of Project 

This report has been organized into five chapters. Chapter 1 outlines the entire project 

giving an introduction to the need for time-frequency analysis and its application to 

radar signal processing. Chapter 2 provides the radar system background, describing 

the FMCW radar and how it is used. Also in this chapter, the drawbacks of the 
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Fourier spectral analysis that necessitates the need for using JTFA techniques is 

discussed. Chapter 3 describes the time-frequency techniques used in this project, and 

explains their advantages and disadvantages. There is also a brief introduction to 

time-variant filtering techniques. Chapter 4 presents and explains the results of signal 

processing experiments conducted on sea-ice radar data based on several time-

frequency techniques and Chapter 5 summarizes the project and provides suggestions 

for future recommendations & improvement. 
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CHAPTER 2 

2 BACKGROUND 

2.1  Radar System Design 

A prototype radar system operating in the Frequency-Modulated Continuous Wave 

(FM-CW) mode was designed to operate in the two frequency ranges mentioned 

above. Here, for our analysis, we consider the radar operating in the frequency range 

50-250 MHz. The system designed was a modified version of a 50-2000 MHz  

FMCW radar developed at RSL to map near-surface internal layers over the 

Greenland ice sheet to estimate the accumulation rate [11]. Figure 1 shows the 

functional block diagram of the radar system. 

 

The salient features of the radar include: a transmitter, which generates a linearly 

chirped signal of frequency 4.5-6 GHz (wideband).The signal was down-converted to 

the desired frequency range of 50-250 MHz after mixing with the signal from the 

receiver. At the receiver, low-gain & high-isolation amplifiers were used to provide 

the required gain, antennas with minimum ringing and low return loss improved the 

system performance and sensitivity. 
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Figure 1: Functional Block Diagram of Sea-ice Radar System
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2.2 Radar System Specifications 

The radar system was calibrated to operate in the VHF frequency range (50-250 MHz). The 

prototype system was mounted on a sled that was built at RSL and collected data over sea-ice 

located off Barrow, Alaska. Some of the important radar parameters are listed below in 

Table1. 

System Parameters Value 

Modulation Swept FM 

Chirp Frequency 
Range 

50-250 MHz, 
 

Unambiguous Range 3-30 meters 

Transmit Power 20 dBm 

Chirp Time 5 ms 

Range Resolution 75 cm 

 
Table 1: System specifications of the sea-ice radar 

 

A Compact Low-Power Radar Data Acquisition system (DAC) [12] was used for this 

FMCW sea-ice radar that is capable of automating the data acquisition process, controlling 

the radar and processing the data. The digital system is composed of a signal generator and 

data acquisition system. The digital system has a high-resolution 16-bit analog-to-digital 

converter that can sample the beat frequencies at a maximum clock frequency of 5 MHz.  
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2.3 Calculation of Beat Frequency 

 

 

 

 

 

 

 

Figure 2: FMCW operation of Radar system 

A common way of increasing the pulse energy while still maintaining the high resolution of 

radar is to apply a chirp waveform which is a sine wave with linearly increasing/decreasing 

frequency. If the linear FM waveform is made much longer than 2-way propagation delay, it 

is often termed frequency-modulated continuous wave. Hence, the frequency, )(tf  of a chirp 

is given by 

 α+= 0)( ftf t (1)

where 0f is the start frequency and α is the chirp rate [Hz/s]. In this case, the receiver has to 

start receiving the backscattered signals while the transmitter is still transmitting. The 

received echoes are homodyned (mixed) with a replica of the transmitted waveform to 

produce a beat signal as shown in Figure 2. When more than one target is present within the 

view of the radar, the mixer output will contain more than one difference frequency. Since 

the system is linear, there will be a frequency component corresponding to each target. In 
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Received 
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principle, the range to each target may be determined by measuring the individual frequency 

components. The beat frequency bf becomes proportional to the target delay DELAYT . 

 

CHIRP
b

DELAYCHIRP

CHIRP

DELAYb

tc
BWRf

cRTtBW
t
T

BW
f

×
×

=⇒

==

=

2
/2,/α  (2)

The I & Q output of the homodying quadrature mixer is narrowband compared to the radar 

waveform, and typically low speed A/D-converters operating with sampling frequencies in 

the kHz range can be used for data acquisition.  

2.4 Need for Time-Frequency Analysis of Radar Range Profiles 

The Fourier spectrum of a radar range profile illustrates the variation of signal amplitude in 

decibels over the distance traveled by the radar signal. Figure 3 shows the Fourier spectrum 

of a particular Amplitude scope (A-scope) display of the sea-ice radar profile.  

 
Figure 3: A-scope of particular range profile 
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We can see clearly signals of varying amplitude in the spectrum with the highest signal 

amplitude at 0dB indicating the antenna feed through or Top of the range profile. The 

location of this surface return at the specified distance is based on calculations given in 

Equation (2) and from data recorded in field tests. The problem with the Fourier spectrum is 

that we are not able to exactly predict the occurrence of the ice-bottom and distinguish it 

from the noise and multiple returns that might be occurring along with the desired signals. 

This is because the noise and multiple returns might be larger in amplitude compared to the 

ice-bottom leading to improper determination of the depth from the radar compared to the 

measured field data. The time-frequency spectrum gives a two dimensional analysis of the 

exact position of the layers of the range profiles. This indicates the position of different 

layers at a particular frequency along with the position in time simultaneously. The time-

frequency transform makes it easier to distinguish between the top and bottom of the range 

profiles from their corresponding multiples and noise returns. These transforms can also be 

used for time-varying filtering procedures for separating the noise from the data signal.  

 

We will be explaining in detail about different time-frequency techniques used for signal 

processing experiments in Chapter 3 with their respective advantages and disadvantages. 

Chapter 4 deals with testing these techniques, initially with ideal simulations and then with 

experimental radar data compare the results observed with those that were measured when 

field tests were conducted.  
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CHAPTER 3 

3 TIME-FREQUENCY REPRESENTATION (TFR) 

3.1 Introduction  

Time-Frequency methods are powerful tools for radar signal processing because most radars 

are used for determining the range to a target, which is a function of time, and the target 

speed which is a function of frequency. The Radar has two time scales, fast time scale and 

slow time scale [4]. These correspond to the signal transmission into the medium and the 

movement of the radar respectively. The radar signal is transmitted once every Pulse 

Repetition Interval (PRI). Within each PRI, the signal travels through the medium and this 

time is termed as fast time. The radar’s next transmission occurs from a different azimuthal 

position as the radar is moving albeit at a very slow rate compared to the speed of the signal. 

This corresponds to the slow time. 

  

In this chapter, we provide an overview of various time-frequency transforms developed in 

the signal processing community. Time-frequency techniques are broadly classified into two 

categories: Linear transforms & Quadratic (or bilinear) transforms. A flowchart showing the 

basic classification is given below in Figure 4. In Section 3.2, we first discuss linear time-

frequency transforms. The discussion commences with the Short-Time Fourier Transform 

(STFT), Gabor expansion in detail and moves onto two other linear transforms, the adaptive 
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time-frequency representation and a brief summary about the continuous wavelet transform. 

Linear transforms are mainly characterized by the STFT and wavelet transforms. The linear 

transformations are realized by comparing the analyzed signal with a set of selected 

elementary functions viz. frequency modulation in the STFT and by scaling the center 

frequency of the mother wavelet in the wavelet transform. The inverse of sampled STFT can 

be accomplished by the Gabor expansion. 

Time-Frequency
Techniques

Linear Transforms Quadratic
Transforms

Short-time
Fourier

Transform
(STFT)

Gabor
Expansion

Continuous
Wavelet

Transform
(CWT)

Wigner-Ville
Distribution

(WVD)

Time-
Frequency
Distribution

Series (TFDS)

Cohen’s Class
of Distributions

 

Figure 4: Classification of the different time-frequency techniques 

 

In Section 3.3, we discuss quadratic time-frequency transforms. We begin with the Wigner-

Ville distribution and discuss Cohen’s class of distributions. The bilinear time-frequency 

representations are characterized by a number of distributions, the most common one being 
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the Wigner-Ville distribution (WVD) because of its simplicity and better characterization of 

the signal’s time-dependant spectra than the STFT spectrogram (which is squared magnitude 

of the short-time Fourier transform) and scalogram (which is square of the wavelets). The 

problem of the WVD is the cross-term interference that significantly hinders its applications 

in signal analysis. On the other hand, the useful properties of the WVD are all obtained by 

averaging the Wigner-Ville distribution. These observations suggest that if the WVD is 

thought as the sum of localized 2D (time and frequency) harmonic functions, then its useful 

properties will mainly depend on the low oscillated harmonics. This is because low 

harmonics have larger averages. The high harmonics directly relate to the cross-term 

interference and are less important to the joint time-frequency representations. Hence, we 

may apply a lowpass filter for the WVD, to retain the low frequency components and remove 

the high frequency parts. Since the high frequency parts have small averages, the lowpass 

filtered Wigner-Ville distribution has reduced cross-term interference. There are two types of 

lowpass filters: linear, characterized by Cohen’s class and non-linear characterized by the 

time-frequency distribution series.  

  

Another main advantage in analyzing radar signals in the time-frequency domain is for noise 

reduction. A time-variant filtering technique can be employed which significantly improves 

the signal-to-noise ratio and produces a noise-reduced TFR. This has been particularly useful 

for wideband and non-stationary signal estimation. Both linear and bi-linear transformations 

could be used as time-variant filters but the Gabor expansion is most powerful and simple 

tool. The aforementioned techniques will be discussed in detail with their applications in the 
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forthcoming sections and a comparative analysis will be provided. The time-variant 

techniques and their usefulness will also be described with their limitations and suggested 

alternatives. 

3.2  Linear Time-Frequency Transforms 

Linear time-frequency transforms can be understood by first reviewing the Fourier transform. 

The Fourier transform of a signal s(t) is defined as 

 
∫
+∞

∞−

−= dttjtsS }exp{)()( ωω  (3)

where fπω 2= is the angular frequency. )(ωS can be interpreted as the projection of the 

signal onto a complex exponential function }exp{ tjω− at angular frequency ω. Since the set 

of exponentials form an orthogonal basis set, the original function can be constructed from 

the projection values by the process of  

 
∫
+∞

∞−

= ωωω
π

dtjSts }exp{)(
2
1)(  (4)

which is the inverse Fourier transform of )(ωS . When we use (3) to estimate the frequency 

spectrum of a signal, we assume that the frequency content of the signal is relatively stable 

during the observation time interval. If the frequency content changes with time, it is not 

possible for the frequency spectrum to uniquely represent and characterize the signal. In the 

following subsections, three linear time-frequency transforms (viz. STFT, Gabor Expansion, 

and CWT) are presented. They can be considered as a generalization of the Fourier transform 
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with alternative basis sets that can better reflect the time-varying nature of the signal 

frequency spectrum. 

3.2.1 Short-time Fourier transform (STFT) 

The basis functions used in Fourier analysis do not explicitly reflect a signal’s time varying 

nature. Hence, the STFT was developed which modified the Fourier transform by comparing 

the signals with elementary functions that are localized in time and frequency domains 

simultaneously, i.e. 

 ∫ ∫ −−== ττγτττγτω ωτ
ω detsdstSTFT j

t )()()()(),( **
,  (5)

which is a regular inner product and reflects the similarity between signal s(t) and the 

elementary function }exp{)( ωττγ jt −− . The function )(tγ usually has short time duration 

and thereby it is named as the window function. Equation (5) is called short-time Fourier 

transform (STFT) or windowed Fourier transform. 

 

Figure 5: Illustration of STFT (Courtesy: Time-frequency Transforms by Chen-Ling) 
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Figure 5 depicts the procedure of computing the STFT. Instead of processing the entire signal 

in a single frame, the STFT takes the Fourier transform on a block-by-block basis. Therefore, 

the resulting Fourier transform can be described as a signal’s frequency behavior during the 

time period covered by the data block. It can be seen as first multiplying the function )(tγ  

with signal )(ts and computing the Fourier transform of the product )()( * ts −τγτ . Because 

the window function )(tγ  has short time duration, the Fourier transform of 

)()( * ts −τγτ reflects the signal’s local frequency properties. By moving )(tγ and repeating 

the same process, we could obtain an idea how the signal’s frequency contents evolve over 

time. The analysis window function )(tγ  balances the time and frequency resolutions. The 

smaller the time duration of )(tγ , the better the time resolution (poorer frequency resolution) 

and vice-versa. The blocks could be overlapped or disjointed. The percentage of overlap 

between each block is determined by the time sampling step T and the length of the analysis 

window function )(tγ . The effects of the window function on real-time data are shown in 

Chapter 4, measurement results are compared against theoretical analysis and supporting 

conclusions are provided. 

 

The squared magnitude of the STFT is known as the STFT spectrogram. The STFT 

spectrogram is the most simple and often used time-dependent spectrum, which depicts a 

signal’s energy distribution in the joint time-frequency domain. While the STFT in general is 

complex, the spectrogram is always real-valued.  
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Given ),( ωtSTFT for all t and ω, we can completely recover the signal )(ts as 

 
∫= ωωω

πγ
dtjtSTFTts }exp{),(

)0(2
1)(  (6)

The signal can also be reconstructed from the sampled version of the short-time Fourier 

transform, ),( ΩnmTSTFT  where T and Ω denote the time and frequency sampling steps, 

respectively. This can be represented as  

 
∫
+∞

∞−

Ω−−=Ω dtemTttsnmTSTFT tjn)()(),( *γ  (7)

which is quite similar to equation (5). This equation is particularly useful in determining the 

relationship between STFT and the Gabor expansion, which is explained in detail in the next 

section. 

3.2.2 Gabor Expansion 

Dennis Gabor, a British physicist suggested expanding a signal into a set of functions that are 

concentrated in both the time and frequency domains and then use the coefficients as the 

description of the signal’s local property [3]. For signal )(ts , the Gabor expansion is defined 

as  

 
∑ ∑
∞

−∞=

∞

−∞=

=
m n

nmnm thCts )()( ,,  (8)

where nmC ,  are called the Gabor coefficients.  
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The set of elementary functions )(, th nm consists of a time- and frequency-shifted function 

h(t), i.e. 

 tjn
nm emTthth Ω−= )()(,  (9)

A function’s time and frequency properties are not independent i.e. we can’t find a function 

that has arbitrarily short time duration and narrow frequency bandwidth at the same time. 

Similarly, if a function has short time duration, its frequency bandwidth must be wide, or 

vice versa. From the uncertainty principle point of view, it is the Gaussian type signal such as   

 







−






= 24

1

2
exp)( ttg α

π
α  (10)

that achieves the optimal joint time-frequency concentration. The balance of the time and 

frequency concentration is controlled by the parameter α. The smaller the value of α, the 

narrower the frequency bandwidth (longer time duration) and vice-versa. Hence, Gabor 

selected the Gaussian-type signal g(t) as the elementary function .The product of TΩ 

determines the density of the sampling grid. The smaller the product, the denser the 

sampling. The necessary condition for the existence of the Gabor expansion is that the 

sampling cell TΩ must be small enough to satisfy 

 π2≤ΩT  (11)

When the product π2=ΩT , it is considered critical sampling and gives the most compact 

representation. When π2<ΩT , it is considered to be oversampling.  
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The continuous-time inverse STFT is a highly redundant expansion. In applications, for a 

compact representation, we usually use sampled STFT. However, the imprudent choice of 

analysis function )(tγ  and sampling steps, T and Ω, may lead to the sampled STFT being 

non-invertible. With the help of the Gabor expansion, we overcome the problem of inverse of 

sampled STFT. To characterize the signal’s  behavior in the time and frequency domains 

simultaneously, the elementary functions need to be localized in both time and frequency 

domains and if the set of elementary Gabor functions )}({ , th nm is complete, then there will be 

a dual function )(tγ  such that we can rewrite equation (7) in the inner product form to 

compute the Gabor coefficients as 

 ∫ ∫ Ω−−== dttjnmTttsdtttsC nmnm }exp{)()()()( **
,, γγ  

                     = ),( ΩnmTSTFT  
(12)

Equations (8) and (12) form a pair of Gabor expansions and indicate that the STFT is, in fact, 

the Gabor coefficient. Conversely, the Gabor expansion can be thought of as the inverse of 

the STFT. Thus, for a given time function s(t) and analysis window function )(tγ , we are 

always able to find the joint time-frequency function nmC , . At critical sampling, the set of 

)}({ , th nm is linearly independent and we say that )(tγ and h(t) are biorthogonal to each other. 

For oversampling, the set of )}({ , th nm is linearly dependant.  It becomes difficult to compute 

the dual function )(tγ  for a given h(t). This led to the development of the Discrete Gabor 

Expansion, which will be explained in detail below. 
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3.2.2.1 Discrete Gabor Expansion  

The Gabor Expansion for discrete samples is derived by applying the sampling theorem and 

Poisson-sum formula as 
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where ∆M denotes the discrete time sampling interval. N indicates the number of frequency 

channels. The ratio N/∆M is considered as the oversampling rate. For a stable reconstruction, 

the oversampling rate must be more than or equal to one. Usually, we require that L is evenly 

divisible by N and ∆M. The number of frequency bins N is a power of two. When the signal 

length is equal to the length of h[i] and ][iγ , the solution of ][iγ almost always exists!  

3.2.2.2 Orthogonal-Like Gabor Expansion 

For the case of critical sampling )( MN ∆= , the solution of ][iγ and hence nmC ,  is unique. 

The Gabor coefficients nmC , are the sampled short-time Fourier transform with the window 

function ][iγ . This means that the window function has to be localized in the joint time-

frequency domain. Otherwise, the Gabor coefficients nmC , , inner product of ][is  & ][iγ , 

would not characterize the signal’s local behavior. Because the Gabor elementary function 
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h[i] tends to be optimally concentrated, an optimal value for the analysis window function is 

chosen which minimizes the least square error as given by the relation  

 2

min
−

−

−

− hondualrelati

γ

γ  (15)

The difference between h[i] and ][ioptγ  is inversely proportional to the sampling rate. As the 

oversampling rate increases, ][ioptγ becomes closer to h[i]. In this case, the Gabor 

coefficients nmC , are indeed the orthogonal projection on{ }][, ih nm . For the orthogonal-like 

Gabor expansion, the Gabor coefficients nmC , will well characterize the signal’s behavior in 

the vicinity of ],[ nMm∆  as long as ][, ih nm  is concentrated in ],[ nMm∆ .  

 

Thus, we find that although Gabor did not investigate the inverse of the STFT, the Gabor 

expansion turns out to the most elegant algorithm of computing the inverse of a sampled 

STFT. The discrete Gabor expansion can be easily implemented with the help of elementary 

linear algebra. The orthogonal-type expansion is not only fundamental for time-frequency 

analysis but is particularly useful in time-variant filtering which will be discussed in later 

sections. 
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3.2.3 The Continuous Wavelet Transform (CWT) 

The continuous wavelet transform was developed as an alternative approach to the short-time 

Fourier transform because the spectrogram is limited in resolution by the extent of the sliding 

window function. The wavelet analysis is done in a similar way to the STFT analysis, the 

signal is multiplied with a function (i.e. the wavelet), similar to the window function in the 

STFT, and the transform is computed separately for different segments of the time-domain 

signal. However, there are two main differences between the STFT and the CWT: 

1. The Fourier transforms of the windowed signals are not taken, and therefore single 

peak will be seen corresponding to a sinusoid, i.e., negative frequencies are not 

computed. 

2. The width of the window is changed as the transform is computed for every single 

spectral component, which is the most significant characteristic of the wavelet 

transform. 

 

The continuous wavelet transform is defined as follows 

 
∫ 
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where ψ(t) denotes the mother wavelet. The parameter s represents the scale index that is the 

reciprocal of frequency and the parameter τ indicates the time shifting (or translation). High 

scales (low frequencies) correspond to the global information of a signal that usually spans 

the entire signal, whereas low scales (high frequencies) correspond to detailed information of 

a hidden pattern in the signal that usually lasts for a relatively shorter time. In the two 
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dimensional case, the filtering is applied along each axis separately, thereby isolating the 

high and low frequency data in both dimensions. By using multiple scales, both the small-

scale and large-scale details can be clearly represented and located, localizing the signal 

aspects in both time (or space, in this case) and frequency. An oft-used analogy is that the 

‘wavelet transform enables a person to see both the forest (the large scale) and the trees (the 

small scale)’.  

3.2.3.1 Wavelet Denoising 

The wavelet transform has come to prominence in recent years because of its flexibility and 

usefulness in a wide variety of applications, such as compression, signal analysis, and the 

primary being wavelet denoising. In denoising, the wavelet coefficients at each scale are 

analyzed and altered to remove noise and, in some cases, enhance the signal. The theoretical 

basis for this wavelet denoising is the principle of noise decorrelation wherein the energy in a 

given signal is compressed into a few coefficients in the wavelet domain while the white 

noise remains equally distributed throughout the coefficients. The coefficients are then 

thresholded, that is, the coefficients with amplitudes below a certain threshold are set to zero, 

while the larger coefficients are either uniformly reduced, as in soft thresholding, or are left 

the same, as in hard thresholding. The inverse wavelet transform is then applied to return the 

signal to the original domain.  

 

One way of understanding the seemingly contradictory goals of denoising without image 

blurring is that high-frequency, low-amplitude data in a signal is usually noise, or at least can 
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be removed without affecting the information conveyed by signal or image noticeably, but 

high-frequency, high-amplitude data usually is an important part of the signal, such as the 

edge of an object. Low-frequency data, at whatever intensity, does not usually contain noise, 

so the highest scale data, representing general trends in the signal, is typically not 

thresholded. The comparison of wavelet denoising and the time-variant filtering techniques 

are presented in Chapter 4 and the results are summarized for radar data.  

3.3 Bilinear Time-Frequency Transforms 

The signal’s energy distribution in the joint time-frequency domain is represented by the 

time-dependant power spectrum. It is given by the Fourier transform of the time-dependant 

auto-correlation function ),( τtR , with respect to variable τ i.e. 

 ∫ −= τωττω djtRtP }exp{),(),(  (17)

The most popular time-dependant power spectrum is the STFT spectrogram, which is the 

square of the short-time Fourier transform. The main problem of this spectrogram is that it 

suffers from the window effect wherein the width of )(tγ governs the resulting time and 

frequency resolutions. This concept is discussed with illustrations for radar beat signals in  

Chapter 4.The distributions derived from the power spectrum are termed as quadratic (or 

bilinear) time-frequency distributions. In this section, we shall discuss two such time-

frequency transforms, the WVD and Cohen’s class of distributions. 
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3.3.1 The Wigner-Ville Distribution (WVD) 

The WVD was originally developed in the area of quantum mechanics and then introduced 

for signal analysis by a French Scientist Ville. In the WVD, the time-dependant auto-

correlation is given by 
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Substituting the above time-dependant auto-correlation into (17) yields 

 
∫ −
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Equation (19) is usually called the auto-WVD. Accordingly, the cross-WVD is defined as  

 
∫ −






 −
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22
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,  (20)

where s(t) and g(t) denote two different signals.  

The important properties of the WVD are: 

1. The WVD of any signal is always real. 

2. Satisfies the time marginal & frequency marginal condition i.e. by summing the time-

frequency distributions over all frequencies, we obtain the instantaneous energy of the 

signal at a particular instance and by summing the time-frequency distributions over 

all time, we obtain the power spectrum of the signal at a particular frequency. 

3. The mean frequency computed from the WVD is equal to the derivative of the phase 

i.e. the signal’s average instantaneous frequency  
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4. Energy of the WVD is the same as the energy content in the signal i.e., 
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As a result of this property, the WVD is often thought as a signal’s energy distribution in the 

joint time-frequency domain. The STFT spectrogram possesses neither of the properties (3) 

or (4). Compared to the STFT spectrogram, the WVD has much better time and frequency 

resolutions. Measurements are taken by testing with beat signal of radar and results are 

provided in Chapter 4. 

 

The main problem of the WVD is the cross-term interference i.e., the WVD of the sum of 

two signals is not the sum of their WVD’s. If 21 sss += , it can be shown that 

 )},(Re{2),(),(),(
211 2 ωωωω tWVDtWVDtWVDtWVD ssssS ++=  (22)

where the last term is the cross-WVD of s1 and s2 given by 
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Because this term reflects the correlation of two signal components, it is named the cross-

term. As a result, if a signal contains more than one component in the joint time-frequency 

plane, its WVD will contain cross-terms that occur halfway between each pair of auto terms. 

The magnitude of these oscillatory cross terms can be twice as large as the auto terms. It is 

the cross-term interference that prevents the WVD from being used for real applications, 

though it possesses many desirable properties for signal analysis.  
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In the ensuing sections, we will discuss two alternative methods, the Cohen’s class and the 

Gabor spectrogram. While the Cohen’s class can be thought of as 2D linear filtering of the 

WVD that comprises the Smoothed Pseudo-WVD and Choi-Williams distribution, the Gabor 

spectrogram is a truncated WVD.  

3.3.2 Cohen’s Class of distributions  

The Cohen’s class of time-frequency distributions consists of a general class of bilinear 

distributions apart from the WVD. In the subsequent sub-sections, the general form of 

Cohen’s class is discussed followed by specific distributions for reducing the cross-term 

interference problem in the WVD. It is defined as  
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The Fourier transform of ),( µφ t , denoted as ),( µtΦ is called the kernel function. It can be 

easily seen that if 1),( =Φ µt , then )(),( tt δµφ = and (24) reduces to the WVD defined in 

(19). Therefore, the WVD is a member of the Cohen’s class. Other types of kernel functions 

can be designed to reduce the cross-term interference problem of the WVD. The prominent 

members of Cohen’s class include the STFT-based spectrogram, the Choi-Williams 

distribution [13], the cone-shaped distribution [14] and the adaptive kernel representation 

[15].  
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3.3.2.1 Smoothed Pseudo-WVD 

The definition of WVD (19) requires the knowledge of the quantity  

 )2/()2/(),( * τττ −+= tststqs  (25)

which is difficult to be determined. So, we replace ),( τtqs  in (25) by a windowed version of 

it, leading to the new distribution  
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where h(t) is a regular window. This distribution is called the pseudo Wigner-Ville 

distribution. This windowing operation is equivalent to a frequency smoothing of the WVD 

since 

 
∫
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−= ξξξυυ dtWHtPWVD ss ),()(),(  (27)

where H(υ) is the Fourier transform of h(t). Thus, because of their oscillating nature, the 

interferences will be attenuated in the pseudo-WVD compared to the WVD. The drawback 

with this kind of smoothing function is that it is controlled only by the short-time 

window )(th ; so we add a degree of freedom by considering a separable smoothing function  

 )()(),( υυ −=Π Htgt  (28)

The tradeoff between time and frequency spread that spectrogram suffers from, is removed 

by the SPWVD, which allows a progressive and independent control, in both time and 

frequency, of the smoothing applied to the WVD.  
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The obtained distribution is  
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The SPWVD is defined by a separable smoothing kernel )()(),( fHtgftT =Ψ  where g and h 

are two even windows with 1)0()0( == Gh . 

3.3.2.2 Choi-Williams Distribution  

Choi and Williams [13] developed the theory of interference distributions and the ideas that 

allow one to design kernels to accomplish reduced interference in time-frequency 

distributions. They introduced the exponential kernel defined by 
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where σ is a parameter. It is a product kernel and 1)0,(),0( =Φ=Φ ϑτ , which shows that both 

marginals are satisfied. Furthermore, this shows that it also satisfies the instantaneous 

frequency and group delay properties. The exponential kernel will suppress the cross-terms 

created by the two functions that have both different time and frequency centers. The 

parameter σ controls the decay speed, and as σ decreases the interference is reduced. On the 

other hand, when ∞→σ , we obtain the WVD. So, we have a tradeoff in selecting the 

parameter value σ. The corresponding distribution is given by,  

∫ ∫ −
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The kernel function is essentially a low pass filter in the (υ,τ) plane. It preserves all cross-

terms that are on the υ-axis and τ-axis. As a result, the CWD usually contains strong 

horizontal and vertical ripples in the time-frequency plane. The horizontal ripples are caused 

by the auto-terms that have the same frequency center; the vertical ripples correspond to the 

auto-terms that have the same time center. The CWD preserves the property of the WVD 

while reducing cross-term interference. 

3.3.2.3  Gabor Spectrogram 

The Gabor expansion can be used to separate a signal’s components in time and frequency as 

introduced in the previous sections. We first expand the signal into 
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and then take the WVD on both sides to obtain 

 
∑ ∑ ∑ ∑
∞

−∞=

∞

−∞=

∞

−∞=

∞

∞=

=
m n m n

hhnmnm tWVDCCtWVD
' '

''' ),(),(
,

*
,, ωω  (33)

where ),(', ωtWVD hh denotes the WVD of two time- and frequency shifted Gaussian 

functions. It can be shown that the energy of ),(', ωtWVD hh is inversely proportional to the 

rate of oscillation. Based on the closeness of )(, th nm and )('' , th nm  in the time and frequency 

domains, we rewrite (33) as  

 ∑
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which is known as the Gabor spectrogram(GS), because it is a Gabor expansion-based-

spectrogram. The parameter D in (34) denotes the order of GS. When D = 0, the GS only 

contains those terms in which m=m’ and n=n’ i.e., we consider the correlation of two 

identical components. As the order D increases, increasingly more less-correlated 

components are included. When D goes to infinity, the GS converges to the WVD.   

3.4 Time-Variant Filter 

An important application of joint time-frequency (TF) representation is in the detection and 

estimation of noise-corrupted signals. In the joint time-frequency domain, the signal-to-noise 

ratio is substantially improved since signal energy is concentrated in a small region compared 

to random noise that is spread throughout the region. The time-variant filter can be formed 

based on both linear and bilinear time-frequency representations with the former having 

better reconstruction structures. Hence, the Gabor expansion-based time-variant filter 

assumes significance. The problems associated with designing this filter is that for a given 

modified time-frequency representation, there may be no physically existing signal that 

corresponds to it. To overcome this problem, we have two techniques that are discussed 

below:  

3.4.1 Least Square Error (LSE) filter  

The procedure of the LSE filter is first to take the Gabor transform
p

sG , where 
p

s denotes the 

noise-corrupted signal vector and G the Gabor coefficients vector. Then, we mask the desired 

signal portion from the background noise to obtain noiseless Gabor coefficients  
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 p

sGc Φ=
^

 (35)

where Φ  denotes a mask vector (diagonal matrix) whose diagonal elements are either one or 

zero. Taking the Gabor expansion to compute the noise-reduced time waveform we have  

 p

sGHx Φ=
^

 (36)

where H is a synthesis matrix vector. H and G do not satisfy the dual relation except for 

critical sampling. Hence, the modified Gabor coefficients do not correspond to physically 

existing time function i.e. 

 ^^
cxG ≠  (37)

The common approach is the LSE method, which finds the signal in the time-domain that 

minimizes the distance between signal’s TF transform and the desired ones, i.e. 

 2^^
min xGc−=∆     (38) 

The solution of (38) is given by the pseudoinverse of G, that is, 

 ^
1)( xGGG TT

opt
−=∆  (39)

The problem with the LSE filter is the computation of pseudoinverse, which is complicated 

in case of large number of samples. A more efficient algorithm is the iterative algorithm, 

which is described below. 
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3.4.2 Iterative Time-Variant Filter 

The iterative time-frequency synthesis algorithm [8] was developed in the discrete Gabor 

transform domain [7]. It is proved that under the condition the algorithm converges to a 

signal that has its Gabor transform located exactly in a desired domain specified by the user 

in the TF plane. In the discrete Gabor transform domain, an L dimensional signal is 

transformed into an MN dimensional signal C and MN is greater than L due to oversampling. 

Therefore, only small sets of MN dimensional signals in the TF plane have their 

corresponding time waveforms with length L. Thus, 

 sGC LMN×= and CHs MNL×=  (40)

where G denotes the discrete Gabor transform (DGT) and H denotes the inverse- DGT. Let 

MNMND × denote the mask diagonal matrix. The iterative algorithm is given as follows: 
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The advantage with this kind of filtering is that, we need not compute inverse of matrices. 

Under the sufficient condition for iteration [16], 

¾ The DGT of the limit 
^
s  of iterative algorithm falls in the mask MNMND ×  

¾ The result of the first iteration 1s is equivalent to ∆  computed by LSE method. 
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CHAPTER 4 

4 Measurements & Results 

4.1 Ideal Simulations 

The time-frequency techniques are tested first with ideal cases such as sum of two frequency 

tones and chirp signals. Two cosine signals of different frequencies and amplitudes are 

generated at different instances of time. 
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The sums of both the cosine signals are taken and the time-frequency transform viz. SPWVD 

is applied to it. Figure 6 illustrates the sum of two frequency tones wherein the top plot is 

time waveform with the first signal varying from 0-2 msec and the second signal from 2.5-

4.5 msec, the left plot is the traditional power spectrum which shows two peaks at 50 KHz 

and 150 KHz. The middle plot is the desired time-dependant spectrum computed by the 

Smoothed pseudo Wigner-ville distribution (described in Section 3.3.2.1). The conventional 

power spectrum indicates that there are two different frequency tones, but it is not clear when 

these frequency tones occur. The time-dependant spectrum not only shows the two frequency 

tones at 50 KHz and 150 KHz, but also tells when they take place. The image frequencies are 
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shown at )2/(&)2/( 21 ffff ss −− i.e. 200 KHz and 100 KHz respectively. The differences 

in amplitudes are also indicated by the respective colormap scales of the frequency tones. 

 
Figure 6: Time-frequency spectrum showing sum of two different frequency tones 

 

 

Now, the time-frequency transform is tested against a linear chirp signal with a starting 

frequency of 50 KHz and bandwidth of 150 KHz. It is represented as follows: 
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(43)
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Figure 7: Time-frequency spectrum showing linear chirp signal 

 

Figure 7 shown above depicts the time-dependant spectrum viz. SPWVD applied to a linear 

swept-frequency signal. The time signal is maximized to show the chirp and the energy 

spectrum shows the positive spectrogram varying between 50 KHz and 200 KHz. The time-

frequency spectrum is expressed in logarithmic scale with a threshold level of 1%. It shows a 

linear signal varying in time for the full duration of 5msec (T) as well as showing the 

frequency variation in the given bandwidth. The image frequency is shown as another chirp 

from 300-450 KHz. 
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The two cases discussed above suggested the validity of the time-frequency transform against 

ideal cases of a cosine and chirp signal. In the forthcoming sections, the radar beat signal will 

be tested against different time-frequency techniques and their advantages/disadvantages are 

discussed. 

4.2 Sea-ice radar experimental data 

The sea-ice (FMCW) radar described in Chapter 2 was used to obtain experimental data set 

from field experiments which were conducted in Barrow, Alaska in May 2003. The measured 

sea-ice thickness will be compared with the depth from the radar calculated from signal 

processing experiments. The following graph shows some preliminary ice thickness transects 

from the EM-31 and drilling measurements taken from Transect3: 220m, sub-perpendicular 

to shore beginning opposite to BASC ~1 km from beach.  

 
 

Figure 8: Transect 3 showing the measured sea-ice thickness depth 
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Here, the file traverse2.bin is used with particular reference to Ascope-60 which is at a 

distance of 0-20 m from the first point as shown in the above graph. Figure 9 shows the 

Fourier spectrum of radar range profile: 

 
Figure 9: Fourier spectrum of Ascope-60 in traverse2.bin 

 

The antenna feed through is same as the Top of range profile since antenna is kept directly on 

top of ice. The antenna feedthrough is at a distance of 3.45m given by the maximum 

amplitude peak. The Fourier spectrum suggests that the ice-bottom is present at a distance of 

7.35m that will be investigated further by the time-dependant spectrum to distinguish the 

layers clearly from the noise signals and multiples. These distance calculations are calculated 

from Equation (2) and it is assumed that speed of light is 3/c  where c is the free space 

velocity of light. 
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4.3 Time-frequency Distribution techniques 

4.3.1 How does TFD distinguish the surface return from noise?  

The time-dependant spectrum expresses the variation of the radar beat signal at different 

instances of time for a given frequency, the frequency expressed as a function of distance or 

range. If the signal is present for the entire duration of the time interval at a given frequency, 

a definite surface return (Top or bottom) is said to be present at the aforementioned location. 

If the signal is not present for the entire time-duration, it is assumed to be either a noise 

signal or a multiple layer. The time-frequency distribution does not distinguish between the 

noise & multiple returns. Any signal apart from the top or bottom return is considered to be 

noise.  

4.3.2 Short-time Fourier transform 

This technique is a linear transform which is a windowed version of the Fourier transform as 

described in Section 3.2.1 which depicts the behavior of the signal as the block of window 

moves along the signal. Figure 10 shows the STFT spectrogram when a narrow window of 

128 points is used. The spectrum below has a good time resolution with high resolution peaks 

well separated from each other in time viz. 2.2, 2.4 and 2.7msec. But, the drawback is that 

the frequency resolution is really bad with every peak covering a range of frequencies instead 

of a single frequency. 
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Figure 10: STFT spectrogram with narrow window 

When we use a wide window, we get the results shown in Figure 11, it has a good frequency 

resolution with high resolution peaks at the respective positions comparing to the peaks in the 

energy spectrum, but the time-resolution has been completely lost compared to that shown in 

Figure 10. We cannot precisely determine the position of the layers because of loss in 

resolution in time-scale. Although the STFT-based spectrogram is simple and easily 

implemented, it has been found inadequate for the applications where both high time and 

frequency resolutions are required. Thus, we can summarize this technique as: if we choose a 

short window h, the smoothing window function will be narrow in time and wide in 

frequency, leading to a good time resolution but bad frequency resolution; and vice-versa. 
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Figure 11: STFT spectrogram with wider window 

This necessitates the need for a technique which has both good time & frequency resolution. 

The bilinear transforms which were described in Chapter 3 exhibit good resolutions. This 

helps to determine the layer returns at the exact locations. This will help to find out the 

measured depth from the radar and compare it with the measured results got from field 

experiments. 

4.3.3 Wigner-Ville Distribution 

This is a bilinear transform which characterizes a signal’s properties better than the STFT-

based spectrogram in the joint time-frequency domain as explained in Section 3.3.1.  There is 

no window effect involved here. 
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Figure 12: WVD of chirp signal showing surface return layers and interference terms  

 

The top of the range profile is shown at a distance of around 3.5m in the power spectrum and 

we find a signal varying in all instances of time at that particular frequency in the Wigner-

ville distribution with a very high colormap. Thus, we can conclude that this layer indeed is 

the antenna feed through. We also observe a signal around 7.5m that is present almost for the 

entire signal duration. This signal in the energy spectrum is around 6dB lower than the 

maximum amplitude peak which is also observed via the colormap time-dependant spectrum 

where yellow is around 6dB lower than the maximum color amplitude. The other layers are 

scattered around and in lower amplitudes of the colormap, thus they are classified as noise 

signals or multiples. However, there are cross-term interference components generated  

in-between the surface returns. The interference geometry suggests that two points of the 

time-frequency plane interfere to create a contribution on a third point which is located at 
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their geometrical midpoint. Besides, these interference terms oscillate perpendicularly to the 

line joining the two points interfering, with a frequency proportional to the distance between 

these two points. These cross-term interference effects can be removed by applying 

corresponding windows and smoothing distributions, which will be illustrated in the ensuing 

sections. In time-scale too, we observe respective peaks at the exact time instances shown in 

the plot above indicating that the WVD exhibits the best time-frequency resolution.  

 

 

 

 

 

 

 

Figure 13 : WVD satisfying the marginal conditions  

Figure 13 shows the WVD satisfying the marginal conditions. The blue plot shows the 

energy spectral density of a particular Ascope of range profile. The red plot shows the sum of  

TFR along the time axis, we see that we get back the power spectrum of the signal at a 

particular frequency. This proves that the WVD offers the best performance with the energy 

distribution optimally concentrated in the joint time-frequency domain.
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4.3.4 Smoothed Pseudo WVD  

 
Figure 14: SPWVD of chirp signal with larger frequency window 

The SPWVD overcomes the highly oscillatory cross-term effects of the Wigner-ville 

distribution by applying a low-pass filter; g and H which determine time and frequency 

smoothing independently. There is a compromise between the joint time-frequency 

resolution and the level of interference terms: the more we smooth in time and/or frequency, 

the poorer the resolution in time and/or frequency. In Figure 14, we have used a larger 

frequency smoothing window compared to the time smoothing window leading to a loss in 

frequency resolution compared to WVD in Figure 12. But, there is a considerable 
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improvement in the suppression of interference terms. The surface return layers are clearly 

visible, confirming the presence of these layers. 

4.3.5  Choi-Williams Distribution  

This technique is one of the prominent members of Cohen’s class of time-frequency 

distributions which employs the use of weighting functions (or smoothing kernel functions) 

to reduce the cross-term interference as explained in Section 3.3.2.2 

 
Figure 15: CWD of chirp signal with sigma=0.01  

 

We will consider different cases where the size of kernel is varied. Let us consider initially 

the case where 01.0=σ as in Figure 14. Here, the cross-terms diminish in size, width of the 

auto-term (i.e. signal) component spreads which enables the surface return layers to be 

distinguished easily; but there is a loss in resolution.  
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Figure 16: CWD of chirp signal with sigma=100 

Now, when the scaling factor is increased and it approaches ∞, the CWD approaches the 

Wigner transform as the kernel becomes almost constant. This can be seen from Figure 16 

where the interference terms between the layers becomes more prominent, distribution 

approaches the WVD as in Figure 12. The frequency & time resolution also become 

comparable to that of WVD. 

 

4.3.6 Time-variant Filtering  

The joint time-frequency distribution can be used for time-variant filtering of noisy signals as 

explained in Section 3.4. The Discrete Gabor transform is used for filtering in the time-

frequency domain. Here, the radar beat signal is investigated for noise removal and to 

strengthen the signals of surface return. But, the problem encountered here is that the Gabor 
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transform which is used for filtering works well for moving target radars and does not 

possess enough frequency resolution to distinguish the surface returns clearly. Hence, this 

technique of time-variant filtering will not be suitable for sea-ice radar signal. 

 

A suitable alternative to this time-variant filtering for removal of noise is the use of ‘wavelet 

transform’. This technique is currently being used for noise removal in ‘depth sounder radar’ 

in RSL and is being found very effective. So, this can also be investigated for FMCW radars 

in the future. Figure 17 shows the radar echogram of the noisy signal which plots the number 

of A-scopes against the distance. 

 

 

Figure 17: Echogram of noisy signal 
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The effects of noise removal for sea-ice radar include the echogram of denoised signal which 

is shown in Figure 18. Since the signal is quite clean, there is not much improvement in the 

SNR of denoised signal (there is only an increase of 1.4dB). But, this can definitely be 

investigated further to achieve better results by considering the appropriate mother wavelet 

for the particular radar and performing related signal processing. These will be discussed in 

detail in the recommendations for future work. 

 

 

Figure 18: Echogram of denoised signal 
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CHAPTER 5 

5 CONCLUSION & RECOMMENDATIONS 

This project involved in providing an overview of the concepts and methods of joint time-

frequency analysis and their application in FMCW radars. The major tools of time-frequency 

analysis are the inner product and expansion, similar to the Fourier transform. The highlights 

of the project include the following: 

� Comparison between Fourier analysis and joint time-frequency analysis was provided 

and it was found that time-dependant spectra is a powerful tool for understanding the 

nature of those signals whose power spectra changes with time with particular 

reference to radar signals. 

� The effect of time-frequency analysis was investigated for FMCW radars for 

determining the range profile and to distinguish the surface return layers from noise 

and multiple returns. Here, a brief description about the sea-ice radar designed in 

RSL, University of Kansas is mentioned and simulation results were validated against 

measured field test results.  

� The joint time-frequency algorithms fall into two categories: linear and quadratic. 

While the STFT and Gabor expansion maps a signal between the time domain and the 

time-frequency domain, the bilinear transforms are more powerful and useful for real-

time applications. 
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� The WVD gives the best resolution (in time and in frequency), but presents the most 

important interferences, whereas the STFT spectrogram gives the worst resolutions, 

but with nearly no interferences; the smoothed-pseudo WVD allows choosing the best 

compromise between these two extremes. The CWD is one of Cohen’s class of 

distribution which is based on the smoothing kernel and approaches the WVD as 

scaling parameter increases. 

� The different time-frequency distributions are first tested against ideal simulations of 

cosine and chirp signals. Then, the experimental radar beat signal is used for testing 

the different techniques. The Top and ice-bottom surface layers were clearly visible at 

the measured frequency for all instances of time confirming to the presence of a 

definite layer at that distance. The results from simulations i.e. depth from radar 

closely matched that of measured depth. 

� Time – variant filtering procedures were investigated using discrete Gabor transform 

and it was not found suitable for these radar signals as it lacked a good frequency 

resolution to distinguish the surface returns clearly and was more suitable for moving 

targets. 
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Here are some useful recommendations for future work: 

� Wavelet analysis is being used prominently for other types of radars such as 

‘depth sounder’ and its use can be investigated for future use with FMCW radars. 

� Time –variant filtering can be attempted for other radar signals and particularly 

for those with moving targets 

� The applications of JTFA can also be analyzed in detail for speech & music signal 

processing 
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