SPARTACAS — Automating Component
Adaptation for Reuse

Brandon Morel

Master’s Thesis Defense

University of Kansas
September 12, 2003

Committee:

Dr. Perry Alexander (Chair)
Dr. Susan Gauch

Dr. Costas Tsatsoulis

| ntroduction

e Reuseisasound/practical design technique
« Software engineering slow to embrace reuse
* Benefits

— Reduce errors
— Increase productivity of engineers
— Increase reliability/quality of software

e Costs
— Effort to create/maintain library of components
— Effort to search for components
— Effort to adapt partial matches

Problem and Solution

* Problems
— How to adapt software?
— Can adaptation be automated?

— Will the framework be effective?
o Solution: SPARTACAS
e QOutline
— Specification-level representation
— Adaptation framework

Formal Specifications

 Prior success at the specification-level

o Specification formally describe the functionality
without implementation details

e DRIO specification models
— Domain —typed input parameters
— Range — typed output parameters
— Input condition — pre-conditions defining legal inputs
— Output condition — post-conditions defining valid
outputs for legal inputs
— 1(d) O O(d, r)

Background-Retrieval Methods

e Feature-based Retrieval

— Component/problem assigned domain-specific features
— Maitching is based on a similarity threshold

— Necessary condition

o Signature-based Retrieval
— Syntactic matching of input and output ports
— Involves currying, type coercion
» Specification-based Retrieval
— Prove logical relationship between components
— Match lattice used to determine degree of satisfaction

Background-Component Architectures

e Architectureis acollection of interconnected
components

 Architecture theory

— Parameterized specification
— Specifies the configuration of sub-componentsin the
composition of a system
— Specifies the relationship between functionality of the
system, sub-components
e To solve aproblem, instantiate the theory with the
problem as the system, components (other
architectures) as the sub-components

SPARTACAS Framework

Sub-problems
Problem REIEYE Adaptation
specification e

matching

components RLept &

solutions

Component 1 Verification
Library

Solutions

Retrieval Framework

Exact/partial
matching
components

Similar
components

Similar
components

Problem
specification

Feature-based
Retrieva Engine

Signature-based
Retrieval Engine

-Classify spec. with
features

-Retrieval = feature
matching
-Necessary condition

Specification-
based Retrieval
Engine

-Port mapping

-May require signature
re-ordering, etc

-Necessary condition

-Proof of logical
relationship

-Determines degree of
match

-Time intensive

Plug-in Post

O. 0 O,

Weak Post
I 0O O Op

Plug-in Pre
10 I

Port Connection Methods

 Bijective Port Connection
— One-to-one and onto mapping
— Component must have equal number of ports

— Factorial number of port combinations

L ess Restrictive PCMs

e One-to-one Port Connection

— Component can have fewer ports than the problem
— Binomial number of port combinations

e Onto Port Connection

— Component can have more ports than the problem
— Exponential number of port combinations

| .

Adaptation Framework

Architecture

Theories
Exact/partial N
matching Missing Sub-

functionalit
components Adaptati on unctionality Sub-Problem problem
Evaluation Synthesis

Problem
specification Architecture
(sub)contract

Architectural Potential
- Fcnitectur .
Architecture olufion solution

Bin Generation

Specification-
Classification 2EEEL

Feature-base

Verification Verification

Seguential Architecture Theory

Sequenti al Architecture Theory
BEG N
/'l Problem and conponents
Problem(D, R I, O
Conponent ,(D,, Ry, | o, O)

Conponent ;(Dg, Rg, | g0 Q)
/| Port constraints A O, | g G

drConstraintl: D O D,
dr Constraint2: R, O D, Corponent , Conmponent g
drConstraint3: R, O R

[/ Behavioral constraints
behConstraintl: Od:Dj I (d) Ol ,(d)
behConstraint2: [Od: D, X: D
| (d) 0O\(d, x) O1 5(x)
behConstraint3: 0Od:D, y:R, r:R
| (d) D0,(d, y) DOy, r)0Q(d,)

END Sequenti al Architecture Theory

Pr obl em P

Alternative Architecture Theory

Al ternative Architecture Theory
BEG N
/1 Probl em and conponents
Problem{D, R |, O
Component ,(D,, Ry, | o, O)
Component ;(Dg, R, | 5, Oy) Conmponent ,

drConstraint3: R, O R
drConstraint4: R, O R

Conponent

| A O,
/] Port constraints -
drConstraintl: D O D, 4 | QG °
drConstraint2: D O Dy l

[/ Behavioral constraints Probl em P
behConstrai nt1l: [d: D|
(1(d) 01 ,(d))0C1(d)O1g(d))
behConstraint2: 0Od:D, r: R
(1 ,(d)00(d, r)0Q(d, r)) 01 4(d) 00(d, r)0Q(d, 1))

END Al ternative Architecture Theory

Parallel Architecture Theory

Paral l el Architecture Theory
BEG N

/'l Problem and conponents
Problem(D, R I, O

Conponent ,(D,, Ry, | 5, O)
Conponent ;(Dg, Rg, | g0 Q)

Conponent ,

drConstraintl: D O D, 0O D
drConstraint2: R,|| Ry OR Conponent

IA OA
/'l Port constraints | | 4 O

// Behavioral constraints Probl em P
behConstraintl: Od,0d,: D
| (d,0d,) 01 ,(dy) O 5(dy)
behConstraint2: Od,0d,:D, r||r,:R]|
| (d,0d,) 0O,(d,, ry) 0O(d,, r,) OO(d,Od,, r || r,)

END Parall el Architecture Theory

Post-match Sequential Adaptation

» Componentg produces
the required results
for some set of Inputs

Tactic: find

* Component, that

modifies all inputsto

Pr obl em P

allow Component; to
execute for all legal
Inputs

Problem{D, R |, O

Component 4(Dg, Ry, | 5 Oy)

Pr obl em P1

Post-match Sequential Synthesis

e D=D Any output ports of the
problem not instantiated

Ry 0 {dOD| =CXOD, p(x) ~d} \/

Ld: D I (d) | istrue and O still
satisfies O

e O,=
D/a: D, X: Dg, y: {r UR| IXURg| p(X) -1},
rR 1 g(x) O(-Gy(x, y) IXd, r))

a: :real b: : real
pl nc

i ::real o::real a: :real b: : real
absVal pl nc

Pre-match Sequential Adaptation

e Component, accepts
the legal inputs, but
does not produce
valid outputs

Tactic; find

Component; that

Pr obl em P

modifies all outputs
such that they are
valid outputs

Pre-match Sequential Synthesis

+ Dg= R, 0 {dOD| ~[x0OD,| p(x) —d)

oRB:R

+ | 5= Od: {xOD| OyOD,| p(y) -},
z: Ry 1 (d)O\(d, z)

e Q= 0d:D, r: R Q(d,r)

Post-match Alternative Adaptation

e Component,
computes valid
outputs for some set
of inputs
Tactic: find
Component; that

| | computes valid

Pr obl em P outputs for the rest of
the inputs

N
\

)

/

(x<0) then (z'=((-1*x)+1)) else
"=(x+1)) end if

if (i__0<0) then
(o__0'=i__0)
el se

__1'=i__0) end

b’ =(a+1)

negat e

Pr obl em P1

Parallel Adaptation

» Bottom-up behavioral adaptation

— Find one component, build dynamic adaptation
architecture

e Top-down behavioral adaptation

— Decompose problem into architecture, find
components

» Parallel adaptation use slicing for the top-
down approach

Slicing Pseudo-Algorithm

. Pick arange variable as the criterion

. Select all post-conditions that
affect/affected by the criterion

. Select all pre-conditions that control the
execution of the post-conditions

. Add all range/domain variables
constrained

Find Example Preliminaries

Classic adaptation example

Goal Isto find arecord in alist of records given a
unigue key

Library contains no constructors, only observers
(e.q. firstRecord, sort, treeSearch)

Bijective port connection fails to find solution

Benefit of less restrictive port connection becomes
apparent

Evauation Metrics/Variables

e Evaluation metrics
— Precision
— Recdll

— Time-to-solution (TTS)

e Execution variables
— Search depth (number of components)
— Port connection methods

Precision and Recall Metrics

e Precision
— Relates the purity of the retrieval set
— # solutions retrieved/# results retrieved

e Recdl

— Relates the coverage of the solutions
— # solutions retrieved/# solutions that exist

 |nfinite solutions may exist
— Example: f, appliedto f -1,

— Either never stop searching or always stop with 0%
recall

Recall Definitions

e Recall,

— # groups retrieved/# groups that exist

— Group is defined as the containment of some combination (without
replacement) of components such that a solution exists

— Reduces influence of multiple/redundant configurations

» Recall,

— # groups retrieved/# groups that exist

— Group is defined as the containment of the smallest combination
(without replacement) of components such that a solution exists

— Reduces influence of architecture expansion

e Recdl,

— # solutions retrieved/# solutions that exist
— A solution has N components or less

Recall Illustration

#2 #3
) @ e el

Equation Solution Groups
Recall, Group {a}: #1
Group {b,c}: #2
Group {a, b, c}: #3
Recall, Group {a}: #1, #3
Group {b,c}: #2, #3
Recall, N =2: #1, #2

Evaluation Library and Queries

Four libraries
— 46 mathematical components
— 106 list manipulation components
— 33 record manipulation components
— 42 DSP components

103 queries, solved by:
— Single component architectures
1:N component architectures
N>1 component architectures
Infinite number of solutions
Multiple sub-architectures
Components from multiple libraries

Recall vs. Search Depth (1-1)

Recall vs Search Depth

o Recalll

Well distributed
components/arch

(1-6)

Most groups found
early, diminishing

—— Recall2
—— Recall3

S 10

Depth (components)

SR

\ returns

Fade dueto failed
proof strategieson
complex sub-
problems

Other Results

e Precision
— Between 98-100%
— No tradeoff with recall
» Formal methods for adaptation/retrieval
* Theorem-prover precision
e Time
— 92% spent on retrieval
— Most of that spent on “dead-ends’
— Hardware engineers will wait, will software engineers?

Future Work & Limitations

e Assumes shared-variable communication

— Include communication protocols as search
criteria

— Include connector specifications in the library
Only synthesizes three architectures
Limited by theorem-prover, search depth
Reduce TTS (retrieval limitation)

Ranking of partial solutions

Related Work

o Specification-based Retrieval
— Zaremski and Wing — developed match lattice,
retrieval engine for Larch/ML specifications

— Penix/Patil — developed REBOUND/SOCCER
retrieval engine, used feature-based
classification

— Fischer — designed NORA/HAMMR retrieval
engine, used alayered architecture, included
model checker

Related Work

« Component Adaptation

— Penix — Suggested using architectures for
pehavioral adaptation

— Purtilo and Atlee — created NIMBLE,
automated module interface adaptation

— Jeng and Cheng — identified necessary
modifications to reuse general components to
specific problems

Related Work

» Synthesis, Slicing, Architecting for Reuse

— Chen and Cheng — developed ARBIE, an
architecture-based reuse framework

— Zhao — applied dicing to ADL for reuse-of-the-
large

— Bhansali — created a hybrid approach to reuse
of geometrics, uses code-level reuse,

architectures, and semi-synthesis of code
fragments

Conclusions

Presented framework for specification-based
component retrieval and adaptation

Behavioral adaptation was automated using

architectures

Sequential, alternative, and parallel adaptation
Implemented to adapt partial matches

Provided sound definitions to synthesi ze sub-
problems to satisfy component adaptation

~94% recall, ~100% precision (tradeoffsfor TTS)
Questions

