Abstracting the Hardware /
Software Boundary through a
Standard System Support
Layer and Architecture

Erik Anderson
4 May 2007

Agenda

Publications and proposal review.
Problem background.

Abstracting HW/SW boundary.
Analysis, comparing HW and SW.
Results

Conclusions

Special Thanks to

David Andrews
Perry Alexander
Douglass Niehaus
Ron Sass

Yang Zhang

Jason Agron
Fabrice Baijot
Ed Komp
Andy Schmidt
Jim Stevens
Wesley Peck
Seth Warn

Academic Background

» Bachelor of Science in Computer
Science, University of Kentucky, 1993 -
1997, Magnha Cum Laude

 Doctoral Candidate in Electrical

Engineering, Kansas University, 2003 -
2007

Publications

“Enabling a Uniform Programming Model Across the
Software/Hardware Boundary,” FCCM 2006

“Supporting High Level Language Semantics within Hardware Resident
Threads,” submitted to FPL 2007

“Memory Hierarchy for MCSoPC Multithreaded Systems,” ERSA 2007

“Achieving Programming Model Abstractions for Reconfigurable
Computing,” Transactions on VLSI, to appear in 2007

“Hthreads: A Computational Model for Reconfigurable Devices,” FPL
2006

“The Case for High Level Programming Models for Reconfigurable
Computing,” ERSA 2006

“‘Run-time Services for Hybrid CPU/FPGA Systems on Chip,” RTSS
2006

Proposal Review

Proposed
Augment the HWTI

Extend support for key
subset of Hthread API.

Semantic and

implementation differences.

Hthread test suite.

Application suite.

Completed
Augmented HWTI with:

— User interface and protocol.

— Globally distributed local
memory.

— Function call stack.

Extended support for key
subset of Hthread API.

— Remote procedural calls.
Chapter 5 in dissertation

— Context similarities.
Hthread test suite.

— Abstractions held.
Application suite.

— Framework for HLL to HDL.

6

History of Reconfigurable
Computlng

1959: Gerald Estrin’s
Fixed plus Variable
Architecture.

1984: Xilinx is founded.

1993: Athana proposed
PRISM-I

2006: First 65nm FPGA
released.

Conference Papers
FCCM 2006 25
FPL 2006 30

IEEE Annals of History of Computing, Oct -
FPGA 2006 22 Dec 2002, page 5

Reconfigurable Computing
Technology

 Post-fabrication

circuit design. JF
« Embedded cores,

iiiiii

t 5
3

e RockatlD or RockatlO X
Latihy DCM Multi-Gigabit Transcaiver

Processor Block

memory, and rh-- - ’
multipliers. o) SN
CLB
' CLB||
5%
g3
& th
= =
=g CLB
[aid]
CLB
Configurable
oigic
.
SalactlO-Ultra

“Blessing and a Curse”

« FPGA's can take on Flynn’s Taxonomy
any computational
model post-
fabrication.

 But which one to
use?

Data Stream

Instruction Stream

Hardware Acceleration Model

« SISD or SIMD.

* Advantages:

— Can be successful.
— C to HDL tools.

» Disadvantages:

— Custom interfaces between
HW and SW. i

« Write once, run once. i
— Costly design-space '
eXploratlon CPU (Block A X Idle/Polling X Block C)

Time

— Does not use today’s MIMD e >
programming models.

|
|
|
|
|
|
|
|
|
|
|
|
A 4

10

Abstract Interfaces

» Parallel programming
models to abstract CPU
| FPGA interface.

« CPU and FPGA both
target an equivalent
abstract interface.

« OS / Middleware layer
provides
communication and
synchronization
mechanism.

CPU

API

API

FPGA
Core

CPU

API

OS / Middle-ware Layer

API

FPGA
Core

API

FPGA
Core

11

Thesis Statement

Programming model and high level language
constructs can be used to abstract the
existing hardware/software boundary that
currently exists between CPU and FPGA
components.

12

Extending the Shared Memory Multi-

Threaded Model to Hardware

*Pthreads programming

System

CPU

QW

CPU

<t

Memory

Pthread

P Library

‘\7 Application

Data

Conceptual

Memory

Pthread
‘"l Library

of
" |Application

e

Reality

13

Extending the Shared Memory Multi-
Threaded Model to Hardware

« Key Challenges

— HW access to API

library.

— HW access to
application data.

— Eliminate custom
interface to HW.

System

FPGA

CPU Memory

Pthread
é< -J--1-°[" Library
w| 7
5

| Application

ceru | Data
. LV

(][] &

14

Extending the Shared Memory Multi-
Threaded Model to Hardware

 Hthread’s Solutions

— Access to the same
communication
medium.

— Equal or equivalent
synchronization
services migrated to

HW.

— Standard system
support layer.

System

FPGA

HWTI
A

g4

HWTI
A

by

Hthread
Library

Thr. Mg

&
Sched.

Mut

o
> [o

]

x
Q . =
= B

T
‘

[¢)
a
<

Memory

Hthread
Wrapper

XV Vp

Application

<

Hybridthreads System

15

Hardware Thread Interface

« HWTI provides a standard register set for
communication and synchronization services.

hthreads system

thread id [status J [argumentJ [result J

system interface

hthread library
implementation

user interface

"\ N\

user level functionality

Creating a Meaningful
Abstraction

« Communication and synchronization
are solved.

* Problems persist:

— “scratchpad” memory:
* How to instantiate?
* How to maintain the shared memory model?

— System versus user function calls?
— Creating threads from hardware?

17

Globally Distributed Local

Memory

Dual ported BRAM.
“Globally Distributed” = All threads have access.

“Local” = User logic access is through LOAD and
STORE protocols.

: l IPIF | : [User State Machine
I N S i
E’I by :o:

|°:

I ® 1A

R :‘/ System State
$1: ---7 Machine
| I

terf)
,__ ~

|

Global Memory

Sl
m
ce
e ccccd oo =----
BEl2|B|F
w [[E ||& @
< |2 ||z RIS
= D | |=
5 | |® ||» 5 ||=
= a |l

18

Function Call Stack

 Abstract access to local E'H['a'r'd'‘wifh'r}iési:Jiié‘;iii;'iiiii:iiiiiii;':::::,:'::::::::::::i:i:iiii:i:i:i::i:::::;j11::::::::jé """"""
memory. e 3 o | =]

B
« Consistent function call / marl LA
model. e
— Recursion. Ll ety [S I w—
* WOFkS analoQOUSly tO Operation Clock Cycles
software based stack. PUSH ’
— Only difference, user POP >
: “ DECLARE 1
logic pushes “return
1 : READ 3
state” value instead of R 1
“return instruction.” ADDRESSOF 1
CALL 3
RETURN 7 19

Remote Procedural Calls

Some functions too
expensive to
implement in HWTI.

Utilize existing
synchronization
primitives to callout
to a special software
system thread to
perform function.

Hardware
Thread
RPC
Th d
HWTI \ bl
Shared Memory

' E.G
RPC
Struct

A: UL calls a function not supported by HWTI.
B: HWTI obtains lock on RPC.

C: HWTI writes opcode and arguments to RPC struct.
D: HWTI signals RPC Thread and waits.

E: RPC thread reads the opcode and arguments.

F: RPC performs function on behalf of HWT.

G: RPC writes result to RPC struct.

H: RPC signals HWT operation is complete.

I: HWTI reads results from RPC struct.

J: HWTI releases lock on RPC

K: HWTI returns results to UL.

B.J

Mutex
Manager

20

Hardware / Software Duality

hthread_syscall(syscall_xx, arg1, arg2);

PN

ST | N
§ Push on . | Pass APl arguments | Push on :
‘g ; CPU Stack . | from Userto System | : \ HWTI Stack / .
g I 5 i

‘ Y . v . i .

: : s A !) -

: Exacuts “— Call system routine xx [Signal :
o ! trap xx : : opcode xx :
g : g :
a = . i .
w . : vy . v =
R . [N . 2
,8 . (Library code ' : System routine X HWTI State
g execution : implementation Machine :
@ -.Software Thread_ _Hardware Thread .

Hthread System Call
Implementation Differences

« HW has dedicated resources allocated
at synthesis time.

— HW explicitly blocks.

« SW has shared resources allocated at
runtime.

— SW context switches.

22

Hthread Size and
Performance Comparison

¢ Size « Performance
— Definition — Definition
— hthread create / — HW outperforms SW
hthread_join - Create/join notable
— hthread_yield exception

— Hardware’s bus
transactions

23

Demonstrating an Abstract
Interface

POSIX Test-suite adapted for Hthreads.

Conformance tests
— Version for SW, HW, and mixed.

Stress tests
— Version for SW, HW, and mixed.

Abstractions held across SW/HW.

24

Demonstrating HLL
Constructs

Algorithm |Demonstrates

Quicksort Recursion, local variables, access
to shared memory.

Factorial Recursion, local variables.

Huffman Sharing data between HW and SW

Haar DWT |Local array access, access to
shared memory.

IDEA Task level parallelism, local
variables. -

Function Call Stacks and
Recursion

* Quicksort

— Recursive | .
— O(nlogn)

performance //-/*

1000 2000 3000 4000 5000 6000 7000

26

Memory Latency

* IDEA encryption

— Key and data
location
comparison.

Time (ms)

4.50 -

4.00 -

3.50 A

3.00 A1

2.50 A1

2.00 A1

1.50 4

IDEA Encryption Comparing Location of Data and Key

4.06

1.08
0.692

Hardvare, Off-Chlp Data,
Local Key
Data and Key Location

Hardvare, Off-Chip Data

and Key Key

Hardvare, Local Data and

27

Task Level Parallelism

« Haar DWT

— Software’s pseudo-
concurrency.

— Hardware’s true
concurrency.

 Performance
—2SW=31.1Tms
— 1HW/SW = 16.5ms
— 2 HW =16.6ms

28

Future Work

 Memory latency for hardware threads.
» Leveraging reconfigurable computing.

* High level language to hardware
descriptive language translation.

29

Conclusions

» Parallel programming models may be
used to abstract CPU/FPGA boundary.

— Threads communicate and synchronize
with other threads without regard to
location.

* Abstract virtual machine can be
implemented in either HW or SW.

— Created a framework for HLL to HDL.

30

Questions?

31

Supplemental Material

32

Function Call Stack Example

void * threadFunction(int * argument) {

int a;
int b;
int c¢;
foo(&a, &b);

//return state = x0102

Meaning

next declared variable or parameter push
declared variable E

declared variable D

user logic's return state

frame pointer restore value

number of parameters passed to foo()

first parameter passed to foo(), address of A
second parameter passed to foo(), address of B
declared variable C

declared variable B

declared variable A

user logic's return state

frame pointer restore value

number of parameters passed to the thread 33

}
void foo(int *a, int *b) {
int d;
int e;
//Stack shown here
}
Address Value
SP —» | x0088
x0084 E
FP —® | x0080 D
x007A x0000 0102
x0078 x6300 0060
x0074 2
x0070 x6300 0060
x006A x6300 0064
x0068 C
x0064 B
x0060 A
X005A x0000 0000
x0058 x0000 0000
x0054 1
x0050 x0000 2340

argument of thread

Globally Distributed Local

Bridge

Memory

2 > CPU: threadZero() {
@ Thread 0 cen
% b++;
o
8 }
[N DRAM
|| Memory
] threadOne() {
HWTI .
2 \
CE . threadTwo() {
S 3
é HWTI", UL: h++)
S > g ;hread 2 !
jou 1> }
= ¥ \
O
- threadThree() {
HWTI " ’ uL: ++
(1) “Thread 3 g
- o }
BRAM
Memory

E] Processing Unit: CPU or Hardware Thread's User Logic
D Global Address Space
D Hardware Thread Interface

34

Dynamic Memory Allocation

* Pre-allocated Heap.
* Light version of

| Hardware Thread Interface

PIF User State Machine User
: N "= f
MallocC, CcalloC, an FAN BN L8 toge
HEE » i
b) L) b V86 System State ,E:
: 1i A4---- i S
Nl 122 i ; Machine " [heap] -
: £ i ea|
:é: o .g ' P stack I
ree BT i ; o
. ;|EI H '§8I - :6:
N s er] N BRAaM W |/ T NOIE
e I EAY e —{ B
5! Al . ' E @ T
03I\ -L ! T Le
Sl | / 1]---: [threadid — :3'2 : I
Lo R (I ey '@ reg .
41 ie8) Eonmand saero) | 195 Comlis!
0o '% Brl g§ i [sas] State Info - o L=
N :I:"'&;tl | 12 [regd || 121
PN T B E ' E [
N —_— N 1 - ! -
17 S J

< [Timer |[Over-
Flow

35

Demonstration HLL
Constructs: Quicksort

« HWTI maintains

O(nlogn) behaV|Or | Quicksort Performance
» Cache-like

performance. //./«

1000 2000 3000 4000 5000 6000 7000

36

Demonstration HLL
Constructs: IDEA

* Benefits of task level parallelism.
« Comparison with Vuletic’'s hardware threads.

d (micro

Execution Time per Block Encrypte
se

Demonstration HLL
Applicability: Huffman

* Abstract data
passing between
SW and HW
threads.

 Data cache on CPU.

Execution Time (ms)

40.0 +
35.0 1
30.0 4
25.0 1
20.0 4
15.0 A
10.0 A
5.0 1
0.0 A

Huffman Encoding Performance

36.1

2.5

|

Hardware, Off-Chip Softvare, Data Cache Softvare Data Cache

Memory

off Oon
Thread Type and Data Location

Execution Time (ms)

700.0

600.0

500.0

400.0

300.0

200.0

100.0

0.0

628.0

Huffman Algorithm

653.6
Derivation Thread
M Encoding Thread

385
|

Hardware, Off-Chip Software, Data Cache Off Software Data Cache On

Memory

Thread Type and CPU Cache Setting

Demonstration HLL
Applicability: Haar DWT

Abstract interface vs

meaningful abstract
interface.

Performance.
Complexity.

00000

00000

Complexity of DWT Hardware Thread

Globally Distributed Local
Memory

« “Cache like” performance.

* Maintains shared memory
model.

 User access without bus
transactions.

Operation | Global | Local HWTI

Load 51 3 19

Store 28 1 19

Parent

Join Danger

Thr.
CPU Mar

Thread "Parent" signals the thread

"RPC" to create a new thread.

Parent

Child

A

Thr.
CPU Mar

RPC creates the thread "Child" on
behalf of Parent.

Parent | | Child
RPC
Thr.

CPU \ Mgr)

RPC must wait for Child to exit
before it can complete join operation.

Parent || Child

[Rec]
Thr.
CPU Mar

Parent signals RPC to join on Child.

blocked blocked
Parent| | Child
| RPC
Thr.
CPU Mar

Child signal RPC to perform floating
point operations. RPC can not
respond since it is waiting on Child.

41

Remote Procedural Calls

* Advantages:

— HW Access to
shared libraries.

— Complete support for
hthread APIs.

« Disadvantages:
— Interrupts the CPU.
— Comparatively slow.

Library Call Execution
hthread create (hthread.h) | 160uS
hthread_join (hthread.h) | 130us
malloc (stdlib.h) 122s
free (stdlib.h) 120us
printf (stdio.h) 1.66ms
cos (math.h) 450us
stremp (string.h) 114us

42

