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1. INTRODUCTION 

 

 The Vector Slope Gauge (VSG) is a linearly-swept FM radar designed for 

the purpose of measuring the varying slopes of ocean wave surfaces at close 

ranges.  Motivations for the work include, but are not limited to 1) verification of 

SAR images collected by aircraft and spacecraft and 2) eventual design 

modification as a shipboard radar for measuring real-time local ocean wave 

behavior.  Design and analysis of the first two versions of the VSG are well 

documented.  

 The first two VSG versions averaged radar returns internally and stored 

text results to hard disk.  The third version departed from this method by digitally 

sampling the IF returns and storing the samples and beam data to binary files on 

hard disk.  This paper concerns simulation and analysis of the third version of the 

VSG.  Since the third version has not been tested on the ocean, this paper will 

divide into two main topics: 1) generation of simulated ocean wave data, and 2) 

DSP analysis of the simulated data. 

 Simulated ocean wave data is generated in the same form as the data 

output from the VSG.  In addition to Gaussian noise present in previous VSG 

measurements, data from the digital VSG will also contain some quantum 

(sampling) noise.  It is expected that the advantages of digital signal processing 

will outweigh losses attributed to quantum noise. 

 Inherent errors associated with the VSG collection method are 

incorporated into the generation of simulated ocean wave data with some 
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approximations.  Previous analyses exposed three sources of error: 1) skewing 

of slope measurement due to sequential measurement method, 2) slope range 

measurement error due to wave motion at non-vertical incidence angles, and 3) 

slope modulation of radar return energy due to varying aspect of waves with 

respect to radar position.   

 Experiments with a flat, still surface are compared to results obtained from 

simulated inputs.  Results from simple single wavefronts are compared to 

simulated inputs. Doppler shift added to these analyses verify proper function of 

program modules.  

1.1  Motivation 

 A number of motivations drive the design and testing of the VSG as 

described in [Hesany, 1994 and Evans, 1994].  The VSG can determine wave 

energy distribution, wave frequency, and predominant wave direction.  The close- 

range data may be compared to spaceborne SAR images and used to determine 

how winds affect ocean waves.  Ocean wave effects on shipping and offshore 

structures is another motivation, as are coastal sediment migration and wave 

diffraction and refraction from the shoreline.  For remote sensing, VSG results 

help the understanding of tilt and hydrodynamic modulation on radar returns. 

1.2  Three versions of VSG 

 The versions will be designated VSG-1, -2, and -3 for brevity.  VSG-1 and 

VSG-2 processed the resulting IF within the analog circuitry of the VSG and 

stored the processed ASCII data on disk.  All versions switched between the 

antenna horns sequentially. 
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VSG-1 was used in the SAXON-FPN experiment from the Nordsee oil 

platform in the North Sea during November 1990.  It switched between beams at 

30 Hz, with a 20ms delay after switching [Hesany, 1994].  This radar had a range 

error of 10 cm. 

VSG-2 was tested at the U.S. Army Field Research Facility in Duck, NC in 

December 1995 [Legarsky, 1996].  Duck Pier extends about 1000 meters into the 

ocean, avoiding some of the shoreline effects on ocean waves.  This version 

switched beams at a 300 Hz rate, with a 2.3 ms delay at switching.  Faster 

switching allowed the radar a 1 cm range error, which came out to less than 1% 

slope measurement error. 

VSG-3 departs from the other two versions in that it samples the IF and 

stores the samples in binary files, rather than processing the data internally.  This 

process lends itself to DSP analysis.  This version was never tested on the 

ocean, so only rudimentary data exists; simple synthesized ocean data is used 

for this analysis. 
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2.  Basic Ocean Wave Behavior 

 

 The study of ocean waves is a complex subject.  One can make a highly 

detailed analysis, yet not have a complete description of their behavior.   Tides, 

gravity waves, tsunamis, ship waves, and capillary waves are all ocean waves.  

This paper will focus primarily on simplified gravity waves.  Entire books are 

written to describe the complex shapes and behaviors of ocean waves.  The 

purpose of this project was to present simplified wave shapes to the MATLAB® 

DSP modules, rather than to reproduce the complex wave shapes which occur in 

nature. 

 As with other waves occurring in nature, ocean waves can be described 

by a sum of sinusoids, especially in the deep ocean.  It is there that the basic 

sinusoidal shape is better preserved.  Most people do not witness this wave 

shape unless they have been aboard a ship in the open ocean.  As waves near a 

shore, the water becomes shallower, which alters the shapes of the waves.  

Energy once concealed beneath the surface is constrained by the rising bottom 

to appear increasingly above the surface.  Eventually the waves peak, pitch 

forward, and break on the shoreline, as most people are accustomed to seeing 

them.  Waves begin their decline in the region where the water depth decreases 

to half a wavelength. 
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2.1  Wave Superposition

 A superposition of sinusoids of varying wavelengths, heights, directions, 

and velocities make up a “sea” (Figure 2.1).  A single wavefront may be defined 

by the equation 

 )cossincos(),,( φακακσ +++= yxtAtyxh    (Kinsman, 1965)  

where h is wave height relative to mean water level, A is amplitude, κ is the wave 

number, x and y are axes, φ is the phase angle, and α is the angle of approach, 

with 0° corresponding to the y direction and increasing clockwise.  The variables 

σ and κ are defined as 
T
πσ 2

=  and 
L
πκ 2

=  . 

  

 

Figure 2.1.   
Superposition of Wavefronts (Bascom, 1964). 

 
 A developed sea has a period T ranging from five to twelve seconds.  The 

wavelength L is then 2

2
TgL

π
=  where g = 9.8 m/sec2.  Wave velocity C in deep 
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ocean is 
π2

gLC = .  When water depth decreases to less than L/2, velocity 

decreases and a new term become significant in the equation.  Then C becomes 

L
dgLC π

π
2tanh

2
= . 

 Ocean wave energy spectrum is shown in Figure 2.2.  A portion of the 

spectrum is shown in Figure 2.3 in graphical form with wave periods.  Of interest 

to this project are waves with periods between 5 and 12 seconds, which fall in 

the classifications of sea and swell.  Also of interest are capillary waves, or 

ripples, which are discussed below. 

 
Figure 2.2.  Ocean Wave Energy Spectrum 

[Kampion, 1997] 
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Figure 2.3.  Wave Speed vs. Wave Length with Period. 

[Kampion, 1997] 
 

 

2.2  Orbital Motion 

 Orbital motion is the motion of the water particles within the wave. (See   

Figure 2.4.) As the wave moves through its cycle, the water near the surface 

moves in an elliptical pattern.  At the end of each cycle of the wave, net 

displacement of the water particles is near zero.  Further from the surface, the 

water particles move in smaller ellipses. 

 

Figure 2.4.  Orbital Motion in Approaching Wave [Kampion, 1997] 
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2.3  Capillary Waves 

 Capillary waves, or ripples, are small waves occurring on the surface of 

the gravity waves.  These are generated by wind currents working against the 

water surface.  Wavelengths of capillary waves are in the millimeter range; 

periods are in the range of fractions of a second.   

 During World War II in the early days of radar, operating frequencies were 

much lower than they are today.  The desired targets over the English Channel 

were German war planes.  One undesired radar return was clutter from the water 

surface.  After the war, scientists discovered a symmetry to the clutter and 

determined that it was due to Bragg scattering.  Whenever ocean wavelength 

corresponded to half the radar operating wavelength, large radar returns 

occurred.   

 Capillary waves make it possible to receive sizable radar returns at the 

VSG operating frequency of 34.6 to 34.9 GHz.  Since the wavelength at this 

frequency range is about 8.7 mm, capillary waves often produce Bragg 

scattering.  VSG radar returns come primarily from this phenomenon rather than 

the smooth ocean surface.  
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3.  VSG Function 

 

 The Vector Slope Gauge (VSG) is a 35 GHz linearly-swept FM radar used 

to measure the vector slope of an ocean surface.  Function of the VSG is fully 

discussed in [Haimov and Moore, 1993; Hesany, 1994; Evans, 1994; and 

Legarsky, 1995 and 1996].  A brief summary of VSG function is in order here. 

 The VSG transmits FM radar energy in sequence to three spots arranged 

in an orthogonal pattern on the ocean surface (Figure 3.1).  Returns from the 

three spots each contain frequency information proportional to the range to each 

spot.  Trigonometric computations with the known physical configuration and 

three range measurements are used to compute a nearly instantaneous estimate 

of vector slope of the surface.  Vector slope is defined as a vector perpendicular 

to a plane defined by the x, y and z positions of the three radar spots. 

 

Beam 1

Beam 2

Beam 3

~ 1 mete
r

~ 1 meter

 
Figure 3.1.  Beam Spot Arrangement on Ocean Surface 
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 The VSG routes radar energy to Beam 1, Beam 2, and Beam 3 

sequentially.  Each beam experiences one upsweep and one downsweep (Figure 

3.2).  Careful aiming of these beams creates the orthogonal beam pattern on the 

surface.  Returned energy mixes with the transmit frequency to produce three 

difference frequencies (IF’s).  These IF’s are the frequencies corresponding to 

the ranges to each spot. 

 

F

T

Cycle

Sweep

Up-
sweep

Down-
sweep

Beam 1 Beam 2 Beam 3

Bandw
idth

Frequency Format of Vector Slope Gauge Radar Signal

 
Figure 3.2. Frequency Format of VSG Radar Transmitted Signal 

 
 Figure 3.3 illustrates frequency format of the VSG returns from a point 

target.  Obviously, the ocean surface is not a point target, so frequency 

spreading will occur in the actual radar return.  Furthermore, the figure illustrates 

return from a stationary point target.  Ocean waves are not stationary targets; 

therefore, Doppler shift will be present in the return, as shown in Figure 3.4.     
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Transmitted Signal Returned Signal

F

T

Radar Signals

Intermediate Frequency Signal  (Difference Frequency)

 
Figure 3.3.  FM Radar Return from a Point Target 

[Adapted from Ulaby et al, 1986] 
 

Transmitted Signal Returned Signal

F

T

Radar Signals

Intermediate Frequency Signal  (Difference Frequency)

 
Figure 3.4.  FM Radar Return from a Point Target with Doppler Shift Added 

[Adapted from Ulaby et al, 1986] 
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Note that while upsweep and downsweep IF’s are equal for a stationary target, 

the IF’s from a moving target are shifted due to added Doppler shift.  Curiously, 

no Doppler shift appears due to the forward wave velocity.  Doppler shift does 

occur, however, due to the orbital velocity of the water within the wave [Ulaby, et 

al, 1988]. 

 Bandwidth and sweep rate are selected to produce a mixing frequency 

corresponding to the desired range window, according to the equation: 

 
RR

Rs cT
BR

T
BTTff 42)( ==∆=    [Ulaby et al, p. 512] 

where: fs = Signal frequency (IF) 
 B = Bandwidth of sweep 
 T = Time for signal to travel distance 2*R 
 TR = Repetition period 
 R = Range to target 
 c = Speed of light 
 

Example 

Let B = 600 MHz, R = 14.14 meters, desired fs = IF = 450 kHz 

(typical VSG values).  Desired repetition period, TR, then becomes 

approximately 250 ms, or fR ≈ 4 kHz. It is useful when working 

with the VSG to obtain the following numbers for a given 

configuration: 

 Since c = 3*1010 cm/sec, the signal travels 1 cm in 

µs10*33.3
s/cm10*3

cm 1 3
10

−= .  The time for one upsweep or one 

downsweep in frequency is 125 ms, then 

µs / MHz 4.77    
µs 125.7

Mhz 600    ==
∆
∆

RT
B . 
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Translating from time to range: 

cm / Hz 159.1  µs 3-10*3.33 * µs / MHz 4.77 =  

Since the energy must traverse the distance twice: 

cm 1414    
cm/ Hz 318.2

khz  450    
cm/ Hz159.1  *  2

=== IFfR  

 

Any fIF substituted into this equation will produce the range in cm for this 

configuration and VSG setting.   Of course, fIF must lie within the bandwidth of 

the IF filter.  

 For DSP sampling in VSG-3, the sample rate should be at least the 

Nyquist rate plus about 10%: 

sec 1   and MHz 1    1.1  2  Hz 10450 3 µ==∗∗⋅= ss TF  

Since   sec 250    Hz, 4000 µ== sweepsweep TF , then 

N = 250 samples/sweep or N = 125 samples per up/down sweep. 
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4.  VSG Output Data Simulation 
 
 
4.1  VSG-3 Output Data Format 

 Each binary file begins with 24 bytes of header information and continues 

with an unspecified length of 2-byte data items.  Data recording will nearly always 

begin during a cycle.  Similarly, the ending cycle will also be incomplete.  

Therefore, the first and final [partial] cycles must be discarded. 

4.1.1  Header Format 

 Each binary file begins with 24 bytes of header information in this format: 

Variable 
Name 

Size 
(bytes) 

Data 
Type 

Description 

Original 4 uint File number 
Time 1 1 uint Month 
Time 2 1 uint Day 
Time 3 1 uint Hour 
Time 4 1 uint Minute 
FBeam 4 x 3 float 3 sweep 

freqs 
Fs 4 float Sample freq 

 
Table 4.1 

 

For long data sequences, the VSG may break up the binary data into a 

series of shorter files.  The Original variable will be a “1” for the first data file.  It 

may be zero for remaining files in the sequence, or it may contain “2,” “3,” etc. to 

indicate the proper sequence of the files.  The main concern was to mark the first 

file in the sequence with a “1,” hence the name Original. 

 The Time variables are self explanatory.  They indicate the time each data 

sequence was generated. 
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 FBeam contains three sweep frequencies, for the up/down sweep on each 

of the three beams.  Although these variables are recorded three times, it would 

be very unusual to have one beam’s sweep frequency differ from another’s.  This 

amounts to the frequency of sampling of the ocean wave. 

 Fs is the DSP sample frequency, or the rate of digital sampling of the IF 

return within VSG-3.  Fs is always higher than FBeam.  From Fs and FBeam, 

one can determine the average number of DSP samples in each sweep. 

4.1.2  Data Format 

 After the header information, each binary file contains a long data series.  

The data format produced by the VSG contains three pieces of information: The 

beam number (2 bits), up or down sweep direction (1 bit), and unsigned integer 

data (12 bits).  Arrangement of the bits in one datum is shown in Figure 4.1. 

 
MSB LSB
15     14    13    12    11     10     9      8      7      6   5      4       3     2      1      0

not used (alw
ays 0)

Beam
 #

U
p/D

ow
n

D
ata

12 bit unsigned integer0 = Up
1 = Down

00 = Beam 1
01 = Beam 2
10 = Beam 3
11    not used  

Figure 4.1.  Digital VSG Data Output Structure 
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The unsigned integer has a range from 0 to 212 – 1 or 4095.  In the analysis 

phase, 2048 is subtracted from the data to bring it back to zero mean. 

 

4.2  Wave Simulation Algorithm 

 No ocean data or Clinton Lake data was taken on VSG-3.  Rudimentary 

data was taken in a hallway at the Remote Sensing Laboratory.  VSG-2 data 

taken at Duck Pier and Clinton Lake was available, but was not usable since it 

was created and stored in an entirely different format.  Therefore, it became 

necessary to generate simple ocean wave data in VSG-3 format. 

 It was not necessary to recreate a complex ocean surfaces such as those 

occurring in nature.  The Wavesim7.m module creates data for flat surfaces and 

simple sinusoidal wavefronts.  It is capable of injecting Doppler shift and noise 

into the return signal.  These capabilities are sufficient for testing the basic 

function of the DSP modules. 

  The programmer supplies VSG-3 configuration and desired ocean 

wave parameters in the command line of Wavesim7.m.  The block diagram in 

Figure 4.2 contains three modules based upon (Evans, 1994).  (See Appendix B 

for complete code.)  Modules slrangemod.m and slopepoimod.m are slight 

modifications of Evans’ modules.  The modifications allow the data to fit the VSG-

3 format.  Module slopeab2.m is an exact recreation of Evans’ module. 

The top row of Figure 4.2 computes and stores the slopes of the simulated 

ocean wave, as well as providing ranges to the three beam spots on the surface.  

Module slrangemod.m requires a range estimate for input, which is computed by 
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RangeEst.m.  It then performs an iterative process on two nonlinear 

simultaneous equations according to Newton’s method (see Errors section 

below). 

VSG Parameters

Ocean Wave
Parameters

Wavesim7.m

RangeEst.m

NsPerSweep.m

SampGen.m

Save2Slopes.m

slopeab2.m

slopepoimod.mslrangemod.m

SlopeOut.txt

Range IF Sampled
IF

VSGOutput.m

VSGOut.bin
 

Figure 4.2.  Wavesim7.m Block Diagram 

Module slopepoimod.m uses range data to calculate a time series of exact 

x and y slopes (in degrees) based upon the derivative of the waveshape.  Module 

slopeab.m uses x, y, and z data for the three radar spots to approximate x and y 

wave slope (in degrees) by extending a plane through the three points.  Exact 

and approximated slope series are saved in a text file by Save2Slopes.m.  These 

are for later comparison to processed data. 

 The middle row of Figure BB shows each range converted to an IF.  The 

IF is sampled at Fs by module SampGen.m and submitted to VSGOutput.m. 

 Since Fs is usually not a multiple of FBeam, the number of samples in an 

up or down sweep has some variability.  For example, if sweep frequency is 3000 

Hz and sample frequency is 1 MHz, the average number of samples in an 
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up/down sweep is 166.67.  This means that some sweeps will have 167 samples 

and others will have 166.  Module NsPerSweep.m computes an M x 3 matrix 

containing the number of samples in each sweep of the data block to be created.  

VSGOutput.m uses this information and the sampled IF data to create a binary 

file just as VSG-3 would create it. 

 

4.3  Errors 

4.3.1  Built-in errors 

4.3.1.1  Quantization Noise 

 The digital VSG introduces quantization noise to the signal during the IF 

sampling process.  This was not an issue in VSG-1 and VSG-2.  Storage of data 

in the exact configuration as VSG-3 output assures the same noise will be 

present in the simulation.  Theoretical quantization noise for 12-bit uniform 

quantization is defined by: 

b
pp

N

V
V

V

2
    

   where
12

    
2

2

−=∆

∆
=σ

 (Frerking, 1994) 

Since the stored VSG data is an unsigned integer, �V may be regarded as unity 

and the variance as 1/12. 

4.3.1.2  Slant Range Measurement Error 

 [Evans, 1994] deals with slant range measurement error in terms of phase 

error in the ocean wave measurement.  Generally, measurements are not taken 

from the vertical, or θ = 0° incidence angle.  Larger incidence angles produce 
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larger phase errors, since the VSG measures the change in length along the 

radar beam, not the amplitude of the wave.  (See Figure 4.3.)  Wave propagation 

aligning with the RLD produces the largest phase error, whereas propagation 

transverse to the RLD produces no error, regardless of the incidence angle.  

Evans computes the largest phase error (in degrees) in this way: 

λ
φθε °

=
360  cos  tan    (max)phase

A  

 
 

Side View Top View

Direction of Wave
Propagation

Mean Sea Level

A tan(θ) RLD

Φ

θ
A = Wave Amplitude

cosθ
A

RLD

ε

 
Figure 4.3.  Geometry used to calculate phase and range error in a single beam 

due to slant range measurement.  Adapted from (Evans, 1994). 
 
 In this simulation, it is necessary to compute the actual distance along the 

RLD rather than the phase error relative to the ocean wave.  For this purpose, an 

approximation may be used: 

θ
φ

cos
  cos  )(    slant

thR =∆  

 
where ∆Rslant = Distance along RLD from mean sea level 
 h(t) = Height of wave at time t 
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The approximation leaves a small error ε, as shown in Figure 4.3.  This error is 

the difference between the horizontal at the RLD point and the height of the wave 

at the RLD point.  Error ε is zero for a calm surface and increases with wave 

amplitude.   

For a more precise solution, [Evans, 1994] wrote slrange.m to compute an 

iterative solution to these two equations.  This module uses Newton’s method to 

approximate the solution to the two equations to a very small error of 10-13: 

)('
  )(rr    n

n1n
nrf

fr =+  

The module slrange.m is called in wavesim7.m. 

4.3.1.3  Error resulting from sequential measurements 

 This error, treated in [Evans, 1994], was more pronounced in earlier 

versions.  The error results from the fact that the radar beams are switched, and 

returns measured, sequentially.  From one measurement time to the next, an 

ocean wave will travel a small distance.  This will skew the slope a small amount 

depending on the speed with which samples are taken. 

4.3.2  Extractable Errors 

4.3.2.1  Gaussian Noise 

 Gaussian noise is extractable only in the data simulation sense, in that it 

may be included in a simulation or not, so that other phenomenon may be 

isolated.  Gaussian noise is present in all versions of the VSG, as it is in any real-

world measuring device.  It is added to the simulation in the final analysis of 
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program module function.  It is excluded in other simulations in order to isolate 

the effects of other error modes. 

4.3.2.2 Doppler Shift 

 Doppler shift is not a true error.  However, if not considered and dealt with 

appropriately, it will introduce errors into the range measurements.  Doppler shift 

is extractable in the simulation sense, and the DSP analysis attempts to isolate it 

for measurement.  It may be included in a simulation to compare processed 

results with original Doppler shift input. 

 

4.3.3  Errors not included 

4.3.3.1  Slope modulation 

 Generally we analyze the radar always looking in the y direction.  In this 

case, the slope variation in the x direction will have no effect on radar return.  

Then variation in y slope varies the radar return in this proportion: 

4

p

p

  - tan
tan  1

      
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
∝°

y

y

s
s
θ

θ
σ  [Ulaby et al. p.1694] 

where σ° = Relative radar power return 

 θp = Radar pointing direction (incidence angle) 

 sy = y component of water surface slope 

4.3.3.2  Frequency Spreading 

 The ocean surface is not a point target and the radar beam width is not 

infinitesimally small.  This results in a continuum of ranges to a radar spot on the 

surface, which in turn results in a range of frequencies in the IF return.  The 
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frequency return may be approximated from an integration of the ranges to the 

area of a spot, out to the -3dB points.  This frequency spreading is discussed in 

[Ulaby et al, 1988].  At angles departing from perpendicular incidence, the 

frequency spreading increases, as may be inferred from Figure 4.4. 

Ra Rc

Rb

VSG

Perpendicular
Incidence

Oblique
Incidence

 

Figure 4.4.  Illustration of Range/Frequency Spreading 
In an FM Radar 

 

Inclusion of frequency spreading will provide a more realistic simulation of radar 

returns from the VSG. 

 

Variation of returned signal power in the simulation according to this 

proportionality approximates actual ocean data return.  Gaussian noise will 

remain statistically constant, while signal return strength varies.  Maximum return 

occurs when the wave face is perpendicular to the RLD.  This is practically never 

the case, as the slope relative to the RLD constantly changes.  Inclusion of this 

return variation will create a more realistic simulation of received power. 
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5.  DSP Analysis 

 

5.1  DSP Algorithm

 A DSP algorithm, developed by [Hamilton, 1998] in five stages, is found in 

summary form in Appendix C.  Figure C.1 is a block diagram of this algorithm.  At 

the time of writing, the algorithm was incomplete.  Portions of Hamilton’s 

algorithm are incorporated into this analysis.   

 Figure 5.1 contains a block diagram of DSP2.m; MATLAB® code is found 

in Appendix B.  Modules FindPSD.m and FindEffFreq.m are used directly as 

VSG ParametersVSGOut.bin

GetTimeSeries2.m DSP2.m

FindPSD.m

evanslope.m

Upsweep

FindEffFreq.m

Sum
Average

Frequency

Downsweep

Difference
Average

Frequency

Range DopplerSlopes
Sx, Sy

Level Shift

 

Figure 5.1.  DSP2.m Block Diagram 

written by [Hamilton, 1998].  Module evanslope.m is derived from trigonometry 

and coordinate transformations in [Evans, 1994]. 
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 VSG binary data, stored by module WaveSim7.m in the file VSGOut.bin, is 

accessed by GetTimeSeries2.m.  The programmer specifies the time offset 

(Toffset) and number of cycles (M) desired to average (usually M = 4).  

GetTimeSeries2.m moves a pointer into the binary file corresponding to the time 

offset, and finds the beginning of the cycle nearest to the pointer.  This becomes 

the beginning file pointer.  The module then looks M cycles later to find the end 

file pointer.  Binary search for the file pointers is unnecessary, since close 

approximate locations may be calculated prior to search.  Once a file pointer is 

placed, the direction of search is determined by the beam number and up/down 

indicator of the current datum.  The program searches the data sequentially 

backwards or forwards.  It usually has only to step once or twice to find the 

starting/ending pointer.  Once pointers are established, the module reads in the 

data between the pointers and places it in an M x 6 x Nmax matrix, where Nmax is 

the maximum DSP sample size, M is the number of cycles read in, and 6 is the 

number of up/down sweeps for all three beams. 

 Application of FindPSD.m and FindEffFreq.m to each “column” of DSP 

samples results in an M x 6 matrix of effective frequencies.  Simple multiplication 

results in an M x 6 matrix of ranges.  Separation of the ranges into three 

upsweep and three downsweep ranges enables computation of sum and 

difference average frequencies, which enables computation of range and 

Doppler values, respectively (see Appendix 1 for a description of these 

computations).  Module evanslope.m computes slopes in the x and y directions 

for comparison with generated data. 
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5.2  Frequency Estimation

 Accurate estimation of frequency is key to obtaining the best slope 

measurements.  The desire is that DSP sampling and analysis will produce more 

accurate estimates of the frequencies and associated ranges than the previous 

analog processing technique. 

 Frequency is defined as the time derivative of phase: 

dt
df φ

=  

We cannot estimate a frequency from one data point, but we may attempt to 

estimate frequency from small piece-wise segments of a signal.  Small segments 

of a signal may be relatively stationary, whereas the entire signal may not be.  

This is the case with the radar return from ocean waves.  Since the waves are in 

motion, the ranges to the waves are constantly changing, which means the 

radar's IF is constantly changing.  Overall, then, the returns from ocean waves 

are not stationary.  But taken in short enough time segments, these returns 

become quasi-stationary.  In this case, most stationary frequency estimation 

techniques may be applied. 

 For VSG-2, the averaging of range frequencies over four cycles was 

considered the optimum method.  At 3.33 ms per sweep, this amounted to 

averaging the returns over a period of 40 ms. A gravity wave travels between 5 

and 12 m/sec.  In 40 ms a wave with velocity 8 m/sec will move 32 cm (if the 

wave travel is along the RLD).   
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 Using values from the previous example for VSG-3: 

Example 

Fbeam = 4000 Hz,  B = 600 MHz, 8 m/s wave velocity 

sweep (up/down)
m 101    m/s 8  sec 10125 3-6 ⋅=∗⋅ −  

In 4 cycles the wave will move this distance: 

cm 2.4  m 1024    cycles 4  
cycle

sweeps 3                

  
sweep 

sweeps (up/down) 2  
sweep (up/down)

m101

3-

3

=⋅=∗

∗∗⋅ −

 

The frequency excursion for 4 cycles will be: 

Hz 404    
m
cm 100  

cm
Hz 159.1  24  101 3 =∗∗∗⋅ −  

which amounts to only 

shift % 0.125    
Hz10350

Hz 404
3 =

⋅
 

 

 Let M be the number of cycles over which to average.  An engineering 

tradeoff must be made in choosing the value of M.  Increasing M will increase the 

estimation accuracy, but decrease the stationarity of the estimated frequencies.  

Decreasing M will increase stationarity while decreasing the accuracy of the 

estimation.  Clearly, 4 cycles of averaging will have better stationarity for VSG-3 

than it did for VSG-2. 

 In DSP2.m, we use a discrete version of Rice's expected number of zero 

crossings to determine effective frequency [Hamilton, 1998]: 
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Module FindEffFreq.m performs an FFT on each sweep, resulting in a discrete 

frequency spectrum.  Choosing the frequency of the largest element would be 

inaccurate, since there exist surrounding frequency elements of lesser strength 

which affect the result.  The desired effective frequency will, in all likelihood, 

reside between two discrete frequency elements.  Rice's method provides an 

interpolation of the FFT elements and a much more precise estimate of single 

frequency content. 

 

5.3  Module Verification 

 All modules were verified for function and accuracy during synthesis 

without added Gaussian noise.  Ranges and IF’s were checked during synthesis 

of the modules to assure freedom from errors.  Slopes extracted by DSP2.m 

matched slopes produced by slopeab2.m.  The slopes closely resembled the 

slopes produced by slopepoimod.m with slight error, as expected (See Section 

4.3.1.2 on slant range error.)  This was true for incidence angles up to about 65 

degrees, which was the design limit of the VSG [Legarsky, 1995].  Higher 
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incidence angles applied to these modules generated difficulties in 

slantrangemod.m module, where iteration by Newton’s method took place. 

Velocities injected into a flat surface in Wavesim7.m module were extracted by 

DSP2.m in the correct values and directions. 

 The only known VSG-3 data was taken against a vertical wall at a range of 

about 5.75 meters.  This data was treated as return from a flat surface at zero 

degrees’ incidence.  Application of DSP2.m to this data produced near expected 

results.  Slope values in the y direction were about 2 degrees, regardless of the 

number of averaged cycles.  Slopes in the x direction were near zero.  The wall 

being a stationary object, error due to sequential measurement did not affect 

accuracy, and cycle averaging did not improve repeatability.  Since the wall was 

flat and angle of incidence was zero, slant range error was not a consideration.  

The 2-degree slope discrepancy in the y direction was probably due to pointing 

error.  However, no precise physical measurements corresponding to this data 

were recorded. 
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6.  CONCLUSION 

 

 This paper serves as documentation of simulated input and subsequent 

DSP analysis programs for VSG-3, the digital vector slope gauge.  Simple wave 

simulations incorporate most known measurement errors and anomalies from 

previous versions, as well as from VSG-3.  Known errors included skewing of 

slope measurements due to sequential measurement method and slope range 

measurement error due to non-vertical angles of observation of vertical wave 

motion.  Modules are capable of introducing Gaussian noise and Doppler shift 

into the data.  Simulations create binary data in the format produced by VSG-3, 

thereby embedding quantization noise in the data. 

 Not included in the simulation was slope modulation of radar return energy 

due to varying aspect of waves with respect to radar position.  Frequency 

spreading due to finite width of the radar beam is also not included in the 

simulation. 

Simulations of simple flat surfaces and single sinusoidal wavefronts 

enable primary evaluation of DSP modules. Expected output of the VSG with flat 

surface and single wavefront, with and without Doppler, is verified.  No Gaussian 

noise is included in these evaluations.  Evaluation of the only known VSG-3 data 

reveal expected measurements from a vertical wall in a hallway at a range of 

about 5.75 meters. This data shows little frequency spreading, since the angle of 

incidence is near zero. 
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 DSP modules extract VSG-3 data from binary data files at operator 

designated points and will process one to 75 cycles of data, as desired.  The 

modules perform PSD on sampled IF’s and estimate the sampled frequencies for 

each of the three beams.  From these estimates the modules compute x and y 

slopes, ranges to each beam, and Doppler shifts. 

 

6.1  Future Work 

 Further evaluation of DSP modules should include performance capability 

with Gaussian noise added.  We also need to interpret orbital velocity 

measurements.  Frequency spreading and slope modulation may or may not be 

necessary in the simulation stage.   

The next step will be to take measurements on actual ocean waves from 

Duck Pier or an oil platform for accurate comparison to previous data from VSG-

1 and VSG-2.  This would be followed by real time processing using a TI-30 or 

similar DSP board.  Finally, depending on the success of the preceding steps, we 

will need to integrate the VSG with a shipboard environment. 
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Appendix A 

Glossary 

 

Beam - One of the three lobes of microwave energy which strike the ocean 

surface and enable measurement of vector slope.  Beams are numbered 1, 

2, and 3.  Each beam has a frequency upsweep and downsweep. 

Cycle - A series of six vectors corresponding to one upsweep and one 

downsweep for each of the three beams. 

Doppler – An apparent frequency shift as perceived by an observer, due to a 

physical motion of a frequency source either toward or away from the 

observer. 

Downsweep – A linear frequency excursion of the VSG in which the frequency 

changes from high to low, or the data collected from a downsweep. 

FPN – Forschungsplattforn Nordsee. A German oil drilling platform in the North 

Sea.  Test site of the first version of the VSG. 

Group Velocity – Speed of ocean wave movement as a whole. 

Orbital Velocity – Speed of water movement within the surface of a wave. 

Returned Power – That portion of the transmitted power scattered toward and 

received by the radar antenna. 

RLD - Radar Look Direction.  For VSG purposes, RLD is usually in the positive y 

direction. 
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SAXON – Synthetic Aperture Radar and X-band Ocean Nonlinearities.  An 

experiment to compare close-range mm radar results with spaceborne SAR 

remote sensing results. 

Sweep – A contiguous upsweep and downsweep from a single radar beam, or 

the data collected from such a sweep. 

Vector Slope - The instantaneous slope of a wave surface coupled with its 

direction of travel. 

Vector Slope Gauge (VSG) – An FM radar instrument emitting microwave 

energy in three beams toward the ocean surface.  Radar returns from the 

three beams are processed to obtain the vector slope of the wave. 

Upsweep – A linear frequency excursion of the VSG in which the frequency 

changes from low to high, or the data collected from an upsweep. 
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APPENDIX B 
 

MATLAB® m-files 
 

Part 1 - Wave Simulation Files 
 
WaveSim7.m 
 
function [NSmat,Range,IFreq,IFSamp] = 
WaveSim7(BW,Fs,FBeam,HVSG,Thetad,Alphad,T,hwave,PHId,d,TObs); 
 
% [NSmat,Rsamp] = 
WaveSim7(BW,Fs,FBeam,HVSG,Thetad,Alphad,T,hwave,PHId,d,TObs); 
%   INPUTS 
%       Radar Parameters: 
%       BW      Bandwidth of frequency sweep (MHz) 
%       Fs      DSP sample frequency (Hz) 
%       FBeam   Beam sweep frequencies [3] (Hz) 
%       Height  Height of VSG from mean ocean surface (m) 
%       Thetad  Angle of incidence, from vertical (deg) 
%       Alphad  Angle of ocean wave group velocity (deg) 
%               [ 0 deg = receding along y axis (away in RLD), 
%                90 deg  = transverse, left to right (along x axis)] 
%               wrt RLD 
%       Ocean Parameters: 
%       T       Period of ocean wave (sec) 
%       hwave   Height of ocean wave = 2*Amplitude (m) 
%       d       Depth of ocean at measurement area (m) 
%       TObs    Total observation time (sec) 
%        
%   OUTPUTS 
%       Binary file containing DSP samples in VSG format 
%       Text file containing x and y slopes from two methods 
 
% t = 0 is defined as first transmission time recorded at time of 
% arrival at ocean wave. 
% Origin is defined as intersection of center beam (2) with  
% calm ocean surface. 
 
%   FUNCTION CALLS 
%       RangeEst.m      Initial range estimate for slrangemod.m 
%       slrangemod.m    Solves nonlinear equations by Newton's method. 
%                       Gives ranges to radar spots (C. Evans) 
%       slopepoimod.m   Calculates slope at wave by derivative method 
%       slopeab2.m      Calculates slope at wave by intersecting plane 
%                       method (C. Evans) 
%       Save2Slopes.m   Saves results of slopepoi and slopeab2 to text 
file 
%       NsperSweep2.m   Calculates number of samples in each sweep 
%       SampGen.m       Generates DSP samples of IF 
%       VSGoutput.m     Saves DSP samples to binary file in VSG format 
 
% FILENAMES 
BinFileName = 'D:\VSG\VSGout.bin'; 
TxtFileName = 'D:\VSG\SlopeOut.txt'; 
 
% CONSTANTS 
c = 2.998e8;        % propagation velocity (m/s) 
dr = pi/180;    % conversion factor, degrees-->radians (rad/deg) 
g = 32*12*2.54/100;     % grav const (m/s) 
 
% VSG beams as measured by Justin Legarsky and Torry Akins, Dec. 1995 
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% Subtended angles, Beam-to-beam (deg) 
Beta12d = 3.53; Beta12 = Beta12d*dr;    % convert to radians 
Beta23d = 3.34; Beta23 = Beta23d*dr; 
Beta13d = 5.03; Beta13 = Beta13d*dr; 
% 3 Db Beam widths (degrees) 
ThetaE1d = 1.31; ThetaE1 = ThetaE1d*dr; % convert to radians 
ThetaE2d = 1.43; ThetaE2 = ThetaE2d*dr; 
ThetaE3d = 1.26; ThetaE3 = ThetaE3d*dr; 
ThetaH1d = 1.03; ThetaH1 = ThetaE1d*dr; 
ThetaH2d = 1.28; ThetaH2 = ThetaE2d*dr; 
ThetaH3d = 0.94; ThetaH3 = ThetaE3d*dr; 
 
Theta = Thetad*dr; 
Alpha = Alphad*dr; 
PHI = PHId*dr; 
Delta = 0;      % No rotation about z' axis 
 
% OCEAN 
% Calculate Ocean Surface parameters 
F = 1/T;                % frequency of ocean wave 
L = g*T^2/2/pi;         % wavelength (m) 
Csq = g*L/2/pi;         % deep water velocity squared 
Fsh = tanh(2*pi*d/L);   % shallow water factor 
C = sqrt(Csq);          % deep water velocity 
Csh = sqrt(Csq*Fsh);    % shallow water velocity 
Lsh = T*Csh;            % shallow water wavelength 
A = hwave/2;                % wave amplitude 
if d < L/2 
    DepthFlag = 'Shallow water wave'; 
else 
    DepthFlag = 'Deep water wave'; 
end 
 
% VSG 
% Calculate VSG Radar parameters 
Ts = 1/Fs; 
TBeam = 1/FBeam; 
%TSweep = TBeam/2; 
dFdTcgs = BW/(TBeam*1e6/2);    % (MHz/us) 
dFdT = dFdTcgs*1e12;    % convert dFdT to (Hz/sec) 
Ns = TBeam/Ts/2;        % samples per up or down sweep 
(samples/sweep/2) 
Ns = ceil(Ns);          % max # samples in sweep 
Nsweeps = TObs/TBeam;   % # U/D sweeps in total observation time 
Nsweeps = fix(2*Nsweeps); % counting each up or down sweep as one 
TperM = 1/c;            % Time for signal to travel 1 meter (sec) 
IFperM = dFdT*TperM;    % Intermediate frequency as dependent on range 
(Hz/m) 
NsObs = Fs*60*TObs;     % Total samples observed in TObs 
 
% Display parameters of ocean wave, VSG system 
 
% ********************************************** 
% * GENERATE OCEAN WAVE BEAM RANGES AND SLOPES * 
% ********************************************** 
 
% Estimate shortest range to wave surface [1x3] for each beam 
[r] = RangeEst(Theta,HVSG,Beta12,Beta23,A); 
%r = ones(1,3); 
%rless = r; 
%r(2) = HVSG/cos(Theta);    rless(2) = A/cos(Theta); 
%r(3) = HVSG/cos(Theta+Beta23);     rless(3) = A/cos(Theta+Beta23); 
%r(1) = r(2)/cos(Beta12);    rless(1) = rless(2); 
%[r; rless; r-rless] 
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%r = r - rless; 
 
% calculate time series for ranges and xyz positions 
%[Range,x,y,z] = slrange(Theta,Delta,r,Alpha,T,A,HVSG); 
[Range,x,y,z] = slrangemod(Theta,Delta,r,Alpha,T,A,HVSG,FBeam,TObs); 
 
% calculate time series for slopes from derivative 
%[Sxd,Syd] = slopepoi(Range,Theta,Delta,A,Alpha,F); 
[Sxd,Syd] = slopepoimod(Range,Theta,Delta,A,Alpha,T,FBeam); 
 
% calculate time series for slopes from xyz positions 
[Syp,Sxp] = slopeab2(x,y,z); 
 
% store slopes to text file 
Save2Slopes(TxtFileName,... 
    Syd,Sxd,Syp,Sxp,... 
    BW,Fs,FBeam,HVSG,Thetad,dFdTcgs,IFperM,Ns,... 
    DepthFlag,Alphad,PHId,hwave,A,d,T,F,C,L,Csh,Lsh); 
 
% ******************************************* 
% * GENERATE FREQUENCIES, SAMPLE, AND STORE * 
% ******************************************* 
% generate matrix of DSP sample sizes for VSG3 
[NSmat] = NsperSweep2(TBeam,Ts,TObs);  
% NSmat col 1 contains Beam number 
%       col 2 contains Up/Down sweep indicator 
%       col 3 contains # of DSP samples in sweep 
 
% generate frequency time series from range time series 
IFreq = Range*2*IFperM; 
 
% Generate IF, Sample IF at Fs (one up or down sweep) 
% add doppler shift 
fD = 0;                                 % Doppler ********* TEMP 
******** 
% add slope modulation ? ? ?  
IFSamp = SampGen(NSmat,IFreq,Ts,fD);    % IFSamp is [NSweeps x 
NSamples] 
                                        % These are DSP samples 
% add noise 
 
% SCALE SAMPLE VALUES 
% to unsigned integers in the range [0, 2^12-1] 
MaxSamp = max(max(IFSamp))       % most positive DSP sample 
MinSamp = min(min(IFSamp))       % most negative DSP sample 
SpanSamp = MaxSamp - MinSamp     % range of DSP samples 
IFSamp = (IFSamp - MinSamp)./SpanSamp;    % shift samples to be >= 0 
                                          % scale samples to range [0, 
1] 
IFSamp = fix(IFSamp.*(2^12-1));   % scale samples to range [0, 2^12-1] 
                                  % fix to whole numbers 
 
% WRITE DATA TO BINARY FILE 
[HdrWrit,DatWrit] = VSGoutput(Fs,FBeam,NSmat,IFSamp,BinFileName); 
disp(sprintf('%14i %30s',HdrWrit,' items written to file header')) 
disp(sprintf('%14i %30s',DatWrit,' data items written to file')) 
 
 
 

RangeEst.m 
 
function [r] = RangeEst(Theta,HVSG,Beta12,Beta23,A); 
 
% Estimate shortest range to wave surface [1x3] for each beam 
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r = ones(1,3); 
rless = r; 
r(2) = HVSG/cos(Theta);    rless(2) = A/cos(Theta); 
r(3) = HVSG/cos(Theta+Beta23);     rless(3) = A/cos(Theta+Beta23); 
r(1) = r(2)/cos(Beta12);    rless(1) = rless(2); 
%[r; rless; r-rless] 
r = r - rless; 
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Save2Slopes.m 
 
function Save2Slopes(FileName,... 
    Syd,Sxd,Syp,Sxp,... 
    BW,Fs,FBeam,HVSG,Thetad,dFdTcgs,IFperM,Ns,... 
    DepthFlag,Alphad,Phid,hwave,A,d,T,F,C,L,Csh,Lsh); 
 
% 1st line contains output file name 
% 2d line contains slope data 
% 3d line contains VSG parameters 
% 4th line contains ocean wave parameters 
% 
% Header contains VSG parameters, ocean wave parameters 
% Save slopes in text form in the following format: 
%   Derivative slope                Point Estimated slope 
%       Sy      Sx                      Sy      Sx 
%               . 
%               . 
%               .                   etc. 
 
[fidOut, Success] = OpenOutFile(FileName); 
 
Form3 = '   %25s %1s %9.4f %7s\n'; 
Form4 = '   %30s %1s %14.4f %7s\n'; 
 
% Output VSG Parameters 
fprintf(fidOut,'\n%40s\n','VSG Parameters'); 
fprintf(fidOut,Form4,'Bandwidth','=',BW,'MHz'); 
fprintf(fidOut,Form4,'DSP sample freq','=',Fs,'Hz'); 
fprintf(fidOut,Form4,'Sweep freq, per beam','=',FBeam,'Hz'); 
fprintf(fidOut,Form4,'VSG height above surface','=',HVSG,'m'); 
fprintf(fidOut,Form4,'Incidence angle (theta)','=',Thetad,'degrees'); 
fprintf(fidOut,Form4,'dF/dT','=',dFdTcgs,'MHz/us'); 
fprintf(fidOut,Form4,'IF per range','=',IFperM,'Hz/m'); 
fprintf(fidOut,Form4,'Samples per U/D sweep','=',Ns,'samples/sweep'); 
 
% Output ocean wave parameters 
fprintf(fidOut,'\n%40s\n','Wave Parameters'); 
fprintf(fidOut,'%40s\n',DepthFlag); 
fprintf(fidOut,Form4,'Approach direction (Alpha)','=',Alphad,'CCW 
degrees from RLD'); 
fprintf(fidOut,Form4,'Phase offset (Phi)','=',Phid,'degrees'); 
fprintf(fidOut,Form4,'Wave height','=',hwave,'meters'); 
fprintf(fidOut,Form4,'Wave amplitude','=',A,'meters'); 
fprintf(fidOut,Form4,'Water depth','=',d,'meters'); 
fprintf(fidOut,Form4,'Wave period','=',T,'sec'); 
fprintf(fidOut,Form4,'Wave frequency','=',F,'sec'); 
fprintf(fidOut,Form4,'Wave velocity','=',C,'m/s'); 
fprintf(fidOut,Form4,'Wave length','=',L,'meters'); 
fprintf(fidOut,Form4,'Wave velocity (shallow)','=',Csh,'m/s'); 
fprintf(fidOut,Form4,'Wave length (shallow)','=',Lsh,'meters'); 
fprintf(fidOut,'%s\n',' '); 
fprintf(fidOut,'%s\n','    Syd       Sxd       Syp       Sxp'); 
 
% Output heights and slopes to ASCII file 
Form5 = '%9.6f %9.6f %9.6f %9.6f\n'; 
for Cnt = 1:length(Syd) 
     fprintf(fidOut,Form5,Syd(Cnt),Sxd(Cnt),Syp(Cnt),Sxp(Cnt)); 
end 
 
CloseFile(fidOut,FileName); 
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SampGen.m 
 
function [IFSamp,NewIF] = SampGen(NSmat,IFreq,Ts,fD); 
 
% [IFSamp] = SampGen(IFSamp,NSmat,IFreq,Ts,fD); 
% Fills the IF sample array with sampled values of IF array 
frequencies, 
% accounting for Doppler shift 
 
%   INPUTS 
%       IFSamp  IF sample array [n x m], initially all zeros 
%       NSmat   matrix indicating how many DSP samples are in each 
sweep 
%       IFreq   IF array computed from range values 
%       Ts      time between DSP samples 
%       fD      Doppler shift (+ = approaching, - = receding) 
%   OUTPUTS 
%       IFSamp  filled IFSamp array to return 
 
 
[r,c] = size(IFreq); 
 
% Generate vector of IF +/- fD 
NewIF = ones(2*r,1); 
J = 1;  % index for NewIF 
for K = 1:r 
    L = mod(K-1,3) + 1; 
    NewIF(J) = IFreq(K,L) + fD; 
    J = J + 1; 
    NewIF(J) = IFreq(K,L) - fD; 
    J = J + 1; 
end 
     
r = length(NewIF); 
 
% create DSP sample array 
NSweeps = size(NSmat,1); 
Nsmax = max(NSmat(:,3)); 
IFSamp = zeros(NSweeps,Nsmax); 
% sample all the sweeps 
for Cnt = 1:NSweeps 
    t = Ts:Ts:Ts*NSmat(Cnt,3);          % time series 
    % U/D multiplier [+1 for Upsweep, -1 for Downsweep] 
    UDmult = -sign(NSmat(Cnt,2)-0.5); 
    %Beam = NSmat(Cnt,1) + 1; 
    TempIF = UDmult*(cos(2.*pi.*NewIF(Cnt).*t)); %+ PhIF + pi)); 
    IFSamp(Cnt,1:NSmat(Cnt,3)) = TempIF;      % assign to data 
end 
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VSGoutput.m 
 
function [HdrWrit,DatWrit] = 
VSGoutput(Fs,FBeam,NSmat,Rsamp,OutFileName); 
 
% Output simulated data to binary file 
% in same format as VSG produces it 
 
% INPUTS 
%   Fs      DSP sampling frequency      [1,1] 
%   FBeam   Beam sweep frequenc(ies)    [1,1] 
%   NSmat   Indicator matrix containing columns [Nsweeps,3]: 
%               Beam #    Up/Down sweep     # DSP samples 
%   Rsamp   Sample data                 [Nsweeps,Ns] 
% OUTPUT 
%   data to binary file: 
%     HEADER 
%       Original        [float32] 
%       Month           [uint4] 
%       Day             [uint4] 
%       Hour            [uint4] 
%       Minute          [uint4] 
%       FSweep          [float32 X 3] 
%       Fs              [float32] 
%     DATA 
%       Data            [uint16 X NSamples] 
 
Orig = 1; 
C = datevec(now); 
Time = zeros(1,4); 
for Cnt = 1:4 
    Time(Cnt) = C(Cnt + 1); 
end 
FBeam = [FBeam,FBeam,FBeam]; 
 
% OPEN BINARY FILE FOR OUTPUT 
%OutFileName = 'U:\OCEAN\Wave Simulation\VSGout.bin'; 
[fidBin, Success] = OpenOutFile(OutFileName); 
 
% WRITE HEADER INFORMATION 
% write continuation indicator as unsigned 32 bit int 
Numwrit = fwrite(fidBin, Orig, 'uint32');  
HdrWrit = Numwrit; 
 
% write 4 Time Codes 
for Cnt = 1:4 
   Numwrit = fwrite(fidBin, Time(Cnt), 'uint8'); 
   HdrWrit =HdrWrit + Numwrit; 
end 
 
% write 3 Beam Frequencies 
for Cnt = 1:3                                      
   Numwrit = fwrite(fidBin, FBeam(Cnt), 'float32'); 
   HdrWrit = HdrWrit + Numwrit; 
end 
 
% write Sampling Frequency 
Numwrit = fwrite(fidBin, Fs, 'float32'); 
HdrWrit = HdrWrit + Numwrit; 
DatWrit = 0; 
 
% CREATE DATA 
Cnt = 0; 
NSweeps = size(NSmat,1); 
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for SwCnt = 1:NSweeps 
   Beam = bitshift(NSmat(SwCnt,1),13); 
   UD = bitshift(NSmat(SwCnt,2),12); 
   Word = zeros(1,size(Rsamp,2)); 
   %Beam = bitshift(Beam,13); 
   %UD = bitshift(UD,12);       
   Ns = NSmat(SwCnt,3); 
    
   for NsCnt = 1:Ns 
      Data = Rsamp(SwCnt,NsCnt); 
      Word(NsCnt) = Data + UD + Beam; 
      %WordStr = dec2bin(Word(NsCnt),16); 
      Cnt = 1 + Cnt; 
      %disp(sprintf('%12i %16i %18s',Cnt,Word(NsCnt),WordStr)) 
   end 
    
   % WRITE DATA 
   NumWrit = fwrite(fidBin, Word(1:Ns), 'uint16'); 
   DatWrit = DatWrit + NumWrit; 
end 
 
CloseFile(fidBin, OutFileName); 
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NsperSweep.m 
 
function [N] = NsperSweep(TBeam,Ts,TObs); 
 
% create matrix containing vectors: 
%   Column 1:   Sweep number [1,2,3] 
%   Column 2:   Up/Down [0 = up, 1 = down] 
%   Column 3:   Number of DSP samples in each sweep 
 
Ns = ceil(TBeam/2/Ts) + 1;         % max # of samples in a sweep 
NSweeps = floor(TObs/TBeam);       % # of complete sweeps 
NSamples = floor(TObs/Ts);          % total # of DSP samples 
 
N = zeros(NSweeps,3); 
T = Ts; 
Beam = 0; 
UD = 0; 
for Cnt = 1:NSweeps 
   N(Cnt,1) = mod(Beam,3); 
   N(Cnt,2) = mod(UD,2); 
   Temp =  T - Cnt*TBeam/2;        % test value 
      while Temp <= 0 
        N(Cnt,3) = N(Cnt,3) + 1;    % increment sample count 
        T = T + Ts;                 % next DSP sample 
        Temp = T - Cnt*TBeam/2;    % test value 
      end 
   UD = UD + 1; 
   if mod(UD,2) == 0 
       Beam = Beam + 1; 
   end 
end 
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Part 2 – DSP Analysis Files 
 
    
DSP2.m 
     
function [SlopeXY,R,V,BeamData,Fs,FBeam,PSD,F] = 
DSP2(InFileName,Toffset,M,BW,Theta,HVSG); 
 
%   DSP of Ocean Project data 
% 
%   INPUTS 
%       InFileName  VSG binary filename 
%       Toffset     Time position in file to begin reading (sec) 
%       M           Number of cycles to average 
%       BW          IF bandwidth (MHz) 
%       Theta       Incidence angle (deg) 
%   OUTPUTS 
%       R           Range (m) 
%       V           Velocity (m/s) 
%       BeamData    DSP sample data for 3 beams, Up/Down, M cycles, N 
%                       samples each [M x 6 x N] 
%       Fs          DSP sample frequency (Hz) 
%       FBeam       Beam sweep repetition frequency (1 beam)(Hz) 
%       PSD         power spectral density calculated from samples 
%                      (relative units) 
%       F           frequency abscissa for PSD (Hz) 
 
 
%   CONSTANTS 
c = 2.998*10^8;     % speed of light 
f0 = 34.75e9;       % radar operating frequency 
Lambda = c/f0;      % radar operating wavelength 
dr = pi/180;        % conversion, deg to radians 
Delta = 0;          % rotation angle about z' axis 
Theta = Theta*dr; 
 
BW = BW*1e6; 
 
% Read Data to Analyze 
[BeamData,Fs,FBeam] = GetTimeSeries2(InFileName,Toffset,M); 
% Make BeamData symmetric about zero 
BeamData = BeamData - 2^11; 
 
% Compute size of PSD 
DataSize = size(BeamData); 
%DataSize(3) 
Nexpt  = 1; 
N = 2^Nexpt; 
while N < DataSize(3) 
    Nexpt = Nexpt + 1; 
    N = 2^Nexpt; 
end 
 
% Initialize arrays for PSD results 
PSD = zeros(M,6,N/2);   % PSD results 
F = zeros(6,N/2);       % PSD frequency scale 
FreqBuff = zeros(M,6);  % effective frequency buffer 
%x = zeros(DataSize(3),1); 
for MCnt = 1:M 
    for BUDCnt = 1:6 
        x = reshape(BeamData(MCnt,BUDCnt,:),[DataSize(3),1]); 
        % Get PSD of one sweep vector 
        [y, z] = FindPSD(x, N, Fs); 
        PSD(MCnt,BUDCnt,:) = y; 
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        F(BUDCnt,:) = z; 
        y = FindEffFreq(x, N, Fs); 
        FreqBuff(MCnt,BUDCnt) = y;  % frequency buffer [M x 6] 
    end 
end 
 
% TEMP 
PSDSize = size(PSD); 
x = reshape(F(6,:),[1,PSDSize(3)]); 
y = reshape(PSD(1,6,:),[1,PSDSize(3)]); 
stem(x,y) 
% TEMP 
 
% Average frequencies for each beam/sweep 
AvgFreq = mean(FreqBuff); 
FreqBuff 
AvgFreq 
 
% Compute frequencies for range and Doppler 
FRange = zeros(1,3); 
FDoppler = zeros(1,3); 
for J = 1:3, 
    FRange(J) = (AvgFreq(2*J) + AvgFreq(2*J-1))/2; 
    FDoppler(J) =  (AvgFreq(2*J-1) - AvgFreq(2*J))/2; 
end 
 
% Convert to range 
R = FRange.*(c/(4*BW*FBeam)); 
% Convert to velocity 
V = FDoppler.*(c/2/f0); 
 
 
%[SlopeXY] = slopexymod(R,Theta,Delta) 
[SlopeXY] = evanslope(R,Theta,HVSG) 
 
 
 
GetTimeSeries2.m 
 
function [BeamData,Fs,FB] = GetTimeSeries2(InFileName,Toffset,M); 
% Obtain one time series of raw VSG data from input file. 
% Sort into array, pad with zeros as needed. 
% Pass to analysis program. 
%   INPUTS 
%       InFileName  Binary source data filename 
%       Toffset     Desired Time offset from beginning of file (sec) 
%       M           Desired number of [beam1,beam2,beam3] cycles  
%                       after offset 
%   OUTPUTS 
%       BeamData    3-D array in this form: BeamData(Cycle,BUD,Datum) 
%                   where   Cycle = which cycle number [1,2,...M] 
%                             BUD = Beam/Up/Down number [1,2,...6] 
%                           Datum = Individual raw data item 
%   FUNCTION CALLS 
%       OpenInFile.m 
%       GetHeader.m 
%       GetFileSize.m 
%       FindFirstDatum.m 
%       FindLastDatum.m 
%       CloseFile.m 
%        
% CONSTANTS 
global MaskBUD MaskData MaskBeam MaskUD It HdrSize 
MaskBUD = 28672;        % to extract Beam and Up/Down bits from word 
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MaskData = 4095;        % to extract data value from word 
MaskBeam = 24576;       % to extract Beam Number from word   
MaskUD = 4096;          % to extract Up/Down bit from word 
It = 2;                 % search iteration size, bytes/word 
%HdrSize = 2;            % header size (bytes) 
 
% ROUTINE 
% GET HEADER INFO 
% Open input file 
[fid, Success] = OpenInFile(InFileName); 
% Read header information 
[Original, Time, FBeam, Fs] = GetHeader(fid); 
HdrSize = ftell(fid); 
FB = FBeam(1); 
 
% Initialize beam data array 
Ns = ceil(Fs/2/FBeam(1)); 
BeamData = zeros(M,6,Ns); 
 
% Test time offset against file size, issue warning 
FileSize = GetFileSize(fid);       % get file size (bytes) 
TFile = FileSize/2 / Fs;           % compute file size (sec) 
SamplesOffset = fix(Toffset*Fs);   % # words in Toffset 
BytesOffset = It*SamplesOffset;    % set estimate # of bytes 
                                   % It = bytes/word 
                                   % TotalSamples = samples desired 
if BytesOffset >= FileSize 
    disp(sprintf('    %s %8.3f sec','Toffset too long: File length 
=',TFile)) 
end 
 
% Estimate Bytes2Read (number of bytes to read) = 2*N 
Ns = Fs/2/FBeam(1); %+ 1;         % avg # of samples in a sweep 
% set estimated # of bytes to read 
Bytes2Read = It*Ns*M*6 %+ mod((It*Ns*M*6),2)   
Bytes2Read = 2*round(Bytes2Read/2) % force multiple of 2   
                                  % It bytes/word 
                                  % Ns words/sweep 
                                  % 6 sweeps/cycle 
                                  % M cycles desired 
 
% Find beginning and ending file pointers 
FPtrBegin = FindFirstDatum1(fid,BytesOffset) 
FPtrEnd   = FindLastDatum1(fid,FPtrBegin,Bytes2Read) 
 
N = (FPtrEnd - FPtrBegin + It)/It;   % # of words to read 
 
fseek(fid, FPtrBegin, -1);      % set file to beginning of desired data 
[RawVSGData, NumRead] = fread(fid, N, 'uint16');  % read data 
disp(sprintf('  %8i Items read out of %8i required\n',NumRead,N)) 
 
% Close input file 
[Success] = CloseFile(fid, InFileName); 
 
% EXTRACT BEAM/U/D NUMBERS AND DATA, SORT INTO OUTPUT ARRAY 
MCnt = 1; 
PrevBUD = 1; 
%BUDCnt = zeros(1,6); 
DataCnt = ones(1,6); 
for NCnt = 1:N 
    % Read bits 12, 13, & 14, ie. 0111000000000000 
    BUD = bitshift(bitand(RawVSGData(NCnt),MaskBUD), -12) + 1; 
    %BUDCnt(BUD) = BUDCnt(BUD) + 1; 
    %while BUDCnt(BUD) > 6 
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    %    BUDCnt(BUD) = BUDCnt(BUD) - 6; 
    %end 
    % Read bits 0 thru 11 for Data, ie. 0000111111111111 
    Data = bitand(RawVSGData(NCnt), MaskData); 
    % Beam = bitshift(bitand(Word,MaskBeam),-13) + 1; 
    % UD = bitshift(bitand(Word,MaskUD),-12); 
    if PrevBUD == 6 & BUD == 1 
        MCnt = MCnt + 1; 
        DataCnt = ones(1,6); 
    end 
    BeamData(MCnt,BUD,DataCnt(BUD)) = Data; 
    DataCnt(BUD) = DataCnt(BUD) + 1; 
    PrevBUD = BUD; 
end 
 
 
 

GetHeader.m 
 
function [Original, Time, FBeam, FSample] = GetHeader(fid); 
% Get header information and place in output variables. 
% Original:  1 = first file in series 
%     0 = continuation file 
% Time (int) X 4 = time code of experiment 
% FBeam (float) X 3 = beam frequencies 
% FSample (float) = sampling frequency 
 
Original = fread(fid, 1, 'uint32');   % read continuation indicator 
                                        % as unsigned 32 bit int 
Time =  fread(fid, 4, 'uint8');               % read 4 time segments as 
                                        % unsigned 8 bit ints 
FBeam = fread(fid, 3, 'float32');     % read 3 beam frequencies 
                                        % as 32 bit floats 
FSample =  fread(fid, 1, 'float32');  % read sampling frequency 
 
 

GetFileSize.m 
 
function [FileSize] = GetFileSize(fid); 
 
% go to end of file, get file size, rewind file 
Success = fseek(fid,0,1); 
if Success ~= 0 
    ErrMsg = ferror(fid) 
    N = -1; 
    return 
end 
FileSize = ftell(fid); 
frewind(fid); 
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FindFirstDatum1.m 
 
function [FPtr] = FindFirstDatum1(fid,BytesOffset); 
 
% Finds file position of ending data for M desired cycles of VSG data 
%   INPUTS 
%       InFileName  Complete path and input file name 
%       Toffset     Time into file to begin read (sec) 
%       M           Number of cycles required 
%                       (to find beginning byte to read) 
%   OUTPUTS  
%       N           Number of 16-bit integers to read from file 
 
% CONSTANTS 
global HdrSize MaskBUD It 
 
%[fid BytesOffset] 
 
% move file pointer to estimated position 
%Success = 
fseek(fid, HdrSize + BytesOffset, -1); 
%if Success ~= 0 
%    ErrMsg = ferror(fid) 
%    N = -1; 
%    return 
%end 
 
% test contents, determine Beam/U/D position 
[Word, NumRead] = fread(fid, 1, 'uint16'); 
Vector = bitshift(bitand(Word,MaskBUD), -12) + 1; 
Cnt = 0;                    % byte shift counter 
%BinDir = sign(Vector-3.5);        % search direction 
 
% Look backward if in Beam 1 Up (BUD = 1) 
while Vector == 1 
    fseek(fid,-2*It,0);            % back to previous word 
    [Word, NumRead] = fread(fid, 1, 'uint16'); 
    Vector = bitshift(bitand(Word,MaskBUD), -12) + 1; 
    FPtr = ftell(fid);      % beginning file pointer 
    Cnt = Cnt - It; 
end 
% Look forward if not in Beam 1 Up (BUD ~= 1) 
while Vector ~= 1 
    [Word, NumRead] = fread(fid, 1, 'uint16'); 
    Vector = bitshift(bitand(Word,MaskBUD), -12) + 1; 
    FPtr = ftell(fid) - It;      % beginning file pointer   
    Cnt = Cnt + It; 
end 
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FindLastDatum1.m 
 
function [FPtr] = FindLastDatum1(fid,BytesOffset,Bytes2Read); 
 
% CONSTANTS 
global HdrSize MaskBUD It 
 
%[fid BytesOffset Bytes2Read HdrSize] 
 
% move file pointer to estimated position 
Success = fseek(fid,(BytesOffset+Bytes2Read+HdrSize),-1); 
 
%ftell(fid) 
 
if Success ~= 0 
    ErrMsg = ferror(fid) 
    N = -1; 
    return 
end 
 
% test contents, determine Beam/U/D position 
[Word, NumRead] = fread(fid, 1, 'uint16'); 
Vector = bitshift(bitand(Word,MaskBUD), -12) + 1; 
Cnt = 2;                    % byte shift counter 
%BinDir = sign(Vector-3.5);        % search direction 
% Look forward if in Beam 3 Down (BUD = 6) 
while Vector == 6 | Vector == 5 | Vector == 4 
    [Word, NumRead] = fread(fid, 1, 'uint16'); 
    Vector = bitshift(bitand(Word,MaskBUD), -12) + 1; 
    FPtr = ftell(fid);      % ending file pointer   
    Cnt = Cnt + It; 
end 
% Look backward if not in Beam 3 Down (BUD ~= 6) 
while Vector == 1 | Vector == 2 | Vector == 3 
    fseek(fid,-2*It,0);            % back to previous word 
    [Word, NumRead] = fread(fid, 1, 'uint16'); 
    Vector = bitshift(bitand(Word,MaskBUD), -12) + 1; 
    FPtr = ftell(fid) - It;      % ending file pointer 
    Cnt = Cnt - It; 
End 
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OpenInFile.m 
 
function [fidIn, Success] = OpenInFile(InFileName) 
 
fidIn = fopen(InFileName, 'r'); 
if fidIn > 2 
   Success = 1; 
   fprintf('\n\n     File %s Opened Successfully for read\n', 
InFileName); 
else 
   Success = 0; 
   fprintf('\n\n     *** UNABLE TO OPEN FILE %s ***\n\n',... 
      InFileName); 
   return 
end 
 
 
 

CloseFile.m 
 
function [Success] = CloseFile(fid, FileName); 
% User Inputs: fid - file identifier of the file to close (int) 
%  FileName - Filename of the file to close (string) 
% Output: Success - 1 = successful close (bin int) 
%     0 = unsuccessful close 
% 
% Module closes the indicated file and gives message as to success of 
% close.  In addition, it returns a binary indicator of success or 
% failure. 
 
CloseErr = fclose(fid); 
if ~CloseErr 
   Success = 1; 
   fprintf('\n     File %s Closed Successfully\n\n\n', FileName); 
else 
   Success = 0; 
   fprintf('\n\n            *** UNABLE TO CLOSE FILE %s ***\n\n',... 
      FileName); 
end 
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Part 3 - Other Authors' Routines 
 

FindPSD.m 
 
%**********************************************************************
****** 
%  Program:     FindPSD.m 
%  Version:     1.0 
%  Type:        MATLAB 
%  Date:        5/18/98 
%  Programmer:  Gary W. Hamilton II 
% 
%  Syntax:      [PSD, F] = FindPSD(x, N, Fsampling) 
% 
%  Function:    To calculate the approximate power spectral density of 
a 
%               sweep vector using a FFT^2 algorithm 
% 
%  Input:       Sweep vector, FFT length, and sampling frequency 
% 
%  Output:      Approximate power spectral density and corresponding 
%  discrete frequency vector 
% 
%  Fun. Calls:  none 
% 
%  Variable Definition 
%  ------------------- 
%  x            Sweep vector 
%  N            FFT length 
%  Fsampling    Sampling frequency (in Hz) 
%**********************************************************************
****** 
 
%  Define function 
function [PSD, F] = FindPSD(x, N, Fsampling) 
 
%  Convert PSD sample index to positive continuous frequency domain 
F = [0:N/2-1]*Fsampling/N;   
 
%  Calculate FFT of sweep vector 
%length(x)   % TEMP 
%size(x)     % TEMP 
 
x = x.*hanning(length(x)); 
X = abs(fft(x, N)); 
FFT = X(1:N/2)/N;  
 
%  Calculate PSD of sweep vector 
PSD = (FFT.^2)'; 
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FindEffFreq.m 
 
%**********************************************************************
****** 
%  Program: FindEffFreq.m 
%  Version: 3.0 
%  Type: MATLAB 
%  Date: 5/19/98 
%  Programmer: Gary W. Hamilton II 
% 
%  Syntax: EffFreq = FindEffFreq(x, N, Fsampling) 
% 
%  Function: To calculate the effective frequency of the VSG 
return 
%  signal using a FFT^2 algorithm 
% 
%  Input:       Sweep vector, FFT length, and sampling frequency 
% 
%  Output: Effective frequency of VSG return signal 
% 
%  Fun. Calls: FindPSD 
% 
%  Variable Definition 
%  ------------------- 
%  x  Sweep vector 
%  N  FFT length 
%  Fsampling Sampling frequency (in Hz) 
%**********************************************************************
****** 
 
%  Define function 
function EffFreq = FindEffFreq(x, N, Fsampling); 
 
%  Local variable definitions 
%  dF  Discrete frequency vector spacing (in Hz) 
%  PSD  Power spectrum of sweep vector (in Watts) 
%  Numerator Numerator integral of effective frequency calculation 
%  Denominator Denominator integral of effective frequency 
calculation 
%  EffFreq Effective frequency of sweep vector 
 
%  Declare and initialize local variables 
Numerator = 0; Denominator = 0; EffFreq = 0; dF = 0; PSD = 0; 
 
%  Calculate approximate power spectral density 
[PSD, F] = FindPSD(x, N, Fsampling); 
 
%  Calculate discrete frequency vector spacing 
dF = F(2) - F(1); 
 
%  Calculate the effective frequency 
Numerator = trapz((F.^2).*PSD) * dF; 
Denominator = trapz(PSD)*dF; 
EffFreq = sqrt(Numerator / Denominator); 

slrangemod.m 
 
function [ran,x,y,z] = slrangemod(theta,delta,r,phi,T,A,h,FBeam,TObs); 
% Format: 
% [ran,x,y,z] = 
slrangemod(theta,delta,beta12,beta23,gamma,r,phi,f,A,h); 
% Determines range to ocean surface from radar along the three beams 
% taking into account all possible angles.  This program solves the 
% nonlinear equation that arises from finding the point of intersection 
of 
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% the radar beam with the ocean surface. 
 
% Since there may be multiple solutions to the nonlinear equation, it 
is 
% best to guess the most accurate length of r, while making sure that 
the 
% guess is shorter than the resulting solution. 
 
%   INPUTS 
%       theta   incidence angle (rotation of radar around x axis) 
%       delta   rotation angle (rotation of radar around z' axis) 
%       r       initial guesses of lengths of beams 1,2,and 3 (meters) 
%       phi     angle between RLD and direction from which waves 
approach 
%               (deg) 
%       T       period of ocean waves (sec) 
%       A       amplitude of ocean waves (meters) 
%       h       height of radar from mean sea surface (meters) 
%   OUTPUTS 
%       ran 
%       x 
%       y 
%       z 
 
% Chris Evans, RSL, University of Kansas, March 1, 1994 
% Adapted from original by Evan Bryson, 12/2003 
%   Inserted hard-wired antenna angles from Akins/Legarsky VSG work 
%   Inserted h (VSG height) and A (ocean wave amplitude) in input 
%   Modified from f to T (using period of ocean wave, rather than 
%       frequency) 
%   Modified rate of sampling to FBeam rate, instead of 0.1 sec 
%   Modified length of time observed to TObs, instead of 1 wave period 
 
beta12 = 3.53; 
beta23 = 3.34; 
gamma = 90; 
 
dr = pi/180; 
%theta = theta*dr; 
%delta = delta*dr; 
beta12 = beta12*dr; 
beta23 = beta23*dr; 
gamma = gamma*dr; 
%phi = phi*dr; 
 
% h = 20; 
% A = 5.0; 
f = 1/T; 
 
R11 = cos(delta)*sin(beta12)*cos(gamma-pi/2) +... 
    sin(delta)*sin(beta12)*sin(gamma-pi/2); 
R21 = sin(delta)*cos(theta)*sin(beta12)*cos(gamma-pi/2) -... 
    cos(delta)*cos(theta)*sin(beta12)*sin(gamma-pi/2) +... 
    sin(theta)*cos(beta12); 
R31 = sin(delta)*sin(theta)*sin(beta12)*cos(gamma-pi/2) -... 
    cos(delta)*sin(theta)*sin(beta12)*sin(gamma-pi/2) - ... 
    cos(theta)*cos(beta12); 
R12 = 0; 
R22 = sin(theta); 
R32 = -cos(theta); 
R13 = -sin(delta)*sin(beta23); 
R23 = cos(delta)*cos(theta)*sin(beta23) +... 
    sin(theta)*cos(beta23); 
R33 = cos(delta)*sin(theta)*sin(beta23) -... 
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    cos(theta)*cos(beta23); 
 
k = ((2*pi*f)^2)/9.8;   % spatial frequency of waves (wave number) 
 
% initial guesses 
r1(1) = 0;  r1(2) = r(1); 
r2(1) = 0;  r2(2) = r(2); 
r3(1) = 0;  r3(2) = r(3); 
 
for t = 1:FBeam*TObs       % t is in 1/FBeam second increments 
                        % FBeam*T gives 1 period of samples at rate 
FBeam 
    J = 2; 
    %disp(sprintf(' %i4 ',t))        % *****TEMP******* 
    while (abs(r1(J)-r1(J-1)) > 1e-13) | (abs(r3(J)-r3(J-1)) > 1e-13), 
        % error must be less than this number------------------^^^^^ 
        % ranges from equations 
        x1(J) = r1(J)*R11;  x2(J) = 0;          x3(J) = r3(J)*R13; 
        y1(J) = r1(J)*R21;  y2(J) = r2(J)*R22;  y3(J)=r3(J)*R23; 
        z1(J) = r1(J)*R31;  z2(J) = r2(J)*R32;  z3(J)=r3(J)*R33; 
        % ocean wave equations 
        zeta1(J) = 2*pi*f*t/FBeam + k*sin(phi)*x1(J) + 
k*cos(phi)*y1(J); 
        zeta2(J) = 2*pi*f*t/FBeam + k*sin(phi)*x2(J) + 
k*cos(phi)*y2(J); 
        zeta3(J) = 2*pi*f*t/FBeam + k*sin(phi)*x3(J) + 
k*cos(phi)*y3(J); 
        sea1(J) = A*cos(zeta1(J)) - h; 
        sea2(J) = A*cos(zeta2(J)) - h; 
        sea3(J) = A*cos(zeta3(J)) - h; 
        F1(J) = z1(J) - sea1(J); 
        F2(J) = z2(J) - sea2(J); 
        F3(J) = z3(J) - sea3(J); 
        % derivatives for slope of ocean wave 
        Fder1(J) = R31 + A*sin(zeta1(J))*(k*sin(phi)*R11 + 
k*cos(phi)*R21); 
        Fder2(J) = R32 + A*sin(zeta2(J))*(k*sin(phi)*R12 + 
k*cos(phi)*R22); 
        Fder3(J) = R33 + A*sin(zeta3(J))*(k*sin(phi)*R13 + 
k*cos(phi)*R23); 
        % Newton's equation 
        r1(J+1) = r1(J) - F1(J)/Fder1(J); 
        r2(J+1) = r2(J) - F2(J)/Fder2(J); 
        r3(J+1) = r3(J) - F3(J)/Fder3(J); 
        J = J + 1; 
        %disp(sprintf(' %7i %18.14f %18.14f',J-1,r1(J),r3(J)))    % 
*****TEMP******* 
    end 
    ran(t,:) = [r1(J), r2(J), r3(J)]; 
    x(t,:) = [x1(J-1), x2(J-1), x3(J-1)]; 
    y(t,:) = [y1(J-1), y2(J-1), y3(J-1)]; 
    z(t,:) = [z1(J-1), z2(J-1), z3(J-1)]; 
    if mod(t,100)==0 
        [t J] 
    end 
end 
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slopepoimod.m 
 
function [Sx,Sy] = slopepoimod(ran,theta,delta,A,phi,T,FBeam); 
% 
% [Sx,Sy] = slopepoi(ran,theta,delta,beta12,beta23,gamma,A,phi,f); 
% calculates the slope at the point for which the slope is being 
% approximated with slopeab.m 
% 
%   INPUTS 
%       ran     time series of ranges [nx3] 
%       theta   angle of incidence (deg) 
%       delta   angle of CCW rotation of radar about z' axis 
%       beta12  angle between beams 1 and 2 
%       beta23  angle between beams 2 and 3 
%       gamma   flat angle between beam21 and beam23 lines 
%       A       ocean wave amplitude 
%       phi     angle of wave approach direction relative to RLD 
%       T       period of ocean wave 
%       f       frequency of ocean wave = 1/T 
% 
%   OUTPUTS 
%       Sy      slope in y direction (deg) 
%       Sx      slope in x direction (deg) 
% 
% Chris Evans, RSL, The University of Kansas, March 10, 1994 
% Adapted from original by Evan Bryson, 12/2003 
%   Modified from f to T (using period of ocean wave, rather than 
%       frequency) 
%   Modified rate of sampling to FBeam rate, instead of 0.1 sec 
%   Modified length of time observed to TObs, instead of 1 wave period 
% 
beta12 = 3.53; 
beta23 = 3.34; 
gamma = 90; 
 
dr = pi/180; 
%theta = theta*dr; 
%delta = delta*dr; 
beta12 = beta12*dr; 
beta23 = beta23*dr; 
gamma = gamma*dr; 
%phi = phi*dr; 
 
f = 1/T; 
 
[r,c]= size(ran); 
 
% coordinates in the antenna system 
x1a = ran(:,1)*sin(beta12)*cos(pi/2-gamma); 
y1a = ran(:,1)*sin(beta12)*sin(pi/2-gamma); 
z1a = -ran(:,1)*cos(beta12); 
x2a = zeros(r,1); 
y2a = zeros(r,1); 
z2a = -ran(:,2); 
x3a = zeros(r,1); 
y3a = ran(:,3)*sin(beta23); 
z3a = -ran(:,3)*cos(beta23); 
 
% rotation transforms from the antenna to the earth coord system 
rot = [cos(delta),         -sin(delta),            0; 
    cos(theta)*sin(delta), cos(delta)*cos(theta), -sin(theta); 
    sin(theta)*sin(delta), cos(delta)*sin(theta), cos(theta)]; 
 
for t=1:r, 
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    Ant = [x1a(t), x2a(t), x3a(t); 
        y1a(t), y2a(t), y3a(t); 
        z1a(t), z2a(t), z3a(t)]; 
     
    E = rot * Ant; 
    x1e(t) = E(1,1);    x2e(t) = E(1,2);     x3e(t) = E(1,3); 
    y1e(t) = E(2,1);    y2e(t) = E(2,2);     y3e(t) = E(2,3); 
    z1e(t) = E(3,1);    z2e(t) = E(3,2);     z3e(t) = E(3,3); 
     
    % coordinates are now in the earth system 
    A1 = (y1e(t) - y2e(t))*(z3e(t) - z2e(t)) - (y3e(t) - 
y2e(t))*(z1e(t) - z2e(t)); 
    B1 = (x3e(t) - x2e(t))*(z1e(t) - z2e(t)) - (x1e(t) - 
x2e(t))*(z3e(t) - z2e(t)); 
    C1 = (x1e(t) - x2e(t))*(y3e(t) - y2e(t)) - (x3e(t) - 
x2e(t))*(y1e(t) - y2e(t)); 
    A2 = x3e(t) - x2e(t); 
    B2 = y3e(t) - y2e(t); 
    C2 = z3e(t) - z2e(t); 
    A3 = x1e(t) - x2e(t); 
    B3 = y1e(t) - y2e(t); 
    C3 = z1e(t) - z2e(t); 
     
    R = [A1, B1, C1; 
        A2, B2, C2; 
        A3, B3, C3]; 
     
    D1 = A1*x2e(t) + B1*y2e(t) + C1*z2e(t); 
    D2 = 0.5*(x3e(t)^2 + y3e(t)^2 + z3e(t)^2 - x2e(t)^2 - y2e(t)^2 - 
z2e(t)^2); 
    D3 = 0.5*(x1e(t)^2 + y1e(t)^2 + z1e(t)^2 - x2e(t)^2 - y2e(t)^2 - 
z2e(t)^2); 
     
    S = [D1; D2; D3]; 
     
    % x and y positions of beam spots 
    Q = inv(R)*S; 
    Px = Q(1); 
    Py = Q(2); 
     
    % ocean wave equations for slopes (-sin is derivative of cos) 
    % changed from original program (it had +cos, which is d(sin())/dr 
    k = (2*pi*f)^2/9.8; 
    Sy(t) = -atan(A*k*cos(phi)*sin(2*pi*f*t/FBeam + k*sin(phi)*Px +... 
        k*cos(phi)*Py)) * 180/pi;   % degrees 
    Sx(t) = -atan(A*k*sin(phi)*sin(2*pi*f*t/FBeam + k*sin(phi)*Px +... 
        k*cos(phi)*Py)) * 180/pi;   % degrees 
end 
Sy = Sy'; 
Sx = Sx'; 
  
    

slopeab2.m 
 
function [Sy,Sx] = slopeab2(x,y,z); 
% 
% 
% Slopeab2 determines the slope time series from the plane given the x, 
y, 
% and z coordinates of the points of intersection of the radar beams 
with 
% the ocean surface. 
% 
%   INPUTS 
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%       x   x coordinate of the point of intersection [nx3] 
%       y   y coordinate of the point of intersection [nx3] 
%       z   z coordinate of the point of intersection [nx3] 
 
%   OUTPUTS 
%       Sy  time series of slope in y (RLD) direction (deg) 
%       Sx  time series of slope in x (cross) direction (deg) 
 
%   Chris Evans, RSL, The University of Kansas, March 10, 1994 
 
%   B & C are vectors in the plane, and N is the normal to the plane. 
B = [(x(:,1) - x(:,2)), (y(:,1) - y(:,2)), (z(:,1) - z(:,2))]; 
C = [(x(:,3) - x(:,2)), (y(:,3) - y(:,2)), (z(:,3) - z(:,2))]; 
 
%   Normal components are found from the cross product of B and C 
Nx = B(:,2).*C(:,3) - C(:,2).*B(:,3); 
Ny = B(:,3).*C(:,1) - C(:,3).*B(:,1); 
Nz = B(:,1).*C(:,2) - C(:,1).*B(:,2); 
 
% The slope of the plane is the negative inverse of the slope of the 
line. 
Sy = 180/pi*atan(-Ny./Nz); 
Sx = 180/pi*atan(-Nx./Nz);  
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evanslope.m 
 
function [SlopeXY] = evanslope(R,Theta,HVSG); 
 
% From Chris Evans, June 1994 
% compute slope from measured VSG ranges 
% INPUTS 
%   R       ranges from VSG to ocean surface [beam1 beam2 beam3] 
%   Theta   incidence angle (rad) 
%   HVSG    vertical height of VSG from mean ocean surface 
% OUTPUT 
%   SlopeXY slope of ocean surface [Sx Sy] (deg) 
 
% CONSTANTS 
dr = pi/180; 
b12 = 3.53;     b12 = b12*dr; 
b23 = 3.34;     b23 = b23*dr; 
g = 90;         g = g*dr;       % 
d = 0;          d = d*dr;       % rotation on z' axis 
t = Theta; 
h = HVSG; 
 
% Coordinates in radar coord system 
Ar = [R(1)*sin(b12)*cos(pi/2-g); 
    R(1)*sin(b12)*sin(pi/2-g); 
    -R(1)*cos(b12)]; 
 
Br = [0; 0; -R(2)]; 
 
Cr = [0; R(3)*sin(b23); -R(3)*cos(b23)]; 
 
% Transformation matrix 
Tx = [cos(d),        -sin(d),       0; 
      sin(d)*cos(t), cos(d)*cos(t), -sin(t); 
      sin(d)*sin(t), cos(d)*sin(t), cos(t)]; 
 
% Convert to earth coord system 
Ae = Tx*Ar; 
Be = Tx*Br; 
Ce = Tx*Cr; 
 
% add height of VSG 
Ae(3) = Ae(3) + h; 
Be(3) = Be(3) + h; 
Ce(3) = Ce(3) + h; 
 
% Slope vectors 
BA = Ae - Be; 
BC = Ce - Be; 
 
% Normal vectors 
N = cross(BA,BC); 
Nx = N(1); 
Ny = N(2); 
Nz = N(3); 
 
% x and y Slope in degrees 
Sx = atan(-Nx/Nz) / dr; 
Sy = atan(-Ny/Nz) / dr; 
SlopeXY = [Sx Sy]; 
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Appendix C 

Summary – Gary Hamilton Paper 

 

DSP Algorithm 

 A DSP algorithm was developed by [Hamilton, 1998] in five stages.  

Figure C.1 is a block diagram of this algorithm.  A brief summary of the algorithm 

is in order here.  The five stages are: 

 

1) Power spectral density 

2) Effective frequency 

3) Buffer, sum, and difference averaging 

4) Range, Doppler velocity, and 3-D slope calculations 

5) Beam power calculation 

 

Stage 1 – Power Spectral Density 

Module FindPSD.m 

This module incorporates the general function for each point of the PSD: 

{ }

1
2

1

1
  where)()(    )( 2

+≤≤

≤≤

=

Nk

Li
iHixFkPSD

 

and x = sweep vector [1 x L] 

 H = Hanning window [1 x L] 

 F = Fourier transform operator 
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This module uses L, the length of the sweep data vector, as the length of the 

Hanning window and PSD vectors.  Length of the FFT result is N, of which only 

N/2 = L are used, in order to eliminate redundancy.  

 

Stage 2 – Effective Frequency 

 This stage calculates and stores the effective frequencies for each of the 

six sweeps in a cycle.   

Module FindEffFreq.m 

The effective frequency module is based upon Rice’s expected number of zero 

crossings for normal, stochastic processes [Hamilton, 1998]: 

Hz)frequency(            
density spectralpower     

where
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⋅⋅
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∫

∞
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∞
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dffPSD

dfPSD(f)f
f

 

For the purposes of VSG analysis, discrete frequencies are summed rather than 

integrated, limits of the summation are from the lower to the upper cutoff 

frequencies of the VSG bandpass filter, and discrete frequency spacing replaces 

df: 
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This module utilizes the “trapz.m” function in MATLAB®, which performs 

numerical integration using a trapezoidal approximation technique. 

Module StoreToBuffer.m 

This module appends each effective frequency result to the appropriate 

one of six data buffers corresponding to the sweep and beam origin of the result. 

 

Stage 3 – Buffer, Sum, and Difference Averaging 

Module AverageEffFreq.m 

This module computes the average for each frequency buffer according to 

these equations: 

{∑
=

− =
M

i
jijupeff k

M
f

1
,,

1 }  for upsweep 

{∑
=

− =
M

i
jijdowneff k

M
f

1
,,

1 }  for downsweep 

where 

  M = number of elements in buffer 

i = element index {1, 2, …, M} 
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j = beam j: {1, 2, 3} 

 

 In conjunction with calling modules, it averages the contents of each buffer 

from Stage 2 to obtain six averaged frequency values, one for each sweep of 

each of the three beams. 

Module SumAverage.m 

 This module produces two results, one an average of all the upsweep 

frequencies, and the other an average of all the downsweep frequencies.  These 

results are used in DiffAverage.m.  They are also used to produce an average 

overall frequency according to this equation: 

( )jdowneffjupeffjrange fff ,,, 2
1

−− +=  

This result is used to estimate the range to the wave. 

Module DiffAverage.m 

 This module computes the difference in the average frequency for each 

beam according to this equation: 

( )jdowneffjupeffjDoppler fff ,,, 2
1

−− −=  

This is used to estimate Doppler component in the RLD. 

 

Stage 4 – Range, Doppler Velocity, and 3-D Slope Calculation 

 These three functions were under construction at the time of this writing.  

Range is determined from estimated frequency using this equation: 
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 Slope is calculated from the three measured range values and VSG 

orientation using trigonometry.  Doppler velocity component toward the radar is 

measured in stage 3 (See Figure C.2).  Orbital velocity is the desired  

measurement, and it may be extracted by using trigonometry.  Group velocity of 

ocean waves may be obtained through a number of measurements of ocean 

wave position.  (Note that ocean group velocity, vprop, will not appear in actual 

radar measurements [Moore, 2003].   

Ocean wave 
vorbital

RADAR

vDoppler

θ 

φ

vprop

Direction of propagation 

 

 

 

 

 

 

Figure C.2.  Doppler Vector Resolution [Hamilton, 1998] 
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Stage 5- Average Beam Power 

Each of the three VSG beams transmits with a slightly different beam 

power.  Beam power is of interest in the measurement of slope modulation.  The 

final stage of the VSG will attempt to calculate the instantaneous average power 

of each beam and the average of all three beams.  Total average power is given 

by an average of the three independent beam averages: 

∑
=

=
3

1
,,

j
javgtotalavg PP  

where 

{1,2,3} : beam ofpower  Average    , jP javg =
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