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ABSTRACT 
 

Textual chat services such as instant messengers and chat servers have emerged 

as a popular mode of communication among people for both business and recreational 

uses. In recent times, there has been a high incidence of participating speakers 

indulging in posting or typing messages inappropriate to the chat group. Due to the 

high volume of messages involved, it is not feasible to offer real-time solutions to 

analyze each chat message. However, the problem is greatly simplified if we can 

group together only those utterances from a chat session that comprise a thread. Once 

similar utterances have been grouped together, these individual discussion threads 

could then be used to perform several operations such as: 

1. Build a profile of speakers based on the thread in which they participate. 

2. Identify the topics being discussed in the chatroom. 

3. Retrieve only those messages from a chat session which are related to a particular 

thread. 

In this research, I present an automatic method to identify discussion threads. The 

approach is based on clustering together utterances that are similar to each other. 

Since the chat utterances are stored and archived as individual files, I treat them as 

documents of extremely small size. Stopword removal is applied to each of these 

utterances to eliminate words that do not convey any particular information. This in 

turn leads to a further reduction in the size of documents being clustered; in most 

cases, eliminating the document from consideration. In order to compensate for this 

loss, we apply post-processing techniques to group these utterances with identified 

threads that surround them. The results from a series of experiments are presented 
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demonstrating that postprocessing can raise the accuracy of thread detection from 

0.86 to 1. 
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1. Introduction 
 

Instant messaging (IM) and chat services have become an important means of 

communication among people around the globe, providing an alternative to telephone 

and email communications. The number of people using instant messaging 

applications and chat services has increased steadily over the last decade. The total 

time spent using instant-messaging applications at home in the U.S. increased 48%, 

from 9.2 billion minutes in September 2000 to 13.6 billion minutes in September 

2001. At the same time, the number of unique users of instant-messaging applications 

at home increased 28%, from 42.0 million in September 2000 to 53.8 million in 

September 2001[2]. 

Coupled with the rise in use of these applications is the rise in chat data. There 

are few techniques available to store, explore, or analyze this flood of information. In 

this paper, we present an approach to extract discussion threads from chat session, 

thus reducing the analysis space to a few clusters as opposed to the thousands of 

utterances that are typically seen in a single Internet chat session. 
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1.1. Background and Motivation 
 
With increased usage of chat rooms and instant messengers as a mode of 

communication comes an increased risk that the speakers are exposed to 

inappropriate contact, especially young children. Pedophiles could be posing as 

children on chat groups and chat rooms meant for children, targeting impressionable 

youngsters with inappropriate messages. The United States Internet Crime Task 

Force, Inc. (www.usict.org) projects that this year alone, 1 out of 5 children will 

receive an online approach by a predator. Last year, 19.5 million children went online 

and the USICT reports that 65% were solicited in chat rooms and 10% of children 

were asked to meet someplace. 77% of those children were under 14 years of age[1]. 

There are also security concerns that criminals and/or terrorists are using chatrooms 

as places to meet and disseminate information, and their conversations are 

camouflaged by the flood of other chat data. 

Instant messaging has also become a popular choice of communication in 

corporate environments as well. Employees and clients alike are using IM to quickly 

communicate important office details, technical plans, and even meetings through 

chat sessions. The total time that people at work used publicly available IM products 

from AOL Time Warner's America Online (NYSE:AOL), Microsoft's 

(NASDAQ:MSFT) and Yahoo (NASDAQ:YHOO) jumped 110%, from 2.3 billion 

minutes in September 2000 to 4.9 billion in September 2001. However, unlike 

traditional meetings, there is often no record of these electronic discussions. 

Chat rooms are also used to disseminate and share knowledge. At the 

University of Kansas, students enrolling in the following two courses, EECS 745 and 
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EECS 888 (at the time of this writing) use chat rooms for discussions, replacing the 

traditional discussion sessions involving the physical presence of the instructor and 

students. Programmers at the Mozilla development center also use IRC clients to keep 

others informed about code changes, and version control.  

With such a vast target audience, it is imperative that methods be developed to 

archive, summarize, and analyze information from chat sessions. For example, a chat 

session involving the participation of 20 people could easily generate more than a 

1000 utterances over a period of couple of hours. During this time, several topics may 

be discussed by several people, and these again, may not be all contiguous. Consider 

for example, a particular group of people discussing about enriched plutonium in a 

programming languages group. An occasional statement interspersed with utterances 

on programming languages may seem innocuous, perhaps erroneous, but it is difficult 

to keep track of the pattern of this suspicious discussion. However, if threads can be 

extracted, off-topic discussions can be found. In addition, summarization and analysis 

of single-topic threads, rather than diverse, unrelated utterances is likely to be more 

efficient and more effective. 

Most systems aimed at analyzing chat messages do not perform a thorough 

analysis; rather they rely on filtering messages based on predefined keywords. In this 

work, we have aimed to create a more comprehensive analysis of chat sessions. The 

goal is to identify threads by grouping together similar utterances. A significant 

number of these utterances do not convey any particular information, for example, 

“Hi,” “Bye,” “brb,” etc. We therefore need a more intelligent solution to retrieve only 

those utterances which convey information. These clusters of documents can then be 
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used to perform several other tasks, such as identifying topics being discussed, 

profiling speakers based on their utterances/cluster of utterances, or retrieving only 

those utterances pertaining to a group/topic.   
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1.2. Related Work 
 

My research investigates whether similar approaches could be applied to detect 

threads in a chat session based on the clustering of chat utterances, wherein each 

utterance may be considered as a very short document. Document clustering has been, 

and still is, an area of tremendous research interest in information retrieval. 

Applications of document clustering range from organizing retrieval results in web 

search engines [5], to topic detection and tracking in news stories [17][29][21][8], and 

event tracking [6][18].  

 

1.2.1. Document Clustering 
 
Document clustering has been investigated as a means of improving the performance 

of information retrieval systems by pre-clustering the entire corpus [3]. However, 

clustering has also been investigated as a post-retrieval results browsing technique 

[6]. My work follows the former paradigm. 

There are numerous document clustering algorithms that appear in the 

literature, of which Agglomerative Hierarchical Clustering (AHC) algorithms are 

commonly used because they provide robust results across many applications and 

data sets. These algorithms are typically slow when applied to large document 

collections. Single-link and group-average methods typically take O(n2) time, while 

complete-link methods that recompute similarities to each item in the clustering 

superscript typically take O(n3) time, where n is the number of input documents[9]. 
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As shown by experiments, these algorithms are too slow to meet the speed 

requirement for one thousand documents [5]. 

Linear time clustering algorithms are often the best choices in terms of 

clustering performance. These include the K-Means algorithm - O(nkT) time 

complexity where k is the number of desired clusters and T is the number of iterations 

[16] and the Single-Pass method - O(nK) were K is the number of clusters created. 

One advantage of the K-Means algorithm is that, unlike AHC algorithms, it can 

produce overlapping clusters. Its chief disadvantage is that it is known to be most 

effective when the desired clusters are approximately spherical with respect to the 

similarity measure used. There is no reason to believe that documents (under the 

standard representation as weighted word vectors and some form of normalized dot-

product similarity measure) should fall into approximately spherical clusters. The 

Single-Pass method also suffers from this disadvantage, as well as from being order 

dependant and from having a tendency to produce large clusters [10]. It is, however, 

the most popular incremental clustering algorithm, particularly in the event detection 

domain [24]. 

 

1.2.1.1. Clustering Techniques 
 
Hierarchical clustering is often portrayed as the better quality clustering approach, but 

its applicability is limited because of its quadratic time complexity. In contrast, K-

means and its variants have a time complexity which is linear in the number of 

documents, but they are thought to produce inferior clusters [26]. Sometimes K-

means and agglomerative hierarchical approaches are combined to form a new class 
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of clustering algorithms called constrained agglomerative algorithms that combine 

features from both partitional and agglomerative approaches. This allows them to 

reduce the early-stage errors made by agglomerative methods and hence improve the 

quality of clustering solutions [32]. 

In this section, I provide a brief description of hierarchical, partitional, and hybrid 

algorithms. 

 

1.2.1.1.1. Hierarchical Clustering Techniques 
 
Hierarchical techniques produce a nested sequence of partitions with a single, all 

inclusive, cluster at the top and singleton clusters of individual points at the bottom. 

Each 

intermediate level can be viewed as combining two clusters from the next lower level 

(or 

splitting a cluster from the next higher level). The result of a hierarchical clustering 

algorithm can be graphically displayed as tree, called a dendogram. This tree 

graphically displays the merging process and the intermediate clusters. Hierarchical 

clustering techniques fall into two broad classes: 

a) Agglomerative: Start with the points as individual clusters and, at each step, merge 

the most similar or closest pair of clusters. This requires a definition of cluster 

similarity or distance. 

b) Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster until 

only 
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singleton clusters of individual points remain. In this case, we need to decide, at each 

step, which cluster to split and how to perform the split. 

 

 
Agglomerative techniques are much more commonly used. A Simple Agglomerative 

Clustering Algorithm is described below: 

1. Compute the similarity between all pairs of clusters, i.e., calculate a similarity 

matrix 

whose ijth entry gives the similarity between the ith and jth clusters. 

2. Merge the most similar (closest) two clusters. 

3. Update the similarity matrix to reflect the pairwise similarity between the new 

cluster and the original clusters. 

4. Repeat steps 2 and 3 until only a single cluster remains. 

 

1.2.1.1.2. Partitional Clustering Techniques 
 
In contrast to hierarchical techniques, partitional clustering techniques create a one-

level 

(un-nested) partitioning of the data points. If K is the desired number of clusters, then 

partitional approaches typically find all K clusters at once. Contrast this with 

traditional hierarchical schemes that bisect a cluster to get two clusters or merge two 

clusters to get one. Of course, a hierarchical approach can be used to generate a flat 

partition of K clusters, and likewise, the repeated application of a partitional scheme 

can provide a hierarchical clustering.  
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There are a number of partitional techniques, but because the K-means 

algorithm is widely used in document clustering, we will focus on it. K-means is 

based on the premise that a cluster can be well-represented by its center point, or 

centroid, the mean or median of a group of points. Note that a centroid almost never 

corresponds to an actual data point, but rather a virtual location. One limitation of the 

K-means approach is that it requires an initial value, k, for the number of clusters to 

produce. For some applications, this is known in advance, but for others it is 

unavailable and a variety of values for k, must be evaluated. 

The basic K-means clustering technique is presented below.  

 

 

Basic K-means Algorithm for finding K clusters. 

1. Select K points as the initial centroids. 

2. Assign all points to the closest centroid. 

3. Recompute the centroid of each cluster. 

4. Repeat steps 2 and 3 until the centroids remain unchanged [26]. 

 

1.2.1.1.3. Constrained Agglomerative Clustering Techniques 
 
Constrained agglomerative algorithms generate the clustering solution by using an 

agglomerative algorithm to build a hierarchical subtree for each partitional cluster and 

then agglomerate these clusters to build the final hierarchical tree. Experimental 

evaluation by Zhao and Karypis [31][32] has shown that these methods consistently 

lead to better solutions than agglomerative methods alone and for many cases they 
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outperform partitional methods, as well. To understand these improvements, they 

studied the impact that the constraints have on the quality of the neighborhood of 

each document and found that the constraints led to purer neighborhoods since they 

identify the good subspaces for the various classes. 

One of the advantages of partitional clustering algorithms is that they use 

information about the entire collection of documents when they partition the dataset 

into a certain number of clusters. On the other hand, the clustering decisions made by 

agglomerative algorithms are local in nature. This local nature has both its advantages 

as well as its disadvantages. The advantage is that it is easy for them to group 

together documents that form small and reasonably cohesive clusters, a task in which 

partitional algorithms may fail since they may split such documents across cluster 

boundaries early during the partitional clustering process, especially when clustering 

large collections. However, a disadvantage to agglomerative algorithms, is that, if the 

documents are not part of particularly cohesive groups, the initial merging decisions 

may contain some errors that tend to be magnified as the agglomeration progresses. 

This is especially true for the cases in which there are a large number of equally good 

merging alternatives for each cluster [31][32]. 

One way to eliminate this type of error is to use a partitional clustering 

algorithm to constrain the space over which agglomeration decisions are made by 

only allowing each document to merge with other documents that are part of the same 

partitionally discovered cluster. In this approach, a partitional clustering algorithm is 

used to compute  k clusters. Then, each of these clusters, referred as constraint 

clusters, is treated as a separate collection and an agglomerative algorithm is used to 
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build a tree for each one of them. Finally, the k different trees are combined into a 

single tree by merging them using an agglomerative algorithm that treats the 

documents of each subtree as a cluster that has already been formed during 

agglomeration. The advantage of this approach is that it is able to benefit from the 

global view of the collection used by partitional algorithms and the local view used by 

agglomerative algorithms. An additional advantage is that the computational 

complexity of constrained clustering is O(k((n/k)2 log(n/k))+k2 log k), where k is the 

number of constraint clusters. If k is reasonably large, e.g., k equals √n, the original 

complexity of O(n2 log n) for agglomerative algorithms is reduced to O(n2/3 log n) 

[31][32]. 

 

1.2.2. Topic/Event Detection and Tracking 
 
Monitoring chat topics over time is related to Event Detection and Tracking efforts. 

Event Tracking is the task of monitoring a stream of news stories to find those that 

discuss the same event as the one covered in a few sample stories. Since it is difficult, 

many systems rely on manually supplied examples of new events. For example, 

having read one or two stories about a bombing, a user might tag those stories and ask 

that the system notify him or her when new stories on the same event are broadcast 

[6]. 

The Event Detection and Tracking problems are part of a broader initiative 

called Topic Detection and Tracking (TDT). The domain of TDT’s interest is all 

broadcast news – i.e., written and spoken news stories in multiple languages. As such 

the problem is substantially broad encompassing automatic speech-to-text efforts, 
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finding the boundaries between news stories for archival and presentation purposes, 

locating new events within the stream, tracking located events, and doing all of that in 

a multi-lingual environment with degraded information. As its name implies, TDT is 

also ultimately concerned with ways of organizing information that are broader than 

“events” [18]. 

 

1.2.2.1. The Tasks 
 
The input to the Topic Detection and Tracking process is a stream of stories. This 

stream may or may not be pre-segmented into stories, and the events may or may not 

be known to the system (i.e., the system may or may not be trained to recognize 

specific events). This leads to the definition of three main technical tasks to be 

addressed in the TDT study. These are namely, the segmentation of a news source 

into stories, the detection of unknown events, and the tracking of known events. 

Following is a brief description of the different tasks [17]. 

 

1.2.2.1.1. The Segmentation Task 
 
The segmentation task is defined as the task of segmenting a continuous stream of 

text (including transcribed speech) into its constituent stories. The segmentation task 

tries to, for all stories in the corpus, correctly locate the boundaries between adjacent 

stories.   

 Segmentation must be done before further processing is possible, it is therefore an 

“enabling” technology for other applications, such as tracking and new event 
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detection [17]. We can view our research as developing techniques to segment chat 

sessions into stories. The task is more difficult because the granularity of the stream 

contents is much finer than in news transcripts. 

 

1.2.2.1.2. The Detection Task 
 
The detection task is characterized by the lack of knowledge of the event to be 

detected. In such a case, we may wish to retrospectively process a corpus of stories to 

identify the events discussed therein, or we may wish to identify new events as they 

occur, based on a stream of stories. 

 

1.2.2.1.3. Retrospective Event Detection 
 
The retrospective detection task is defined as the task of identifying all of the events 

in a corpus of stories. Events are defined by their association with stories, and 

therefore the task is to group the stories in the study corpus into clusters in which 

each cluster represents an event and the stories in the cluster discuss the event. Our 

work can also be viewed as retrospective event detection in that the segmentation 

produces a group of related utterances, each of which is a thread or event, from an 

archived chat session. 

 

1.2.2.1.4. On-line New Event Detection 
 
The online new event detection task is defined to be the task of identifying new 

events in a stream of stories. Each story is processed in sequence, and a decision is 

made whether or not a new event is discussed in the story, after processing the story 
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but before processing any subsequent stories. A decision is made after each story is 

processed. It requires two main components: event detection and the ability to 

determine whether or not the event detected is sufficiently dissimilar to previous 

events to be considered “new”. 

1.2.2.1.5. The Tracking task 
 
The tracking task is defined as the task of associating incoming stories with events 

known to the system. An event is defined “known” by its association with stories that 

discuss the event. Thus, each target event is defined by a list of stories that discuss it. 

In the tracking task, a target event is given and each successive story must be 

classified as to whether or not it discusses the target event.  

1.2.2.2. A Comparison of the Design Approaches 
 
Topic Detection and Tracking has been investigated by many, but we will report on 

three of the most active group – Carnegie Mellon University (CMU), University of 

Massachusetts at Amherst (UMass), and Dragon Systems. A brief description of the 

approaches adopted by each of the investigators follows. 

 

1.2.2.2.1. CMU Approach 
 
The CMU approach to retrospective event detection is to cluster stories in a bottom-

up fashion based on their lexical similarity and proximity in time. The CMU approach 

to on-line detection combines lexical similarity (or distance) with a declining 

influence look-back window of ‘k’ days when judging the current story, and 
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determine NEW or OLD based on how distant of the current story from the closest 

story in the ‘k’ days window. [17] 

 

1.2.2.2.2. UMass Approach 
 
UMass has developed two largely complementary segmentation methods. The first 

method makes use of the technique of local context analysis (LCA). The second 

segmentation method uses a Hidden Markov Model (HMM) to model “marker 

words,” or words which predict a topic change.  

The UMass approach to event detection is similar to CMU’s in that it uses a 

variant of single-link clustering to build groups of related stories to represent events. 

New stories are compared to the groups of older stories. The matching threshold is 

adjusted over time in recognition that an event is less likely to be reported 

as time passes. UMass’s retrospective detection method focuses on rapid changes by 

monitoring sudden changes in term distribution over time. [17] 

 

1.2.2.2.3. Dragon Systems Approach 
 

The Dragon Systems approach is based on observations of term frequencies 

using adaptive language models developed for speech recognition. Dragon Systems’ 

segmentation treats each story as an instance of some underlying topic and models an 

unbroken text stream as an unlabeled sequence of these topics. In this model, finding 

story boundaries is equivalent to finding topic transitions. A novel event is 

hypothesized when the prediction accuracy of the adapted language models drops 

relative to the background model(s) [17]. 
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1.2.3. Thesis Goal 
 
The above approaches are applicable to news stories in which there is a steady stream 

of information with little noise. In addition, the number of topic transitions is higher 

for chat data and the amount of data between transitions is generally much smaller. In 

the case of chat data, where the amount of noise to information is prohibitively high, 

we have to adopt a modified approach. 

First, we must combine segmentation, event detection, and event tracking. We 

must preprocess the data to remove noise. Then, similar to event detection, we cluster 

utterances to identify threads. Finally, similar to event tracking, we must incorporate 

temporal information to improve this identification of related utterances. In short, our 

goal is similar to that of segmentation or retrospective event detection – find the 

stories from a stream of chat. However, we must incorporate techniques from event 

detection (clustering), and event tracking (temporal heuristics).  

1.2.4.  Existing Systems 
 
There are several commercially available systems that monitor the sites visited and 

log utterances from chat sessions on a personal computer. They provide a variety of 

functionalities such as grabbing text from messenger services(s) and getting window 

titles of all web pages open on a system. However, none of the systems provide a 

comprehensive analysis tool to identify topics or track change of topics in a chat 

session. 
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1.2.4.1. IamBigBrother 
 
IamBigBrother is one of the leading Internet monitoring software available for both 

home and business. It runs in stealth mode and captures everything from chats and 

instant messages to email, titles of visited web sites, among other things. 

IamBigBrother records all of the Internet activity for many programs including 

America Online, MSN, and Outlook Express. It also logs all keystrokes typed in 

every program along with screen shots [13]. The software has the ability to playback 

chat conversations based on username chatted with and it allows the user to search 

keywords in the archived conversations. The search functionality is very basic, 

essentially a linear scan through the archived text, similar to Microsoft Windows’ 

search feature [25]. 

 

1.2.4.2. SPY for MSN Messenger 

Very similar to IamBigBrother, SPY For MSN Messenger captures and records all 

conversations in a MSN Chat session. Features include: sending all captured IMs to a 

specified email address or uploading them to a specified web-site through FTP [15].   

1.2.4.3. CLUTO 

CLUTO is a software package for clustering low- and high-dimensional datasets and 

for analyzing the characteristics of the various clusters. CLUTO is well-suited for 

clustering data sets arising in many diverse application areas including information 

retrieval, customer purchasing transactions, web, GIS, science, and biology.  
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CLUTO's distribution consists of both stand-alone programs and a library of 

functions through which an application program can access directly the various 

clustering and analysis algorithms implemented in CLUTO. 

Features included are: 

• Multiple classes of clustering algorithms: partitional, agglomerative, and 

graph-partitioning based. 

• Multiple similarity/distance functions: Euclidean distance, cosine, correlation 

coefficient, extended Jaccard, and user-defined. 

• Numerous novel clustering criterion functions and agglomerative merging 

schemes 

• Traditional agglomerative merging schemes: single-link, complete-link, 

UPGMA 

• Extensive cluster visualization capabilities and output options: postscript, 

SVG, gif, xfig, etc. 

• Multiple methods for effectively summarizing the clusters: most descriptive 

and discriminating dimensions, cliques, and frequent itemsets. 

• Scalability to very large datasets containing hundreds of thousands of objects 

and tens of thousands of dimensions. 

2. Research Approach 
 
In this section, we discuss the approach used to identify utterances that belong to a 

certain thread of discussion. We will first describe how the chat utterances are 

archived in our current system and then discuss how we use this system. Then, we 
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describe the use of document clustering to extract documents that belong to a 

particular thread. Finally, we will outline the evaluation metrics and the postprocess 

algorithm that uses the temporal sequence information of an unclustered/incorrectly 

clustered utterance to identify its most probable cluster. 

 

2.1. Message Archival System  
 
Archiving, or logging, is the process of storing the chat utterances to persistent 

storage. The ChatTrack system being developed at The University of Kansas, stores 

the original, unfiltered messages. The messages are stored, one per file, in a directory 

structure that encodes the channel identifier and date, and the filenames encode the 

utterance transmission time. These messages are retrievable by date and time, by 

speaker, by listener, by keywords, and by combinations of the above. 

  Currently two versions of ChatTrack exist, one each for a server-based chat 

archive, and one for a client-based chat archive. However, in both versions, the 

storage functionality is the same. The messages from each session are stored in a 

separate directory named after the session id. The subdirectory names encode the 

year, month, and day of the chat utterances in that session. The filenames encode the 

timestamp, down to the millisecond. Figure 1 diagrams the directory and file 

structure. 
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Session_ID 

YYYY 

MM 

DD 

hhmmssmsmsms.uid 
hhmmssmsmsms.mesg 
: 

 
Figure 1 - ChatLog Message Archiving Format 

Where,  

• Session_ID refers to the ID of the session, assigned by ChatTrack 

• YYYY is the current year in 4 digit representation 

• MM is the current month in 2 digit representation 

• DD is the current date in 2 digit representation. 

Each utterance being logged, results in two files being created: 

• a message file that contains the actual utterance (ending in .mesg) 

• a user information file that stores the chat ID of the speaker (ending in .uid) 

These files share a common prefix of the form: “hhmmssmsmsms” where  

“hh” is the hour in 2 digits  

“mm” is the minute in 2 digits 

“ss” is the seconds in 2 digits 

“msmsms” is the milliseconds in 3 digits. 
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Also, there is a file that stores the times at which participants join and leave 

the session, so that we can track the listeners for each message. 

2.2. Document Clustering – CLUTO 
 
Since the utterances are stored as documents, we decided to use document clustering 

as a method to cluster similar documents, i.e. chat utterances. We must note that on 

an average each utterance does not take more than 10 words; therefore we treat all 

utterances from a chat session as a large number of very small sized documents.  The 

clustering procedure occurs in several steps.  

2.2.1. Algorithm Selection using test data 
 
In order to apply clustering to chat utterances, we must first select an algorithm that 

handles documents of very small size well. For this, we create a test data set by 

interleaving utterances from two or more chatrooms discussing different topics. The 

‘true thread’ for each utterance is already known; it is the chatroom from which the 

utterance originally came. We then run each of the clustering algorithms in the 

CLUTO package on this data set, and observe the clustering result. The algorithm that 

produces the best clusters is then selected for our thread extraction work. The quality 

of the cluster is given by a measure called the FScore Measure introduced by [2]. 

Given a particular class Lr of size nr and a particular cluster Si of size ni , suppose nri 

documents in the cluster Si belong to Lr , then the FScore of this class and cluster is 

defined to be 

                         2 * R(Lr, Si) * P(Lr, Si) 
                  F(Lr, Si ) =          
                               R(Lr, Si) + P(Lr, Si) 

Equation 2.1 - FScore Measure 
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Where, 

 Lr    is the class of size nr documents (the ‘true thread’) 

 Si  is a cluster of size ni  documents  

 R(Lr, Si) is the recall value defined as nri / ni 

 P(Lr, Si) is the precision value defined as nri / nr for the class Lr and the cluster 

Si 

 

The FScore of the class Lr , is the maximum FScore value attained at any node in the 

hierarchical clustering tree T . That is, 

F(Lr ) = max    F(Lr, Si )  
                               Si є T  
 

Equation 2.2 – FScore value at any node 
 
 
The FScore of the entire clustering solution is then defined to be the sum of the 

individual class FScores normalized by the class size, yielding values in [0.0…1.0]. 

                          c         nr 

-----  F(Lr )
 n      FScore    =   Σ 

               r=1 
 

Equation 2.2 – FScore of entire clustering solution 
 
Where  

c is the total number of classes.  

A perfect clustering solution will be the one in which every class has a 

corresponding cluster containing all and only the documents for that class, in which 

case the FScore will be 1.0. In general, the higher the FScore value, the better is the 

clustering solution [31]. 
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2.2.2. Document clustering using actual data 

2.2.2.1. Stopword Removal 
 
The first task is to remove all the stopwords from the utterances, thereby reducing the 

analysis space to only those words that convey information. Stopwords are provided 

in a stoplist file. The stoplist file was generated by running a word count on the entire 

chat corpus to identify words that occur with a high frequency during a chat session. 

These words were then identified as whether they were stopwords, or if they were 

information. Some of the identified stopwords from such an analysis were common 

chat acronyms such as “brb”, “ty”, “oic” and so on, in addition to the usual words that 

occur most often in the English language. This process of stopword removal actually 

renders several utterances empty, such as when an utterance contains only stopwords. 

Under such circumstances, the blank utterances are removed from consideration for 

clustering purposes.  

 The processed input utterances are then clustered using the algorithm chosen 

from the previous step. The resulting clusters are then sent as the input to the post-

processing phase. 

2.2.2.2. Selection of cluster size 
 
The processed input utterances are clustered using various clustering algorithms and 

clustering criterion functions. This is done in two phases. In the first phase, we 

conduct experiments to determine the best clustering algorithm. Once the best 

clustering algorithm has been chosen, we then proceed to the second phase wherein 

we conduct experiments on this algorithm using different clustering criterion 

functions. Thus the idea is to determine which combination of clustering algorithm-
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criterion function gives us the best clustering results, and to use those resulting 

clusters for the first phase of our thread extraction algorithm. 

 

2.2.2.2.1. Selection of clustering algorithm 
 
For evaluating the clustering algorithm, we use a sample test data of input utterances 

for which we know the truth. We run several clustering algorithms on this data (with 

all other parameters being the defaults for the CLUTO program)., and compute the 

FScore for the resulting clusters. The clustering algorithm which gives us the highest 

FScore is considered to be the best. The experiments are detailed in section 4.2.1. 

 

2.2.2.2.2. Selection of clustering criterion function and 

clustering quality metric (CQM) 

 
Once the best clustering algorithm has been obtained, we run a series of experiments 

with several clustering criterion functions for this algorithm, leaving all other 

parameters set to their default values, on a set of test data, for which the truth is 

already known. For each clustering criterion function, we run the clustering algorithm 

for a specified number of clusters. The resulting clusters are then evaluated using a 

clustering quality metric to find out the optimal number of clusters for which the 

goodness measure is a maximum. The idea here is to find out if there is any interplay 

between the clustering quality metric and the clustering criterion function, i.e., to 

investigate if a particular combination of a clustering quality metric and clustering 

criterion function gives us consistently good results. The number of clusters is then 
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increased to the next higher value, and the process is repeated, until we have 

computed the goodness measure for ‘k’ number of clusters.  

For a chat session consisting of several discussions, we vary the value of ‘k’ 

from 1….N/2, where 

‘N’ is the total number of utterances in the session 

The experiments are detailed in section 4.3.1. 

2.3. Post-processing 
 
Given the small size of the utterances, the statistical similarity between groups of 

related utterances is not guaranteed to be high. Furthermore, many utterances may be 

rendered blank due to stopword removal. The output of the clustering process is, 

therefore, not an accurate indication of the topic threads detected in the entire chat 

corpus. During post processing, we take into consideration the original chat corpus 

and, based on the results obtained from the document clustering phase, assign cluster 

ID’s to the blank utterances based on a heuristic algorithm. In addition, not all input 

documents will be clustered. Unclustered or erroneously clustered documents are 

assigned an invalid cluster ID, -1, by CLUTO. 

In the first phase of post processing, we attempt to assign valid cluster IDs to 

the unclustered utterances. For each invalid cluster ID, or string of successive invalid 

cluster IDs, we identify the valid cluster ID that occurs most often in the surrounding 

neighborhood. In case of a tie, we choose the valid ID that occurs closest to the 

invalid sequence. The invalid ID is then replaced by the valid ID that has been 

identified as given above. We evaluate this approach using a sliding window scheme. 

In the case of even sized windows, we take an equal number of valid IDs into 
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consideration, from both the preceding section as well as the succeeding section of 

IDs. For example, if the window size is 2, then we take 1 cluster ID each from the 

preceding section as well as the succeeding section for comparison. If the same 

cluster ID occurs in both locations, this Id is assigned. However, if there is a tie (i.e., 

two different IDs), we assign the ID that occurred first in the sequence.  

In the case of an odd sized window, we are slightly biased towards the 

preceding section, since we use one more utterance preceding the message than the 

one succeeding it.  We chose this bias because the preceding section is likely to have 

more valid IDs since it has been processed already. The succeeding section, on the 

other hand, is yet to be processed and as such may contain more noise IDs which lead 

to erroneous identification. However, in cases where an invalid ID or a string of 

invalid cluster IDs occur either at the start of the sequence or at the end of the 

sequence, we are restricted to using only the succeeding or preceding section of valid 

cluster IDs respectively. 

To illustrate this process, we will now present some example scenarios. 

 

Scenario 1: Invalid cluster ID’s occurring at the start of the sequence.  

For a window size of 6, this would lead to 3 valid cluster IDs are being 

considered from each of the preceding as well as the succeeding sections. Since, in 

this case, the preceding section does not exist, we must deduce the valid cluster ID 

from the succeeding section only. In the example shown in Figure 2, the valid cluster 

IDs are 1 and 2. Since 1 is more frequent in the given window, we select 1 as the 
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valid cluster ID and replace all the occurrences of -1 with 1 in the current invalid 

section. 

 

 

 

 

Figure 2 - Invalid cluster ID’s at the start of the session 

 

Scenario 2: Invalid cluster ID’s occur at the end of the session.  

For a window size of 6, this would lead to 3 valid cluster IDs being considered 

from each of the preceding as well as the succeeding sections. In this case the 

succeeding section does not exist so we must deduce the valid cluster ID from the 

preceding section only. In the example shown in Figure 3, the valid cluster IDs are 1 

and 2. Since 1 is more frequent in the given window, we select 1 as the valid cluster 

ID and replace all the occurrences of -1 with 1 in the current invalid section. 

 

 

 

 

Figure 3 - Invalid cluster ID’s at the end of the session 
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Scenario 3: Invalid cluster ID’s occur in the middle of the session.  

For a window size of 6, this would lead to 3 valid cluster ID’s being considered each 

from the preceding as well as the succeeding sections. For the example shown in 

Figure 4, the valid cluster IDs are 1 and 2 and they are both equally frequent. 

However, 1 will be considered as the valid cluster ID, since it occurs in a closer 

proximity to the string of invalid cluster ID’s (as we traverse from the left to right in a 

temporal sequence). 

 

 

 

 

Figure 4 - Invalid cluster ID’s in the middle of the sequence 
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3. System Architecture 
 

This section describes the functionality and interaction between the different 

components of the system designed for this research. Figure 5 diagrams the tasks 

performed by these components. The Oval symbol represents a component and the 

rectangles represent an input/output to/from the system. Following the figure, each 

component is described separately.
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Figure 5 - System Architecture 
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Preprocessing Stage 1:  

The chat utterances are initially archived in the ChatTrack format as described 

in Section 2.1. This format, however, must be changed to suit the clustering system. 

The required input format for the clustering system is that all the utterances must be 

in a single text file. The first preprocessing stage performs this task. Each line of the 

input file is a document from the ChatTrack format, with the first entry being the 

document or file name and the second entry being its contents as shown below: 

1.txt  Hello Ganesh, How r ya ? 
2.txt  Much fine, TY, how do you do BTW ? 

 
Figure 6 - Chat Utterances in a single text file 

 

Preprocessing Stage 2:  

In this stage, we perform stopword removal on the input file, and remove all 

the words that may be considered as noise. This effectively retains only those words 

from the utterances that convey information. 

 

Doc2Mat:  

CLUTO provides access to its clustering and analysis algorithms via its two 

standalone programs – vcluster and scluster. vcluster takes as its input a multi-

dimensional vector matrix representing the objects that need to be clustered. scluster, 

on the other hand takes a similarity matrix (or graph) between these objects, as its 

input. We use Doc2Mat to convert the chat utterance input file created by the 

previous stages into to a vector matrix representation. This matrix file can then be 

sent as an input to the CLUTO vcluster program.  
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Cluto:  

The CLUTO program applies the clustering algorithms on the input vector 

matrix representation of the objects. The various parameters are passed through the 

command line interface of the vcluster program. The results of the stop-words-

eliminated input file is now available in an output file, the name for which was 

specified as one of the input command line parameters (by default CLUTO prints the 

output to the screen).  The results file contains the cluster ID of the correspond 

document in the input file, and it is printed one per line. For e.g., if we call the results 

file as Results.txt, then the following would be its output: 
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Figure 7 - CLUTO results – Results.txt
omparing the cluster ID with the input file (as shown in Fig 6), we conclude that the 

nput chat utterance 1.txt was assigned a cluster ID of 0, and 2.txt was assigned a 

luster ID of 1. One thing to note about these ID’s is that a negative cluster ID 

ndicates that there has been an error in clustering, and the respective utterance was 

ot clustered. 

Processing using the CLUTO program consists of two stages. In the first 

tage, we wish to identify the algorithm most suited for clustering documents of very 

mall size. This test is run on a data set for which we know the truth value. The 

lgorithm that gives us the highest FScore is considered the most suitable one. In the 

econd stage, we use the identified clustering algorithm to cluster documents on 
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several topics from a real chat session. Since we want to simulate the real chat session 

wherein the exact number of topics being discussed is not known apriori , we run the 

clustering algorithm with required cluster number (passed as one of the parameters to 

the vcluster program) ranging from 2…..n/2, where ‘n’ is the total number of 

utterances in the input. We compute the similarity measure of the clusters for each of 

these numbers. The value of ‘n’ for which we get the highest similarity measure is 

then considered as the best number of clusters for our post processing stage. 

 

Post processing Stage:  

Here, we augment the results file by considering the actual input file. That is, 

the results we obtained from CLUTO were for the stop-word-eliminated file, and this 

file may differ significantly from the original input file since several utterances may 

be blanked out because they contained only stopwords. We want to obtain the 

clustering results for the entire corpus of chat utterances. Therefore, we prepare a 

modified results file taking into consideration all the utterances, even those that had 

been eliminated due to stop word removal. The resultant file will now contain -1 as 

the cluster ID for all the files that were thus eliminated. After the post processing, all 

input files will now have a valid cluster ID, the procedure for doing so has been 

explained in Section 2.3. 

 

Accuracy analysis:  

We want to measure the accuracy of our clustering process. For this, we 

compare the output generated from the post processing stage with that of a truth file 
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that we already know for the given input utterances. The accuracy is indicated in the 

form of an FScore, the details for obtaining which have been described in an earlier 

section 2.2.1.  
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4. Evaluation 
 
The objective of this research is to explore whether or not chat utterances can be 

treated as documents of very small size, and if document clustering techniques can be 

applied to group related chat utterances together. The general hypothesis of the 

research is that document clustering techniques can be used to cluster related chat 

utterances – with some clustering algorithms being more accurate than others. The 

accuracy can be further enhanced by applying heuristic analyses to group those 

utterances that may not have been clustered initially. In this section, I will introduce a 

series of experiments to test this hypothesis. 

 

4.1. Chat Data Generation 
 
Data was collected from IRC chat groups on the following topics: Baseball, Cricket, 

Politics, and Computers. 

 

4.2. Experiment 1: Selecting a clustering algorithm 

CLUTO has 6 clustering algorithms in all. They are: 

rb - In this method, the desired k-way clustering solution is computed by performing 

a sequence of k − 1 repeated bisections. 

rbr - In this method, the desired k-way clustering solution is computed in a fashion 

similar to the repeated-bisecting method but, at the end, the overall solution is 

globally optimized. 
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direct - In this method, the desired k-way clustering solution is computed by 

simultaneously finding all k clusters 

 

agglo - In this method, the desired k-way clustering solution is computed using the 

agglomerative paradigm whose goal is to locally optimize (minimize or maximize) a 

particular clustering criterion function (which is selected using the -crfun parameter). 

The solution is obtained by stopping the agglomeration process when k clusters are 

left. 

 

graph - In this method, the desired k-way clustering solution is computed by first 

modeling the objects using a nearest-neighbor graph (each object becomes a vertex, 

and each object is connected to its most similar other objects), and then splitting the 

graph into k-clusters using a min-cut graph partitioning algorithm.  

 

bagglo - In this method, the desired k-way clustering solution is computed in a 

fashion similar to the agglo method; however, the agglomeration process is biased by 

a partitional clustering solution that is initially computed on the dataset. 

4.2.1. Method 

For the purpose of detecting the best clustering algorithm, we created a test chat 

session data with utterances from 

i. A session in which baseball is the main topic of discussion 

ii. A session in which cricket is the main topic of discussion 
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4.2.1.1. Experiment 1.1 

The input file, Input.txt, had ten utterances from cricket, followed by 10 utterances 

from baseball, and then 10 more utterances from cricket, and so on, for a total of 218 

utterances. Just to make things a little more challenging for the CLUTO package, I 

included 19 utterances from the cricket session (instead of the regular 10) and 9 

utterances from the baseball session towards the end of the input file. There were in 

all 110 utterances from the baseball session, and 108 from cricket. Table 1 shows the 

performance of the different algorithms given this input. 

The results were as given: 

Algorithm Precision Recall FScore # of Errors 
RB 1 1 1 0 
RBR 1 1 1 0 
DIRECT 1 1 1 0 
AGGLO 0.931422 0.931313 0.93118 14 
BAGGLO 0.995413 0.995455 0.995413 1 

Table 1 - Clustering Algorithm Results 

 

RB, RBR and DIRECT all produced an astounding 100% precision, recall, and 
FScore.  

AGGLO produced a precision of 93.1422%, recall of 93.1313%, and FScore of 

93.118% with 14 errors. (utterance #’s 19, 56, 87, 91, 103, 109, 123, 126, 145, 146, 

171, 173, 204, 212 were clustered incorrectly) 

BAGGLO produced a precision of 99.5413%, a recall of 99.5455%, and FScore of 

99.5413% with 1 error. The erroneous classification was that of a baseball session 

utterance "out" which was classified as cricket! (utterance # 126) 
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Please note that we did not evaluate the GRAPH algorithm for clustering. This was 

because, if the graph contains more than one connected component, then vcluster 

returns a (k + m)-way clustering solution where m is the number of connected 

components in the graph. Thus, it is not possible to always obtain the specified 

number of clusters. 

4.2.1.2.  Experiment 1.2 

In order to verify if the sequence and number of utterances on a topic made any 

difference, we created the second test input with the same data from the first test 

input. The only difference was that instead of interleaving 10 utterances from a 

session, we interleaved 5 utterances each from a session. The result of the clustering 

process was the same as for the first test case.  

4.2.1.3. Experiment 1.3 
 

To conclude the test cases, we created a third test input with the only difference being 

that we interleaved single messages each from the baseball and cricket chat sessions. 

The result of the clustering process was the same as for the first test case. From this, 

we concluded that the number of the chat utterances in a sequence does not have any 

effect on the clustering process (in terms of precision, recall and FScore 

measurements). Furthermore, RB, RBR, and DIRECT seem to be the best clustering 

algorithms for clustering chat data utterances. It has been found by Zhao and Karypis 

[11], [123], [31], [32] that, in terms of quality, for reasonably small values of k 

(usually less than 10–20), the DIRECT approach leads to better clusters than those 

obtained via repeated bisections, however it is also slower. For large values of k 
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however, the RB approach tends to be better than the DIRECT approach. Therefore, I 

chose the RB method, since for my testing purposes, I use a fairly large amount of 

chat data where the value of k may be large. 

4.3. Finding the number of Clusters 
 
In this phase, we try to find an initial clustering solution, wherein most similar chat 

utterances will be grouped together. This procedure consists of two parts: 

1. Selection of the best clustering criterion function 

2. Selection of an algorithm to yield the optimal number of initial clusters. 

We used test data consisting of several utterances (~200) from each of the 

following four chat sessions:- cricket, baseball, politics, and computers.  

4.3.1. Experiment 2: Selecting a clustering criterion function 
 
The following is a list of the various clustering criterion functions which are 

supported by all the clustering algorithms provided in CLUTO.  

i1 - This criterion function maximizes the sum of the average pairwise similarities 

between the documents assigned to each cluster, weighted according to the size of 

each cluster. 

i2 - In this algorithm, each cluster is represented by its centroid vector and the goal is 

to find the clustering solution that maximizes the similarity between each document 

and the centroid of the cluster to which it is assigned.  

e1 - This external criterion function was motivated by multiple discriminant analysis 

and is similar to minimizing the trace of the between-cluster scatter matrix. It tries to 
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separate the documents of each cluster from the entire collection, as opposed trying to 

separate the documents among the different clusters. 

g1 - Selects the graph-based G1 criterion function. 

g1p - Selects the graph-based G1’ criterion function. 

h1 - This is a hybrid criterion function obtained by combining I1 and E1.  

h2 - This is a hybrid criterion function obtained by combining I2 and E1. [31] 

George Karypis and team [11] report that the various criterion functions can 

sometimes lead to significantly different clustering solutions. In general, the I2 and 

H2 criterion functions lead to very good clustering solutions, whereas the E1 and G1’ 

criterion functions lead to solutions that contain clusters that are of comparable size. 

 In order to find out the best clustering criterion function, we ran the several 

experiments for each of these functions on test data sets consisting of 3 different 

topics ranging from the easiest to the difficult – labeled as easy, moderately easy, and 

real data. The following are our findings: 

4.3.1.1. Experiment 2.1 
 
We used a very easy test data set for this experiment. The utterances were on 3 

different topics, with 10 utterances from each topic. All utterances from a particular 

topic were identical. 

4.3.1.2. Experiment 2.2 
 
We used a moderately easy test data set for this experiment. The utterances were on 3 

different topics, with 10 utterances from each topic. Not all utterances were identical, 

but some of them differed in the words used, but still were on topic. 
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4.3.1.3. Experiment 2.3 
 
For this experiment, we intended to use real data as an indication of the complexity 

involved in the kind of data which need to be analyzed for practical purposes. As 

before, the utterances were on 3 different topics, with 10 utterances from each topic. 

Most of the utterances were non-identical, and some did not even contribute any 

information as regards the topic they were from. 

4.3.1.4. Summary 
 
From the above experiments, we obtain the following values: 
 

FScore Criterion 
Function Easy data 

 
Moderately easy data 

 
Real data 

I1 1.0 0.966 0.753 
I2 1.0 1.0 0.822 
E1 1.0 1.0 0.79 
H1 1.0 1.0 0.79 
H2 1.0 1.0 0.861 
G1 1.0 1.0 0.822 
G1P 1.0 1.0 0.648 

Table 2 – Summary of results for clustering criterion functions 

 
From the above table, we find that all algorithms performed very well for the easy 

data set giving a maximum FScore of 1.0. For the moderately easy data set, all the 

algorithms with the exception of I1, gave a 100% clustering result, and as before the 

maximum FScore was 1.0. For the real data set, though, the H2 algorithm gives us the 

best FScore of 0.861. We therefore choose H2 as the clustering criterion function for 

analyzing our data, since from the above experimental results, and past experience, 

we have found this algorithm to yield the best results most consistently. 
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4.3.2. Measurement Criteria 
 
In general, we will not know a priori, how many threads a chat session contains. 

Thus, we need to develop and evaluate a variety of metrics that will determine the 

number of threads for us automatically. Thus, we need to come up with a measure of 

clustering quality and select those metrics that produce their highest values for the 

correct number of threads.  

4.3.2.1. Clustering Quality Metric (CQM) 
 
The clustering quality metric for each cluster is a function of its internal similarity 

and/or external similarity. The internal similarity of an object is its similarity with 

other objects within its own cluster. The external similarity of an object is its 

similarity with objects in other clusters. Objects that have large values of internal 

similarity and small values of the external similarity will tend to form the core of their 

clusters. 

For each metric, the CQM was calculated over a variety of cluster numbers 

and the highest value was used to predict the best number of clusters. The best 

number predicted by a CQM was compared to truth to help determine the most 

accurate CQM for predicting the number of clusters.  
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4.3.2.2. Metrics 
 

4.3.2.2.1. Metric 1 
 

Similarity Score   =      Σ  
  i = 0 

iSim 

   n/2 

 
 
 
Hypothesis 
 
A higher value of the internal similarity denotes a highly cohesive group (i.e. a cluster 

containing all the relevant documents). Therefore, the number of clusters for which 

the sum of the internal similarities of all the clusters is a maximum shall be 

considered as the best initial solution. 

 

4.3.2.2.2. Metric 2 
 

Similarity Score   =      Σ  
  i = 0 

1/eSim 

   n/2 

 
 
 
Hypothesis 
 
A lower value of the external similarity between objects of different clusters indicates 

the formation of highly cohesive groups. Therefore, the number of clusters for which 

the sum of the inverses of the external similarities of all the clusters is a maximum 

shall be considered as the best initial solution. 
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4.3.2.2.3. Metric 3 
 

Similarity Score   =      Σ  
  i = 0 

iSim/eSim 

   n/2 

 
 
 
Hypothesis 
 
A lower value of the external similarity between objects of different clusters, and a 

higher value of internal similarity between objects of the same cluster indicates the 

formation of highly cohesive groups. Therefore, the higher the ratio of internal to 

external similarity values the better is the quality of the clusters formed. The number 

of clusters for which the sum of the ratio is a maximum shall be considered as the 

best initial solution. 

 

4.3.2.2.4. Metric 4 
 

Similarity Score   =      Σ  
  i = 0 

# of documents in the cluster   *   iSim 

   n/2 

 
 
 
Hypothesis 
 
We add a bonus of the number of documents so that the system is not biased towards 

extremely small clusters of documents. Therefore, the number of clusters for which 

the sum of the products is a maximum, shall be considered as the best initial solution. 
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4.3.2.2.5. Metric 5 
 

Similarity Score   =      Σ  
  i = 0 

# of documents in the cluster   *  √ ( iSim / eSim) 

   n/2 

 
 
 
Hypothesis 
 
We add a bonus of the number of documents so that the system is not biased towards 

extremely small clusters of documents. The ratio of internal similarity to the external 

similarity is scaled to be equal to the square-root of their actual values. This is 

modeled after the SQRT scaling scheme in CLUTO [11] that is used primarily to 

smooth out large values. 

Therefore, the number of clusters for which the sum of the products is a maximum 

shall be considered as the best initial solution. 

 

4.3.2.2.6. Metric 6 
 

Similarity Score   =      Σ  
  i = 0 

# of documents in the cluster   *  log ( iSim / eSim) 
 
 Total # of documents in the corpus 

   n/2 

 
 
 
Hypothesis 
 
We add a bonus of the number of documents so that the system is not biased towards 

extremely small clusters of documents. The ratio of internal similarity to the external 

similarity is scaled to be equal to the logarithm (base 10) of their actual values. This 

is modeled after the LOG scaling scheme in CLUTO [11] that is used primarily to 

smooth out large values.  
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Therefore, the number of clusters for which the sum of the products is a maximum 

shall be considered as the best initial solution. 

4.3.3. Test Results 
 
As in the previous set of experiments to identify the best clustering criterion function, 

we are using test data sets on three topics and of varying degrees of complexity: easy, 

moderately easy, and real data. Further, we are testing this data for clustering over a 

range of clusters from one through four. The idea is to test the following metrics to 

see which predicts the best number of clusters closest to the actual number of topics 

within the chat session. Furthermore, in real cases wherein we lack the a priori 

knowledge of exact number of topics, we want these metrics to identify a good 

number of clusters before further processing. The following are our findings: 
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4.3.3.1. Experiment 3.1: Evaluating Clustering Quality Metrics 
on easy data 

4.3.3.1.1. For input cluster number - 1 
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Figure 8 - Plot of CQM Score vs Number of Clusters for Easy data. Input clusters = 1 

 

From the graph, we can see that as we vary the input parameter of the number 

of clusters the CQM score also varies. With the exception of Metric 1, all the metrics 

have a maximum CQM score when the input number of clusters was 2. This suggests 

that the performance of the metrics is suspect when the input contains data from a 

single topic. For metric 1, the CQM score increased for increasing number of clusters. 

This is obviously so because it takes into consideration only the internal similarities 

of the various clusters formed – which will be a maximum when we have a large 

number of highly cohesive clusters. Under ideal conditions, the internal similarity 

score will be a maximum when there is just one document per cluster. However, for 

an actual chat session, this would be an unrealistic scenario.  

 56



4.3.3.1.2. For input cluster number - 2 
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Figure 9 - Plot of CQM Score vs Number of Clusters for Easy data. Input clusters = 2 

In this experiment, we note that metrics 2, 3, 5, and 6 yield a perfect similarity score 

when the input number of clusters is 2, the desired solution. Metric 1 gives an 

increasing CQM score with increase in number of clusters due to the reasons 

mentioned in Section 4.3.3.1.1. Metric 4 gives an increasing CQM score as the 

number of clusters increases and gives a perfect value for cluster numbers 4 and 

beyond. 
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4.3.3.1.3. For input cluster number - 3 
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Figure 10 - Plot of CQM Score vs Number of Clusters for Easy data. Input clusters = 3 

The results for this case when there are 3 topics present in the chat session is 

consistent with the results of the previous experiment.  A perfect CQM score is 

obtained for 3 clusters, by metrics 2, 3, 5, and 6. 

4.3.3.1.4. For input cluster number - 4 
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Figure 11 - Plot of CQM Score vs Number of Clusters for Easy data. Input clusters = 4 
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The results for this case when there are 4 topics present in the chat session is 

consistent with the results of the previous experiments.  A perfect CQM score is 

obtained for 4 clusters, by metrics 2, 3, 5, and 6. 

4.3.3.1.5. Summary 

From the above experiments, we can conclude that metrics 2, 3, 5, and 6 perform well 

for clustering easy data sets. 

4.3.3.2. Experiment 3.2: Evaluating the Clustering Quality 
Metrics on moderately easy data 

4.3.3.2.1. For input cluster number - 1 
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Figure 12 - Plot of CQM Score vs Number of Clusters for Moderately Easy data. Input clusters = 
1 

 

As before, all the metrics yield inaccurate results when the input cluster is 1. Metrics 

2, 3, 5, and 6 give a perfect result for 4 clusters, whereas metrics 1 and 4 yield a 

perfect result when the cluster number is maximum.  
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4.3.3.2.2. For input cluster number - 2 
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Figure 13 - Plot of CQM Score vs Number of Clusters for Moderately Easy data. Input clusters = 
2 

The results for this case, when there are 2 topics present in the chat session, is 

consistent with the results of the corresponding experiment on the easy data set.  A 

perfect CQM score is obtained for 2 clusters, by metrics 2, 3, 5, and 6. 

4.3.3.2.3. For input cluster number - 3 
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Figure 14 - Plot of CQM Score vs Number of Clusters for Moderately Easy data. Input clusters = 
3 
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The results for this case, when there are 3 topics present in the chat session, is 

consistent with the results of the corresponding experiment on easy data.  A perfect 

CQM score is obtained for 3 clusters, by metrics 2, 3, 5, and 6. 

4.3.3.2.4. For input cluster number – 4 
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Figure 15 - Plot of CQM Score vs Number of Clusters for Moderately Easy data. Input clusters = 
4 

The results for this case when there are 4 topics present in the chat session, is 

consistent with the results of the previous experiments.  An optimal CQM score is 

obtained for 4 clusters, by metrics 2, 3, 5, and 6. 

4.3.3.2.5. Summary 

From the above experiments, we can conclude that metrics 2, 3, 5, and 6 perform well 

for clustering moderately easy data sets. 

 61



4.3.3.3. Experiment 3.3: Evaluating the Clustering Quality 
Metrics on real data 

4.3.3.3.1. For input cluster number – 1 
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Figure 16 - Plot of CQM Score vs Number of Clusters for Real data. Input clusters = 1 

 
As before, all the metrics yield inaccurate results when the input cluster is 1. Metrics 

2, 3, and 6 give a perfect result for 4 clusters, whereas Metric 5 yields a perfect result 

for 3 clusters. Metrics 1 and 4 yield a perfect result when the cluster number is 

maximum.  
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4.3.3.3.2. For input cluster number – 2 
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Figure 17 - Plot of CQM Score vs Number of Clusters for Real data. Input clusters = 2 

The results for this case, when there are 2 topics present in the chat session, is 

consistent with the results of the corresponding experiment on the previous data sets.  

A perfect similarity score is obtained for 2 clusters, by metrics 2, 3, 5, and 6. 

4.3.3.3.3. For input cluster number – 3 
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Figure 18 - Plot of CQM Score vs Number of Clusters for Real data. Input clusters = 3 

The results for this experiment, when there are 3 topics present in the chat session, is 

different from the results of the corresponding experiment on the previous data sets.  
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A perfect similarity score is obtained for 2 clusters, by metrics 2, 5, and 6. Metrics 1, 

3 and 4 achieve a maximum CQM score for 15 clusters. Although the detection of the 

best cluster is not exactly correct, it is however much closer to the actual value of 3. 

4.3.3.3.4. For input cluster number – 4 
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Figure 19 - Plot of CQM Score vs Number of Clusters for Real data. Input clusters = 4 

 
Although there is a much higher degree of variance in the similarity scores for this 

data set, we see from the plot that metrics 2, 5, and 6 perform very well and yield a 

maximum value of CQM Score for 4 clusters. Metrics 1, 3 and 4 achieve the 

maximum value of CQM score for 15 clusters. 

4.3.3.3.5. Summary 

From the above experiments for the 3 different data sets, we conclude that metrics 2, 

5, and 6 perform well for clustering all data sets. Of these, we choose metric 6 for our 

initial clustering solution, since from experimental and empirical results we have seen 

that this metric yields intuitive results under most circumstances. Furthermore, due to 
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the logarithmic scaling, the range of values obtained for the CQM score are very 

comprehensible. 
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4.4. Post Processing 
 
Continuing from the previous section, we form the initial clusters using the “h2” 

clustering criterion. With these clusters in place, we then proceed to perform the post-

processing on the results. The clustering is done only on the stopword processed 

input, not the original chat transcript. Thus, we must prepare an intermediate result 

file that adds back the input utterances that were removed prior to clustering. These 

utterances are given an invalid cluster ID of ‘-1’. As before, we use the FScore as a 

metric to evaluate the accuracy of the results obtained.  Then, we perform post-

processing to assign these messages to a cluster. 

The following tables show the results before and after the post-processing. 

There were originally messages from four topics in the input: baseball, computer, 

cricket, and politics. 

 Baseball Computers Cricket Politics 
# of Messages 223 216 218 220 
# of Unlabelled Messages 22 40 2 18 
# of Clusters identified 2 2 2 1 
# of Maximum messages 
clustered 200 175 215 202 
# of Clusters with single 
document 1 1 1 0 

 
Table 3 - Statistics before post-processing 

     FScore = 0.949 

For the input data set, the unprocessed output had an FScore of 0.949. We then 

applied three post-processing algorithms to this output, and the results of the 

operations are as shown below.  
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Algorithm 1 uses a varying window size of valid neighboring cluster IDs to evaluate 

the missing cluster ID. That is, for a window size of 6, we consider 3 valid cluster IDs 

that occurred immediately before the invalid cluster ID, and 3 that occurred 

immediately after. Since it is highly unusual for people to be discussing an unrelated 

topic for the duration of just one utterance in the middle of a conversation, we assign 

the cluster ID that occurs most often in the neighborhood around the unassigned 

message. 

We measured the performance of Algorithm 1 for several window sizes ranging from 

1 through 79 (this is approximately 1/10 of the size of the input utterances). The 

FScore was OK when the window size was varied from 1-2. Beyond this point, any 

increase in the window size affects the FScore adversely. The maximum value of 

FScore is 0.998, achieved for window sizes 1 and 2. Table 4 shows details of the 

clustering statistics: 

 Baseball Computers Cricket Politics 
# of Messages 223 216 218 220 
# of Unlabelled Messages 0 0 0 0 
# of clusters identified 2 2 2 1 
# of correctly clustered 
Messages 222 215 217 220 
# of clusters with single 
document 1 1 1 0 

Table 4 - Statistics after post-processing using varying window size = 1 

    FScore = 0.998 

Algorithm 2 uses the valid cluster ID that precedes the invalid cluster ID (or cluster 

IDs). The idea here is that, if an utterance could not be clustered for reasons of 
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stopword removal or otherwise, then it may be construed as a continuation of the 

existing conversation. 

Similar to Algorithm 2, Algorithm 3 uses the valid cluster ID that succeeds the 

invalid cluster ID (or cluster IDs). The idea in this case is that, if an utterance could 

not be clustered, then it may be construed as the beginning of a conversation on a 

different topic of which the current conversation is a part of. 

For Algorithms 2 and 3, the FScore is a constant, since we are not varying the 

window size but only considering either the immediately preceding valid cluster ID, 

or the one immediately succeeding the invalid ID. The FScore values are, 0.998 for 

Algorithm 2, and 0.998 for Algorithm 3 respectively.  

 Baseball Computers Cricket Politics 
# of Messages 223 216 218 220 
# of Unlabelled Messages 0 0 0 0 
# of clusters identified 2 2 1 1 
# of correctly clustered 
Messages 222 215 218 220 
# of clusters with single 
document 1 1 0 0 

Table 5 - Statistics after post-processing using preceding Cluster ID  

    FScore = 0.998 

 

 

 

 

 

 

 Baseball Computers Cricket Politics 
# of Messages 223 216 218 220 
# of Unlabelled Messages 0 0 0 0 
# of clusters identified 2 2 2 1 
# of correctly clustered 
Messages 222 215 216 220 
# of clusters with single 
document 1 1 0 1 

Table 6 - Statistics after post-processing using succeeding cluster ID  

    FScore = 0.998 
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The following graph indicates the FScores of the post processed output, as against the 

unprocessed output.  
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Figure 20 Post processed output – A comparison of the performance of the 3 algorithms 

This experiment shows that the results from the 3 different algorithms are 

comparable, and each improves the quality of thread detection. 

4.5. Detailed Example 
 
In this section, we will take you through the system and demonstrate how it works. 

For this demonstration, we are using the input data that was used in the preceding 

experiments. We start with the creation of input file from the ChatTrack format into 

the required Input file format that can then be used for further processing. 

Figure 21 shows the chat utterances ChatTrack format. We have used 

utterances from four different topics for testing our idea. Each topic is contained in a 

separate directory and is depicted as a box in the diagram. All utterances are stored in 
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individual files, and for the sake of representation they have all been included in the 

box as separate entries. 

- jhawkgirl what - reboot p 
- jasonb no big deal - tried 
- okay - help pls 
- a - i need help pls some one help me god 

will bless u all  - b 
- c - rofl 
- d - just ask the question 
- e - differentiate between informal and formal 

meetings - g 
- f - what is the meaning pls 
- lost all chat data argh - help 
- hi jhawkgirl - abt 
- blah: - about 
: - commands 
:  :

 
Figure 21 Sample Utterances in ChatTrack Format 

 
 

- hint  
- 311 mushtaq ahmed to gibbs one run 
short pitched on legstump easily worked 
away to long leg 
- mushtaq ahmed to kirsten no run on the 
stumps defended 
- hint f 
- 313 mushtaq ahmed to kirsten no run 
turned to leg 
- hint fo 
- five: 
: 
: 

Baseball       Computers 
 

- realbidbye bye to whom 
- what 
- they talk allot though 
- p 
- like real politicians 
- all talk no action 
- what u guys think of arafat 
- s 
- dems are so f****** stupid 
: 
: 
: 

Cricket Politics
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The utterances are then converted from the ChatTrack format to the one as shown in 

Figure 22, the format that is understood and used by our thread detection system. A 

detailed description is given in Section 5, System Architecture.  

 

baseball/.190.txt  jhawkgirl what 
baseball/.191.txt  jasonb no big deal 
baseball/.192.txt  okay 
baseball/.193.txt  a 
baseball/.194.txt  b 
baseball/.195.txt  c 
baseball/.196.txt  d 
baseball/.197.txt  e 
baseball/.198.txt  g 
baseball/.199.txt  f 
baseball/.2.txt  lost all chat data argh 
computers/.090022000.mesg  reboot p 
computers/.090248000.mesg  tried 
computers/.091106000.mesg  help pls 
computers/.091117000.mesg  i need help pls some one help me god will bless u all  
computers/.091334000.mesg  rofl 
computers/.091340000.mesg  just ask the question 
computers/.091423000.mesg  differentiate between informal and formal meetings 
computers/.091428000.mesg  what is the meaning pls 
computers/.095125000.mesg  help 
computers/.095143000.mesg  abt 
computers/.095146000.mesg  about 
computers/.095159000.mesg  commands 
cricket/.93.txt   hint  
cricket/.94.txt   311 mushtaq ahmed to gibbs one run short pitched on legstump easily 
worked away to long leg 
cricket/.95.txt   312 mushtaq ahmed to kirsten no run on the stumps defended 
cricket/.96.txt   hint f 
cricket/.97.txt   313 mushtaq ahmed to kirsten no run turned to leg 
cricket/.98.txt   hint fo 
cricket/.99.txt  five 
politics/.180.txt  realbidbye bye to whom 
politics/.181.txt  what 
politics/.182.txt  they talk allot though 
politics/.183.txt  p 
politics/.184.txt  like real politicians 
politics/.185.txt  all talk no action 
politics/.186.txt  what u guys think of arafat 
politics/.187.txt  s 
politics/.188.txt  dems are so f****** stupid 

Figure 22 - Preprocessed Input file 

 
This file must then be processed to remove the stopwords. Figure 23 shows the results 

of this procedure on the above given input. Please note that several utterances from 
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Figure 22 are missing in the following figure. This is a consequence of stopword 

removal on those utterances that contain only stopwords 

 

 

baseball/.190.txt  jhawkgirl 
baseball/.191.txt  jasonb deal 
baseball/.192.txt  okay 
baseball/.2.txt   lost chat data 
computers/.090022000.mesg  reboot 
computers/.090248000.mesg  tried 
computers/.091106000.mesg  pls 
computers/.091117000.mesg  pls god bless 
computers/.091334000.mesg  rofl 
computers/.091340000.mesg  question 
computers/.091423000.mesg  differentiate informal formal meetings 
computers/.091428000.mesg  meaning pls 
computers/.095143000.mesg  abt 
computers/.095159000.mesg  commands 
cricket/.93.txt   hint 
cricket/.94.txt   311 mushtaq ahmed gibbs run short pitched legstump easily leg 
cricket/.95.txt   312 mushtaq ahmed kirsten run stumps defended 
cricket/.96.txt   hint 
cricket/.97.txt   313 mushtaq ahmed kirsten run leg 
cricket/.98.txt   hint fo 
politics/.180.txt  realbidbye 
politics/.182.txt  talk allot 
politics/.184.txt  real politicians 
politics/.185.txt  talk action 
politics/.186.txt  guys arafat 
politics/.188.txt  dems stupid 
:

Figure 23 - Input file after Stopword removal 

 
 

The following figure shows the results of clustering. The resulting cluster IDs are 

stored in a separate “Results” file. For convenience however, in this figure, they have 

been shown alongside each utterance, so that it is easier for us to identify the group of 

utterances that were identified as part of one cluster. 
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baseball/.190.txt  jhawkgirl 1 
baseball/.191.txt  jasonb deal 1 
baseball/.192.txt  okay 1 
baseball/.2.txt   lost chat data 1 
computers/.090022000.mesg  reboot 0 
computers/.090248000.mesg  tried 0 
computers/.091106000.mesg  pls 0 
computers/.091117000.mesg  pls god bless 0 
computers/.091334000.mesg  rofl 0 
computers/.091340000.mesg  question 0 
computers/.091423000.mesg  differentiate informal formal meetings 0 
computers/.091428000.mesg  meaning pls 0 
computers/.095143000.mesg  abt 0 
computers/.095159000.mesg  commands 0 
cricket/.93.txt    hint 2 
cricket/.94.txt    311 mushtaq ahmed gibbs run short pitched legstump 
easily leg 

2 
 

cricket/.95.txt    312 mushtaq ahmed kirsten run stumps defended 2 
cricket/.96.txt    hint  
cricket/.97.txt    313 mushtaq ahmed kirsten run leg 2 
cricket/.98.txt    hint fo 2 
politics/.180.txt    realbidbye  
politics/.182.txt    talk allot 3 
politics/.184.txt    real politicians 3 
politics/.185.txt    talk action 3 
politics/.186.txt    guys arafat 3 
politics/.188.txt    dems stupid 3 
:  

Figure 24 - Clustered results 

 
The utterances which had been removed from clustering due to stopword removal, 

must now be reintroduced in the final analysis. Since they were not clustered, we 

must assign an invalid cluster ID of -1 to them. This is as shown in Figure 25: 
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baseball/.190.txt  jhawkgirl what 1 
baseball/.191.txt  jasonb no big deal 1 
baseball/.192.txt  okay 1 
baseball/.193.txt  a -1 
baseball/.194.txt  b -1 
baseball/.195.txt  c -1 
baseball/.196.txt  d -1 
baseball/.197.txt  e -1 
baseball/.198.txt  g -1 
baseball/.199.txt  f -1 
baseball/.2.txt  lost all chat data argh 1 
computers/.090022000.mesg  reboot p 0 
computers/.090248000.mesg  tried 0 
computers/.091106000.mesg  help pls 0 
computers/.091117000.mesg  i need help pls some one help me god will bless u all  0 
computers/.091334000.mesg  rofl 0 
computers/.091340000.mesg  just ask the question 0 
computers/.091423000.mesg  differentiate between informal and formal meetings 0 
computers/.091428000.mesg  what is the meaning pls 0 
computers/.095125000.mesg  help 0 
computers/.095143000.mesg  abt 0 
computers/.095146000.mesg  about -1 
computers/.095159000.mesg  commands 0 
cricket/.93.txt   hint  2 
cricket/.94.txt   311 mushtaq ahmed to gibbs one run short pitched on legstump 
easily worked away to long leg 

2 
 

cricket/.95.txt   312 mushtaq ahmed to kirsten no run on the stumps defended 2 
cricket/.96.txt   hint f  
cricket/.97.txt   313 mushtaq ahmed to kirsten no run turned to leg 2 
cricket/.98.txt   hint fo 2 
cricket/.99.txt  five 2 
politics/.180.txt  realbidbye bye to whom 3 
politics/.181.txt  what -1 
politics/.182.txt  they talk allot though 3 
politics/.183.txt  p -1 
politics/.184.txt  like real politicians 3 
politics/.185.txt  all talk no action 3 
politics/.186.txt  what u guys think of arafat 3 
politics/.187.txt  s -1 
politics/.188.txt  dems are so f****** stupid 3 

 
Figure 25 - Clustered results after the reintroduction of all Input utterances 

 
We must now apply postprocessing to assign a valid cluster ID to the invalid ones 

based on the three algorithms we discussed above. For this example, we have used 

Algorithm 1 because we have found it to be more robust in terms of performance. 
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baseball/.190.txt  jhawkgirl what 1 
baseball/.191.txt  jasonb no big deal 1 
baseball/.192.txt  okay 1 
baseball/.193.txt  a 1 
baseball/.194.txt  b 1 
baseball/.195.txt  c 1 
baseball/.196.txt  d 1 
baseball/.197.txt  e 1 
baseball/.198.txt  g 1 
baseball/.199.txt  f 1 
baseball/.2.txt  lost all chat data argh 1 
computers/.090022000.mesg  reboot p 0 
computers/.090248000.mesg  tried 0 
computers/.091106000.mesg  help pls 0 
computers/.091117000.mesg  i need help pls some one help me god will bless u all  0 
computers/.091334000.mesg  rofl 0 
computers/.091340000.mesg  just ask the question 0 
computers/.091423000.mesg  differentiate between informal and formal meetings 0 
computers/.091428000.mesg  what is the meaning pls 0 
computers/.095125000.mesg  help 0 
computers/.095143000.mesg  abt 0 
computers/.095146000.mesg  about 0 
computers/.095159000.mesg  commands 0 
cricket/.93.txt   hint  2 
cricket/.94.txt   311 mushtaq ahmed to gibbs one run short pitched on legstump 
easily worked away to long leg 

2 
 

cricket/.95.txt   312 mushtaq ahmed to kirsten no run on the stumps defended 2 
cricket/.96.txt   hint f 2 
cricket/.97.txt   313 mushtaq ahmed to kirsten no run turned to leg 2 
cricket/.98.txt   hint fo 2 
cricket/.99.txt  five 2 
politics/.180.txt  realbidbye bye to whom 3 
politics/.181.txt  what 3 
politics/.182.txt  they talk allot though 3 
politics/.183.txt  p 3 
politics/.184.txt  like real politicians 3 
politics/.185.txt  all talk no action 3 
politics/.186.txt  what u guys think of arafat 3 
politics/.187.txt  s 3 
politics/.188.txt  dems are so f****** stupid 3 

 
Figure 26  - Clustered Results after Postprocessing 
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5. VALIDATION 
 
In order to verify that the system is capable of detecting threads in a real chat session 

for which the number of topics is not already known, we will repeat the experiments 

on a test data set that has not been used to train the system. We will evaluate this both 

formally, by giving the metric scores for the performance of the system, and 

informally, by showing the extracted threads. We will first show the formal 

validation. 

 

5.1. Formal Validation 
 
The test data set consist of about 200 utterances each from a real chat session on 4 

different topics. In this section we will present the metrics used and the values 

obtained for experiments performed on this test data set. This will help us in 

improving our understanding of the performance of the system.  

 
The statistics for the clusters formed before and after postprocessing phase are as 

shown: 

The statistics before postprocessing are as shown in Figure 40. 

 

 

 

 Computers Lakers Angeleyez Pyroshells 
# of Messages 217 262 268 246 
# of Unlabelled Messages 42 74 51 79 
# of clusters identified 2 2 2 1 
# of correctly clustered 
Messages 174 187 216 167 
# of clusters with single 
document 1 1 1 0 

 

 

Figure 27 - Statistics before postprocessing 

FScore = 0.86 
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hus we see that for the formal validation on a new test data set, the results are 

ases 

 

5.2. Informal Validation 

t the input chat utterances from the ChatTrack 

format 

 Computers Lakers Angeleyez Pyroshells 
 

 

 

 

# of Messages 217 262 268 246 
# of Unlabelled Messages 0 0 0 0 
# of clusters identified 2 2 2 1 
# of correctly clustered 
Messages 21 26 26 246 6 1 7
# of clusters with single 
document 1 1 1 0 

Figure 28 - Statistics after stprocessi  

FScore = 1 

 po ng

T

consistent with the ones obtained in the evaluation section. The FScore in both c

is very high with 0.998 for the evaluation experiments, and 1 for the formal validation

experiment. 

 
As before, we must conver

to the CLUTO format of document ID and message as shown below: 
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083509000.mesg  Is it me or are there others that like to leave work for lunch? 
083519000.mesg  been pretty quiet 
083542000.mesg  Its always quiet during the day in here 
083630000.mesg  your tellin me 
083653000.mesg  Im on lunch. so I have to leave in hmmmm 15 mins or so 
: 
: 
093158000.mesg  i like my arteries the way they are 
093212000.mesg  which is why i dont have mcdonals breakasts : 
093258000.mesg  lmao i guess i dont like my arteries 
093309000.mesg  since i eat there 3 times a week lmao 
093316000.mesg  only breakfast tho 
: 
: 
093619000.mesg  :P 
093633000.mesg  you should think about giving up smoking 
093636000.mesg  0_o 
093640000.mesg  o_O 
093644000.mesg  um duh 
093645000.mesg  0_0 
: 
: 
094442000.mesg  I'll give you some of mine too 
094445000.mesg  lol 
094452000.mesg  seriously 
094456000.mesg  so am I 
094459000.mesg  I'm only 120 lbs 
: 
: 
100250000.mesg  LaZaRuS: excuse me? 
100307000.mesg  o_O 
100309000.mesg  shyel: must not have been bad 
100312000.mesg  excuse? 
: 
: 
113329001.mesg  methodX: I forgot snook 
113334000.mesg  lol 
113335000.mesg  bot snook is a yeast infected **** 
113335001.mesg  OK, methodX. 
113339000.mesg  bot snook 
 

 
 

Figure 29 - Preprocessed Input 
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Stopword removal on the above input data yields the input as shown below in Figure 
28: 

083509000.mesg  leave lunch 
083519000.mesg  pretty 
083542000.mesg  day 
083630000.mesg  telling 
083653000.mesg  lunch leave hmmmm 15 mins 
: 
: 
093158000.mesg  arteries 
093212000.mesg  mcdonals breakasts 
093258000.mesg  guess arteries 
093309000.mesg  eat 3 times 
093316000.mesg  breakfast tho: 
: 
: 
093633000.mesg  giving smoking 
093636000.mesg  0o 
093640000.mesg  oo 
093644000.mesg  um duh 
093645000.mesg  00: 
: 
: 
094442000.mesg  mine 
094452000.mesg  seriously 
094459000.mesg  120 lbs 
: 
: 
100250000.mesg  lazarus excuse 
100307000.mesg  oo 
100309000.mesg  shyel 
100312000.mesg  excuse 
: 
: 
113329001.mesg  methodx forgot snook 
113335000.mesg  bot snook yeast infected **** 
113335001.mesg  methodx 
113339000.mesg  bot snook 

Figure 30 - Stopword removed Input file 

 
The input is then clustered to yield the results as shown in Figure 29: 
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083509000.mesg  leave lunch 121 
083519000.mesg  pretty 99 
083542000.mesg  day 108 
083630000.mesg  telling -1 
083653000.mesg  lunch leave hmmmm 15 mins 121 
: : 
: : 
093158000.mesg  arteries 114 
093212000.mesg  mcdonals breakasts -1 
093258000.mesg  guess arteries 114 
093309000.mesg  eat 3 times 51 
093316000.mesg  breakfast tho: 68 
: : 
: : 
093633000.mesg  giving smoking 69 
093636000.mesg  0o -1 
093640000.mesg  oo -1 
093644000.mesg  um duh -1 
093645000.mesg  00: -1 
: : 
: : 
094442000.mesg  mine 5 
094452000.mesg  seriously -1 
094459000.mesg  120 lbs 105 
: : 
: : 
100250000.mesg  lazarus excuse 26 
100307000.mesg  oo -1 
100309000.mesg  shyel 73 
100312000.mesg  excuse 57 
: : 
: : 
113329001.mesg  methodx forgot snook 50 
113335000.mesg  bot snook yeast infected **** 25 
113335001.mesg  methodx 55 
113339000.mesg  bot snook 64 
 

Figure 31 - Clustering Results 
 
The input utterances that were rendered empty due to stopword removal during the 

input processing phase are now reinserted into this sequence. All documents that were 

not clustered or were reinserted are assigned an invalid cluster ID of -1. The resulting 

input and results file look as shown below in Figure 30: 
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083509000.mesg  Is it me or are there others that like to leave work for lunch? 121 
083519000.mesg  been pretty quiet 99 
083542000.mesg  Its always quiet during the day in here 108 
083630000.mesg  your tellin me -1 
083653000.mesg  Im on lunch. so I have to leave in hmmmm 15 mins or so 121 
: : 
: : 
093158000.mesg  i like my arteries the way they are 114 
093212000.mesg  which is why i dont have mcdonals breakasts : -1 
093258000.mesg  lmao i guess i dont like my arteries 114 
093309000.mesg  since i eat there 3 times a week lmao 51 
093316000.mesg  only breakfast tho 68 
: : 
: : 
093619000.mesg  :P -1 
093633000.mesg  you should think about giving up smoking 69 
093636000.mesg  0_o -1 
093640000.mesg  o_O -1 
093644000.mesg  um duh -1 
093645000.mesg  0_0 -1 
: : 
: : 
094442000.mesg  I'll give you some of mine too 5 
094445000.mesg  lol -1 
094452000.mesg  seriously -1 
094456000.mesg  so am I -1 
094459000.mesg  I'm only 120 lbs 105 
: : 
: : 
100250000.mesg  LaZaRuS: excuse me? 26 
100307000.mesg  o_O -1 
100309000.mesg  shyel: must not have been bad 73 
100312000.mesg  excuse? 57 
: : 
: : 
113329001.mesg  methodX: I forgot snook 50 
113334000.mesg  lol -1 
113335000.mesg  bot snook is a yeast infected **** 25 
113335001.mesg  OK, methodX. 55 
113339000.mesg  bot snook 64 
 

 
Figure 32 - Clustered Results before Postprocessing 

 

 

This modified set of Input and Result files are then fed into the Postprocessing phase, 

to assign valid cluster IDs. The resulting cluster IDs are as shown in Figure 31.
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083509000.mesg  Is it me or are there others that like to leave work for lunch? 121 
083519000.mesg  been pretty quiet 99 
083542000.mesg  Its always quiet during the day in here 108 
083630000.mesg  your tellin me 99 
083653000.mesg  Im on lunch. so I have to leave in hmmmm 15 mins or so 121 
: : 
: : 
093158000.mesg  i like my arteries the way they are 114 
093212000.mesg  which is why i dont have mcdonals breakasts : 114 
093258000.mesg  lmao i guess i dont like my arteries 114 
093309000.mesg  since i eat there 3 times a week lmao 51 
093316000.mesg  only breakfast tho 68 
: : 
: : 
093619000.mesg  :P 36 
093633000.mesg  you should think about giving up smoking 69 
093636000.mesg  0_o 36 
093640000.mesg  o_O 36 
093644000.mesg  um duh 36 
093645000.mesg  0_0 36 
: : 
: : 
094442000.mesg  I'll give you some of mine too 5 
094445000.mesg  lol 5 
094452000.mesg  seriously 5 
094456000.mesg  so am I 5 
094459000.mesg  I'm only 120 lbs 105 
: : 
: : 
100250000.mesg  LaZaRuS: excuse me? 26 
100307000.mesg  o_O 26 
100309000.mesg  shyel: must not have been bad 73 
100312000.mesg  excuse? 57 
: : 
: : 
113329001.mesg  methodX: I forgot snook 50 
113334000.mesg  lol 25 
113335000.mesg  bot snook is a yeast infected **** 25 
113335001.mesg  OK, methodX. 55 
113339000.mesg  bot snook 64 
 

Figure 33  - Clustered Results after Postprocessing 

 

From the identified clusters, we can form the following discussion threads. A 

total of 122 clusters were identified numbered from 0-121. We will first take a look at 

the Clustering Quality Metric Score obtained for this data set. The experiment was 

run on this data for the number of clusters ranging from 2 to 303. Of these, the CQM 
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Score of 1.70143 was highest for 122 input clusters. We thus choose 122 as the 

probably number of discussion threads in the given chat session 

Clustering Quality Metric Score

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 30 59 88 117 146 175 204 233 262 291

Number of Clusters

C
Q

M
 S

co
re

Clustering Quality
Metric Score

 

Figure 34 - CQM Score of Input chat session 

 

e will provide a sample of the identified threads as shown in the following figures: 

 

The utterances in Thread 51 seem

W

 
 

Figure 35 - Thread 51 

wb PUP 
wb fatboy 

icadas eat? 
 work again 

m 

What do C
sightime for
bye guys 
I may very well eat my ar

nly starving I'm sudde
dammit 
there's nothing I want 

 to follow a discussion on hunger and food. 
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lmao 
heh 
lol 
bot methodX 
well, methodX is a bad*** ********! 
OK, methodX. 

Figure 36 - Thread 55 

 
Thread 55 discusses about methodX. 

 

s

 
 
 
 
 
 

 
Th

 
 
 
 
 
 
 
 
 
Th
 

 
 
 
 
 
 

Th
 
 

 

Strawberry cheesecake that's what! 
my slab 
lmao 
mmmm 
that would be soo good 
steaak 
i had choclate cake with strawberrie
Figure 37 - Thread 58 

read 58 seems to be on strawberry cakes.  

I'd say you owe me a beer, but I'm allergic to that too ):( 
im not 
allergic to beer! 
ill take it 
yes 
allergic to beer 

 

read 88 seems to be followin

now i'm on roids 
grouchy, lmao 
hehe 
so am I 
last roid was taken today 
I'm also weepy and hyper 
alternately 

read 112 seems to be on “roi
Figure 38 - Thread 88
g a discussion on allergies and beer ! 

 

Figure 39 - Thread 112 

ds”. 
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 [Whitewolf] Hey Whitey, wheres your hat? 

s 
itewolf 

id that she is not cute. 

 
ur has it wb is thanks 

i know. 
hey Darknes
Darkness is Wh
I know you know ;) 
who is she? 
it has been sa
me 
wb?
rumo

 
 
 
 
 
 
 
 
 

Figure 40 - Thread 5 

Thread 118 seems to be about Wh ss. 

 
h

for

an

pe

itewolf, and Darkne
 
 
 
 
 
 
 
 
 

T
 
W

 

i think Maester_BlueAecid is rose BA 's Master, and her true love. 

A is the most beautiful girl ever set upon this world, and the girl that 

awwww 
wwwwwwwwwwww awwwww

lol 
 old in like 2 weeks 1 year

rose BA 
lueAecid: rose BMaester_B

wears Maester BlueAecid's collar and Maester BlueAecid's ring. *purrs*
Figure 41 - Thread 115 

read 115 seems to be discussing “Maester_BlueAcid”. 

e see that the results in the informal validation are not nearly as impressive as those 

 the formal validation. Let us take a closer look at the statistics for both the formal 

d informal validation, and try to deduce the reason for this dramatic decrease in 

rformance.  
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Parameter Formal 

Validation 
Informal 
Validation 

# of utterances 993 800 
Average length of messages in input  
(# of words / message) 

5.21 4.62 

# of utterances after stopword removal 747 607 
# of unique words in stopword removed 
input 

1152 715 

Average length of messages in stopword 
removed input (# of words / message) 

2.28 2.54 

Average # of occurrences of a word (after 
stopword removal) 

1.48 2.16 

Total number of utterances not clustered by 
CLUTO 

0 144 

Number of clusters identified by CQM 4 (out of 2…496) 123 (out of 2…303) 
Table 7 - Statistical comparison of formal and informal validation 

 

From the above values we can see that although most of the numbers are similar and 

comparable for both formal and informal validation, the average message length in 

the formal validation dropped from 5.21 to 2.28 due to stopword removal, that is, a 

reduction by almost 3 words. Comparing this with the informal validation, we find 

that the decrease is only about 2 words, from 4.62 to 2.54. This indicates that 

stopword removal has not been as effective for informal validation as it had been for 

formal validation, with the result being that most of the noise words were passed to 

the clustering tool as information. This in turn led to a total of 144 utterances ending 

up unclustered in the informal validation experiment, as opposed to 0 for the formal 

validation. Thus by employing a more rigorous stopword removal procedure we could 

provide a cleaner input to the clustering phase, thereby increasing the accuracy of the 

results obtained. 
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6. DISCUSSION AND CONCLUSIONS 

 
Traditional document clustering techniques have been applied to group similar 

documents and identify topics where the input consists of newspaper stories, or 

streaming audio or video content. However, no such methods have been applied to 

detect and extract threads in textual chat data. Furthermore, a prominent problem 

faced in clustering chat data is that the utterances themselves are very small; hence 

the information available for clustering is also extremely limited. As such, reliance on 

the clustering algorithms alone to identify threads is unrealistic.  In order to overcome 

these problems, we devised several methods to process both the input and output so 

that the threads are meaningful.  

Our first concern is to ensure that we provide a meaningful set of data for the 

clustering algorithms to work on. This was ensured, by applying stopword processing 

to the input data, eliminating words that do not convey any particular information. 

This input data is then operated upon by various clustering algorithms, and we 

evaluated a variety of clustering algorithms and criterion functions to determine 

which were better suited to processing chat data than others. We ended up selecting 

“RB”, and “H2” as our combination of clustering algorithm and clustering criterion 

function. We also evaluate several clustering quality metrics to see which one was 

best suited for giving the closest approximation to the actual number of topics in a 

chat session for which the exact number of topics is not known a priori. Based on the 

results of the experiments conducted, we selected Metric 6, Section 4.3.2.2.6. 

The result of this combination is then used as a starting point for our post 

processing. This last phase is very important to improve the accuracy of the thread 
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extraction. In our experiments, post-processing increased the accuracy from 0.86 to 1, 

an increase of 14%.  

During the course of this project, we have shown a method of using document 

clustering as a means to identify and group together chat utterances that are similar in 

content. We also showed that the temporal information about the chat utterances is 

vital, and incorporating that information greatly improves the threads detected. 

Therefore, the content of a chat utterance as well as the time at which it occurred 

during the course of the chat session, are both important.  
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7. Future Work 
 
While my project aims to provide a method which could be used to group together 

chat utterances that are similar, it is by no means comprehensive. There are several 

enhancements that could be made in order to make this approach work better. The 

stopword removal could be improved to yield much cleaner input. Furthermore, given 

the extremely limited amount of information available in each utterance, we could 

employ query expansion in order to enhance the quality of the input available to the 

clustering algorithms. This could be one of two forms: either use a dictionary to 

expand each term individually, or group together two or more chat utterances to form 

one single utterance. For the clustering algorithms itself, we could experiment with all 

the permutations and combinations available from the CLUTO package, or perhaps 

even another similar package, to find out which combination works best for clustering 

chat data.  

Several improvements could be made to the post-processing phase as well, in 

order to improve the overall thread quality. This could be such as running a final 

check on the overall results (in batches of 10 utterances or another such suitable 

number), and obtain the cluster ID which occurs most often in that particular batch. 

Now, if there are some clustering IDs that occur just once in that batch, then that is an 

indication that they have been clustered incorrectly, and as a best effort to assign the 

correct cluster ID to them, we might assign them the ID that has occurred most 

frequently in that batch.  
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Also, we could use the usernames. We chose not to for our synthetic threads 

because they are too strong a clue when the data comes from different rooms. 

However, for real chat, this may help. 
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