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IntroductionIntroduction--Definition and Key ConceptsDefinition and Key Concepts
•• Bayesian networksBayesian networks -- Special type of probabilistic graphical model representing the Special type of probabilistic graphical model representing the conditional conditional 

dependency relationships between random variables. dependency relationships between random variables. 

•• Components of the modelComponents of the model
–– Random variables which represent the nodes of the graph. Random variables which represent the nodes of the graph. 
–– Directional edges between pairs of nodes which represent the depDirectional edges between pairs of nodes which represent the dependencies among the random endencies among the random 

variables. variables. 

•• Representation of the form ‘Representation of the form ‘X X YY’’ in graph structure indicates that node in graph structure indicates that node XX is the parent of node Y and is the parent of node Y and 
has a direct influence on node has a direct influence on node YY..

•• Graphical Models popular with Statistical and Artificial IntelliGraphical Models popular with Statistical and Artificial Intelligence communities.gence communities.

•• ApplicationsApplications
–– FinanceFinance
–– RoboticsRobotics
–– Data MiningData Mining
–– BioinformaticsBioinformatics
–– Weather ForecastingWeather Forecasting
–– MedicineMedicine
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Definition (Contd.)Definition (Contd.)

•• Two componentsTwo components are needed to specify a Bayesian networkare needed to specify a Bayesian network
–– Directed Acyclic Graph (Structure)Directed Acyclic Graph (Structure): Represented as an adjacency matrix to specify the graph struct: Represented as an adjacency matrix to specify the graph structure of ure of 

the Bayesian Network.the Bayesian Network.
E.g. E.g. 

–– Conditional Probability Distribution (Parameters)Conditional Probability Distribution (Parameters): Parameter to be specified for every node in the network. : Parameter to be specified for every node in the network. 
This parameter depends on the type of nodes in the network. For This parameter depends on the type of nodes in the network. For discrete nodes, this distribution is discrete nodes, this distribution is 
specified as a table for every node in the network specified as a table for every node in the network –– Conditional Probability Table (CPT).Conditional Probability Table (CPT).
E.gE.g CPT for node XCPT for node X11 CPT for node CPT for node XX22
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Key ConceptsKey Concepts

•• Conditional IndependenceConditional Independence: Two random variables : Two random variables AA and and BB are conditionally are conditionally 
independent given another variable independent given another variable CC if if 

P(A| C) = P(A| B,C)P(A| C) = P(A| B,C)

•• DD--SeparationSeparation: Conditional Independence in the graphs represented by the prop: Conditional Independence in the graphs represented by the property erty 
of Dof D--Separation.Separation.

–– Two nodes Two nodes XX and and YY are are dd--separated in the graph, given specified evidence nodes, if and separated in the graph, given specified evidence nodes, if and 
only if variables only if variables XX and and YY are conditionally independent given the corresponding evidence are conditionally independent given the corresponding evidence 
variables. variables. 

•• Markov IndependenceMarkov Independence: States that: States that
“In a graph representing the Bayesian network, a random va“In a graph representing the Bayesian network, a random variable is independent of riable is independent of 
its nonits non--descendants given its parents in the graph”. descendants given its parents in the graph”. 
E.g. Consider random variable E.g. Consider random variable BB in the graph. Its parent set is {in the graph. Its parent set is {AA, , EE}. Its children set is {}. Its children set is {CC}. }. 

NonNon--descendant set is {D}. Based on the Markov condition: descendant set is {D}. Based on the Markov condition: 

This is represented as This is represented as I(B; D| A, E)I(B; D| A, E)
Similarly for the other nodes, the Markov independence reSimilarly for the other nodes, the Markov independence relations arelations are
I(A; E);  I(C; A, E, D| B); I(D; E, B, C | A); I(E;A, D)I(A; E);  I(C; A, E, D| B); I(D; E, B, C | A); I(E;A, D)
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Inference & Learning in Bayesian Inference & Learning in Bayesian 
NetworksNetworks

•• InferenceInference: Given a Bayesian network, determining the probabilities of par: Given a Bayesian network, determining the probabilities of particular types of events ticular types of events 
is known as Inference.is known as Inference.
E.g. This network illustrates the joint probability distributionE.g. This network illustrates the joint probability distribution of smoking history (H), bronchitis (B), lung cancer of smoking history (H), bronchitis (B), lung cancer 
(L), fatigue (F), Chest X(L), fatigue (F), Chest X--ray (C). ray (C). 

From this network, using the probabilities of the From this network, using the probabilities of the CPT’sCPT’s
of the nodes, we can infer the probability of events likeof the nodes, we can infer the probability of events like If a person If a person 
has a smoking history and a positive Xhas a smoking history and a positive X--ray, what  is the probability ray, what  is the probability 
of that patient having lung cancer i.e. P(L| H,C).of that patient having lung cancer i.e. P(L| H,C).
This type of computation is known as inference.This type of computation is known as inference.

•• LearningLearning: Given a database of state values sampled : Given a database of state values sampled 
independently from the above network, determining the network stindependently from the above network, determining the network structure or the network ructure or the network 
parameters is called learning.parameters is called learning.

Data samples sampled randomly from a BN. Two types of learningData samples sampled randomly from a BN. Two types of learning
–– Parameter LearningParameter Learning: : Given the structure (dependency model), learning the conditionalGiven the structure (dependency model), learning the conditional probability tablesprobability tables
–– Structure LearningStructure Learning: : Learning the structure (graphical model or the adjacency matrixLearning the structure (graphical model or the adjacency matrix of the graph)  of the graph)  

•• The main focus of this thesis is The main focus of this thesis is Structure learning in Bayesian networksStructure learning in Bayesian networks..
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Structure Learning in Bayesian Structure Learning in Bayesian 
NetworksNetworks

•• Problem statement for the Structure Learning of Bayesian NetworkProblem statement for the Structure Learning of Bayesian Networks:s:
–– Given (Input)Given (Input)::

•• A set of random variables A set of random variables XX11, X, X22 …... …... XXnn

•• A dataset of complete cases generated from some joint probabilitA dataset of complete cases generated from some joint probability distribution P(y distribution P(XX11, X, X22…………XXnn))
–– Result (Output)Result (Output): The network structure (adjacency matrix of the graph) of the B: The network structure (adjacency matrix of the graph) of the Bayesian ayesian 

Network that most likely generated the observed data.Network that most likely generated the observed data.

•• Two approaches to structure learning:Two approaches to structure learning:
–– Constraint Based MethodsConstraint Based Methods: : 

•• Starts off with a fully connected graph and removes edges if conStarts off with a fully connected graph and removes edges if conditional ditional 
independencies are measured in the data.independencies are measured in the data.

•• Methods cannot handle missing data.Methods cannot handle missing data.
•• Repeated statistical tests tend to lose their statistical power Repeated statistical tests tend to lose their statistical power especially in case of larger especially in case of larger 

networks.networks.
–– Search and Score MethodsSearch and Score Methods: : 

•• Searches the space of all possible Searches the space of all possible DAG’sDAG’s and uses a score function to evaluate each stage of the and uses a score function to evaluate each stage of the 
search process. search process. 

•• Drawback of this method is that the size of the search space is Drawback of this method is that the size of the search space is supersuper--exponential in the number of exponential in the number of 
variables in the network. variables in the network. 

•• This method can be tweaked with a few assumptions to reduce the This method can be tweaked with a few assumptions to reduce the supersuper--exponential search spaces.exponential search spaces.
•• The BIC (Bayesian Information Criterion) score and Minimum DescrThe BIC (Bayesian Information Criterion) score and Minimum Descriptor Length (MDL) score are the iptor Length (MDL) score are the 

most popularly used scoring criterion.most popularly used scoring criterion.



Search and Score MethodsSearch and Score Methods
•• Exhaustive Search MethodExhaustive Search Method

–– Employed for small Bayesian networksEmployed for small Bayesian networks
–– Score function used to search exhaustively over the entire searcScore function used to search exhaustively over the entire search space.h space.

•• Hill ClimbingHill Climbing
–– Starts off with a particular point in the search space (an undirStarts off with a particular point in the search space (an undirected graph)ected graph)
–– All the nearest neighbors of this point are considered. All the nearest neighbors of this point are considered. 
–– Nearest neighbors of a particular graph (A) are the graph structNearest neighbors of a particular graph (A) are the graph structure which differ from A by only a ure which differ from A by only a 

single edge addition, edge deletion or an edge reversal.single edge addition, edge deletion or an edge reversal.
–– The algorithm applies a score function to each of these neighborThe algorithm applies a score function to each of these neighbors and chooses the neighbor with s and chooses the neighbor with 

the highest possible score as the next iterating point.the highest possible score as the next iterating point.
–– The process stops when no neighbor has a score higher than the pThe process stops when no neighbor has a score higher than the previous iterating point.revious iterating point.
–– Extremely prone to falling into local maxima.Extremely prone to falling into local maxima.

•• K2 AlgorithmK2 Algorithm
–– Reduces the complexity associated with the search techniques by Reduces the complexity associated with the search techniques by requiring a requiring a 

prior ordering of nodes.prior ordering of nodes.
–– Algorithm found to be extremely efficient in determining BayesiaAlgorithm found to be extremely efficient in determining Bayesian network n network 

structures.structures.
–– Starting point of our proposed method.Starting point of our proposed method.



K2 AlgorithmK2 Algorithm

•• Proposed by Cooper and Herskovits in 1992. Proposed by Cooper and Herskovits in 1992. 
•• K2 algorithm searches for a DAG that approximates maximizing scoK2 algorithm searches for a DAG that approximates maximizing score re scorescoreBB(d(d, G), G). . 
•• Input Input –– Output Relationship Output Relationship –– K2 AlgorithmK2 Algorithm

–– Given inputsGiven inputs
•• Node ordering in which most of the parent nodes in the ordering Node ordering in which most of the parent nodes in the ordering appear before their respective appear before their respective 

children.children.
•• Upper bound on the number of parents each node can have. (typicaUpper bound on the number of parents each node can have. (typically ‘lly ‘nn--11’)’)
•• Input Data.Input Data.

–– OutputOutput
•• Structure of the Bayesian network that most likely generated theStructure of the Bayesian network that most likely generated the observed data.observed data.

•• Node ordering AssumptionNode ordering Assumption
–– The node ordering is such that if a node The node ordering is such that if a node XXii precedes the node precedes the node XXjj in the ordering an arc in the ordering an arc 

from the node from the node XXjj to to XXii is not allowed.is not allowed.
–– Stated otherwise, for each node in the ordering, the nodes that Stated otherwise, for each node in the ordering, the nodes that occur downstream of it occur downstream of it 

cannot be one in its parent set.cannot be one in its parent set.
–– PredPred (X(Xii)) is a set that is computed for every node during the algorithm ais a set that is computed for every node during the algorithm and it includes nd it includes 

the nodes that precede a node the nodes that precede a node XXii in the ordering.in the ordering.
•• Functional DescriptionFunctional Description::

–– Network_StructureNetwork_Structure = learn_K2 (Data, = learn_K2 (Data, Node_SizesNode_Sizes, , Node_OrderNode_Order););



K2 AlgorithmK2 Algorithm

•• WorkingWorking
–– The parent set The parent set PAPAii of node of node XXii is initially set to an empty set.is initially set to an empty set.
–– Using the scoring function the network score, Using the scoring function the network score, scorescoreBB(d(d, X, Xii, PA), PA) is computed.is computed.
–– The nodes in the ordering are now visited one at a time in sequeThe nodes in the ordering are now visited one at a time in sequence.nce.
–– For each node visit, For each node visit, PredPred (X(Xii) is computed and represents the set of potential parents of ) is computed and represents the set of potential parents of 

node Xnode Xi.i.

–– The node in The node in PredPred ((XXii) which most increases the network score is greedily added to th) which most increases the network score is greedily added to the e 
parent set of node parent set of node XXi.i.

–– The addition of the parents continue untilThe addition of the parents continue until
•• The maximum number of parents for that particular node has been The maximum number of parents for that particular node has been reached. reached. 
•• There are no more legal parents to add.There are no more legal parents to add.
•• No parent addition improves the score.No parent addition improves the score.

–– This algorithm terminates when all the nodes in the node orderinThis algorithm terminates when all the nodes in the node ordering have been visited once.g have been visited once.

•• DeficienciesDeficiencies
–– Algorithm performance greatly dependent on the input node orderiAlgorithm performance greatly dependent on the input node ordering.ng.
–– Only when domain knowledge from an expert is available can a corOnly when domain knowledge from an expert is available can a correct input ordering be rect input ordering be 

determined.determined.
–– Using all possible node ordering combinations is computationallyUsing all possible node ordering combinations is computationally impossible.impossible.



Proposed Method Proposed Method –– Features and OverviewFeatures and Overview

•• Focus of this thesis was to develop a method which would uncoverFocus of this thesis was to develop a method which would uncover this node this node 
ordering from the data and be as accurate as possible in adherinordering from the data and be as accurate as possible in adhering to the fact that g to the fact that 
most parent nodes in this uncovered ordering should appear upstrmost parent nodes in this uncovered ordering should appear upstream to their eam to their 
children.children.

•• The prime reason to undertake such an approach is to use the inhThe prime reason to undertake such an approach is to use the inherent efficiency erent efficiency 
displayed by the K2 algorithm in determining Bayesian network stdisplayed by the K2 algorithm in determining Bayesian network structures from ructures from 
data.data.

•• The proposed method uses concepts from The proposed method uses concepts from 
–– Information Theory: Mutual Information, Conditional Entropy etc.Information Theory: Mutual Information, Conditional Entropy etc.
–– Bayesian Network Theory: Conditional Independence, DBayesian Network Theory: Conditional Independence, D--Separation etc.Separation etc.
–– Graph Theory: Path Matrices, Connectivity Structures etc.Graph Theory: Path Matrices, Connectivity Structures etc.



Method OverviewMethod Overview

•• The following section illustrates the various stages of the propThe following section illustrates the various stages of the proposed method.osed method.
•• The ALARM network is used as an example to illustrate the algoriThe ALARM network is used as an example to illustrate the algorithm development. thm development. 
•• ALARMALARM –– Bayesian network with 37 discrete random variables and each varBayesian network with 37 discrete random variables and each variable taking iable taking 

on 2, 3 or 4 discrete states.on 2, 3 or 4 discrete states.



Phase I Phase I –– Mutual Information StageMutual Information Stage

•• Determine an undirected structure (skeleton structure) from the Determine an undirected structure (skeleton structure) from the data using the MI parameter.data using the MI parameter.
•• The The mutual informationmutual information between two random variables is defined as the amount of informbetween two random variables is defined as the amount of information ation 

shared between the two variables. Mathematically,shared between the two variables. Mathematically,
I(X;Y) = H(X) I(X;Y) = H(X) –– H(X|Y)H(X|Y)

where I(X;Y) : MI shared between variables X and Ywhere I(X;Y) : MI shared between variables X and Y
H(X) : Entropy of the random variable XH(X) : Entropy of the random variable X
H(X|Y) : Conditional Entropy of the random variH(X|Y) : Conditional Entropy of the random variable X given variable Y.able X given variable Y.

•• MI determines the degree of proximity between random variables. MI determines the degree of proximity between random variables. 
•• If the mutual information between variables If the mutual information between variables XX and and YY is zero, it implies that the two variables are is zero, it implies that the two variables are 

independent of each other and that variable independent of each other and that variable XX does not contain any information about the does not contain any information about the 
variable variable YY and viceand vice--versa. versa. 

•• Higher the mutual information between two variables Higher the mutual information between two variables XX and and YY, more closely they are related. , more closely they are related. 
•• MI is a metric that is symmetric in nature i.e. MI is a metric that is symmetric in nature i.e. I(X; Y) = I(Y; X)I(X; Y) = I(Y; X)
•• Matrix visualization of a datasetMatrix visualization of a dataset
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Phase I (Contd.)Phase I (Contd.)
•• MI for each node in the network is computed from the data (MI for each node in the network is computed from the data (w.r.tw.r.t every other node) and a Mutual every other node) and a Mutual 

Information matrix is computed.Information matrix is computed.
•• FlowchartFlowchart to obtain the undirected network structure from the MI parameteto obtain the undirected network structure from the MI parameter.r.
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Determine MI Matrix

Start with Node n = 1.
Define N = Total number of nodes in the network

Compute:
Max_MI (n) and Threshold_MI (n)

Compute:
Threshold_List {n} = {Nodes in the network with    

MI > Threshold_MI(n)}

Add an edge between ‘n’ and every node in the 
Threshold_List {n}

n = n + 1

Is n 
= N 
?

Stop



Phase I (Contd.)Phase I (Contd.)

•• Undirected network structureUndirected network structure Original ALARM NetworkOriginal ALARM Network



Phase I (Contd.)Phase I (Contd.)
•• Undirected network structure obtained is not completely connecteUndirected network structure obtained is not completely connected. Few isolated nodes d. Few isolated nodes 

remain. We obtain a completely connected structure by connectingremain. We obtain a completely connected structure by connecting these isolated nodes back these isolated nodes back 
into the network.into the network.

•• Steps to obtain a completely connected network structureSteps to obtain a completely connected network structure::
–– Sort the computed pairSort the computed pair--wise mutual information in descending order. wise mutual information in descending order. 
–– Create a list containing the node pairs sorted in descending ordCreate a list containing the node pairs sorted in descending order of mutual information. er of mutual information. 
–– Add an edge between the nodes in the nodeAdd an edge between the nodes in the node--pairs if any one of the following conditions are satisfied:pairs if any one of the following conditions are satisfied:

•• The target node is not connected to any other node in the networThe target node is not connected to any other node in the network.k.
•• The source node is not connected to any other node in the networThe source node is not connected to any other node in the network.k.
•• Starting from the source node, the target node is not reachable Starting from the source node, the target node is not reachable through any other path of nodes through any other path of nodes 

of the network structure obtained until that step of the network structure obtained until that step 
–– Stop the processing of the node pairs when the complete connectiStop the processing of the node pairs when the complete connectivity criterion is satisfied.vity criterion is satisfied.

Legend: Edges added to establish 
complete connectivity



Phase IIPhase II
•• Summarizing Phase ISummarizing Phase I

–– Obtain an undirected network structure using the MI parameter.Obtain an undirected network structure using the MI parameter.
–– Complete the connectivity of this structure to remove isolated nComplete the connectivity of this structure to remove isolated nodes in odes in 

the network structure.the network structure.
–– Network is still undirected at this stage.Network is still undirected at this stage.
–– Structure is called MIUDG structure at this stage.Structure is called MIUDG structure at this stage.
–– About eighty five percent of the edges are correctly detected; dAbout eighty five percent of the edges are correctly detected; directional irectional 

orientations are not considered at this stage orientations are not considered at this stage 
•• Phase II: Elimination of triangular loops in the network structuPhase II: Elimination of triangular loops in the network structurere

–– Triangular loops in the network structure formed due to erroneouTriangular loops in the network structure formed due to erroneous connections s connections 
between two nodes in the network.between two nodes in the network.

–– They are formed due to a high value of MI between the nodes.They are formed due to a high value of MI between the nodes.
–– Consequently these erroneous edges need to be eliminated at thisConsequently these erroneous edges need to be eliminated at this stage of the stage of the 

algorithm to prevent them from further propagating through the ralgorithm to prevent them from further propagating through the remaining emaining 
phases.phases.

–– Another reason is to eliminate the loops in the network structurAnother reason is to eliminate the loops in the network structure thus satisfying e thus satisfying 
the the acylicacylic property of the Bayesian networks.property of the Bayesian networks.

–– Elimination is done in two stages:Elimination is done in two stages:
•• Common Edge eliminationCommon Edge elimination : Elimination of edges that are commonly involved : Elimination of edges that are commonly involved 

in two or more triangular loops in two or more triangular loops 
•• Elimination by conditional independence testsElimination by conditional independence tests



Elimination by CI TestsElimination by CI Tests
•• Isolated triangular loops are eliminated by this method.Isolated triangular loops are eliminated by this method.
•• The working of this method is illustrated with an example triangThe working of this method is illustrated with an example triangular loop.ular loop.
•• Markov independenceMarkov independence used to eliminate the erroneous edge.used to eliminate the erroneous edge.
•• Edges eliminated one at a time and the conditional independenceEdges eliminated one at a time and the conditional independence

is tested after the elimination.is tested after the elimination.
•• If the equality holds then that particular edge can be deleted aIf the equality holds then that particular edge can be deleted and nd 

the triangular loop is broken.the triangular loop is broken.

•• If none of the CI tests hold, additional nodes are added in the If none of the CI tests hold, additional nodes are added in the equality criterion to test for the equality criterion to test for the 
conditional independence. These nodes are obtained from the MI lconditional independence. These nodes are obtained from the MI lists and the equalities are ists and the equalities are 
tested using these new rules.tested using these new rules.

•• For e.g. the following equality is tested after the deletion of For e.g. the following equality is tested after the deletion of edge Aedge A--BB

•• Here X is a node set obtained from the MI matrix.Here X is a node set obtained from the MI matrix.
•• If the CI tests still fail to produce a triangular loop free strIf the CI tests still fail to produce a triangular loop free structure, an exhaustive search is ucture, an exhaustive search is 

performed using the score function of all the subperformed using the score function of all the sub--structures involved in the triangular loop to structures involved in the triangular loop to 
eliminate them.eliminate them.
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Phase II (Contd.)
•• Elimination using local subElimination using local sub--structuresstructures

–– In this method, a subIn this method, a sub--graph consisting of all nodes connected to the concerned isolategraph consisting of all nodes connected to the concerned isolated d 
triangular loop are considered for the evaluation. triangular loop are considered for the evaluation. 

–– Each edge of the triangular loop is eliminated one at a time andEach edge of the triangular loop is eliminated one at a time and the score function is used to the score function is used to 
compute the score of all the subcompute the score of all the sub--structures resulting from the deletion. structures resulting from the deletion. 

–– The maximum subThe maximum sub--structure score is determined and the edge deletion correspondinstructure score is determined and the edge deletion corresponding to this g to this 
maximum score is finalized to be the edge deletion that needs tomaximum score is finalized to be the edge deletion that needs to be performed on the be performed on the 
isolated triangular loop isolated triangular loop 

•• After the elimination of all triangular loops, the example ALARMAfter the elimination of all triangular loops, the example ALARM network is:network is:



Phase IIIPhase III
•• After phase II we have an undirected structure that is free of tAfter phase II we have an undirected structure that is free of triangular loops.riangular loops.
•• We need to assign directional orientations to the edges in the nWe need to assign directional orientations to the edges in the network and then sort topologically to obtain etwork and then sort topologically to obtain 

a node ordering that can be used as an input to the K2 algorithma node ordering that can be used as an input to the K2 algorithm..
•• Even after the elimination of triangular loops in the network stEven after the elimination of triangular loops in the network structure, loops with four nodes and four ructure, loops with four nodes and four 

edges are distinctly possible.edges are distinctly possible.
•• Phase III of our algorithm aims at detecting these loops and assPhase III of our algorithm aims at detecting these loops and assigning directions to them.igning directions to them.
•• Determination of four edge loopsDetermination of four edge loops

–– Obtain the square of the adjacency matrix of the undirected grapObtain the square of the adjacency matrix of the undirected graph structure (structure after the elimination h structure (structure after the elimination 
of triangular loops). of triangular loops). 

–– For each node in the network, determine the entries in the correFor each node in the network, determine the entries in the corresponding row of the squared matrix that are sponding row of the squared matrix that are 
equal to two. equal to two. 

–– Initially, look at the entries in row one (corresponding to nodeInitially, look at the entries in row one (corresponding to node N1N1) that are equal to two. Only the ) that are equal to two. Only the 
column four (node column four (node N4N4) has an entry equal to two (exclude the entry two in column one) has an entry equal to two (exclude the entry two in column one, this , this 
corresponds to node corresponds to node N1N1). This means that node ). This means that node N4N4 can be reached from node can be reached from node N1N1 in two paths of in two paths of 
path length two. These are:path length two. These are:

•• NN11 –– NN22 –– NN44

•• NN11 –– NN33 –– NN44

–– Consequently nodes Consequently nodes NN11 –– NN22 –– NN33 –– NN44 are a part of a four edge loop.are a part of a four edge loop.
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Phase III (Contd.)Phase III (Contd.)
•• Assignment of edge orientations to fourAssignment of edge orientations to four--edge loopsedge loops

–– Exhaustive search and score methodExhaustive search and score method is used to assign directions to the edges in the is used to assign directions to the edges in the 
cyclic loops.cyclic loops.

–– Acyclic loops eliminated while using the search and score methodAcyclic loops eliminated while using the search and score method..
–– Structure size of the exhaustive search space for fourStructure size of the exhaustive search space for four--edge loops = 2edge loops = 244 –– 2 = 142 = 14

Structures to be omitted from the exhaustive search space while Structures to be omitted from the exhaustive search space while assigning directions to assigning directions to 
the edges in fourthe edges in four--edge loops.edge loops.
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Phase IVPhase IV
•• After Phase IIIAfter Phase III

–– Only the edges involved in fourOnly the edges involved in four--edge loops are oriented.edge loops are oriented.
–– We need to find a method to orient the remaining edges in the neWe need to find a method to orient the remaining edges in the network.twork.

•• In Phase IV, we orient the remaining edges in the network usingIn Phase IV, we orient the remaining edges in the network using
–– Conditional Independence Tests (CI Tests)Conditional Independence Tests (CI Tests)
–– Graph subGraph sub--structure splittingstructure splitting

•• Assignment of edge orientations using CI testsAssignment of edge orientations using CI tests
–– CI Tests performed to assign edge orientations.CI Tests performed to assign edge orientations.
–– Consider,Consider,

–– The edge orientation from The edge orientation from NN11 NN22 has already been set during Phase III.has already been set during Phase III.
–– Node Node NN22 has two edges (to node has two edges (to node NN33 and and NN44) that do not have any directional ) that do not have any directional 

orientation at this stage. orientation at this stage. 
–– We are interested in determining the orientations of these edgesWe are interested in determining the orientations of these edges using CI tests.using CI tests.
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Phase IV (Contd.)Phase IV (Contd.)
•• Assignment of edge orientations using CI testsAssignment of edge orientations using CI tests

–– Assume we are interested in assigning an orientation to the edgeAssume we are interested in assigning an orientation to the edge NN22 –– NN33..
–– We test the equality,We test the equality,

–– If the equality holds then If the equality holds then NN33 is conditionally independent of is conditionally independent of NN11 given given NN22. . 
•• Using the rules of DUsing the rules of D--separation we can assign the direction separation we can assign the direction NN22 NN33 in this case.in this case.

–– If the equality does not hold then If the equality does not hold then NN33 and and NN11 are not independent conditional on are not independent conditional on NN22. Two . Two 
reasons might exist for this inequality:reasons might exist for this inequality:

•• NN33 and and NN11 are truly dependent. In this case, the edge orientation assignmare truly dependent. In this case, the edge orientation assignment can be ent can be 
made from made from NN33 NN22 using the rules of Dusing the rules of D--separation.separation.

•• There exists another path from There exists another path from N3N3 to to N1N1. We add the highest ranking common potential . We add the highest ranking common potential 
parents to nodes parents to nodes NN11 and and NN33 at this stage using the MI metric.at this stage using the MI metric.

•• Steps to assign edge orientations using CI testsSteps to assign edge orientations using CI tests
–– After setting the edge orientations for the edges in the loops, After setting the edge orientations for the edges in the loops, sort the nodes in descending order of sort the nodes in descending order of 

incoming connections. incoming connections. 
–– For each node in this list, determine the edges that have no dirFor each node in this list, determine the edges that have no directional orientation.ectional orientation.
–– Use the CI tests for each node in the list to assign edge orientUse the CI tests for each node in the list to assign edge orientations (as shown in the example ations (as shown in the example 

above).above).
–– This is a dynamic process as after every assignment the networkThis is a dynamic process as after every assignment the network structure is changing. Iterate this structure is changing. Iterate this 

process around ten times so that the edge orientations propagateprocess around ten times so that the edge orientations propagate through the network structure.through the network structure.
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Phase IV (Contd.)Phase IV (Contd.)
•• Graph SubGraph Sub--structure splittingstructure splitting

–– Performed to orient edges after the CI test stage.Performed to orient edges after the CI test stage.
–– Main idea is to split the large network structure into smaller lMain idea is to split the large network structure into smaller local subocal sub--structures and structures and 

exhaustively search over these subexhaustively search over these sub--structures.structures.
–– Searching over the local subSearching over the local sub--structures is not computationally demanding.structures is not computationally demanding.
–– Structure with N edges is split into several small structures wiStructure with N edges is split into several small structures with ‘n’ edges where n << N.th ‘n’ edges where n << N.
–– For each of these smaller structures, all possible directional oFor each of these smaller structures, all possible directional orientations are considered.rientations are considered.
–– Scores for these subScores for these sub--structures are computed using the score function.structures are computed using the score function.
–– Directional orientations are set in the graph structure correspoDirectional orientations are set in the graph structure corresponding to the directional nding to the directional 

orientations of the suborientations of the sub--structure with the maximum score.structure with the maximum score.



Phase VPhase V
•• After, Phase IVAfter, Phase IV

–– We have edge orientations for most edges in the networkWe have edge orientations for most edges in the network
–– We sort the nodes topologically (i.e. parents before their childWe sort the nodes topologically (i.e. parents before their children) using the edge orientations ren) using the edge orientations 

in the structure obtained to obtain a node order.in the structure obtained to obtain a node order.
–– Using this node order, we apply the K2 algorithm to determine thUsing this node order, we apply the K2 algorithm to determine the final Bayesian network e final Bayesian network 

structure.structure.

Final Learnt Structure of the ALARM network – After the K2 algorithm.

Legend:               Wrong Connection (Extra edge)

Missing Edge



Results and AnalysisResults and Analysis
•• Parameters considered while testing the algorithmParameters considered while testing the algorithm

–– Overall algorithm efficiencyOverall algorithm efficiency: Efficiency judged based on the number of errors in the graph : Efficiency judged based on the number of errors in the graph 
structure or the Hamming distance between the structure discoverstructure or the Hamming distance between the structure discovered and the gold structure.ed and the gold structure.

–– Timing efficiencyTiming efficiency: Time to learn defined as the time taken to learn the final str: Time to learn defined as the time taken to learn the final structure of the ucture of the 
Bayesian network from data.Bayesian network from data.

–– Comparison of the algorithm with standard BN structure learning Comparison of the algorithm with standard BN structure learning algorithmsalgorithms..
–– RobustnessRobustness: Determined by how well the algorithm performs for networks of : Determined by how well the algorithm performs for networks of varying sizes.varying sizes.

•• Four networks of varying sizes used to test the algorithm perforFour networks of varying sizes used to test the algorithm performancemance
–– ASIAASIA: Small Bayesian network : Small Bayesian network –– 8 nodes and 8 edges.8 nodes and 8 edges.
–– ASIA is a small Bayesian network that calculates the probabilityASIA is a small Bayesian network that calculates the probability of a patient having of a patient having 

tuberculosis, lung cancer or bronchitis respectively based on dituberculosis, lung cancer or bronchitis respectively based on different factors.fferent factors.
Eight random variables Eight random variables -- discrete in nature.discrete in nature.
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TestingTesting
•• CAR_DIAGNOSISCAR_DIAGNOSIS: Medium sized Bayesian network : Medium sized Bayesian network –– 18 discrete nodes and 20 edges.18 discrete nodes and 20 edges.
•• The CAR_DIAGNOSIS network is a midThe CAR_DIAGNOSIS network is a mid--sized network that is used to diagnose why a car sized network that is used to diagnose why a car 

won't start, based on spark plugs, headlights, main fuse, etc.won't start, based on spark plugs, headlights, main fuse, etc.
•• The variables in the network can take either two or three statesThe variables in the network can take either two or three states..
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TestingTesting

•• ALARMALARM: Large Network : Large Network –– 37 nodes and 46 edges37 nodes and 46 edges
•• Stands for ‘A Logical Alarm Reduction Mechanism’ and is a medicaStands for ‘A Logical Alarm Reduction Mechanism’ and is a medical diagnostic system used l diagnostic system used 

for patient monitoring. Most commonly used network in Bayesian nfor patient monitoring. Most commonly used network in Bayesian network testing.etwork testing.
•• Discrete variables take two, three or four states respectively.Discrete variables take two, three or four states respectively.



TestingTesting

•• HailfinderHailfinder: Large network : Large network –– 56 nodes and 66 edges56 nodes and 66 edges
•• Complex network used to predict summer weather in North Eastern Complex network used to predict summer weather in North Eastern Colorado.Colorado.
•• The discrete nodes take two, three or four states respectively.The discrete nodes take two, three or four states respectively.



TestingTesting
•• To obtain a fair idea of algorithm performance, hundred datasetsTo obtain a fair idea of algorithm performance, hundred datasets are randomly are randomly 

generated for each network and the algorithm is run on each of tgenerated for each network and the algorithm is run on each of these datasets to hese datasets to 
obtain a mean result of the algorithm performance.obtain a mean result of the algorithm performance.

•• For comparing the graphical efficiency, a few terms are defined For comparing the graphical efficiency, a few terms are defined herehere
–– Correct edgesCorrect edges: Edges correctly detected by the algorithm (with the right : Edges correctly detected by the algorithm (with the right 

orientation) in comparison to the Gold network. orientation) in comparison to the Gold network. 
–– Missing edgesMissing edges: Edges not picked up by the algorithm in comparison to the gold: Edges not picked up by the algorithm in comparison to the gold

network. network. 
–– Wrong orientation edgesWrong orientation edges: Edges detected by the algorithm but having the : Edges detected by the algorithm but having the 

opposite orientation in comparison to the gold network.opposite orientation in comparison to the gold network.
–– Wrong connection edgesWrong connection edges: Edges that are present in the structure detected by the : Edges that are present in the structure detected by the 

algorithm but not present in the Gold network algorithm but not present in the Gold network 
–– Graph errors Graph errors –– Hamming distanceHamming distance -- Summation of the three types of graph errors Summation of the three types of graph errors 

mentioned above (Missing edges + Wrong orientation edges + Wrongmentioned above (Missing edges + Wrong orientation edges + Wrong connection connection 
edges).  edges).  

•• Ideally, a structure learning algorithm must uncover the maximumIdeally, a structure learning algorithm must uncover the maximum number of Correct number of Correct 
edges with a minimum number of errors.edges with a minimum number of errors.



Results Results –– ALARM NetworkALARM Network
•• The table below shows the performance of the algorithm using 100The table below shows the performance of the algorithm using 10000 data samples for the ALARM Network00 data samples for the ALARM Network
•• A high percentage of correct edges are detected (A high percentage of correct edges are detected (42.93/46 about42.93/46 about 94 %94 %).).
•• For a ideal dataset, a structure with only 1 error  is detected.For a ideal dataset, a structure with only 1 error  is detected.
•• Results for the ALARM NetworkResults for the ALARM Network Comparison Table with other methodsComparison Table with other methods

•• Key points to be noted:Key points to be noted:
–– The performance of other methods like Random K2 and Hill ClimbinThe performance of other methods like Random K2 and Hill Climbing are significantly worse than the g are significantly worse than the 

proposed method both in terms of the overall network score and tproposed method both in terms of the overall network score and the graph errors in the learnt structure.he graph errors in the learnt structure.
–– For a suitable dataset the number of graph errors in the learnt For a suitable dataset the number of graph errors in the learnt structure using the proposed method is structure using the proposed method is 

one.one.
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Results Results –– ALARM NetworkALARM Network
•• Score Comparison graphScore Comparison graph

–– The scores of the proposed method The scores of the proposed method 
mirror the known K2 method (wherein mirror the known K2 method (wherein 
the correct preordering of nodes is the correct preordering of nodes is 
supplied as the input).supplied as the input).

–– For a few datasets the proposed For a few datasets the proposed 
method performs exactly alike the method performs exactly alike the 
known K2 algorithm.known K2 algorithm.

–– The performance of the random K2 The performance of the random K2 
ordering is comparatively very poor.ordering is comparatively very poor.

•• Time ComplexityTime Complexity
–– The proposed method performs much The proposed method performs much 

better with regards to time to learn the better with regards to time to learn the 
final network structure.final network structure.

–– These times indicate the time taken to These times indicate the time taken to 
learn a single network structure from learn a single network structure from 
observed data.observed data.

–– All computations performed on a 1 GB All computations performed on a 1 GB 
RAM, Pentium Xeon IV system.RAM, Pentium Xeon IV system.
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Results Results –– ASIA NetworkASIA Network

•• Results of the Proposed MethodResults of the Proposed Method Comparison Table with other methodsComparison Table with other methods

•• Comparing the tables it can be noted thatComparing the tables it can be noted that
–– In comparison with the other methods, the proposed method producIn comparison with the other methods, the proposed method produces far fewer es far fewer 

errors on an average in the learnt structure.errors on an average in the learnt structure.
–– The proposed method is able to detect the entire network structuThe proposed method is able to detect the entire network structure (without any re (without any 

errors) in the case of certain datasets.errors) in the case of certain datasets.
•• Time ComplexityTime Complexity

–– Although, in the case of smaller networks time is Although, in the case of smaller networks time is 
not a very constraining factor the proposed method not a very constraining factor the proposed method 
performs better than the Hill climbing method performs better than the Hill climbing method w.r.tw.r.t. . 
time complexity.time complexity.
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Results Results –– CAR_DIAGNOSISCAR_DIAGNOSIS

•• Results for the CAR_DIAGNOSIS networkResults for the CAR_DIAGNOSIS network Comparison Table with other methodsComparison Table with other methods

•• For a medium sized networkFor a medium sized network
–– The proposed method performs consistently better than the The proposed method performs consistently better than the 

standard methods with regards to graph error. With regardstandard methods with regards to graph error. With regards s 
to score the proposed method performs very close to the to score the proposed method performs very close to the 
known order K2 algorithm. It can be seen from the graph tknown order K2 algorithm. It can be seen from the graph that hat 

the Hill Climbing method also performs quite similarly the Hill Climbing method also performs quite similarly w.r.tw.r.t
score of the learnt structure.score of the learnt structure.
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Results Results -- HailfinderHailfinder
•• The The HailfinderHailfinder network is an extremely large and a complex Bayesian network.network is an extremely large and a complex Bayesian network.
•• The conditional probability tables of some nodes in this networkThe conditional probability tables of some nodes in this network are filled with are filled with absolute values of absolute values of 

probabilities (0’s and 1’s)probabilities (0’s and 1’s). This makes the network structure determination extremely diffi. This makes the network structure determination extremely difficult.cult.
•• A lack of available literature also makes it difficult to comparA lack of available literature also makes it difficult to compare the performance of structure learning e the performance of structure learning 

algorithms for the algorithms for the HailfinderHailfinder network.network.
•• Cheng’s Bayesian network Cheng’s Bayesian network PowerconstructorPowerconstructor is considered to be a universally accepted software to is considered to be a universally accepted software to 

construct Bayesian network structures from data.construct Bayesian network structures from data.
Comparison of the Proposed Method to other structure learning alComparison of the Proposed Method to other structure learning algorithmsgorithms

•• It follows from the above table that while the proposed method dIt follows from the above table that while the proposed method does not compare to the known order K2 oes not compare to the known order K2 
algorithm, it performs better than other structure learning algoalgorithm, it performs better than other structure learning algorithms like random K2 and the universally rithms like random K2 and the universally 
accepted BNP software method.accepted BNP software method.

•• Methods like Hill Climbing are computationally impossible to runMethods like Hill Climbing are computationally impossible to run for large and complex networks like for large and complex networks like 
HailfinderHailfinder. . 
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Conclusions & Future WorkConclusions & Future Work
•• The proposed thesis developedThe proposed thesis developed

–– A time and a graph efficient structure learning algorithm that iA time and a graph efficient structure learning algorithm that is robust and can be used to learn the s robust and can be used to learn the 
structures of different sizes of networks effectively from data.structures of different sizes of networks effectively from data.

–– Uses the inherent efficiency built into the K2 algorithm but doeUses the inherent efficiency built into the K2 algorithm but does away with the need for prior s away with the need for prior 
knowledge of node ordering.knowledge of node ordering.

–– Uses key Bayesian network principles like Conditional IndependenUses key Bayesian network principles like Conditional Independence, Markov Properties and Dce, Markov Properties and D--
separation.separation.

–– Incorporates concepts of Information theory into the learning alIncorporates concepts of Information theory into the learning algorithm.gorithm.

•• Application Area Application Area –– BioinformaticsBioinformatics
–– Use of Bayesian networks in Bioinformatics is a hot research areUse of Bayesian networks in Bioinformatics is a hot research area.a.
–– The proposed method was applied to discover the structure of theThe proposed method was applied to discover the structure of the gene regulatory networks using gene regulatory networks using 

publicly available publicly available microarraymicroarray data.data.
–– The method was found to be efficient in uncovering the genetic iThe method was found to be efficient in uncovering the genetic interactions (about 86% and 64% nteractions (about 86% and 64% 

interactions for two groups of tested genes).interactions for two groups of tested genes).
–– This work was published as a paper in a journal.This work was published as a paper in a journal.
–– The proposed ideas can be extended in general in the field of BiThe proposed ideas can be extended in general in the field of Bioinformatics.oinformatics.

•• Dynamic Bayesian networksDynamic Bayesian networks
–– The Bayesian networks presented in this thesis deal with static The Bayesian networks presented in this thesis deal with static Bayesian networks.Bayesian networks.
–– The ideas presented in this thesis can be extended to Dynamic BaThe ideas presented in this thesis can be extended to Dynamic Bayesian networks as well.yesian networks as well.



References

•• Neapolitan R.E., ‘Neapolitan R.E., ‘Learning Bayesian NetworksLearning Bayesian Networks’ ’ -- Prentice Hall,  2004.Prentice Hall,  2004.
•• Cooper G.F. and Herskovits E., ‘Cooper G.F. and Herskovits E., ‘A Bayesian method for the induction of probabilistic A Bayesian method for the induction of probabilistic 

networks from datanetworks from data’. ’. Machine LearningMachine Learning, 9: 309 , 9: 309 –– 347, 1992. 347, 1992. 
•• ProakisProakis J.G. ‘J.G. ‘Digital CommunicationsDigital Communications’’-- McgrawMcgraw –– Hill, 2001.Hill, 2001.
•• Heckerman D. ‘Heckerman D. ‘A tutorial on learning in Bayesian networksA tutorial on learning in Bayesian networks’ ’ -- Technical Report Technical Report --

Microsoft ResearchMicrosoft Research.. 1996 1996 
•• Jensen F.V. ‘Jensen F.V. ‘Introduction to Bayesian NetworksIntroduction to Bayesian Networks’ ’ -- SpringerSpringer--VerlagVerlag New York Inc,1996 New York Inc,1996 
•• Murphy K.P. Web reference: Murphy K.P. Web reference: http://http://bnt.sourceforge.netbnt.sourceforge.net //usage.htmusage.htm, 2004. , 2004. 
•• ChartrandChartrand G. and G. and LesniakLesniak L. ‘L. ‘Graphs and DigraphsGraphs and Digraphs’ ’ -- Chapman and Hall, 1996Chapman and Hall, 1996
•• LauritzenLauritzen S.L. and S.L. and SpiegelhalterSpiegelhalter D.J., ‘D.J., ‘Local computations with Local computations with probabiltiesprobabilties on on 

graphical structures and their application to expert systemsgraphical structures and their application to expert systems’  ’  -- J. Royal Statistical J. Royal Statistical 
society Bsociety B, 50:154, 50:154----227, 1988. 227, 1988. 

•• BeinlichBeinlich I.A., I.A., SuermondtSuermondt H.J., Chavez R.M. and  Cooper G.F., ‘H.J., Chavez R.M. and  Cooper G.F., ‘The ALARM monitoring The ALARM monitoring 
system: A case study with two probabilistic inference techniquessystem: A case study with two probabilistic inference techniques for belief for belief 
networksnetworks.’ .’ -- Proceedings of the Second European Conference on Artificial Proceedings of the Second European Conference on Artificial 
Intelligence in MedicineIntelligence in Medicine, 1989, 1989

•• Jordan M.I., ‘Jordan M.I., ‘Learning in Graphical ModelsLearning in Graphical Models’ ’ -- KluwerKluwer Academic Publishers, 1996. Academic Publishers, 1996. 


