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Abstract 
 

 

Embedded systems can no longer depend on independent hardware or software 

solutions to real time problems due to cost, efficiency, flexibility, upgradeability, 

and development time. System designers are now turning to hardware/software 

co-design approaches that offer real time capabilities while maintaining flexibility 

to support increasing complex systems. Although long desired, reconfigurable 

technologies and supporting design tools are finally reaching a level of maturity 

that are allowing system designers to perform hardware/software co-design of 

operating system core functionality such as time management and task scheduling 

that allow the advantages of higher level program development while achieving 

the performance potentials offered by execution of these functions in parallel 

hardware circuits. 

 

This thesis presents the hardware/software co-design, implementation, and testing 

of the event scheduler and timer services provided by the KURT-Linux real time 

operating system in a Field Programmable Gate Array (FPGA). All event-

scheduling functionality was migrated into hardware with a standard FPGA-based 

address mapped register set interface for the remainder of the operating system. 

This hardware-based event scheduling functionality liberated the CPU from 

performing the overhead processing associated with managing event queues, and 

provided microsecond resolution scheduling of events. 
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 The scheduler was implemented and tested in different architectures to show the 

portability and reliability of the co-design solution. Worst-case scenarios for 

expired event execution times were bounded with the use of hardware-enabled 

scheduling, and performance tests for the hardware/software solution yielded the 

same results as the software implementation. This work represented a critical first 

step towards achieving a full hardware/software co-design of key operating 

system functions into a hybrid system for embedded applications. 
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1. Introduction 
 

1.1 Problem domain 
 

One of the constant challenges for real-time system designers is building a 

platform that can meet the timeliness requirements of the system. These 

requirements include time deadlines for scheduling tasks that cannot be missed. 

Additionally, the scheduling resolution of these deadlines are many times at a 

finer granularity than what commercially available software-based schedulers are 

able to provide. 

 

Many commercially available operating systems schedule events based on a 

periodic interrupt from a timer chip, known as the heartbeat of the system. Due to 

the unique timeliness requirements of real-time events, this heartbeat approach is 

insufficient in both frequency and resolution. Basing real time scheduling 

decisions on a periodic scheduling approach can yield unacceptable performance 

due to the overhead processing associated with context switching times and 

aperiodic interrupt processing requirements. In fact, under certain conditions this 

heartbeat approach can introduce so much overhead, that the system not be able to 

achieve any useful computation [01]. 

  

Another problem results from the current approaches in use for reducing the 

service time of an interrupt service routine once acknowledged. In fact, there has 

been little research done on measuring and reducing the delay between the time 
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an event is set to be scheduled and the time at which the event actually is executed 

[02]. This is not a trivial problem as this delay is difficult to measure using 

software based monitoring approaches. To accurately capture this delay, 

sophisticated and expensive logic analyzers are required. Even with a 

sophisticated and expensive analyzer, it is still time consuming and difficult to 

capture this delay time [02]. 

 

Finally, real-time systems must track and maintain timing information for 

multiple events that should be serviced in the future. Typically this is done in 

software with the events stored in a priority queue. Maintaining and sorting the 

queue introduces time delays and jitter but is still necessary to ensure that the 

highest priority event will be serviced before its deadline. Sorting through the 

event priority queues is time-consuming and variable. Uni-processor solutions 

introduce overhead to manage the queue structure. Multi-processor solutions have 

the additional problem of communication overhead that can add even more 

unpredictability to the system. 

 

 

1.2 Thesis motivation 
 

This thesis introduces a new hardware/software co-design approach for real-time 

systems that require fine-grained scheduling support that may not be achievable 

using software-only solutions. Our approach exploits the performance advantages 

of hardware/software co-design that integrates parallelization of independent 
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functions in dedicated and custom hardware working in conjunction with software 

running on a processor. 

 

The policies presented in this thesis were developed and tested in different Field 

Programmable Gate Arrays (FPGA's), and can also be realized in Application-

Specific Integrated Circuits (ASIC’s).  Further, our work can be extended for fine-

grained performance monitoring. Our approach realizes the scheduling queue and 

operations on the event queue in hardware. This approach minimizes the overhead 

time associated with adding elements to the queue, a characteristic useful when 

logging events in a system while minimizing the instrumentation effect of the 

measurements. One such example is Data Streams and their logging mechanisms, 

DSKI [03]. 

 

1.3 Contributions of this thesis 
 

The work presented on this thesis is part of the KU RTFPGA (University of 

Kansas Real-Time Field Programmable Gate Array) project. The goal of the KU 

RTFPGA project was to migrate key operating system functionality into 

hardware. The initial work of Mitchell Trope and Sweatha Rao migrated time 

keeping into the FPGA. The contributions of this thesis are: 

1) The design and implementation of the software/hardware interface between 

the KURT library and the FPGA to store event information in the FPGA’s 

Block Ram memory, 
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2) The design and implementation of a memory manager entity that generated 

addresses for queued events, 

3) The design and implementation of supporting structures for a hardware-based 

priority queue implementation, and 

4) The implementation of the scheduler for the events stored in this hardware 

queue. 

Sweatha Rao and I collaborated to implement additional event queue functionality 

for searching the event queue to find the earliest deadline event, and delete events 

from the queue. We also collaborated on the design and implementation of 

additional debug and control functionality. 
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2. Background 
 

2.1 Prior work in hybrid hardware/software co-design 
 

Improvements in processor clock speeds and memory size have provided 

continual incremental performance enhancements to existing desktop 

applications. Additional incremental enhancements have resulted from new 

architectural techniques associated with out-of-order execution and instruction-

level-parallelism, and deeper caching.  Both technology and architectural 

advancements have resulted in increased throughput of multiple time sliced 

programs: the design objective of desktop systems. These techniques however, 

can have adverse effects on the worst-case execution times of individual 

programs.  While not an issue for desktop systems with no time deadline 

constraints, guaranteed worse case execution time, or turnaround time, is of vital 

importance for real time and embedded systems. The idea of having to go down 

through multiple cache levels into a physical memory due to cache misses, or 

executing code out of order to achieve a higher aggregate combined throughput 

can result in missing scheduling deadlines and be catastrophic. Counter to the 

desktop architectures developed for general-purpose systems, different platform 

architectures are needed for real time systems that focus on minimizing the worst-

case execution times to support real-time constraints [04]. 

 

2.1.1 Parallel systems 
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Parallel systems have emerged in response to meeting tight timeliness 

requirements. These include multi-processor systems, application-specific 

integrated circuits (ASIC), field programmable gate arrays (FPGA), systems with 

several chips on a die, system-on-a-chip (SoC), and dynamically reconfigurable 

systems. The commonality within all of these systems is to exploit the parallel 

capabilities of the added hardware functionality. ASIC’s provide application 

specific specialized hardware, while FPGA’s provide a programmable sea of 

gates that can be configured and modified for multiple purposes. Systems with 

parallel subsystems on a die can provide advantage of the processing power of 

other processors running in parallel, while a SoC usually has a single processor, 

which takes advantage of the FPGA’s flexibility by an interconnection between 

the processor and the FPGA. Finally, the dynamically reconfigurable systems can 

set themselves in different configurations for a particular situation. 

 

2.1.2 Hybrid systems 

 

The classic approaches for hardware acceleration generally fall into the following 

three non-disjoint categories: 1) Exploiting recursive patterns, 2) increasing 

quality of service, and 3) meeting real-time constraints [05]. It is intuitive how 

parallel hardware can trade space for time to exploit independent recursive and 

iterative software loops.  Iterative and parallel loops that repeat code segments on 

independent data sets require valuable clock cycles to implement the same 

operations on the different data sets.  As an example DES encryption streams data 
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through complicated bit shift and XOR operations with a key, 16 rounds per piece 

of data. By unrolling and pipelining the operations into parallel hardware, it is 

possible to perform a simple space-time tradeoff that results in a linear reduction 

of the encryption time [06]. Improving the quality of service is also evident from 

the previous example. A well-designed hardware-based encryption system should 

be able to encrypt/decrypt different 64-bitdata every singe clock cycle, hence 

increasing the throughput of the system. An example of hardware being used for 

quality of service can be seen at the backend of network systems where the 

computation of intensive scheduling decision logic is often needed for controlling 

data movement in the form of packets [07][08]. Finally, hardware has been used 

as an accelerator for time critical real time functions. In this scenario, 

computations are executed in parallel and controlled by the system software that 

ensures all timing constraints are met. Finally, projects such as HERT at the 

University of Kansas are exploring migrating low level system processing, such 

as interrupt service routines and device handlers that introduce non-deterministic 

overhead, in hardware. 

 

2.1.3 Real time operating systems 
 

Over the last decade, operating systems for real time platforms have become 

available that offer the advantages of platform independent and system 

programming using higher level languages. It is now common to find 

commercially available real time operating systems for many hybrid systems.  

Real time operating systems (RTOS) such as Wind River’s VxWorks provide 
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generic application program interfaces (APIs) for file system support, I/O 

Management, and scheduling. A more compact version of a RTOS is a micro-

kernel, which provides runtime applications with real time services through its 

interface with the system resources [09]. Unfortunately, these solutions mostly are 

targeted towards ASIC’s which need specific resources or have special 

limitations. A more viable and familiar solution for programmers would be to 

provide Linux with real time support. Several projects exist for extending Linux 

into the real time domain. Examples include Linux RT [10], RT Linux Toolkit 

[11], and KURT-Linux [02]. The first two achieve real time behavior by 

providing a real time execution that treats Linux as the lowest priority task in the 

system. KURT Linux provides real time packages to the Linux source tree, 

thereby achieving real time capability from within Linux. The latter is our RTOS 

of choice, and the one that we chose to perform our hardware/software co-design. 

 

It was our goal to enable/facilitate key OS functionality within parallel hardware 

circuits [12]. Specifically our goal was to migrate time-critical software code from 

the kernel into the hardware that would allow a system using KURT-Linux to 

meet the stringent of hard time constraints. Our initial targets were time critical 

functions associated with interrupt handling, task scheduling, memory 

management, resource allocation, and data routing. 
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2.2 FPGA hardware/software co-design 
 

The ability to fabricate smaller and smaller transistors has had significant effect 

on computer system design trends. Moore's law, which states that the processing 

speed of a CPU doubles every three years has continued to hold true. Moore's law 

is also being followed by programmable devices. Figure 2.1 below [13] shows the 

change on design trends over two decades of embedded systems evolution. 

 

 

Figure 2.1: New programmable technologies of increasing density and performance 
 

In the early 1980’s embedded systems were built using discrete components. The 

Micro Controller Unit (MCU) was the central processing unit and Transistor- 
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Transistor- Logic (TTL) devices or Programmable Logic Devices (PLD’s) 

provided the interface between the controller and its discrete peripherals [14]. 

 

By the late 1980’s and start of the mid 1990’s, companies started using MCU 

derivatives like Complex Programmable Logic Devices (CPLD’s) and FPGA’s, 

which provided control and some functionality for MCU peripherals. The MCU 

was integrated with additional system RAM and boot PROM to create integrated 

versions of the earlier MCU’s. 

With the development of Intellectual Property cores now provided by companies 

such as Xilinx and Altera, and the increased capabilities of FPGA and CPLD 

devices, entire systems are now being built on a single silicon die (SoC's). These 

SoC’s, which can be customized or configured for specific applications, reduce 

the economic disadvantage and inflexibility associated with ASIC customized 

designs, but still provide customization. [14]. The most current offerings for 

SoC's such as the Virtex II Pro [15] and Excalibur [16] now provide a dedicated 

processor and programmable logic on a single configurable chip [14].  

Commercially available IP cores such as UARTs and device controllers can be 

incorporated and even tailored into an existing SoC chip within the FPGA fabric. 

These platforms represent a robust environment for development of wide ranging 

and changing application requirements. 

 

Design Goals for individual components 
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FPGA’s provide flexibility in custom hardware circuit design. With these new 

hybrid chips, it now becomes viable to execute parallel processes running in both 

the software and in the FPGA hardware. In fact, an arbitrary number of parallel 

processes could be running in the FPGA along with concurrent processes on the 

CPU. Researchers are now exploring approaches that support the dynamic 

migration of parallel and concurrent processes fluidly across the CPU and FPGA 

components [17]. 

 

2.2.1 Desired embedded control system properties 
 

Real time computers control larger embedded systems. Because of the close 

interaction with physical components and communication between systems, 

several properties are required for a real-time embedded control system. These are 

timeliness, concurrency, liveness, interfaces, heterogeneity, reliability, reactivity, 

and safety [18] [05] [19]. Timeliness is the property that is concerned with total 

executions times.  Therefore timeliness considerations must account for not only 

the time for execution of instructions, but also all other system delays times such 

as communication times. This is essential if the system has concurrent processes 

running in parallel that must synchronize or react to asynchronous stimulus 

between processes. Liveness is the property that the system must never stop 

running, either by halting, suspending or terminating. This scenario would be 

deemed defective if implemented in hardware [19]. Component interfaces must be 

well defined, not just for their static unification of component communication 

ports, but also for the dynamics of computations occurring between them and 

 17



their timing [20]. The heterogeneity of the system comes into play during the 

dynamic part of inter-component communication, as different components need to 

“talk” to each other in an understandable way. Hence, either software must 

accommodate to receive a constant stream of computation from a hardware 

process, or hardware must expect discrete results from a software procedure, or a 

tradeoff between the two must be achieved. The communication between parts of 

the system, and the level of correct system behavior, must be reliable. This is 

because the system will have high reactivity to the events happening around it in 

real-time. Finally, safety is always an issue in embedded and real time systems, 

since the system is probably in control of expensive or invaluable objects, and a 

failure could even result in a great loss of life. 

 

2.2.2 Design considerations for HW/SW co-design 

 

Solutions for problems with time consuming simple and constant repetitive 

processes, like network packet routing, data encryption, mathematical matrix 

operations, multimedia encoding and high speed signal processing are very 

suitable for hardware based implementations. Problems involving slower, more 

complex, variable computations, like software applications, GUI displays and 

end-user input processing are more appropriate for software [04]. Hence we 

observe that while different goals might require different parts, these are clearly 

not disjoint, and an effective system design would use both hardware and 
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software to achieve a combined purpose complying with system design 

restrictions. 

 

2.2.3 Average case / worst case 

 

Real time systems have specific time constraints that must be considered during 

the initial design process. The average case delay of the system becomes of 

secondary importance against the worst-case scenario.  Care must be taken in 

finding worst-case execution time paths in a real-time system to ensure its 

correctness. All variability in code execution and system processing times must be 

identified and accounted for to determine the worst-case execution time.   The 

worst-case execution time is more easily achieved if the system has no influence 

from outside devices. However, a primary feature of most systems nowadays is 

the ability to communicate to peripherals running in different time scales, 

receiving and handling signals from sensors, controlling outside actuators, and 

receiving interrupts to conduct more critical operations, etc. These functions can 

have very broad minimum and a maximum processing times. Not only is 

quantifying these time gaps important in determining worst-case time, but even if 

known can still degrade the overall utilization factor of the system. [21]. 

 

2.2.4 System predictability 
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If the system is running a complex operating system, the number of states it can 

reach can be significant. However, if we concentrate on the hardware 

components, a certain degree of model state checking can be achieved. This is 

especially true for ASIC’s, but FPGA’s with a companion chip on a SoC should 

also be predictable. This checking can be guaranteed under normal conditions 

such as receiving events from the outside, be those an ASIC receiving a signal for 

a pushed button on a vending machine, or a CPU memory request to a hardware 

peripheral inside an FPGA. In this situation, model checking of the system can be 

achieved through formal verification analysis tools like Spin [22] or Rapide [23], 

using process description languages like Promela [24].  

 

2.2.5 System flexibility and performance 

 

Another design consideration for a hybrid system is flexibility. FPGA’s are 

configured at synthesis time, while dynamically reconfigurable hardware [25] will 

eventually allow reconfiguration at run time. This flexibility can be used to adjust 

the design for die area, system speed, resource allocation, power consumption, 

and system performance. While designers want their constraints to be met and 

fulfilled, they also want the system to achieve useful computations, hence why a 

certain level of system performance is also required. In fact, designers will want 

the same or better level of performance of a non real-time operating system [26]. 
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2.2.6 Co-design settings for programmers 

 

One of the drawbacks for system co-design is the lack of support for software 

programmers trying to use embedded technology. Several projects have been 

created to ease the transition into the real time world. Handel-C is a high-level 

language based on ISO/ANSI-C for the implementation of algorithms in hardware 

[27], SystemC provides hardware-oriented constructs within the context of C++ 

as a class library implemented in standard C++ [28], and the Ptolemy project 

studies heterogeneous modeling, simulation, and design of concurrent systems, 

focusing on embedded systems mixing hardware and software technologies [29]. 

These ongoing projects provide different environments to develop hardware 

enabled/optimized pieces of code for their targets [30]. 

 

2.3 Scheduling 
 

As specified in the section 2.1.3, attractive uses for hybrid software/hardware 

real-time operating systems include interrupt handling, task scheduling, memory 

management, resource allocation, and data routing. Of particular interest to us are 

the cases for interrupt handling and task scheduling. 

 

2.3.1 Scheduler operation 

 

When we have multiple levels of processes working “simultaneously” on the 

same system, we need to schedule certain shared resources (CPU, memory) in a 
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fair manner. A scheduler takes care of managing the processes/entities, the 

resources they are requesting, and running a scheduling decision/algorithm to 

assign resources to requesters for a specified/unspecified amount of time. 

However, such a decision does not come for free, and oftentimes, even efficient 

resource allocation scheduling algorithms end up performing worse than a random 

scheduler. This can result from the decision function itself, as it requires resources 

from the system in order to run. 

 

The scheduler functionality is usually dependent on how it’s allocating which 

resources to whom and for how long. The most common task for a scheduler is 

allocating CPU time to different programs, threads or events, for an organized 

amount of time to ensure fairness and freedom from starvation, guaranteeing 

every program will get a CPU share [31]. This allows for uni-processor 

multitasking models that allow different programs to run at different times in a 

form that simulates concurrency. As the number of processors a scheduler must 

manage increases, so does its internal logic and communication costs. 

 

A scheduler for real-time systems must handle real-time events, including 

stimulus from the outside world collected through sensors, or a high priority 

event. In all cases, these events must be given special importance, and the 

execution of the event be met within its time constraint. The adopted method to 

handle these situations is to create an interrupt for the CPU, and run the interrupt 

service routine. This is a costly process, particularly if a system has to support 
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multiple real-time interrupts or handle fine granularity events scheduled to run 

within a small period of time. Handling these events has the unfortunate cost of 

CPU cycles, the very resource that is in demand. As previously indicated, if the 

scheduling decision is complex, the larger the cost will be during the scheduler 

runtime. Such an overhead to an already overloaded real-time system is not 

desirable. 

 

2.3.2 Scheduler components 
 

A scheduler in general has five main components, which vary slightly from 

implementation to implementation. The first component of the scheduler defines 

what the event type is: an interrupt, a program thread, an object, etc. However, we 

only need to know what the event is, not what the event does. Handling the event 

is typically left for a different software component within the system. The second 

component is the queue structure for the events. This component takes care of 

storing event information for each event and allowing events to be added or 

removed. The next component is the scheduling algorithm, which is the decision 

function to choose the next event to be scheduled. The most common algorithms 

are Earliest Deadline First (EDF), Rate Monotonic, and Priority Based. The way 

in which the scheduling algorithm is implemented inside the event queue is 

considered the fourth non-trivial component.  This is because sorting operations 

can take a large amount of computational time, which is in itself crucial to real-

time systems, and lead to hardware supported sorting designs [32]. The final 

component of a scheduler is the interface back to whatever requested a scheduler 
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service, in general a CPU. This can be achieved through interrupt controllers, 

message passing or shared memory. 

 

2.3.3 Hardware scheduler research 
 

A fair amount of research has been done in the area of migrating schedulers and 

time critical application programs into hardware for real time systems. The most 

straightforward approach is to implement hardware support for real time 

applications that cannot execute fast enough in software. Here, the scheduler will 

assign certain special priority real-time tasks to dedicated hardware in the system. 

The next approach is to implement the scheduler in hardware, through an FPGA. 

The scheduler is usually static, but some systems allow dynamic scheduling 

algorithms, which can be changed during run-time [33]. Allowing reconfiguration 

in the FPGA’s also brought forth different scheduling techniques for non-static 

schedulers [34], and with the arrival of multiprocessor machines, new schedulers 

sprung forth to maximize resource utilization, with the main function of being 

hardware accelerators [21]. 

 

Most of these approaches have undesirable limitations in their implementation. 

One vital but often overlooked property of most systems is the way the processing 

of interrupts are handled. While most of these systems implement optimizations 

for handling interrupts once an interrupt is detected, they fail to notice that there is 

indeed a non-trivial amount of time in which the interrupt flag is set and waiting 

to be noticed by the CPU, which most likely won’t happen until the next 
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scheduling decision function iteration. However, providing a finer granularity for 

the scheduler means paying a higher overhead of computation on the system. The 

reconfigurable solutions can provide better performance at the cost of hardware 

reconfiguration overhead, which might not be possible in a real time system. And 

lastly, multiprocessor solutions that handle scheduling are not ideal, since there 

would be certain unreliability in the system due to communication and 

synchronization costs. These tradeoffs in the designs are limiting factors for 

possible deployment of real-time systems. 

 

The KU RTFPGA project concentrates on providing fine grained scheduling 

resolution and minimizing the overhead payment with FPGA backend support 

[35]. This is accomplished by using the fine resolution real-time operating system 

KURT [02], and implementing the interrupt scheduling in an FPGA. Further 

developments in this project include moving the program/thread scheduler into an 

FPGA [36]. 
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3.  RTFPGA: Project overview 
 

The objective of the KU RTFPGA project is to minimize the overhead processing 

introduced by the operating system by migrating key functions into hardware. The 

first function that was identified was time keeping. This was achieved by 

migrating the jiffy and sub-jiffy registers into the FPGA. After the timers were 

migrated to hardware, the scheduler was identified as the next function. 

 

3.1 – Design approach 
 

Our design approach was to migrate a shadow event queue and associated 

processing for entering, sorting and deleting entries. As our first step, we did not 

migrate the scheduling algorithm into the hardware, but instead targeted the 

bookkeeping operations performed by the scheduler. Once the event enqueue and 

dequeue operations were accomplished, a more sophisticated way of accessing 

data within the queue was needed for the delete and sort operations. 

 

Due to the linear nature of the event data stored in hardware, a circular scheme 

was used to loop through event entries in the queue linearly, comparing them to 

the value being deleted. Once this was in place, we used the same scheme to 

continuously retrieve event information and run it through our scheduling 

decision function. The decision function then forwarded its scheduled event 
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towards the timekeeping registers, and upon a timing value match between the 

two, an interrupt signal was generated to the CPU indicating an expired event. 

 

By using this approach, the CPU is relieved from accessing, maintaining, sorting, 

searching or polling the queue to find the next scheduled event. This work can 

occur in parallel to an application running on the CPU, and consequently the CPU 

will only be interrupted when needed and without having to manage the event 

queue, like presented in Figure 3.1 below: 

 

  

Figure 3.1: CPU/FPGA Event Scheduling Flowchart 
 

3.2 – Design functionality 
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This event queue functionality was implemented in the FPGA by allowing the 

CPU to write the event information to an FPGA-mapped memory address. This 

information includes both the event scheduled time and a reference pointer to the 

function to call upon running the scheduled event. After the FPGA stores this 

information in a local event queue, it runs an algorithm to identify the next event 

to run, and sends its event time to a match register next to a free-counting 

hardware clock. Currently, the scheduling algorithm used is Earliest Deadline 

First, which is simple to implement without demanding additional logic. Upon a 

match between the scheduled event time and the actual board time, an interrupt is 

generated and sent to the CPU, for it to service the event by calling on its 

reference pointer. 

 

Now that the event with the earliest deadline has been scheduled, it’s popped out 

of the queue, the FPGA resets it’s scheduling information, and a new event is 

found to run by retrieving timing information for the remaining events. 

 

Further, due to different time scales, the CPU can not read interrupts as fast as the 

FPGA can generate them, so a second queue was implemented in hardware, a 

FIFO queue. The purpose for this is just to store the scheduled events until the 

CPU can read them. 

 

Finally, we provide deletion operations in our queue, by specifying event 

information for the event to be deleted to the FPGA. This is useful functionality 
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since several interrupt generating events come in the shape of watchdog timers. 

These are generally deleted before their deadline is met, or are replaced by other 

watchdog timers. 

 

3.3 – Previously implemented FPGA modules 
 

3.3.1 – Default Intellectual Property FPGA Blocks 
 

Our original development platform was the ADI Engineering’s 80200EVB board 

with a Xilinx Spartan-II chip. Our Xilinx Spartan-II board came with existing 

Intellectual Property (IP), the VHDL hardware design language source files, to 

perform memory management, bus arbitration and I/O interfacing. The memory 

manager performed data transfers and generated chip decode logic for the 

SDRAM chips as well as performed periodic refresh of the SDRAM cells. The 

existing IP was first modified to allow us to create memory-mapped registers 

inside the FPGA. This was implemented in a new hardware module, the frp 

(FPGA request processor) that effectively intercepted all memory operations on a 

specified, unused SDRAM address range. Secondly, we created a Utime module 

that contained a timer that incremented at the memory clock speed, 10 ns. 

Throughout the rest of this thesis, when we refer to a module, we refer to the 

hardware implementation for some functional block inside the FPGA. 

 

A block diagram of the SDRAM memory request intercept hardware is shown 

below: 
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Figure 3.2: Hardware memory controller layout 
 

The next presents an overview of the existing modules, explained individually 

afterwards. 

 

 30



Figure 3.3: FPGA Memory module layout 
 

SRP Module 

 

The SDRAM request processor (SRP) filters SDRAM requests, and checks other 

address ranges for peripheral requests. Upon a peripheral device request, it 

forwards information on the data bus and generates the required signals to 

handshake and control the appropriate peripheral. 

 

3.3.2 – FPGA memory request implemented modules 
 

The FPGA implementation is comprised of four modules, each with specific tasks 

and interfaces to other modules. The previously implemented modules are the 

only architecture dependent modules, made by Sweatha Rao and Mitchell Trope, 

which are specific to our implementation board. They implement the interface to 

the FPGA as that of a peripheral, by mapping a memory address range to the 

FPGA resources and then setting the data bus, memory address request, and 

request type, and forwarding it to the Register Mapper module, point in which the 

main topic of this thesis project concentrates. 

 

3.3.2.1 FRP Module 
 

The function of the FPGA request processor (FRP) is to separate CPU read and 

write requests into address ranges. 
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3.3.2.2 FBA Module 
 

The FPGA Bus Address Block (FBA) module’s main function is to decode the 

request address and length of the data sent by the processor and forward data 

accordingly. 

 

3.3.2.3 FBD Module 
 

The FPGA Bus Data module (FBD), takes care of forwarding data to and from the 

CPU and FPGA, and is tightly coupled with the FBA and FRP modules in data 

timing and signal synchronization. 

 

Once the FPGA memory request is set up, it is sent towards Register Mapper, 

where all necessary information is sent un a synchronous manner thanks to the 

timing setup done by the other modules. 

 

3.4 – RTFPGA scheduler model of computation 
 

We followed a structured approach to developing our hardware/software co-

designed scheduler module. The approach we followed is outlined by Edward 

Lee’s Model of computation [19]. Following Lee’s approach, we defined the 

scheduler system’s ontology (what is a component), epistemology (what 

knowledge do components share), protocols (how do components communicate), 

and lexicon (what do components communicate) [19]. 
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1. Ontology (components): The ontology of the scheduler is based on 

defining hardware/software system components. Each component has well 

defined interfaces to each other, consisting of control and data signals for 

all inputs and outputs. A change in the data is denoted by a change in a 

control signal such that each module can execute its corresponding 

behavior to process the change. 

2. Epistemology (interfaces): The information that is shared between 

components will be event time data, event reference pointers, data 

addresses and interrupts. Components for storage, queue manipulation, 

scheduling functions, and interrupt generation are defined for use in other 

modules. The following table lists the interface specification and functions 

available for all components: 

  Interface to modules Available functions 
Event event time data, event reference pointers Create 
Event queue events, data storage addresses Add, Delete, Search Event, Reset
Scheduled event event time data, event reference pointers Retrieve, Compare 
Interrupt interrupt signal Create, Receive 
Expired event event time data, event reference pointers Retrieve, Remove 

Figure 3.4 – Component interfaces and functions 
 

3. Protocol (communication): Components are shared through the specified 

communication protocol. Each module continuously polls its control 

signals at the beginning of every memory clock cycle, and determines a 

course of action accordingly. 

4. Lexicon (language of communication): Finally, the lexicon of the system 

defines an event component. An event is composed of two pieces of 

information, a 64-bit timestamp specifying when it should be scheduled, 

and a 32-bit reference pointer to a function that should be run when 
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scheduled. These pieces of information compromise most of the shared 

communicated data between system components. Other system 

information viewed as part of the lexicon includes control signals, 

generally used as a service request from one module to another module 

following a chain of command, which will become apparent on the timing 

diagrams that will follow in the Section 4. 

 

3.5 – RTFPGA Data Flow Chart 
 

The flow of event data throughout the system is hierarchical, but this is difficult to 

understand from architectural block diagrams of the modules. At the top of the 

hierarchy are the read and write requests to FPGA-based registers, whose internal 

workings were described in section 3.3. If these requests are specifically targeting 

access to the event queue, a new chain of command emerges in which data 

trickles down the different modules in order to fulfill the request. The flow of 

information can be shown as a flow chart: 
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Figure 3.5: Data flow chart in the RTFPGA Scheduler 
 

Event information is passed from the Register Mapper to the Scheduler interface, 

the Memory Manager module. According to the type of request, suitable control 

signals are set to execute the command. If we add an event to the queue, the 

control signals can be set immediately into the Scheduler event storage (Block 

RAM module), but for a delete request, the specific memory address for the 

element had to be found through an event search (Queue Delete module), which 

will then set the control signals. 
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Once the events are stored in the queue, event scheduling starts (in the Queue 

Minimum module) by receiving data from the event storage and running the 

scheduling algorithm on this data. We also receive data from the timer clock 

(Utime module) to check for ready-to-run events that need to be scheduled. When 

such thing happens, we delete the element from the queue (popping the queue), 

and save the information for that scheduled event in a secondary piece of memory 

to be read sequentially by the CPU (FIFO Block RAM module).  

 

3.6 – RTFPGA Scheduler implementation 
 

We implemented the functionality outlined in the data flow chart shown in section 

3.5, with the desired system properties from section 3.4, into the existing FPGA 

modules. These modules integrated the IP cores included with our FPGA board 

with our additional modules to support our FGPA-based registers, as described in 

section 3.3. 

 

When a request arrives at the Register Mapper module, we control the address, 

the data, and the request type. This gives us great flexibility on what we want to 

achieve with these, since any and all functionality for these FPGA-memory 

request components are to be implemented in hardware. All further modules in 

the project stem from the Register Mapper. 
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For the scheduler’s hardware support, several more modules were added, which 

were outlined in the previous subsection. The layout of these modules can be 

conceptualized like this: 

 

 

Figure 3.6: Scheduler modules concept layout 
 

The initial modules, Memory Manager and Block RAM, were concerned with the 

queue implementation and storage. That is, they allocated a portion of FPGA 

memory, called Block RAM, for use in storing an array of events. Several of these 

blocks can be instantiated in parallel, allowing arbitrary length reads and writes to 

be performed.  
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To allow for a greater level of abstraction, a separate module manages the 

memory addresses in Block RAM. The Memory Manager module also has an 

address generator, which drives the data output for use with the queue scheduling 

and functionality modules. Among its tasks, it keeps count of events, checks for 

‘dirty’ addresses in Block RAM, and controls the queue functionality modules. 

 

These scheduling and functionality modules use data coming from stored events 

to run. These modules, Queue Minimum, Queue Delete and Utime, are color 

coded accordingly in Figure 3.6 above. The Queue Minimum module keeps track 

of the next scheduled event by receiving event data from Block RAM and running 

the Earliest Deadline First algorithm. It then sends the result towards the Utime 

module. The other queue functionality module is Queue Delete, which takes data 

from the Memory Manager and compares it to the events in Block RAM for 

deletion from the queue. 

 

The Utime module is the free-running hardware clock that shadows the clock in 

the target CPU architecture. In the kernel, this is implemented in the Utime 

module in the KURT operating system patches. The Utime module receives the 

next-to-be scheduled event from Queue Minimum, compares it to its internal 

clock, and upon a match, creates an interrupt to the CPU. Since the CPU cannot 

read the bus as fast as the FPGA, the event is stored in a FIFO Block RAM queue 

until the CPU reads it. 
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We will describe the individual tasks of each module in this section. The next 

section will concentrate on how all these modules fit together, their interface and 

inter-module communication, and design data flow. 

 

3.6.1 Register Mapper 
 

The interface to all registers residing on the FPGA is the Register Mapper 

module. Once a memory request has been routed through all the previously 

mentioned modules in Section 3.3 (SRP, FRP, FBA, FBD), it is input to Register 

Mapper. Requests are usually for data, but requests can also be for internal 

functionality in the FPGA board, like initializing registers or modules, starting 

counters and sending queue functions like pop and push. 

 

This implementation makes our design quite modular and portable. Once the 

Register Mapper has been ported to a particular architecture, our scheduler 

modifications are easily added with minimal modifications. Particular 

modifications might be needed if a different ‘timestamp’ format is used by a 

particular architecture. 

 

The Register Mapper is divided into two operational blocks - the read block and 

the write block. On a read request, the module de-multiplexes the appropriate 

input from other module data signals into the data bus to the CPU. On a write 

request, the data bus set up by the CPU is read by the FPGA and the value is 

multiplexed to the appropriate FPGA module. 
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The writeable registers within the Register Mapper are: 

• initial_jiffy, initial_jiffy_u: We read the CPU jiffies and jiffies_u, the 

timekeeping values for the CPU time, add an offset to them, and then write 

them both them to these register. 

• op_code: Once the above registers are written to, we write to op_code. This 

forwards a signal to Utime to start counting in the hardware clock. 

• event_time: This is the 64-bit register that holds the event time’s scheduled 

jiffy and jiffy_u values. 

• reference_pointer: 32-bit register holding a pointer value to the function to 

call upon event scheduling. 

• bram_command: Once the two registers above have been written to, we write 

a command to the bram_command register, to be serviced by Memory 

Manager. 

And readable registers are: 

• event_time: This register can be read after being written to. 

• reference_pointer: This register can be read after being written to. 

• bram_command: The topmost 24 bits of this register can be used to obtain 

debugging information, like dirty bits of the queue array, number of events in 

queue, state machine status, etc. 

• eventtime_from_bram: this is the value routed from the output of Block RAM 

after it is written to with a bram_command. Used for FPGA image debugging. 
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• refpointer_from_bram: Same as above. Check for bit flips in FPGA data 

routing. 

• min_event_time: This is the value calculated from the scheduling algorithm in 

Queue Minimum. 

• min_event_ref_ptr_latch: The values stored in FIFO Block RAM can be read 

here. Reading this register automatically sends a signal to the FIFO Block 

RAM to delete the event from the scheduled event queue. 

 

3.6.2 Memory Manager 
 

The main purpose of Memory Manager is to control the storage and handling of 

events in the Block RAM-implemented queue. The main inputs for this module 

are event_time, reference_pointer, and bram_command. The Memory Manager 

determines which address to write to next, when to run the scheduling function on 

events, when to perform a linear probe to the queue for a delete, and when to pop 

the queue upon a scheduled event. It also keeps a dirty bit array indicating which 

elements in the Block RAM actually have information. 

 

The bram_command register is how the CPU controls what is done with the data. 

The implemented commands for bram_command are  

• Add event: Stores the data into the next available free address in Block RAM. 

• Delete event: Takes the events in event_time and reference_pointer for 

deletion, and starts a loop for linear probing the queue for these values. 
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• Pop queue: When an interrupt is generated in the match register in the Utime 

module, a signal is sent to Memory Manager to delete the minimum value 

from the queue, and restart the scheduling algorithm. 

• Reset manager: This command resets the dirty bit array for taken addresses in 

Block RAM, and resets other signals for a clean queue. 

• Dirty bits: This command can output part of the dirty bit array into the 

bram_command upper bits, where they can be read for debugging. 

 

3.6.3 Block RAM 
 

This module is an instantiation of the FPGA’s Block RAM memory. The Virtex 

FPGA provides dual-read/write port synchronous Block RAM, with 4096 

memory cells. Each port of the Block RAM can be independently configured as a 

read/write port, a read or a write port, and each port can be configured to a 

specific data width. 

 

Each port is used for different purposes. The first port will be used to connect to 

the memory manager requests for writes and reads from the queue. The second 

port will be used to continuously poll for new values stored inside the block ram. 

This data flow will be used with two purposes: 

1- Run the event priority (earliest deadline) algorithm and 

2- Search the queue for events being deleted (e.g., watchdog timers) 
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3.6.4 Utime 
 

To keep the Linux convention of a jiffy, this module will increment the system 

heart beat, the jiffies, every 10 ms. To allow for finer scheduling granularity, the 

jiffies_u will increment at a rate on 1 us to provide real-time microsecond 

resolution, so this module will start the clock at 100 MHz and update these values 

accordingly. 

 

Further, the module compares the input data from Queue Minimum to the current 

system time, and sends out an FIQ interrupt to the CPU, and a timer_off signal to 

the appropriate modules (Memory Manager, Queue Minimum, FIFO Block 

RAM). 

 

3.6.5 Queue Minimum 
 

This module implements the Earliest Deadline First algorithm in our scheduler. It 

polls all the event values stored in Block RAM, by implementing a linear address 

generator as an independent separate process driving the address input bits in 

Block RAM. This address generator will make the data output from Block RAM 

route the event time to a less-than comparator, which will update the current event 

minimum accordingly. 

 

The pseudo code for this module is shown below: 

Pseudo Code for finding earliest deadline event 
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START 
SET minimum = max value 
LOOP 
IF last deleted value = minimum THEN GOTO START 
IF last expired event = minimum THEN GOTO START 
IF no elements in queue THEN GOTO START 
ELSE 
 READ new data from Block Ram event queue 
 IF data = event (dirty bit is set) 
  READ scheduled time 
  IF scheduled time < minimum 
   minimum = scheduled time 
  END IF 
 END IF 
END IF 
GOTO LOOP 
 

It does this by initializing the event minimum bits to 1: x"ffffffffffffffff". Then it 

runs the less-than comparison with the received data. We use the dirty bit array 

input from Memory Manager to distinguish between dirty addresses with event 

information on them, or empty (or deleted) addresses. This minimum-finding 

process runs continuously in the background and is stopped only when  

1. There are no elements in the queue, 

2. The current minimum event has just been scheduled, or 

3. There’s a deletion process for an element in the queue. 

Upon the deletion, it checks if the event to be deleted is the minimum, and resets 

the value accordingly. 

 

Since there’s a non-zero clock cycle delay between the time that the address-

generator process sets an address in Block RAM and the time in which the data 

for the address is routed back to the module, Queue Minimum also sets signals to 

synchronize data. Since this module has the most up-to-date information on the 
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next event to be scheduled, a separate process implements the interface to the 

FIFO Block RAM, to add this event to the scheduled event queue immediately 

after a timer off signal, the signal coming from the match register in Utime, is 

received. This is done in one clock cycle, and by the next clock cycle, the 

minimum is reset and the minimum-finding process starts anew. 

 

3.6.6 Queue Delete 
 

By using the address generator from the Queue Minimum and receiving the same 

event data, we can perform a deletion using linear search. The value being 

compared against is routed from Memory Manager. If the value matches, the 

Block RAM address of the event, together with a found_address signal is sent to 

Memory Manager, which deletes the entry from the queue by unsetting the 

address’ corresponding dirty bit. If a match is not found after checking the Block 

RAM address range, then a lost_address signal is sent back to Memory Manager 

and the delete loop stops. 

 

3.6.7 FIFO Block Ram 
 

This module is another instantiation of block RAM, but with a different address 

controller from the one used in Memory Manager, effectively making it a FIFO 

queue. The controller for FIFO Block RAM is located in the Queue Minimum 

module, since this module holds all the relevant information to be stored in the 

FIFO. The controller keeps track of the head and tail of the queue, and the number 
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of events. Upon a queue pop, the queue_head is incremented (with the circular 

loop accounted for) and upon a queue push, the queue_tail increments in a similar 

way, stating which address to write to next. 

 

4. RTFPGA: Detailed Description of Module 
Communication and Timing Diagrams 

 

4.1 – Module architecture and interfaces 
 

4.1.1 – Event driven layered architecture 
 

The scheduler flowchart was shown in Section 3.5. This flowchart coincides with 

the layered architecture we envisioned the different hardware modules 

implementing the scheduler to be.  The motivation for using layered architectures 

is the growing tendency to abstract specifics of the implementation of components 

from other components or services that do not require that knowledge, only the 

handling of a specific request. In that sense, the requesting component becomes 

an upper layer to the servicing component. To increase the level of abstraction 

and ease of administration, each layer needs to know only two things: which 

requests it can handle, and know about the layer immediately underneath it to 

send the requests it can’t handle. Its fairly apparent how a layered pattern would 

be useful for an event driven architecture like ours, were the event is a request from 

the CPU for services provided by the FPGA-driven backbone of the embedded 

system. 
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As specified in the module descriptions, the module will first check its input 

signals to determine its role on the request. If it is capable of handling the request, 

it will do so. However, in opposition to common layered architecture practices, 

the CPU will not receive an explicit acknowledgement back for the completion of 

the service, which normally would trickle up through the different layers to the 

requestor. Other CPU commands will be able to check the completion and effects 

of the request on demand. 

 

4.1.2 – Inter-module interfaces 
 

The interfaces between modules allow for request forwarding including control 

and data lines. Depending on the type of request being forwarded, the data lines 

can contain event information like time and reference pointer, or just its address, 

and hence the data line width is of variable rate. The main interfaces between 

modules and their respective data line widths are shown in Figure 4.1 below: 

 

Figure 4.1: Inter-module interfaces 
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A disadvantage of request forwarding is the amount of data lines that have to be 

in place between modules, which occupy a large amount of FPGA space, and 

makes the mapping and routing process for synthesizing the FPGA image harder 

and prone to delays and errors. Physically, routing resources consume the largest 

percentage of silicon in many FPGA’s. However these resources do not contribute 

to the computation. [26]. 

 

4.2 -Independence and interdependence of entities 
 
4.2.1 – Module independence 
 

Most of the modules do not need interaction to do their specific task; they just 

need the appropriate input to be feed to them. However, our system is not a pipe-

and-filter procedure, and feedback is needed from other modules to stop the 

functionality and data flow through certain modules to ensure correctness of the 

system. Among the modules not needing this kind of feedback are the storage 

elements Block RAM and FIFO Block RAM, and the gateway to the module 

services, Register Mapper. 

 

4.2.2 – Interdependence of system modules 
 

All the other modules require feedback control signals from other modules to take 

an appropriate course of action. 
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The Memory Manager is the most interdependent of other modules. It has to take 

into account queue deletions happening from scheduled events in the match 

register in Utime, and deletions happening in Queue Delete. When the Memory 

Manager requests a deletion to the Queue Delete module, it sets the appropriate 

signals for this, and waits on the result. Then the Memory Manager receives a 

signal for the event being found or not in the queue after a linear search. If it is 

found, it uses the delete address retrieved by Queue Delete to erase that event 

from the queue dirty bit array and then decrement the number of events in the 

queue. 

 

Queue Delete will need the appropriate signals set by Memory Manager upon a 

delete request to produce a correct output for a deletion request. In particular, the 

scheduling algorithm and the deletion linear search process cannot run at the same 

time. This is due to the automatic deletion of the minimum event, which happens 

upon a signal from the match register in the Utime module, when the event is 

scheduled. Queue Delete has no way of ‘knowing’ such a deletion has happened 

due to its reliance on only Memory Manager control signals. 

 

On the other hand, Queue Minimum will also be highly dependant on the Memory 

Manager module. Not only will Memory Manager order it when to start running, 

but also when to stop (e.g., when there are no events in the queue or a deletion is 

taking place), and when to restart (after the current minimum event has just been 

scheduled and hence erased from the queue). It does this by setting a 
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minimum_mode signal, which Queue Minimum checks on every clock cycle to 

take an appropriate course of action. However, just like Queue Delete needed to 

be made aware of deletions happening due to expired events in the queue, the 

scheduling algorithm in Queue Minimum needs to be aware of event deletions 

talking place. Because the event deletion request is sent to Memory Manager, this 

module will set the minimum_mode signal to stop the scheduling algorithm in 

Queue Minimum.  In specific, when a deletion loop is taking place, the scheduling 

algorithm will instead check to see if the event being deleted by Memory 

Manager is indeed the current minimum. If so, Queue Minimum resets its internal 

values to run again after the delete loop has finished. 

 

 

4.2.3 – Module cohesion and coupling 
 

The self-referential signals inside Queue Minimum makes this module 

particularly cohesive. Its internal scheduling algorithm is tightly coupled with 

other signals the module receives from the exterior, and can be stopped, reset and 

restarted both by external and internal stimuli. This internal tight coupling is 

necessary to avoid the use of supplementary modules organizing signals 

depending on system state. By making all these signals internal to this module, we 

abstract away the inner workings of the scheduler. However, this does not help in 

making the scheduling algorithm portable. A change in the scheduling algorithm 

will need to check for these peculiar (but possible) situations. 
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The Memory Manager, Queue Minimum and Queue Delete modules have to be, 

unfortunately, somehow tightly coupled. While loose coupling is always desirable 

for good engineering, our system is quite specific in its scheduling and timing 

requirements. Memory Manager is the module with most coupling, since it 

organizes all queue data. When an event is added, deleted, or scheduled, Memory 

Manager must know, and also let others know. 

 

4.3 –Timing Diagrams for Inter-module Communication 
 
4.3.1 – Initial setup 
 

Our system is bootstrapped by making the FPGA timer shadow the on the SoC 

CPU. We do this by reading the timestamp on the CPU, adding an offset, writing 

this value on the FPGA and finally starting the FPGA timer. The time value is 

written to the FPGA-based registers initial_jiffy and initial_jiffy_u, which store 

the values for the initial setup of the hardware clock. After they’re stored, the 

Utime module is signaled to start the clock with these initial values by writing to 

the op_code register twice: first to load the values from initial_jiffy and 

initial_jiffy_u from Register Mapper into Utime, and the second one to start the 

clock with these values. While there might be an unspecified amount of clock 

cycles between all of the memory requests, we will assume tat they take place one 

immediately after another. In our timing diagrams, we indicate an unspecified 

amount of clock cycles by “xxxx”. 
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Figure 4.2: Initial setup signal timing diagram 
 

The Mux_In signal is the data bus from the CPU, which gets stored in Register 

Mapper’s Initial_jiffy and Initial_jiffy_u registers when the fba2rm_write_enable 

signal is set high. Then, when we write the value x“00000011” to the Op_Code 

register, these time values are forwarded from Register Mapper to the Utime 

module registers Jiffy and Jiffy_u. This happens every cock cycle until Op_Code 

is written with any value different from its previous one. After this point, the 

Utime counter starts incrementing with its starting values as allocated. 

 

4.3.2 – Event Addition Timing Diagram 
 

The write an event, we need 3 write requests from the CPU. Our data bus is only 

64-bits wide, so the first one will be writing the event tie, then its reference 

pointer, and finally writing to the bram_command register to indicate an event 

addition. 
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Figure 4.3: Timing diagram for event addition to the queue 
 

Once we write to the event_time and reference_pointer registers, we write the 

value x“1” into the bram_command register. This is the code for this specific 

function; command codes for bram_command will be described in later detail in 

the next section. The Memory Manager module checks the request, and forwards 

all data to Block RAM. Notice that we can do this in a single clock cycle, since 

out inter-module interfaces are not limited by bus-length. Then, Memory Manager 

uses its internal state signals to set up the rest of the request. It sends to Block 

RAM the address to write to, which was found on a separate process called 

next_free_addr, running in Memory Manager. It increases the number of events, 

set the bit in the dirty bit array, and then sends a signal back to the next_free_addr 

process for it to find a new free location in the Block RAM memory array. 
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4.3.3 – Event Deletion Timing Diagram 
 

The procedure for deletion is similar as adding an event, except with a different 

code for bram_command. However, once we make a delete request, it’s 

forwarded to the Queue Delete module, which will start a linear search through 

the Block RAM looking for the event. Memory Manager will sit idle until a signal 

back from Queue Delete is received. 

 

 

Figure 4.4: Timing diagram for event deletion to the queue 
 

Once this register is written, a delete signal is set, which remains high for the 

entire course of the delete linear search loop. The event time is sent to the Queue 
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Delete module, which will start to compare this value to values being received 

from the always-changing output from Block RAM’s secondary port, driven by 

the address generator in Queue Minimum. When the delete signal is read, the 

bram_command register is changed accordingly to internally indicate that we are 

inside the delete loop and should wait for a response from Queue Delete for the 

service request we made to it. The Minimum Mode is changed to b‘11’, indicating 

the delete loop. As indicated in our explanation for interdependence of modules in 

section 4.2.2, we can’t allow the Queue Minimum module to run in parallel with 

the deletion process in Queue Delete due to concurrency issues. So we set the 

Minimum Mode to stop Queue Minimum and start Queue Delete. After some 

amount of clock cycles less than or equal to the queue maximum length, we get a 

signal back from the Queue Delete module. If it’s a found_address signal, we take 

the address for this event in Block RAM and delete it from there and from the 

dirty bit array, while decreasing the number of events. If else we do not find the 

event in the queue, we set a lost_address signal and set the delete_address to 

x“ee”, to let know the CPU that we didn’t find the event. 

 

When we receive a signal back from Queue Delete in any of the two cases, we 

unset the delete signal and reset the bram_command to indicate the end of our 

delete loop and continue processing requests normally. 

 

4.3.4 – Event Scheduling Timing Diagram 
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Several things occur in our system when an event is scheduled. We create an FIQ 

interrupt to inform the CPU that an event needs to run, and we inform appropriate 

modules about this occurrence, too. Not only do we need to delete the event from 

the queue, but also notify Queue Minimum that the value from its scheduler is 

now obsolete. Besides that, we need to queue the event in the FIFO Block RAM 

for the CPU to read at its own time, but we will also need to check the last time 

the FIQ signal was set, as the FPGA shouldn’t create FIQ signals recklessly, due 

to the overhead of forcing the CPU to do this. The CPU will receive an FIQ signal 

only after a threshold time, currently hard-coded to be 30 us. Several signals 

propagate throughout the module, but all of them stem from the timer_off signal 

created by the match register in Utime, indicated by red in the diagram timing 

diagram below: 
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Figure 4.5: Event Scheduling Timing Diagram 
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Our diagram starts by having Queue Minimum find all the information on our 

next event to be scheduled. This includes the time, reference pointer and address 

of the event, which will be used by different modules in the system. When Utime 

detects that the event time matched the current time from its jiffy and jiffy_u 

clock registers, it creates a timer_off signal, signal that will be propagated to 

appropriate modules like Memory Manager, Queue Minimum, and FIFO Block 

Ram. Depending on previous conditions (FIQ interrupt threshold time, etc), the 

Utime module sets the FIQ interrupt to the CPU. Our diagram shows it being set 

for one clock cycle, but in reality the interrupt is set for 50ns, so that the CPU has 

enough time to sense the signal. Timer_off also acts as a write enable signal for 

FIFO Block Ram. As soon as it is set, the event reference pointer value coming 

from Queue Minimum is stored in FIFO Block RAM, and at the same clock cycle 

the FIFO buffer queue tail is updated since we just pushed an item into the queue. 

At the same time, the Command Code in Memory Manager changes for it to set 

all appropriate internal signals and logic in the next clock cycle. 

 

Once this happens, Memory Manager unsets the bit in the dirty bit array for the 

scheduled event’s address, erasing it from the queue and decrementing the 

number of events. Further, it sets Minimum Mode to “scheduling” for 1 clock 

cycle. This will indicate the Queue Minimum module to stop and reset the value 

for the next event to be scheduled, which until now has remained the same. Once 

this is done, the Minimum Mode goes back to its normal state of continuously 

finding the EDF event in the queue. 
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The diagram also shows the effects of the CPU reading the scheduled events in 

FIFO Block RAM. Such a request if routed through Register Mapper, which 

detects the read and forwards a de-queue request to the FIFO Block RAM 

controller in Queue Minimum. This in turn increments the buffer head address to 

output the next scheduled event that has not been read by the CPU. 
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5. Simulations and Testing 
 

Once the system was setup, we hooked up the KURT operating system, with 

DSKI enabled. DSKI stands for Data Streams Kernel Interface. Data streams are 

representations of events happening at the kernel level, and DSKI provides a 

general interface for collecting those event traces from the operating system. It is 

ideal for measurements on real-time system performance and event scheduling 

accuracy, the reason why we are using it. By running it on KURT, we get a higher 

resolution for event measurements such as the real-time constraints that we 

specify when scheduling such events. 

 

The DSKI test will continuously schedule events at a fine resolution. Then it will 

create a histogram of when the CPU received the events and calculate the 

difference between the scheduled time and the time the request it was serviced, 

among other time metrics. The CPU will repeat the same test without using FPGA 

hardware support, using only the software-based event scheduler manager, which 

was previously implemented in the system. 

 

5.1 – Non-intrusive monitoring 
 

Using hardware-based tests enables us to have non-intrusive monitoring [37]. 

This however requires a lot of ‘snooping’ into internally shared data buses 

between FPGA modules. This would be the ideal situation, however due to 
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constraints on the FPGA area that was being already used by routing, this was not 

possible. The data bus width for several of the modules was high and frequent 

enough to cover 75% of the Slice area in our ADI Spartan II FPGA board. For 

maximum use of high-speed lines between implemented modules, the 

recommended use of the slice area in a Xilinx FPGA is about 33%. Our need to 

use more than this amount brought forth several routing and timing delay errors. 

A system’s gate density limits design sizes [36], so we were forced to use only 

limited amounts of monitoring. 

 

5.2 – Testing Metrics 
 

It is intuitive that one of our metrics would be based on overall performance. 

However, most of the design was created in order to allow for hardware-based 

event scheduling, an increase in overall performance would be a most welcomed 

side effect, or maybe the goal of further research into this project.  

 

The metrics will include the delay experienced for a scheduled event to be 

serviced from the time it was scheduled. This already is a standard test used by 

DSKI, but we will be using it with the FPGA support. Several factors come into 

play for the results of this test, which are accounted for in the next subsection. 

 

The following graph shows the time between when the time an event was 

scheduled to occur and the time it was actually executed, measured on a Pentium-
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200. This was part of the KURT project incentive to increase the temporal 

granularity of Linux. 

 

 

 
Figure 5.1: Delay between scheduled and execution time without KURT 

 

As we can see, even after the event is correctly scheduled, there’s still overhead 

time for it to actually be executed. So by letting hardware alone make the 

scheduling decisions, we shouldn’t expect to see a reduction in the delta time 

between scheduling and execution of events. 

 

5.3 – Testing Parameters 
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The hardware-based support for the event queue and scheduling was a faster, 

bound and predictable approach to solve the issue of handling events. However, it 

was also dependant on the CPU time availability. It would be futile to 

performance to rapidly determine the next scheduled event without the need of 

polling or any other software effort, if the CPU can not read this data early or 

frequently enough to compensate for this effort. 

 

In our efforts to create a test bench for probing quantifiable and reliable metrics, 

we found that we had several test parameters that we could not control, and which 

would contribute to the erratic and sporadic delays that we saw on the CPU-based 

event scheduling test results. Our reasoning for this behavior includes taking 

account for the communication costs through the serial port, used for sending data 

to the Cygmon monitor. Other delays that are also included are random CPU 

delays due to thread scheduling and context switch costs, serial port 

communication, CPU delays, FIQ signal delay, etc. 

 

The controllable parameters we had were mostly static throughout all of our tests: 

jiffy and micro jiffy delays, and event queue depth. The one parameter that we 

modified in order to contrast the system against its software predecessor, were the 

number of events scheduled on the DSKI tests. 

 

5.4 – Test Results 
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5.4.1 – Testing Basic UTIME functionality 
 

The correct behavior of the u-time module was first checked by reading system 

values (jiffy, micro-jiffy registers), into the CPU and comparing the hardware 

shadow counter against the software u-time values. This yielded a predictable 

result of having a constant ‘lag’ of 2 micro-jiffies in the FPGA. This was credited 

to the time delay experienced when reading a value from the FPGA, which is 

considered by the CPU for practical means as a peripheral. 

 

After the initial setup through write requests by the CPU to the timer and control 

registers, the Utime module starts shadowing the timer value from the CPU in 

hardware. Iterative reads were made to the timer registers, jiffy and jiffy_u, and 

the increment of the counters was confirmed. The test for the initial setup is given 

below. 

Initial Set up 
Modules: Register Mapper & UTIME 
 
Get system time (cpu_jiffy, cpu_jiffy_u) 
Write to initial_jiffy & initial_jiffy_u 
Write op_code = 0x00000003(load) 
Write op_code = 0x00000005(start) 
Read jiffy and jiffy_u iteratively (check for increments) 
 

We modified the Utime module from its final design to drive the FIQ signal high 

for 5 memory clock cycles at every jiffy boundary (10 ms), for the CPU to detect 

the interrupt and run the handler. A count of the number of times the FIQ handler 

ran ascertained that the CPU and the FPGA were in sync with respect to the jiffy 

count. 
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5.4.2 – Storing and Deleting Events in the Queue 
 

Since all the event information we need to store is larger than our data bus length, 

multiples writes are needed to add or delete an event in the queue. Once the 

processor has provided the event_time and reference_pointer information 

(associated with a timer) to the FPGA, a third write is made to the control register 

for addition/deletion. The extra debugging functionality lets the programmer 

know ahead of time in which position of the BRAM memory an event will be 

added. Further, any write operation causes the data output port of the BRAM to 

reflect the data input port. Hence, the value on the output port was latched in a 

register (eventtime_from_bram) to verify that the write was issued successfully. 

We also drove the BRAM address to the address we got before adding the event 

to confirm that the event was indeed added in the expected address. Block Ram 

addresses, however, are a lower layer of abstraction handled by the Memory 

Manager module and are only used for debugging purposes. To the CPU, the 

writing of an event into the queue is transparent. 

 

Some other debugging bits included in the control register allowed us to view the 

number of events (events_count) in the queue and the addresses at which the 

events are stored (dirty bits). By tracing back the events added and deleted to the 

queue and their respective Block ram addresses, we confirmed the correct event 

queue implementation in hardware. The addition of an event follows the 

algorithm below 
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ADD EVENT 
Modules: Register Mapper, Memory Manager & BRAM 
 
Read bram_command register 
IF bram_command(4:7)=x"1" THEN  

Memory Manager is in delete mode, do not issue add request 
IF bram_command(8:15)=x"FF" THEN  

The queue is full, do not issue add request. 
ELSE 

Write to event_time(0:63) 
Write to ref_ptr(0:31) 
Write x"1" to bram_command(0:3) (add event) 
Read event_time_from_bram (confirm the value written) 
Write x"b" to bram_command(0:3) (events count) 
Read bram_command(16:31) (confirm increment in events count)  

END 
 

A similar algorithm is run to delete an event from the queue. 

 

DELETE EVENT 
Modules: Register Mapper, Memory Manager, Queue Delete, Queue Minimum & 
BRAM 
 
Read bram_command register 
IF bram_command(4:7)=x"1" THEN  

Memory Manager is in delete mode, do not issue delete request 
IF bram_command(4:7)=x"E" THEN  

The queue is empty, do not issue delete request. 
ELSE 

Write to event_time(0:63) 
Write x"2" to bram_command(0:3) (delete event) 
Wait for 750ns (maximum)  
Write x"b" to bram_command(0:3) (events count) 
Read bram_command(16:31) (confirm decrement in events count)  

END 
 

5.4.3 – Scheduler Event Decision 
 

Once the interrupt recognition by the CPU was ensured, the interrupt was 

connected to the Queue Minimum module. This module checks every event in the 
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queue and decides on the next event to be scheduled, which is currently the one 

with the earliest deadline first (EDF algorithm). This event information is 

forwarded to appropriate modules, including the Utime module. When there’s a 

match between the current time and the event’s scheduled time, Utime creates an 

interrupt signal. This signal propagates through the system creating the FIQ, 

storing the event info in a buffer, deleting the event from the queue, decreasing 

the events_count, and setting other control signals. To verify this functionality the 

following test was run. 

  
SCHEDULER EVENT DESICION 
Modules: Register Mapper, Memory Manager, Queue Delete, Queue Minimum, 
UTIME & BRAM 
 
Add Event1, Add Event2, Add Event3, Add Event4, Add Event5 
Read min_event_time (confirm with the events written) 
Read min_add (required for popping the timer queue) 
Delete Event2 which is has the least event time and check for new minimum 
values. 
 

5.4.4 – Generation of FIQ and populating the FIFO 
 

As discussed in section 4.3.4 a FIQ cannot be generated for every timer that 

expires due to software limitations. Hence a FIFO queue was created which stored 

the reference pointers of all expired timers. When the FIQ is asserted the CPU can 

initiate a read to the FIFO and schedule the events. A final integrated test was run 

to verify the functionality of all the components. 

 

INTEGRATED TEST 
Modules: Register Mapper, Memory Manager, Queue Delete, Queue Minimum, 
UTIME, FIFO_BRAM & BRAM 
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1. Initial Set up 
2. Add Event1, Add Event2, Add Event3, Add Event4, Add Event5 
3. Find Minimum 
4. Delete Event2, Delete Event3 
5. Find Minimum 
6. Read current time from FPGA timer registers (jiffy, jiffy_u) 
7. Write event_time = jiffy + offset 
8. Write ref_ptr = loop variable  
9. Repeat the above three steps for loop variable = 0 to 2 
10. Wait on jiffy + large offset 
11. WHILE fifo_ref_ptr != x”00000000” (queue not empty) 
12. Read fifo_ref_ptr (confirm all the three timers expired) 
13. END WHILE 
14. Read jiffy & jiffy_u 

 

The results of the artificial scenarios created for testing established that all the 

modules were perfectly integrated and synchronized. 

 

5.5 – Virtex-II Pro platform 
 

 

The modularity and device independent component design of our system 

motivated us to port our design from the ADI 80200EVB board to available 

Virtex-II Pro boards [15] we had for further research. The Virtex–II Pro platform 

was developed by Xilinx in collaboration with IBM. The important architectural 

features of this platform are listed below. 

 

• A PowerPC core and programmable logic (FPGA) on the same silicon die 

providing the advantages of 

1. Reduced area. 
2. Programmable I/O ports in abundance. 
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3. Ability to create processor-based architectures with required 
peripherals for any specific application. 

4. Reduced system development and debug time. 
 

• A dedicated high performance bus between the processor and it peripherals. 

This bus is based on the IBM CoreConnect bus architecture consisting of a 

high-speed PLB (Processor Local Bus) and a general-purpose OPB (On-chip 

Peripheral Bus). High-performance peripherals such as SDRAM controllers 

connect to the high-bandwidth, low-latency PLB. Less performance critical 

peripherals connect to the OPB, reducing traffic on the PLB, which results in 

greater overall system performance.  

• Peripheral IP cores such as UART, Timers, controllers, Fast Ethernet MAC 

etc, which can be, selected and connected to interface with the high-speed 

PLB or general-purpose OPB of the CoreConnect bus architecture. 

• Programmable logic to implement user defined functions. 

 

The Virtex-II Pro with the embedded PPC core provides flexibility for developing 

complex embedded systems. Functions can be partitioned between the FPGA 

logic and the PowerPC core as required by our project. 

 

The porting of our design required less than two weeks, with minimal changes to 

the platform independent components. The majority of the porting effort was 

associated with reworking the platform specific interfaces to adhere to the bus 

architecture and Power PC interrupt structure of the platform [15]. 
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5.5.1 Comparison of the 80200EVB board & Virtex-II Pro platforms  
 

Previous efforts in the ADI 80200EVB board made it possible to get an interface 

between the FPGA and the processor. This board had an FPGA-based memory 

decoder for SDRAM and peripheral memory requests. Every memory request was 

forwarded through this decoder, and while this hampered the modularity of the 

design, the hard-wired hardware connections to the chip made it possible to have 

a consistent and predictable behavior for memory requests to FPGA-mapped 

registers. However, due to a small die area for the FPGA in this chip, we ran into 

constant place and route problems, mostly involving overuse of Configurable 

Logic Blocks (CLB) resources in the board, which lead to poor communication 

lines and bit flipping between the CPU and the FPGA. This caused corruption of 

data on the bus and improper output for modules. 

 

The Virtex-II Pro offered an architecture in which processor and peripherals 

communicated with each other over peripheral buses. This enhanced the 

modularity of the design by eliminating interfaces for the FPGA components. The 

ready-to-use building blocks and reconfigurable logic provided on the platform 

eased designing. However, upon running the same tests shown in the next 

subsection, the price for such flexibility materialized. Requests to the FPGA, 

together with other peripherals requests, were sent over the OPB bus, managed by 

a bus arbiter. This accounted for strange bus behavior we didn’t expect. While the 

ADI boards had very deterministic read and write times, the Virtex-II Pro 

platform had these memory requests subject to varying delay times, even if 
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execute-in-order-execution-of-input-output assembly instructions were used to try 

and synchronize requests. 

 

 

5.6 – Data Stream Kernel Interface Tests  
 

The Data Stream Kernel Interface (DSKI) developed at the University of Kansas 

provides a methodology to evaluate the performance of an operating system. The 

DSKI user interface enables a user process to describe the set of events it wishes 

to monitor, thus specifying a data stream customized to its interests [03].  

 

We made use of the HIST_TIMER_EXEC_DELAY test, to compare the 

performance of the software based RTOS and hardware/software based RTOS. 

While performance was not our main test objective, it would prove that this 

functionality could be migrated to hardware, even if there were no expected 

performance gains. The test programs a new timer after a random time interval 

and waits for the timer to expire. This process is repeated at every timer interrupt, 

up to a defined maximum number of timers. Instead of using aggregate 

measurements for the system, a histogram for the execution delay for events is 

created. 

 

The results from such histograms can be seen in Figure 6.1. The performance 

characteristics achieved on the ADI Engineering’s 80200EVB board with and 
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without the hardware components of KURT-Linux for a 10,000-event test are 

displayed. The board functionality also with stood a 100,000-event test. 
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Figure 5.2: Timer Execution Delay for Software RTOS and Hardware/Software RTOS 
 

 

The Software-based RTOS showed slightly better performance when compared to 

its corresponding hardware implementation, a bit surprising, but not unexpected. 

This degradation can be justified through the following reasoning. 

• The lag between the CPU and FPGA timers. The timer on the FPGA lags the 

CPU timer by 2 to 4 microseconds, a difference that is not added when 

loading the timers on the FPGA. This may be a cause for some events being 

scheduled later than required. The final test measurements are based on the 

CPU time, while the interrupts are based on the FPGA timer. 

• When an FIQ occurs the FIQ handler schedules an IRQ, downgrading its 

priority. The FIQ has a higher priority than the IRQ, so an IRQ can be 

 72



scheduled but will not be serviced if the previous IRQ context is being 

serviced when the next FIQ occurs. This may cause delay in the execution of 

some events. 

 

While no gain in performance was achieved, the hardware implementation 

provided a more stable time source than its counter software implementation. The 

result of one of the HIST_TIMER_EXEC_DELAY test on the CPU without any 

hardware support backs this argument. 

========================================================= 
[root@george dski]$./dskihists -i 900 -f 4 -h 1 -n 100 
Waiting for 900 seconds... 
 Name of the histogram: HIST_TIMER_EXEC_DELAY                                     
Number of events logged: 10000                                                   
Minimum Value: 0                                                                 
Maximum Value: 7137329                                                           
Lower Bound: 0                                                                   
Upper Bound: 100                                                                 
Num of Buckets: 102                                                              
Range: 1                                                                         
< 0 is 0                                                                         
0-0 is 4623                                                                      
1-1 is 3999                                                                      
2-2 is 25                                                                        
3-3 is 29                                                                        
4-4 is 17                                                                        
5-5 is 18                                                                        
6-6 is 19                                                                        
7-7 is 20                                                                        
8-8 is 13                                                                        
9-9 is 29                                                                        
10-10 is 435                                                                     
11-11 is 732                                                                     
12-12 is 5                                                                       
13-13 is 15                                                                      
14-14 is 13     
15-15 is 0 
>= 100 is 7  
========================================================= 
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On this test, the maximum execution delay for a timer was in the range of millions 

of microseconds. This behavior might be attributed to the lack of having an 

independent timer resource for the processor and was never seen with the 

Hardware/Software RTOS. In the hardware version, all events were executed 

within the time delay range of 23 microseconds for all tests. 

 

Another important observation made from our result sets was that there is a spike 

in the number of events handled between 10 and 11 microseconds from their 

scheduled time. This was true even for increased or reduced loads in the system. 

The deviation from the expected exponential decay curve happens due to serial 

port polling, which makes timer interrupts to be masked during the period of time 

in which polling happens. 

 

Further, the hardware-supported version yielded better results as the load on the 

system increased. We used the one test parameter we could manipulate, the 

number of events to be run, to discover further differences between our software 

and hardware based schedulers. The software scheduler gave very similar results 

for different loads, scaled accordingly. However, for the hardware scheduler, 

when the load was increased from 10K to 100K events, the percentage of events 

handled within a 0 microsecond delay shot up by 6.4%, and for all events handled 

within 1 microsecond, 1.7%, pictured in the graph below. The graph also clearly 

demonstrates a 12.6% increase in percentage of events handled after the serial 
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port polling delay happening between 10 and 11 microseconds after the event 

scheduled time. Once again, the empirical boundary of 23 microseconds was 

found to be the maximum delay in hardware for event scheduling, even under 

heavy loads, which was not the case for the software scheduler.  
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Figure 5.3: FPGA event handling under different event loads 
 

 

As for non-real time measurements, the aggregate performance characteristics of 

both systems are comparable. As can be seen from the cumulative timer execution 

below, most, if not all, of the events are handled within 20 microseconds from 

their scheduled execution time. This is a pretty robust base indicating the correct 

and comparable behavior, performance and expectations for our hardware based 

event scheduler. This will set a strong foundation for current ongoing research 

projects focusing on moving thread schedulers into hardware. 
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Figure 5.4:Cumulative Timer Execution Delay for Software RTOS and 
Hardware/Software RTOS 

 

 

5.7 – System limitations 
 

While hardware wise, there were very few limitations, on its software counterpart 

the system is limited by several factors. Mainly, the system can only handle 

interrupts after a certain amount of time, or else we will run into overhead 

processing problems. Even then, the priority of events is downgraded to keep the 

interrupts signals enabled. Hence, while on hardware it is possible to schedule 

several events for the same time, or even within a few microseconds of each 

other, this does not guarantee that the software will be able to handle such a load 

accordingly. Hence there’s a minimum time delay between scheduled events, 

which depends on how close together the events were scheduled, and the time 

spent on servicing one event. Hence, the system granularity, meaning the 

 76



complexity of handling an event, will have an effect on the system resolution, the 

number of events that can be handled in a given time period.  

 

For the hardware side, area and non-dynamic allocation of resources limit our 

system to have a fixed maximum number of stored events (both in the scheduler 

queue and on the FIFO read queue for expired events), and a constant worst case 

computation of the next scheduled event of O(N), where N is the maximum 

number of stored events in the scheduler queue. 
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6. Conclusions & Future Work 
 

Real time operating systems rely heavily on both the hardware platform the 

system runs on, the real time services that this platform is able to provide, and the 

operating system running on the software side. For proper hardware/software co-

design of the system, hardware must be utilized to provide timely execution for 

real time services, while the operating system must grant access to these services 

with minimum overhead penalties, all while still complying with the constraints 

of the system. For embedded systems, the increase in complexity of software 

applications and the real-time services in dedicated hardware are usually mutually 

exclusive. A more flexible solution was found by combining reconfigurable logic 

in hardware and a real-time version of a commercially available operating system 

in software. 

 

KURT-Linux provided a solution for managing real time operations at a finer 

resolution than was previously available. To reduce the overhead caused by 

operating system core operations such as time management and event scheduling, 

the timer and the event scheduler were moved into hardware, which would 

account for reduced overhead time spent in context switches. 

 

FPGA’s provided us with enough flexibility to not only design and implement 

hardware-based services for real time operating systems, but also to exploit 

portability by using IP cores when implementing them. This feature was used to 
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test the system in two different platforms, the ADI Engineering’s 80200EVB and 

the Virtex-II Pro. These platform where used to implement the event scheduler. 

 

The hardware-based scheduler showed similar performance to its software 

counterpart. However, a distinct and important improvement in worst-case 

scenario was observed when using hardware support. The correctness of the main 

functions of the event scheduler were tested and evaluated. 

 

While no major performance gain was expected (or achieved) by migrating the 

event scheduler to hardware, it set a strong base for further research in hardware 

schedulers. Current research on hardware/software co-design includes creating 

hardware-based threads [38]. Eventually, these hardware threads will be running 

in parallel with threads in software on the same system. The scheduler scheduling 

for these threads will be hardware-based, thus allowing the CPU to be interrupted 

to make scheduling decisions only when its completely necessary, yielding higher 

system, processor and resource utilization [39]. At this point, it will be likely that 

better decision functions will be added to the scheduler, according to system 

specifications (group scheduling, priority, etc [41]). 
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