
The Remote Monad
Dissertation Defense

Justin Dawson
jdawson@ittc.ku.edu

Information and Telecommunication Technology Center
University of Kansas, USA

1 / 66

Sandwiches!

How do you make a sandwich?

Time taken:

2 / 66

Sandwiches!

How do you make a sandwich?

get out the bread, ham, lettuce, cheese
and condiments

cut lettuce and cheese

spread condiments on bread

add remaining ingredients

put bread and other ingredients away

Time taken: 2:00

3 / 66

Sandwiches!

How do you make a 2 sandwiches?

get out the bread, ham, lettuce, cheese
and condiments

cut lettuce and cheese

spread condiments on bread

add remaining ingredients

put bread and other ingredients away

Time taken: 2:00

4 / 66

Sandwiches!

How do you make a 2 sandwiches?

2x

get out the bread, ham, lettuce, cheese
and condiments

cut lettuce and cheese

spread condiments on bread

add remaining ingredients

put bread and other ingredients away

Time taken: 2:00 4:00

5 / 66

Sandwiches!

How do you make a 2 sandwiches?

2x

get out the bread, ham, lettuce, cheese
and condiments

cut lettuce and cheese

spread condiments on bread

add remaining ingredients

put bread and other ingredients away

Time taken: 2:00 4:00 2:45

6 / 66

Would you like your sandwich toasted?
Bridging to the Internet of Things

This toaster has artificial
intelligence and can make toast,
give you the temperature, and in
this specific example, most
notably talks

Just as we avoided extra work
with making sandwiches we
want to avoid the network
latency that comes from talking
to our toaster

7 / 66

Outline

1 Remote Procedure Calls (RPCs)

2 Introducing Haskell

3 Remote Monad (and Remote Applicative Functors)

4 Case Studies of Remote Monad Usage

5 Performance of Remote Monad in Situ

6 Related Work

7 Conclusion

8 / 66

Remote Procedure Calls

Examples of usage:

Supercomputing

Cloud Computing

Internet of Things

[[ClientMachine]]
[[

Remote
Resource

]]

Problem:

RPCs are expensive because networks have latency

(Old) Solution:

Multiple RPC requests per network transaction

RPCs therefore amortize the cost of remoteness

New Problem:

Need a robust mechanism for bundling RPC calls without
obfuscating the RPC API

9 / 66

Remote Procedure Calls

Examples of usage:

Supercomputing

Cloud Computing

Internet of Things

[[ClientMachine]]
[[

Remote
Resource

]]

Problem:

RPCs are expensive because networks have latency

(Old) Solution:

Multiple RPC requests per network transaction

RPCs therefore amortize the cost of remoteness

New Problem:

Need a robust mechanism for bundling RPC calls without
obfuscating the RPC API

10 / 66

Remote Procedure Calls

What is needed for RPCs?

A remote machine listening for requests

A local machine that has knowledge of the remote API and protocol
to be used

A network transmission mechanism

<?xml version="1.0"?>

<methodCall>

<methodName>circleArea</methodName>

<params>

<param>

<value><double>2.41</double></value>

</param>

</params>

</methodCall>

11 / 66

Remote Procedure Calls

What is needed for RPCs?

A remote machine listening for requests

A local machine that has knowledge of the remote API and protocol
to be used

A network transmission mechanism

<?xml version="1.0"?>

<methodCall>

<methodName>circleArea</methodName>

<params>

<param>

<value><double>2.41</double></value>

</param>

</params>

</methodCall>

12 / 66

Remote Procedure Calls

What is needed for RPCs?

A remote machine listening for requests

A local machine that has knowledge of the remote API and protocol
to be used

A network transmission mechanism

--> {"jsonrpc": "2.0", "method": "subtract",

"params": [42, 23], "id": 1}

<-- {"jsonrpc": "2.0", "result": 19, "id": 1}

13 / 66

Remote Procedure Calls

What is needed for RPCs?

A remote machine listening for requests
A local machine that has knowledge of the remote API and protocol
to be used
A network transmission mechanism

--> [

{"jsonrpc": "2.0", "method": "sum",

"params": [1,2,4], "id": "1"},

{"jsonrpc": "2.0", "method": "subtract",

"params": [42,23], "id": "2"}

]

<-- [

{"jsonrpc": "2.0", "result": 7, "id": "1"},

{"jsonrpc": "2.0", "result": 19, "id": "2"}

]

14 / 66

Haskell
Why Haskell?

What sets Haskell apart from other languages?

strongly typed with automatic inference

no reassignment

recursion/map/reduce instead of loops

explicit side-effects

determinicity

expression evaluation instead of sequence evaluation

first-class control

15 / 66

Haskell
Why Haskell?

What sets Haskell apart from other languages?

strongly typed with automatic inference

no reassignment

recursion/map/reduce instead of loops

explicit side-effects

determinicity

expression evaluation instead of sequence evaluation

first-class control

16 / 66

Functional Programming

Functional Programming

Pure Functions + Immutability

f(4) => 9

Structures that can construct and compose effect out of pure
functions

putStr "Hello " *> putStr "World"

Two flavors of effect composition:

Applicative Functor
Monad (Super Applicative Functor)

17 / 66

Haskell
Side-effects

addPure :: Int -> Int -> Int

addPure x y = x + y

addIO :: Int -> Int-> IO Int

addIO x y = do

putStrLn "Writing to file"

writeFile "tmp.txt" "side-effect"

return (x + y)

18 / 66

Haskell
Side-effects

addPure :: Int -> Int -> Int

addPure x y = x + y

addIO :: Int -> Int-> IO Int

addIO x y = do

putStrLn "Writing to file"

writeFile "tmp.txt" "side-effect"

return (x + y)

19 / 66

Haskell Structures
Applicative Functors

Functors - Values wrapped in some context.

data Maybe a = Just a | Nothing

Just (+3) < ∗ > Just 2

Image Credit:Aditya Bhargava - adit.io
20 / 66

Haskell Structures
Applicative Functors

Applicative Functors - Wrapped functions applied to wrapped values

Just (+3) < ∗ > Just 2

Image Credit:Aditya Bhargava - adit.io
21 / 66

Haskell Structures
Monads

Monads
Used for side-effects

Can be composed together

Some require a run function before any side effects occur

return :: (Monad m) => a -> m a

(>>=) :: m a -> (a -> m b) -> m b

runM :: m a -> ...

Can we execute runM remotely?

22 / 66

Haskell Structures
Monads

Monads
Used for side-effects

Can be composed together

Some require a run function before any side effects occur

return :: (Monad m) => a -> m a

(>>=) :: m a -> (a -> m b) -> m b

runM :: m a -> ...

Can we execute runM remotely?

23 / 66

Haskell Structures

Let‘s model running a monad remotely in Haskell

24 / 66

Internet of Things

Toaster - IO

Say {String}
Temperature

Uptime {String}

example :: IO (Int,Double)

example = do say "Hello "

t <- temperature

say "World!"

u <- uptime "orange"

return (t,u)

25 / 66

Internet of Things

Toaster - GADT

data R where

Say :: String -> R ()

Temperature :: R Int

Uptime :: String -> R Double

say :: String -> R ()

say s = Say s

temperature :: R Int

temperature = Temperature

uptime :: String -> R Double

uptime s = Uptime s

26 / 66

Internet of Things

Execution function

runR :: forall a . R a -> IO a

runR (Say s) = print s

runR (Temperature) = return 23

runR (Uptime s) = getUptime s

runR gives us an interpretation of R in IO

27 / 66

Internet of Things

Execution function

runR’ :: forall a . R a -> IO a

runR’ (Say s) = void $

post "http://toaster.com/1234/say" (toJSON s)

runR’ (Temperature) =

get "http://toaster.com/1234?temperature"

runR’ (Uptime s) =

get "http://toaster.com/1234?uptime=" ++ s

runR gives us an interpretation of R in IO

28 / 66

Naming things: Natural Transformation

In mathematics, R a -> IO a is called a natural transformation

Definition

A natural transformation arrow

F
•−→ G ≡ ∀α. F α→ G α

In Haskell:
type f ~> g = forall a . f a -> g a

runR :: R ~> IO

29 / 66

Batching

We‘ve handled modeling single RPCs, can we incorporate batching?

First Attempt: [R a] -> IO [a]

All results need to be of the same type

Lacks composability

This is the space where most other batching RPC libraries reside
Let’s be more systematic

30 / 66

Remote Monad

data RM :: * -> * where

Bind :: RM a -> (a -> RM b) -> RM b

Return :: a -> RM a

Prim :: R a -> RM a

runRemoteMonad :: (R ~> IO) -> (RM ~> IO)

example :: IO (Int,Double)

example = (run $ runRemoteMonad runR) $ do

say "Hello "

t <- temperature

say "World!"

u <- uptime "orange"

return (t,u)

31 / 66

Remote Monad

data RM :: * -> * where

Bind :: RM a -> (a -> RM b) -> RM b

Return :: a -> RM a

Prim :: R a -> RM a

runRemoteMonad :: (R ~> IO) -> (RM ~> IO)

example :: IO (Int,Double)

example = (run $ runRemoteMonad runR) $ do

say "Hello "

t <- temperature

say "World!"

u <- uptime "orange"

return (t,u)

32 / 66

Packet Bundling
Notation

[[
Remote
Monad

]] [[
Remote
Monad

]]
[[

Weak
Packet

]] [[
Better
Packet

]]

Remote monad evaluator requires a packet evaluator

33 / 66

Serializing Bind

prim1 >>= \ x -> ... prim2 ...

Definition

Command - a request to perform an action for remote effect, where there
is no result value or temporal consequence

Definition

Procedure - a request to perform an action for its remote effect, where
there is a result value or temporal consequence

cmd >>= \ () -> ... prim2 ...

34 / 66

Serializing Bind

prim1 >>= \ x -> ... prim2 ...

Definition

Command - a request to perform an action for remote effect, where there
is no result value or temporal consequence

Definition

Procedure - a request to perform an action for its remote effect, where
there is a result value or temporal consequence

cmd >>= \ () -> ... prim2 ...

35 / 66

Bundling Strategies

Weak Bundling – Command | Procedure

Strong Bundling – Command* Procedure

Can we get a better bundling?

36 / 66

Bundling Strategies

Weak Bundling – Command | Procedure

Strong Bundling – Command* Procedure

Applicative Bundling – (Command | Procedure)*

f <$> prim1 <*> prim2 <*> ...

example = do say "Hello "

t <- temperature

say "World!"

u <- uptime "orange"

return (t,u)

37 / 66

Bundling Strategies

Weak Bundling – Command | Procedure

Strong Bundling – Command* Procedure

Applicative Bundling – (Command | Procedure)*

f <$> prim1 <*> prim2 <*> ...

example = do say "Hello "

t <- temperature

say "World!"

u <- uptime "orange"

return (t,u)

38 / 66

Bundling Strategies

Weak Bundling – Command | Procedure

Strong Bundling – Command* Procedure

Applicative Bundling – (Command | Procedure)*

f <$> prim1 <*> prim2 <*> ...

example =

(,) <$> (say "Hello " *> temperature)

<*> (say "World!" *> uptime "orange")

39 / 66

Bundling Strategies

Weak Bundling – Command | Procedure

Strong Bundling – Command* Procedure

Applicative Bundling – (Command | Procedure)*

f <$> prim1 <*> prim2 <*> ...

40 / 66

Packet Bundling Landscape

[[
Remote
Monad

]] [[
Remote
Monad

]] [[
Remote
Monad

]]
[[

Weak
Packet

]] [[
Strong
Packet

]] [[
Applicative
Packet

]]
[[

Remote
Applicative

]] [[
Remote

Applicative

]] [[
Remote

Applicative

]]

[[
Weak
Packet

]] [[
Strong
Packet

]] [[
Applicative
Packet

]]

41 / 66

Packet Bundling Landscape

[[
Remote
Monad

]] [[
Remote
Monad

]] [[
Remote
Monad

]]
[[

Weak
Packet

]] [[
Strong
Packet

]] [[
Applicative
Packet

]]
[[

Remote
Applicative

]] [[
Remote

Applicative

]] [[
Remote

Applicative

]]

[[
Weak
Packet

]] [[
Strong
Packet

]] [[
Applicative
Packet

]]

42 / 66

Stack of evaluators

[[
Remote
Monad

]]
RemoteMonad ~> IO

[[
Applicative
Packet

]]
ApplicativePacket ~> IO

runMonad :: (Monad m) => (ApplicativePacket R ~> m)

-> (RemoteMonad R ~> m)

43 / 66

Remote Monad & Remote Applicative

data RemoteMonad p a where

Appl :: RemoteApplicative p a ->

RemoteMonad p a

Bind :: RemoteMonad p a ->

(a -> RemoteMonad p b) ->

RemoteMonad p b

...

data RemoteApplicative p a where

Prim :: p a -> RemoteApplicative p a

Ap :: RemoteApplicative p (a -> b)

-> RemoteApplicative p a

-> RemoteApplicative p b

Pure :: a -> RemoteApplicative p a

44 / 66

Splitting up Monads

instance Applicative (RemoteMonad p) where

pure a = Appl (pure a)

Appl f <*> Appl g = Appl (f <*> g)

f <*> g = Ap’ f g

instance Monad (RemoteMonad p) where

return = pure

m >>= k = Bind m k

m1 >> m2 = m1 *> m2

45 / 66

Example

data R :: * where

Say :: String -> R ()

Temperature :: R Int

Uptime :: String -> R Double

-- RemoteMonad R a

say :: String -> RemoteMonad R ()

say s = Appl $ Prim (Say s)

...

runR :: R ~> IO

runRPacket :: WeakPacket R ~> IO

send :: RemoteMonad R a -> IO a

send = run $ runMonad runRpacket

46 / 66

Other Investigations

How to handle failure:

Alternative Construct (a <|> b)

Procedure encapsulates failure
Alternative Packet
Serialize Exceptions

Remote Monad as a Monad Transformer

Effects of bundling with ApplicativeDo Extension

Haxl implementation

Exception Handling

47 / 66

Case Studies

Transformations over natural transformations of monads results in a useful
API and allows us to model a network stack

Goal: Show the Remote Monad being used in a variety of situations[[
Remote
Monad

]]

[[Packet]]

48 / 66

Case Study
blank-canvas

Blank Canvas

Haskell code to interact and
draw on HTML5 Canvas

Weak, Strong, Applicative
bundling

Created by KU Functional
Programming Group including
Ryan Scott and David Young as
well as other developers from
the community

Client Server

[[Canvas]]

[[RemoteMonad]]

[[Packet]]

[[
JavaScript
Packets

]]
[[Browser]]

49 / 66

Case Study
remote-json

Remote JSON

JSON-RPC implementation

Id’s used to pair results with
requests

Weak, Strong and Applicative
Bundling

Client Server

[[RPC]]

[[RemoteMonad]]

[[Packet]] [[Call]]

[[SendAPI]] [[ReceiveAPI]]

50 / 66

Case Study
remote-binary

Remote Binary

Serialization to byte strings

Results start with success/error
byte

Applicative Bundling

Client Server

[[RemoteMonad]]

[[ApplicativePacket]]
[[

Fmap
ApplicativePacket

]]

[[SendAPI]] [[SendAPI]]

51 / 66

Case Study
haskino

Haskino

Created by Mark Grebe

Haskell programs interacting
with an Arduino

commands sent as bytecode to
interpreter

ported to use remote monad in
10 hours

Host Arduino Board

[[Arduino]]

[[RemoteMonad]]

[[ApplicativePacket]] [[Interpreter]]

52 / 66

Case Study
PlistBuddy

PlistBuddy

Property List files (.plist)

interacts with shell program

Weak Bundling

Client Server

[[RemoteMonad]]

[[WeakPacket]]

[[Text]] [[InteractiveShell]]

53 / 66

Case Study
haxl

Haxl

Read only queries

Query Bundling

Optimized to use arbitrarily
ordering capability

Client Server

[[R]]

[[RemoteMonad]]

[[QueryPacket]] [[QueryPacket]]

54 / 66

Performance
Command-Centric Benchmarks

Bezier

CirclesRandomSize

CirclesUniformSize

FillText

ImageMark

StaticAsteroids

Rave

55 / 66

Performance
Procedure-Centric Benchmarks

IsPointInPath

MeasureText

ToDataURL

56 / 66

Performance
Example: StaticAsteroids

benchmark :: CanvasBenchmark

benchmark ctx = do

xs <- replicateM 1000 $ randomXCoord ctx

ys <- replicateM 1000 $ randomYCoord ctx

dxs <- replicateM 1000 $ randomRIO (-15, 15)

dys <- replicateM 1000 $ randomRIO (-15, 15)

send ctx $ do

clearCanvas

sequence_ [showAsteroid (x,y) (mkPts (x,y) ds)

| x <- xs

| y <- ys

| ds <- cycle $ splitEvery 6 $ zip dxs dys

]

showAsteroid :: Point -> [Point] -> Canvas ()

showAsteroid (x,y) pts = do

beginPath()

moveTo (x,y)

mapM_ lineTo pts

closePath()

stroke()
57 / 66

Performance
StaticAsteroids Packet Distribution

Commands Procedures
Packets per packet per packet

Weak
1x 0 1

9992x 1 0

Strong 1x 9992 1

Applicative 1x 9992 1

Table: StaticAsteroids Packet profile from a single test run

58 / 66

Performance
MeasureText Packet Distribution

Commands Procedures
Packets per packet per packet

Weak
2002x 0 1

5x 1 0

Strong
2000x 0 1

1x 2 1
1x 3 1

Applicative
1x 0 1
1x 2 2000
1x 3 1

Table: MeasureText Packet profile from a single run of the test

59 / 66

Performance

Benchmark Weak (ms) Strong (ms) Applicative (ms)
Bezier 113.7 71.4 80.0
CirclesRandomSize 138.5 52.2 59.6
CirclesUniformSize 134.9 48.5 55.6
FillText 150.4 75.6 87.4
ImageMark 184.7 70.2 76.0
StaticAsteroids 374.3 112.4 128.2
Rave 48.8 20.9 26.0
IsPointInPath 447.8 359.1 199.3
MeasureText 682.9 689.2 142.8
ToDataURL 211.1 208.2 238.9

Table: Performance Comparison of Bundling Strategies (Chrome v64.0.3282.186)

60 / 66

Performance
Results

Weak - Globally slower

Strong - fastest in non interaction

Applicative - fastest with interactions but additional overhead cost
when compared to Strong (Only noticeable when sending packets of
the same composition)

Possibility of a hybrid packet between the Strong and Applicative

61 / 66

Related Work
Outside of Haskell

RPCs and batching RPCs:

B.J. Nelson - PhD Dissertation on RPC

Shakib et al. - Patent for bundling asyncronous calls with
synchronous RPC

Bogle et al. - Batched futures, batches as transactions

Gifford et al. - RPCs as remote pipes, buffered sends

Alfred Spector - No response for Asynchronous calls

62 / 66

Related Work
Haskell

Haxl - Facebook

Uses Applicative Functor to split monad

Procedures are read-only

Optimized for parallelism

Free Delivery - Jeremy Gibbons

Free Applicative Functors

Applicative bundling

Cloud Haskell

Distributed system using Erlang-style messages

GHC Static pointers used for server functions

63 / 66

Contributions

Investigations

Remote choices and failure handling

Relationship between Haxl and Remote Monad

Applicative packet optimization for blank-canvas

Publications/Talks

Haskell Symposium 2015 paper

IFL 2016 - invited talk

Haskell Symposium 2017 paper

Open Source Libraries

remote-monad library

remote-json library

remote-binary library

64 / 66

Future Work

Remote Monad-Transformer

Local IO

Use of GHC static keyword Template Haskell

Is there a better packet than applicative?

65 / 66

Conclusion

We can systematically bundle primitives in an environment with
first-class control

We examined the properties of remote primitives yielding different
bundling strategies

We observe that we can model network stacks by chaining natural
transformations together

We conclude that applicative functors make a great packet structure

66 / 66

	Remote Procedure Calls (RPCs)
	Introducing Haskell
	Remote Monad (and Remote Applicative Functors)
	Case Studies of Remote Monad Usage
	Performance of Remote Monad in Situ
	Related Work
	Conclusion

