A Configuration Protocol for Embedded Devices on Secure Wireless Networks

Larry Sanders
lsanders@ittc.ku.edu

16 May 2003
Introduction

- **Wi-Fi Alliance**
 - Formally Wireless Ethernet Compatibility Alliance (WECA)
 - Formed to certify interoperability of Wireless LANs products based on IEEE 802.11 specification
 - Coined the term Wireless Fidelity (Wi-Fi)

- **What is Wi-Fi**
 - WLAN
 - Wireless Ethernet
 - 802.11a, 802.11b, 802.11g
Motivation

• Stations on a Wi-Fi Network
 • Unable to utilize traditional configuration protocols such as DHCP until the host has link level connectivity
 • Requires user to enter extra parameters
 – Service Set Identifier (SSID or Network Name)
 – WEP encryption keys

• Embedded wireless devices
 – Limited input capabilities
 – Additional interfaces costly
Background

Types of Wi-Fi Networks

• Basic Service Set (BSS)
 • Group of Wi-Fi stations

• Independent networks (IBBS)
 • Sometimes called Ad-Hoc Networks
 • Stations communicate directly with each other

• Infrastructure networks (BSS)
 • Access Point (AP) used for all communications
 • Stations need only be within range of the AP
 • APs can assist stations with power management by buffering
 • Bridge to Ethernet network
Background

Extended Service Set

- Created by linking BSSs
- Backbone network
 - Distribution System
 - Typically Ethernet
- Management
 - Wi-Fi stations associate with single AP
 - Inter-Access Point Protocol (IAPP)
Background

Joining a Wi-Fi Network

• Scanning
 • Find the network
 • Passive or Active

• Authentication
 • Open-System Authentication
 – Null Authentication – always successful
 • Shared-Key Authentication
 – Utilizes WEP
 – Challenge / response

• Association
Background

802.11 MAC Frame

<table>
<thead>
<tr>
<th>Octets: 2</th>
<th>2</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>2</th>
<th>6</th>
<th>0 - 2312</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Duration/ID</td>
<td>Address 1</td>
<td>Address 2</td>
<td>Address 3</td>
<td>Sequence Control</td>
<td>Address 4</td>
<td>Frame Body</td>
<td>FCS</td>
</tr>
</tbody>
</table>

- **Control**
 - Type of frame, power management, WEP status, etc.
- **Duration/ID**
 - Use depends on type of frame
- **Sequence Control**
 - Fragmentation and discarding duplicate frames
- **Frame Check Sequence**
 - Error detection across entire frame (including 802.11 header)
Background

802.11 MAC Frame (continued)

• Frame body
 • 802.11 Management frames
 • 802.11 Control frames
 • 802.11 Data frames
 – 802.2 Logical-Link Control (LLC) encapsulated data

• Address Fields (6 octets each)

<table>
<thead>
<tr>
<th>Function</th>
<th>Address 1</th>
<th>Address 2</th>
<th>Address 3</th>
<th>Address 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDS</td>
<td>RA</td>
<td>TA</td>
<td>DA</td>
<td>SA</td>
</tr>
<tr>
<td>Independent BSS</td>
<td>DA</td>
<td>SA</td>
<td>BSSID</td>
<td>not used</td>
</tr>
<tr>
<td>To AP (infrastructure)</td>
<td>BSSID</td>
<td>SA</td>
<td>DA</td>
<td>not used</td>
</tr>
<tr>
<td>From AP (infrastructure)</td>
<td>DA</td>
<td>BSSID</td>
<td>SA</td>
<td>not used</td>
</tr>
</tbody>
</table>
Background

802.11 Wired Equivalent Privacy (WEP)

• **Goal**
 • Provide security similar to Ethernet

• **Shared Keys**
 • 40/64 and 104/128 bit standard key sizes
 – Concatenated with 24 bit Initialization Vector

• **Utilizes RC4**
 • Symmetric stream cipher
 • RSA Security, Inc.
Background

WEP Frame Format

- IV (4 octets)
 - Initialization Vector (3 octets)
 - Concatenated with WEP key
 - Typically implemented as counter
 - Key ID (1 octet)
 - 2 bit field that specifies which WEP key

- ICV (4 octets)
 - Integrity Check Vector (CRC-32)
Background

Problems with WEP

• Key Management
 • Must be distributed to all stations

• Packets can be spoofed and/or modified
 • No Integrity protection for 802.11 header

• 802.11 Authentication
 • No mutual authentication
 • Trivial to defeat station authentication

• Fluhrer, Mantin, Shamir (FMS attack)
 • Weak IVs
 • Assumes first byte of key stream can be recovered (0xAA SNAP header)
 • Only requires a few million packets to crack WEP
Background

802.11 Task Group i

• Charged with increasing 802.11 security
• Draft due September 2003
• Two new protocols
 • Temporal Key Integrity Protocol (TKIP)
 – Short-term solution
 – Works with legacy hardware via software/firmware updates
 • Counter-Mode-CBC-MAC (CCMP)
 – Long-term solution for future hardware
 – Uses the Advanced Encryption System (AES)
Background

802.1x: Port based Network Access Control

- Based on IETF’s Extensible Authentication Protocol
- Facilitates mutual authentication
- Method to distribute encryption keys
 - Session keys
 - Group keys
Background

802.1x in the Home/Small Business

• Generally, no Authentication Server on home networks

• Use of \textit{pre-shared} keys
 • Wi-Fi Alliance endorsed vendor solution
 • Similar to WEP
 – Has to be distributed manually
 – Becomes base for session keys
Background

Vendor Security Enhancements

• Non-broadcast SSID
 • SSID field in beacon packets zeroed
 • Not very effective
 – Attacks designed to force stations to re-associate
 – Exposes SSID

• MAC address filtering
 • Authorized list of MAC address
 • Somewhat effective
 – Most NICs allow users to set MAC
Architecture

Wi-Fi-Co

- **Configurator**
 - Host Sending Wi-Fi configuration parameters
 - Can be anywhere on the ESS network

- **Target**
 - Host receiving Wi-Fi configuration
 - Embedded wireless device, typically
Wi-Fi-Co (continued)

- General idea
 - 802.11 headers are unencrypted
 - Access Points copy MAC address during the bridging process
 - Data portion encrypted - no use to a station without keys
 - Source address - 6 octets of data
 - Broadcast
Architecture

Source MAC address

- Protocol identifier (3 octets)
 - 10:00:00 – Private Ethernet MAC pool
- Sequence (1 octet)
- Fragmented Configuration Data (2 octets)
Feedback

• Positive acknowledgement
 • Optional
 • Once target device is configured and has IP level connectivity
 • TCP connection back to Configurator
 – IP level address assigned
 – Statistics (for development)
• Configurator must send its address
 – Configurator is modifying MAC addresses
Architecture

Protecting the WEP keys

- Broadcast packets easily intercepted
 - On the wired Ethernet network portion
 - Any Wi-Fi station within range of an Access Point in the ESS

- Utilizes RC4
 - Shared key symmetric cipher
 - Embedded devices ship with pre-programmed key
 - Certificate with product code
 - Additional input required on the Configuration host
 - Much easier than input to embedded device
Implementation

Header

- Default key number
- SSID length
- Feedback
- WEP key lengths
- Version
- Encryption
 - Designates that the SSID and WEP fields are encrypted
- Mode/IBSS channel
 - 0 for Infrastructure (BSS or ESS)
 - Non-zero for IBSS
 - Specifies the channel the IBBS is on
- Buffer Length is $8 + 4 \times \text{KEY_LEN} + \text{SSID_LEN} + (\text{FB} \times 6)$
Implementation

Wi-Fi Channel Hopping

- 802.11b
 - Direct Sequence Spread Spectrum
 - 14 Channels (11 in U.S.), 5 MHz wide
 - Energy leakage – 5 channels

- Access Point setting
 - Each BSS operates on a specific channel
 - Overlapping BSSs – 5 channels apart to avoid interference
 - Hopping all channels guarantees traffic has a chance to be received
 - Sequence generally 1,6,11,2,7,…
Results

Test Setup #2 (Small Network)
- Wired Ethernet Configurator \rightarrow Wi-Fi Target station
- Target was Linux laptop
- Single, constant Wi-Fi channel

Avg. Conf Time
148 ms

Avg. CRC Failure
0.0
Results

Test Setup #4 (Small Network)

- Wired Ethernet → Wi-Fi Target station
- Target Linux laptop
- Target hopping three channels/second

Avg. Conf. Time
1891 ms

Avg. CRC Failures
0.0
Results

Test Setup #7 (ITTC’s Network)

- Wired Ethernet → Wi-Fi Target station
- Target was Linux laptop
- Single, constant Wi-Fi channel

Avg. Conf. Time
119 ms

Avg. CRC Failures
.07
Results

Test Setup #9 (ITTC’s Network)

- Wired Ethernet → Wi-Fi Target station
- Target was Linux laptop
- Target hopping three channels/second

Avg. Conf. Time
718 ms

Avg. CRC Failures
.31
Results

Test Setup #9 (Continued)

Target Within Range of Three Wi-Fi Access Points
Results

Embedded Device Tests

• Wi-Fi enabled Smart Wireless Thermostat
 • Designed by Ambient Computing, Inc.
 • Rabbit 2000 8-bit microcontroller
 • 30 MHz clock
 • USB Prism 2.5 Wi-Fi card
 • Rapid prototype
 • Experimental Wi-Fi drivers
 • Poor network performance
Results

Test Setup #12 (ITTC’s Network)
- Wired Ethernet → Wi-Fi enabled embedded device
- Target was Smart Wireless Thermostat
- Target Hopping 1 channel every 5 seconds

Avg. Conf. Time
10.8 Seconds

Avg. CRC Failures
.29
Conclusions

• Successfully tested on several networks
 • Small home network
 • Enterprise network at ITTC

• Target software ported to
 • Linux (tested on Debian, Gentoo, and RedHat)
 • Embedix Embedded Linux (Sharp Zaurus)
 • Dynamic C for the Rabbit Microprocessor (Smart Wireless Thermostat)
Conclusions

• Challenges overcome
 • Ease of porting to many different platforms, operating systems, and distributions

• Lessons learned
 • Network “safe” implementation
 – No limit on initial rate Configurator sent packets
 – Fine for 100 Mbps network
 – Nearly saturated low speed, long haul Wi-Fi link to remote lab
Demo

Wi-Fi Toaster 9000

Congratulations, you’ve just purchased the most advanced toaster on the planet! In moments you’ll be logged on to the best tasting toast you’ve ever enjoyed. Be sure to check out our other fine products such as the Wi-Fi Can Opener 2000.

Please keep this certificate in a safe place.

Serial Number: 0129831321132

Product Code: 90FA-C387-S712-7AC9

Limited Warranty

In no event shall the direct vendor’s liability for direct, indirect, special, incidental, or consequential damages resulting from the use of the product or its documentation exceed the price paid for the product.

The manufacturer is not responsible for loss of usable images due to network stability problems. This includes, but is not limited to, fire, virus, DoS, attacks, hackers, viruses, or user stupidity.
Questions?

Larry Sanders
lsanders@ittc.ku.edu

16 May 2003