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Abstract

A new form of multi-waveform space-time adaptive processing (µ-STAP) is presented.

The formulation provides additional training data for adaptive clutter cancellation for

ground moving target indication after pulse compression. The pulse compression re-

sponse is homogenized using stochastic phase filters to produce a smeared response

that approximates identically distribution assumed by covariance estimation. Post

pulse compression µ-STAP (Pµ-STAP) is proposed to address clutter heterogene-

ity that causes degradation in detection performance of STAP similar to single-input

multi-output µ-STAP. Furthermore, the family of µ-STAP algorithms are computa-

tionally expensive due to estimation of multiple covariance matrices and inversion of

a single covariance for every range sample. Well-known partially adaptive techniques,

previously implemented in STAP, are implemented with Pµ-STAP. Partial adapta-

tion in element-space post-Doppler, beam-space pre-Doppler, and beam-space post-

Doppler are presented. Each of these are examined on several simulated, controlled

clutter scenarios. Fully adaptive Pµ-STAP is further evaluated on the high-fidelity

knowledge aided adaptive radar architecture: knowledge-aided sensor signal process-

ing and expert reasoning (KASSPER) dataset.
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Chapter 1

Introduction

Airborne ground moving target indication (GMTI) is a radar application tasked with detect-

ing moving targets in a radar scene. GMTI determines angular information from spatial signals

received on an antenna array and Doppler information from multiple receive pulses. Due to the

platform motion of the radar, a coupling of the spatial and Doppler dimensions occurs. In the early

days of GMTI, this phenomena was corrected using algorithms such as displaced phase center

antenna (DPCA) [4]. DPCA accounts for the platform motion by steering the receive array from

pulse to pulse. The radar scene landscape can vary depending on weather, land, or littoral en-

vironments. In heterogeneous environments, detection performance for airborne GMTI becomes

increasing difficult.

In a seminal paper by Brennen and Reed [5], space-time adaptive processing (STAP) was first

introduced as a means to optimally cancel clutter through adaptive processing. STAP exploits the

second-order statistics of temporal and spatial signals to nullify clutter. The original STAP formu-

lation is based on the independent and identically distributed assumption (i.i.d) [6]. This assumes

that the clutter has the same statistically characteristics for all fast-time samples [7]. In the pres-

ence of heterogeneous clutter, internal clutter motion, strong clutter discretes, and/or contaminated

training data, STAP performance degrades due to its inability to accurately estimate an adaptive

filter for sufficient clutter cancellation. The degradation in the filter estimate corresponds to a de-

crease in minimum detectable velocity and overall target detection performance. STAP is wildly

researched topic [25-55] and is driven by developing ways to mitigate the effects of heterogeneous

clutter and improve detection performance on the GMTI radar.

A new form of STAP called multi-waveform space-time adaptive processing (µ-STAP) was de-
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veloped to address heterogeneous clutter [8; 9; 10]. µ-STAP exploits decorrelation of training data

used to form a covariance matrix by implementing secondary pulse compression filters to enforce

homogeneity. In addition, multiple space-time datacubes are generated from these filters creating

a multiplicative increase in the number of samples used to form a covariance thereby further ac-

curately estimating the adaptive filter. µ-STAP was initially developed as a form of multi-input

multi-output (MIMO). The MIMO formulation describes the emission of multiple transmit wave-

forms on a single aperture. The secondary waveforms are designed to have low-cross correlation

with the primary waveform. The additional pulse compression filters homogenized the receive

data to be more identically distributed. Upon further analysis, the performance benefit of µ-STAP

was attributed to the coherent integration of the receive processing. This lead to the development

of single-input multi-output (SIMO) µ-STAP which transmits only a single waveform, similar to

STAP, and performs receive processing using the same secondary pulse compression filters as if

they were transmitted.

Legacy radar systems that perform pulse compression prior to analog-to-digital conversion can

not benefit from µ-STAP. Post pulse compression µ-STAP (Pµ-STAP) is a new form of SIMO µ-

STAP that would allow legacy radar systems to benefit. Pµ-STAP homogenizes space-time signals

after coherent integration and discretization of fast-time samples. The secondary filters do not need

a priori knowledge of the transmit waveform to perform homogenization.

All of the STAP algorithms mentioned have high computation cost due to a adaptive filter need-

ing to be developed for every fast-time sample thereby hindering real-time application. Partially

adaptive algorithms have been implemented with traditional STAP to facilitate real-time applica-

tion [3]. The class of µ-STAP algorithms have yet to be examined for real-time application. For the

prospect of implementing on legacy systems, Pµ-STAP would require a similar analysis. There-

fore, well-known partial adaptive techniques will be examined with Pµ-STAP for the prospect of

real-time application in legacy radar systems.

The purpose of this report is to analyze the Pµ-STAP algorithm, compare and contrast to µ-

STAP performance in heterogeneous clutter, and determine if it is feasible for real-time application.
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The organization of the report is as follows. In Chapter 2, a signal model of fast-time, slow-

time, and spatial signals for airborne radar is presented. Chapter 3 provides an overview of STAP

and µ-STAP. Chapter 4 introduces post pulse compression µ-STAP by providing analysis of the

homogenization filters and performance in heterogeneous clutter. Chapter 5 reviews will-known

partially adaptive techniques then analyzes them with Pµ-STAP.
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Chapter 2

Signal Model

An airborne radar performing GMTI detects a target’s range, velocity, and angular location by

exploiting fast-time, temporal, and spatial signals, respectively. To implement airborne GMTI, a

pulse-Doppler radar is operated from a phased array. A pulse is emitted from the radar illuminating

an area on the Earth’s surface. The slant range from the radar to a scatterer in the scene is

R =
c∆T

2
(2.1)

where c is the speed of light and ∆T is the round trip delay [1]. The interval between pulses is

the pulse repetition interval (PRI). The rate pulses are emitted per second is the pulse repetition

frequency and is inversely proportional to the PRI

fr =
1
Tr

(2.2)

where fr is PRF and Tr is PRI. The maximum unambiguous range is

Rmax =
c

2 fr
. (2.3)

Range ambiguity occurs when a pulse from one PRI returns during another. If this aliasing occurs,

the range of the pulse return can be inaccurately determined. GMTI radars are typically designed

to have low PRF to prevent range ambiguities [4].

Another ambiguity is two closely spaced pulse returns within one PRI. For an unmodulated

pulse, a smaller pulse duration provides greater range resolution between pulse returns. However,
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a smaller pulse width comes at the cost of transmit power on target that a longer pulse duration

provides. Modulation of the pulse will produce range resolution and energy on target unlike a

unmodulated pulse. The operation of modulating a pulse is called pulse compression. Pulse com-

pression waveforms modulate either in amplitude, phase, or frequency [1]. Frequency modulated

waveforms will be considered throughout. Examples of frequency modulated waveforms are lin-

ear (LFM), non-linear (NLFM)[11], and polyphase-coded (PCFM)[12; 13] among others. A pulse

compression waveform s(t) is represented as .

s(t) = u(t)e j(2π fct+ϕ) (2.4)

where u(t) is the complex envelope, fc is the transmit center frequency, and ϕ is phase. The

waveform is defined over a pulse duration τ where 0 ≤ t ≤ τ [3]. The duration of the pulse is

a portion of PRI. The ratio between the pulse duration and PRI, is the duty cycle. The complex

envelope is defined by the type of waveform used [11].

The pulse return signals are passed through a match filter that maximizes the signal-to-noise

ratio (SNR). The match filter is defined as

h(t) =
s∗ (−t)

‖s(t)‖2 (2.5)

where (•)∗ denotes complex conjugation and ‖•‖ denotes norm [11]. Note that the duration of the

match filter is equivalent to the waveform. The autocorrelation of the FM waveform with its match

filter provides a narrower 3dB width than a unmodulated pulse. Signal-to-noise ratio (SNR) for an

single unmodulated pulse is defined using the radar range equation [1] as

ζ =
PtGtGrλ

2
c σRCS

(4π)3PnLsR4
t

(2.6)

The parameters within (2.6) are defined in Table 2.1. Systems losses include transmit loss, receiver
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Table 2.1: Parameters in Signal-to-Noise Ratio

Pt Peak transmit power
Gt Transmit antenna gain
Gr Receive antenna gain
λc Operating wavelength
Pn Thermal noise power spectral density
Ls System loss
Rt Range from radar to target

loss, atmospheric loss, and signal processing loss [1]. Applying pulse compression increases the

SNR equation

ζpc = ζ Bτ (2.7)

where B is the pulse modulation bandwidth [1].

The waveform is transmitted coherently over a uniformly-spaced linear array (ULA) with Nh

horizontal elements. Also, a vertically beamformed uniformly-spaced planer array (UPA) with Nv

vertical elements and Nh horizontal elements can be used. The total number of elements for a UPA

is N = NvNh. UPAs are useful since elevation can be determine from vertical elements and azimuth

from horizontal elements. Typically, airborne GMTI radar favors azimuthal angular information

for target location due to the downward orientation of the array look direction. Beams are formed

over the vertical elements and the horizontal elements are kept the same making N = Nh beams.

Therefore, a ULA will be consider throughout with the prospect of using a UPA.

Coherent transmission of the same pulse on all array elements forms a single transmit beam.

The number of elements, type of antenna elements, and spacing each contribute to the beampat-

tern emitted from the radar. The number of array elements is inversely proportional to the 3dB

beamwidth also known as the spatial resolution. The transmit waveform has following response

s̃(t,θ ,θlook) = s(t)b(θ ,θlook) (2.8)

for transmit beampattern b(θ ,θlook) with dependencies on spatial angle, θ , and look angle, θlook [8;

9; 10]. The distinction between spatial angle and look angle is how the beam is steered. For spatial
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angle, the beam is electronically steered by uniformly offsetting the coherence of the waveform

as it emits from each element. The look angle is the physical steering of array relative to a radar

emitting abeam to the aircraft. The look angle is not typically altered. In addition, the spatial angle

is pointing in direction of the look angle, i.e. θ = θlook. Therefore, θlook will be subsumed from

here out.

After interaction with the radar scene, multiple pulse returns from the scene are received on

each element of the array. The radar collects M pulses in a coherent processing interval. The

duration of the CPI is TCPI = MTr. Effectively a collection of M successive PRI. The number of

pulses in a CPI dictate the Doppler resolution between two targets with close radial velocities. For

the mth received pulse, the receive signal collected on the nth element is

y(m,n, t) = ∑
ω

∑
θ

[s̃(t,θ)∗ x(t,ω,θ)]e j(mω+nθ)+ v(t) (2.9)

where ω is Doppler frequency, θ is spatial frequency, x(t,ω,θ) is the complex scatterers in the

scene, and v(t) is thermal noise. Pulse compression is applied to the receive signal using the match

filter

z(m,n, t) = h(t)∗ y(m,n, t) . (2.10)

Each array element down-converts and digitizes each receive time-delayed return signal within

a PRI to form fast-time (range) samples. Collection of L fast-time samples for each pulse and

element combination, produces the pulse compressed datacube shown in Figure 2.1. Define a

single range sample ` (also called a range bin) corresponding to a discretized sample of a time-

delay received signal. For a received CPI, successive PRI returns are oriented into slow-time

samples. The start of a new PRI creates a new slow-time sample. For a single range sample, the
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Figure 2.1: Radar Datacube [1]

received slow-time samples for each element forms the M×N space-time data matrix

Z(`) =


z(0,0, `) . . . z(0,N−1, `)

... . . . ...

z(M−1,0, `) · · · z(M−1,N−1, `)

=

[
z0 (`) · · · zN−1 (`)

]
(2.11)

where Z(`)∈CM×N [3]. Collecting L fast-time samples forms the M×N×L space-time datacube.

The space-time matrix is vectorized into a MN× 1 space-time snapshot by stacking the columns

of (2.11)

z(`) =


z0 (`)

...

zN−1 (`)

 . (2.12)

Scattered returns within every space-time snapshot will always contain clutter but may or may

not contain a target. Clutter is the unwanted returns that are not pertaining to GMTI goal [1]. For

GMTI radar, clutter are all non-moving returns or very slow moving returns which typically is the

Earth’s surface. Clutter for an airborne radar is detailed in Section 2.2. The two hypotheses for
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target detection are

Target Absent - h0 : z(`) = xc (`)+v(`)

Target Present - h1 : z(`) = xt (`)+xc (`)+v(`)
(2.13)

where xt (`) is the target response, xc (`) is the clutter response and v(`) is thermal noise for the

`th range sample. A covariance matrix is used to characterize the second-order statistics of the

elements in the space-time snapshot. The formal definition of covariance matrix is

R = E
[
xxH]−E [x] (E [x])H (2.14)

where (•)H denotes conjugate transposition. Typically, the mean is assumed to be E [x] = 0. The

diagonal terms are the variance of each element and off-diagonal terms are autocorrelations of

different delays [2]. The covariance matrix is positive-definite Hermitian. The covariance matrix

of the target absent hypothesis (h1) is

R(`) = E
[
zh1 (`)zH

h1
(`)
]

= E
[
xt (`)xH

t (`)
]
+E

[
xc (`)xH

c (`)
]
+E

[
v(`)vH (`)

]
= Rt (`)+Rc (`)+Rv (`) .

(2.15)

This characterizes the statiscally nature of the targets, clutter and noise which will be examined

further in the following subsections. Later, it will be shown that the covariance matrix for target

absent scenario (h0) can be used to nullify clutter (Chapter 3).

2.1 Target Response

Targets are moving objects in the scene traveling above a radial velocity of interest. A target

velocity directly relates to a Doppler frequency. The Doppler effect is a common phenomenon that

modulates the waveform impinging on it to a different frequency. The direction and speed at which
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the target is moving determines Doppler [1]. Doppler frequency is expressed as

fd =
2vt

c
fc =

2vt

λc
(2.16)

where vt is a target’s radial velocity. Doppler is positive if the illuminated target is moving towards

the radar and negative if moving away. If the scatterer is not moving, it has a Doppler frequency

of fd = 0. The maximum unambiguous Doppler frequency of a pulse-Doppler radar is

fd,max =±
fr

2
(2.17)

Ambiguity in this context is the point at which velocities become overlapping due to the Doppler

frequency wrapping around the spectrum [1]. Doppler frequency is often expressed in a normalized

as

ωd =
fd

fr
= fd ·Tr (2.18)

Interestingly, the Doppler of an target is seen across slow-time samples as a linear phase pro-

gression. Since frequency is the time derivative of phase, the slope of the phase progression corre-

sponds to a Doppler frequency. A target’s phase progression across slow-time samples is described

by its temporal steering vector

ct (ωd) =

[
1 e j2πωd · · · e j2π(M−1)ωd

]T

(2.19)

where (•)T denotes transposition. This vector structure is the called the Vandermonde structure

where each consecutive element is a multiple of the preceding element increased by a single integer

[2]. In this case, the integer corresponds to the pulse number and normalized Doppler frequency

leading to a sampled sinusoidal vector. Although, a constant PRF is considered for the form of

the temporal steering vector, it can be modified to staggered PRF formulations which causes a

non-linear phase progression.

In addition to obtaining velocity information, MTI radar determines a target angular location
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in the scene by distinguishing reflections direction-of-arrival (DoA) using digital beamforming

techniques on the ULA [2]. Consider a N-element ULA receives a reflected plane wave from a

point target in the scene. The elements spaced d meters apart at a elevation of ϑt and azimuth φt

on the aircraft platform. The length of the array is L = Nd. The spacing between elements, d, is

best keep at λc/2 to minimize the effect of grating lobes [4]. The plane wave impinges on each

array element with a time delay from element to element. Based on the operating frequency and

spacing, the target spatial frequency is defined as

θt =
d
λc

cos(ϑt)sin(φt) =
d
λc

cos(φc) (2.20)

where cone angle is φc. Since the array is uniformly spaced, the time delay of the impinging

plane wave from element to element is constant. The delay corresponds to a phase that progresses

linearly across the array. Therefore, the target phase progression across elements is defined as

spatial steering vector is

cs (θt) =

[
1 e j2πθt · · · e j2π(N−1)θt

]T

. (2.21)

A plane wave received at boresight is received by all elements at the same time and has a spatial,

θ = 0. Any plane wave offset of boresight will have a positive or negative frequency depending

on if it is received from the left or right, respectively. The Vandermonde structure of the temporal

and spatial steering vectors is an embodiment of their coherence in their respective domain [2].

To extract Doppler and spatial frequency, a fast Fourier transform (FFT) is employed to test all

possible phase slopes. In the slow-time dimension this process is called Doppler processing. The

Doppler resolution on target after processing is

∆ fd =
fr

TCPI
=

1
MTr

(2.22)

In the spatial dimension, utilizing the FFT is called receive beamforming. The spatial resolution is

11



defined by the 3dB beamwidth as

∆θt =
aswλc

Larray
(2.23)

where asw is the beam-broading factor and Larray is the length of the array [2].

The target response present in (2.13) has a amplitude response, α , a Doppler frequency, ωd ,

and spatial frequency, θt . The target response for the target present hypothesis is

xt (ωd,θt , `) = α (`)cst (ωd,θt) (2.24)

where cst is a coupling of the spatial and temporal steering vectors called the space-time steering

vector. The space-time steering vector is defined as

cst (ωd,θt) = ct (ωd)⊗ cs (θt) (2.25)

where ⊗ denotes Kronecker product [3].

A mismatch between the true target steering vector and estimated steering vector will occur.

This is a form of straddling loss [2]. This causes a decrease in SNR. Straddling loss can be

mitigated by increasing the number of frequency samples through zero-padding the FFT. In both

dimensions, tapering is often employed to minimize the sidelobes at the cost of decreasing resolu-

tion. Implementing tapering to (2.25) is

_cst (ωd,θt) = (ct (ωd)�b)⊗ (cs (θt)�a) (2.26)

where b is a M×1 Doppler taper, a is a N×1 spatial taper and � denotes Hadamard product. The

minimal amount of frequency samples in Doppler processing is the number of pulses. Similarly,

beamforming minimal amount is the number of elements in the array.
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The target covariance matrix at `th range sample is

Rt (`) = E
[
xt (ω,θ , `)xH

t (ω,θ , `)
]

= σ
2
t (`)ζtcst (ωd,θt)cH

st (ωd,θt)

(2.27)

where σ2
t is the target power [3].

2.2 Clutter from an Airborne Platform

Clutter is the unwanted illuminated scatterers from the Earth (land, sea, weather) and static

man-made objects (such as buildings) that surrounds targets. For radar mounted on a stationary

platform, clutter is static and corresponds to a Doppler frequency of zero. Dynamic clutter (such

as trees blowing in the wind or ocean waves), called internal clutter motion (ICM), causes a spread

in clutter Doppler bandwidth [4]. Spatially, the clutter scatterers return from all DoAs. For an

airborne radar, the clutter is still located in all spatial angles but has Doppler frequency relative

to the motion of the radar platform causing Doppler center frequency of the clutter to shift. This

motion-induced spectral spread and ICM causes challenges in target detection [4; 14].

Consider the ULA is mounted parallel to the aircraft illuminating abeam onto a scene. The

beam swath illuminating the scene can be segmented into range and angle clutter patches shown in

Figure 2.2. A clutter patch is a aggregate of complex, coherent reflections from smaller scatterers.

The ground clutter return for an airborne radar at the `th range bin [2]

xc (ωc,θc, `) =
Nc−1

∑
i=0

Na−1

∑
j=0

ai j (`)� cst,i j (ωc,θc) (2.28)

where Nc is statistically independent clutter patches and Na is the number of unambiguous ranges.

Clutter in positive angular frequency (in front of the aircraft) will appear to be moving toward the

radar and vice versa. The perceived dynamic nature of ground clutter causes a coupling of the

spatial and temporal signals.
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Figure 2.2: Clutter Patch in a Radar Scene [2]

More specifically, clutter Doppler frequency becomes a function spatial frequency, platform veloc-

ity, PRI (or PRF), and element array spacing [3]

ωc =
2vpTr

d
θc. (2.29)

This can be subsummed into a single coefficient β which is the interelement spacing traveled

during one PRI

β =
2vpTr

d
. (2.30)

In Figure 2.3, an illustrative example of β is presented for a three element array traveling through

space for three pulses.
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Figure 2.3: 3-element Array Traveling for 3 Pulses with a β = 1 [3]

In Figure 2.4, a two-dimensional power spectral density of clutter for multiple β values is pre-

sented. Note the ridge that forms in the two-dimensional clutter power spectral density [2] due

to coupling. For a β = 1, the Doppler and angle are unambiguous. When 0 < β < 1, the data

is becomes spatially ambiguous. When β > 1 it becomes Doppler ambiguous [3]. Without ICM,

the clutter bandwidth extends between ±(2vp cosφc)/λc as a function of range. Longer ranges

correspond to smaller cone angles leading to wider bandwidths and vice versa [14]. ICM further

extends the bandwidth.
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Figure 2.4: Clutter Ridges [3], a) Stationary Platform, β = 0 b) Moving Platform, Spatial ambi-
guity, β = .5 c) Moving Platform, No ambiguity β = 1 d) Moving Platform, Doppler ambiguity
β = 2

The clutter covariance matrix is

Rc (`) =
Nc−1

∑
i=0

Na−1

∑
j=0

Ai j (`)� cst (ωc,θc)cH
st (ωc,θc) (2.31)

where Ai j (`) is the clutter space-time amplitude correlation [2]. If the amplitudes are correlated

from pulse-to-pulse and channel-to-channel, then Ai j (`) = σ2
c,i j (`)1MN . The matrix 1MN is a

MN×MN matrix of all ones.

2.3 Receiver Thermal Noise

In the universe, any blackbody with a temperature above absolute zero generates random mo-

tion of charged particles known as thermal noise. For a radar operating at in the microwave band of
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the electromagnetic spectrum internal thermal noise dominates over environmental thermal noise

[15]. Assuming elements from ULA are independent and mutually uncorrelated, the noise corre-

lation between two elements is [3]

E
[
vmn1v∗mn2

]
= σ

2
v δn1−n2 (2.32)

Furthermore, assume the samples for a single element are temporally uncorrelated from pulse to

pulse, then the noise correlation between two pulses is

E
[
vm1nv∗m2n

]
= σ

2
v δm1−m2 (2.33)

In both cases, σ2
v is thermal noise power and δ is the Kronecker delta defined as

δ (m) =

 1, m = 0

0, m 6= 0
(2.34)

Since the elements and pulses are uncorrelated, the covariance matrix of the space-time noise is

[3]

Rv (`) = E
[
v(`)vH (`)

]
= σ

2
v IMN

(2.35)

where IMN is a MN×MN identity matrix.
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Chapter 3

Multi-Waveform Space-Time Adaptive Processing

The angle-Doppler coupling described in the last chapter can cause deleterious effects in de-

tection performance. The platform-motion effects causes a clutter Doppler frequency shift and

increases the clutter Doppler bandwidth. Slower moving targets close to the clutter Doppler fre-

quencies will be harder to detect. MTI filters were originally developed combat it.

One of the earliest forms of clutter cancellation that atones for the frequency shift is displace-

phase center antenna (DPCA). The technique would compensate by electronically steering the

phase array dependent on the platform velocity and pulse repetition frequency [14]. Another

method is the time-averaged-clutter coherent airborne radar (TACCAR) developed by MIT Lin-

coln Laboratory. TACCAR essentially shifts the clutter spectrum back to zero-Doppler [4].

Although these techniques are indeed useful in the cancellation of clutter, they are not optimal.

In a seminal paper by Breenan and Reed [5], a theoretically analysis of adaptive signal process-

ing was presented. In another paper by Reed, Mallet, and Breenan, the introduction of adaptive

processing spatial signals from an array and temporal signals from multiple pulses was presented

[16]. The launch of digital era in the late 20th century lead to the proliferation of digital signal

processing. Combining digital age advancement with the optimal, adaptive receive processing to

combat motion-induced clutter effects lead to the birth of space-time adaptive processing [14].

Space-time adaptive processing (STAP) is an optimal two-dimensional clutter cancellation

technique for airborne radar. STAP maximizes signal-to-interference-plus-noise ratio (SINR) by

adapting to the space-time clutter returns [3; 2]. The improvement in SINR increases the minimum

detectable velocities. This allows for increase detection of slow moving targets.

Consider the target absent (null) hypothesis in (2.13) which describes full knowledge of the
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clutter and noise without any targets. A MN×MN interference covariance matrix for each range

sample is formed from the null hypothesis[3]

Ro (`) = E
[
zh0 (`)zH

h0
(`)
]
. (3.1)

The interference covariance is optimal (also called clairvoyant) since it completely characterizes

the space-time clutter. The optimal maximum SINR adaptive filter is developed using the clair-

voyant covariance matrix and clutter space-time steering vectors to form a adaptive angle-Doppler

filter[3]

wo (ω,θ , `) = R−1
o (`)cst (ω,θ) . (3.2)

The covariance matrix will place frequency nulls at Doppler and spatial frequencies correspond-

ing to the clutter. The maximum number of nulls that can be placed is the degrees of freedom

(DoF), which is MN for STAP. Typically, a single spatial frequency is examined over the entire

Doppler spectrum. The STAP adaptive filter can also be presented as a minimum variance space-

time beamformer, generalized sidelobe canceller [2], and maximum SNR [14]. The covariance is

optimal under the maximum likelihood estimator [17].

These are all within the class of sample matrix inversion (SMI) techniques [6] and a covariance

matrix of this form is called a sample covariance matrix. Other classes include QR-decomposition

and subspace sample matrix inversion [3].

Since the clutter and noise has been characterized, application of the STAP filter is performed

to the target present hypothesis to yield target-only response.

α (ω,θ , `) = wH
o (ωc,θc, `)z(`) = cH

st (ωc,θc)R−1
o (`)z(`) (3.3)

This response is known as the test statistic and is feed through a detector [3]. Square-law and

constant false alarm rate [1] detectors are typically used.

Perfect knowledge of the optimal covariance matrix can not be known. The terrain must be
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statistically modeled for the covariance. Take sea clutter for example in the detection of a boat.

Depending on a storm or time of the year, the rapid nature of the waves may change. Another

example is a littoral environment where the flight path along a coast must be completely charac-

terized in order to have the best covariance. Too many natural variables exist within the clutter to

be modelled perfectly. Error in prediction of the clutter can lead to an incorrect covariance matrix.

The best way to incorporate the environment into the covariance is by estimating it using spatial

and temporal captured return signals [3]. Fortunately, their is an abundance of clutter compared

to targets and the majority of the fast-time snapshots will correspond to the null hypothesis. One

form of interference covariance estimation is sliding window processing (SWP):

R̂(`CUT ) =
1

n(L) ∑
`∈L
6̀=`CUT

z(`)zH (`) (3.4)

The `th range cell being estimated is the cell-under-test (CUT). Recall, L is the number of range

cells after discretization. The CUT and samples contiguous to the CUT called guard cells are

removed from the covariance estimation to prevent self-cancellation. If the CUT and guard cells

were included, it would be similar to using the target present hypothesis for a optimal covariance

in (3.1) thereby causing some self-cancellation. After removal of the CUT and guard cells, the

remaining cells within L is called the training data or sample support (in most literature this data

is referred to as secondary data). The cardinality of L, n(L), describes the number of training data

samples after removal of guard cells and CUT.

Another technique for covariance estimation is block processing. Here, one covariance matrix

is formed for multiple consecutive samples (a block) of data. Block processing computation speed

is increased, the accuracy of estimation of the covariance matrix is decreased. Block processing is

commonly used for censoring techniques to remove cells that are statistical outliers to the CUT.

The primary metric used to analyze the adaptive filter is SINR [3]. The test statistic described

in (3.3) can be expanded using the target present hypothesis from (2.13) such that α̂ (θ ,ω) =

wH (`,θ ,ω)xt (`)+wH (`,θ ,ω)(xc (`)+v(`)). The signal power is defined as the Ps =
∣∣wH (`,θ ,ω)xt (`)

∣∣2
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and interefernce-plus-noise power as Pn =
∣∣wH (`,θ ,ω)(xc (`)+v(`))

∣∣2. The ratio of these powers

defines the SINR [3]

SINR(ω,θ , `) =
Ps

Pn
=

∣∣wH (ω,θ , `)cst (ω,θ)
∣∣2

wH (ω,θ , `)Ro (`)w(ω,θ , `)

=

∣∣cH
st (ω,θ) R̂−1 (`)cst (ω,θ)

∣∣2
cH

st (ω,θ) R̂−1 (`)Ro (`) R̂−1 (`)cst (ω,θ)

(3.5)

The SINR metric essentially quantifies how much the estimated covariance matrix deviates from

the optimal covariance. Assuming perfect estimation of the covariance matrix, i.e. R̂(`) = Ro (`)

yields the optimal (maximum) SINR defined as

SINRopt (ω,θ , `) = cH
st (ω,θ)R−1

o (`)cst (ω,θ) (3.6)

Due to the necessity of the optimal covariance in SINR, adaptive filter performance is primarily

tested in simulation. To see the amount of SINR loss, it is normalized by space-time SNR

η (ω,θ) =
SINR(ω,θ)

SNRo
(3.7)

where SNRo = MNξ [3]. As previously mentioned, θ = θlook will be sub-summed and the algo-

rithm will search over the Doppler spectrum.

A couple more metrics used to analyze performance of a STAP filter are improvement factor

and minimum detectable velocity. The improvement factor is the ratio of two SINR responses. The

ratio of SINR to optimal SINR is typically used.

IF (ω) =
SINR(ω)

SINRo(ω)
(3.8)

The minimum detectable Doppler (MDD) is the lowest Doppler before a predetermined SINR loss
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Figure 3.1: Minimum Detectable Doppler of a Clairvoyant SINR

is unacceptable (typically η = 3dB). Define ωmin as the MDD

ωmin (η) =
1
2
(ωU (η)−ωL (η)) (3.9)

where ωL (η) and ωU (η) where upper and lower frequencies MDD frequencies. The minimal

detectable velocity is simply found multiplying MDD by half wavelength. In Fig. 3.1, an example

of MDD at ωmin (η = 3dB) for a arbitrary clairvoyant SINR is presented

In [8; 9; 10], a new form of the improvement factor as a function range sample intervals as a

worst case SINR over Doppler frequencies outside of clutter notch. A similar metric is introduced

called average improvement factor for detectable velocities

AIF (n(L)) = Eω

[
SINR(ω ≥ ωmin (η) ,n(L))

SINRo (ω ≥ ωmin (η))

]
. (3.10)

The frequencies greater than the MDD, ω ≥ ωmin (η), is determined using the optimal SINR at

22



η = 3dB. The SCM from (3.4) can be estimated with different number of training data samples,

n(L). Likewise, STAP SINR is will also be determined based on the n(L). The number of range

samples is increase by n(L) = 2,4, . . . ,2MN to insert a single range sample on each side of the

CUT as more samples are added to the training data. Next, SINR performance over all Doppler

frequencies outside clutter notch is averaged.

STAP research is driven by developing robust techniques to increase the accuracy of covari-

ance estimation which, in turn, will provide more accurate clutter cancellation. Reed, Mallet, and

Breenen provided a theoretical bound to the amount of training data that is needed to have an SINR

loss within 3dB of the optimal [6]. Accordingly, the loss between estimated covariance related to

the optimal covariance is beta-distributed with the following mean

E [η ] =
L+2−MN

L−1
(3.11)

Solving for L, the amount of training data to have at less a 3dB loss, must be L = 2MN−3 known

as the Reed, Mallet, Breenen (RMB) rule. Recall that number of DoF is MN. The rule is typically

generalized to L = 2MN

A myriad of problems arise with getting adequate sample support. First, the range interval may

not be covered to obtain enough sample support due to instantaneous bandwidth constraints [3].

Secondly, RMB rule makes a assumption that the clutter is independent and identically distributed

(i.i.d) [7]. This assumption refers to the clutter having the sample distribution yet uncorrelated from

one snapshot to snapshot. The homogeneous assumption also implies that all of the training data

have the same covariance estimate E
[
R̂(`)

]
= R̂ [7]. Practically, this is not the case and the i.i.d

assumption is quite often broken. From the earlier example, a littoral environment comprising of

land and sea have two completely different statistically characteristics. Deleterious environmental

effects such as ICM, clutter reflectively, clutter discretes, and/or weather cause the i.i.d. assumption

to be broken. All these clutter heterogeneities lead to less accurate covariance estimation [3].

Additionally, processing effects such as a target within the training data of the covariance matrix
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(causing self-cancellation), array mismatch, and aircraft crab further challenge accurate covariance

estimation [8; 9; 10].

Multi-waveform space-time adaptive processing (µ-STAP) [8; 9; 10] addresses clutter hetero-

geneity by utilizing a multi-datacube formulation that causes a multiplicative increase in sample

support and homogenized training sample to be more i.i.d. Multi-waveform STAP was introduced

in two forms: multiple input, multiple output (MIMO) and single input, multiple output (SIMO).

MIMO µ-STAP transmits from multiple array elements simultaneously and receives the illumi-

nated scatterers from each waveform on the array elements. Pulse compression is applied to the re-

ceive data using their respective match filter. SIMO µ-STAP transmits only one waveform (similar

to STAP) and pulse compresses the receive data with multiple pulse compression filters as if they

were transmitted. SIMO µ-STAP can be is related to multiresolution STAP approaches [18; 19]

that generate low-resolution GMTI data by using high-resolution SAR imaging [8; 9; 10]. In both

MIMO and SIMO, multiple pulse compression datacubes are outputted. The primary waveform

and match filter is the equivalent to a traditional STAP. Therefore, STAP is a single input, single

output (SISO) approach and a subset of µ-STAP.

Consider K number secondary pulse compression filters. The SIMO µ-STAP pulse compres-

sion responses are similar to (2.5) is

zprime (m,n, t) = hprime (t)∗ y(m,n, t)

zsec,1 (m,n, t) = hsec,1 (t)∗ y(m,n, t)
...

zsec,K (m,n, t) = hsec,K (t)∗ y(m,n, t)

(3.12)

where hprime (t) the primary pulse compression filter and hsec,k (t) are the secondary pulse com-

pression filters for k = 1,2, . . . ,K. The filter lengths are the same as the transmit waveform. The

match filter defined in (2.5) is used for the primary pulse compression filter in the first equation in

(3.12). The secondary filters are designed to have low cross-correlation with the primary. The new

datacubes will have a homogenization of the range samples data due to the smearing caused by the
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low-cross correlation filters. Examples of secondary filters include the reverse complex-conjugate

of the match filter or complex-conjugate of the match filter.

The primary SCM after discretization and orientation into snapshots is

R̂prime (`CUT) =
1

n(Lprime)
∑
`∈L
6̀=`CUT

zprime (`)zH
prime (`) (3.13)

where Lprime ∈ L. The cardinality of n(Lprime) is taken since is no longer the number of snapshots

in the set. The secondary SCM is

R̂µ,NP (`CUT) =
1

n(Lsec)K

K

∑
k=1

∑
`∈L

zsec,k (`)zH
sec,k (`) (3.14)

where NP denotes non-primary covariance matrix. When K = 1, this is considered SISO µ-STAP.

Note that the CUT is included in this estimation such that Lsec > Lprime. This is due to the homog-

enization of the clutter that µ-STAP causes. Leaving the CUT will spread large clutter discretes

that may reside in the CUT. The µ-STAP SCM is a summation between the primary SCM and the

non-primary SCM

R̂µ (`CUT) = R̂prime (`CUT)+ R̂µ,NP (`CUT) (3.15)

The estimated space-time weight vector to maximize SINR is

ŵ(ω,θ , `CUT ) = R̂−1
i (`CUT )cst (ω,θ) (3.16)

where R̂i (`CUT ) is replaced with the either the estimate for the primary (STAP) SCM, non-primary

SCM, or µ-STAP SCM with the potential for each to be diagonally loaded. Diagonal loading is

employed to ensure the covariance matrix is full rank.

ŵ(ω,θ , `CUT ) =
(
R̂i (`CUT )+σ

2
v I
)−1cst (ω,θ) (3.17)

where σ2
v is the receiver noise power. The adaptive filter (weight vector) is applied to pulse com-
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pressed data to form the test statistic

α̂ (θ ,ω, `CUT ) = ŵH (`CUT ,θ ,ω)z(`CUT ) (3.18)

Multi-waveform STAP was found to benefit the covariance estimation in the presence of clutter

heterogeneity. µ-STAP has shown to be effective in the estimation of the SCM because the num-

ber of independent sample data is increased by a factor of K. Under low sample support and/or

presence of heterogeneous data, µ-STAP provides enhances detection performance over STAP

[8; 9; 10]. However, STAP and µ-STAP both have high computational cost associated with it due

to the estimation and inversion of a covariance matrix on every range sample. Partially adaptive

techniques for STAP have been examined extensive [3]. In Chapter 5, these algorithms are applied

to new form of µ-STAP presented in Chapter 4.
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Chapter 4

Post Pulse Compression Multi-Waveform Space-Time Adaptive

Processing

Implementation of µ-STAP in legacy radars is challenging due to the modifications needed.

Most of these radars implements pulse compression prior to analog-to-digital conversion. The

original SIMO µ-STAP formulation utilizes a pre-pulse compressed space-time datacube to gen-

erate multiple pulse compressed datacubes through multiple pulse compression filters. Therefore,

an alternative SIMO µ-STAP to generate multiple homogenized datacubes post pulse compression

is introduced. Post multi-waveform space-time adaptive processing (Pµ-STAP) uses a single pulse

compression datacube then applies multiple homogenization filters to generate multiple datacubes

for covariance estimation. The objective of SIMO Pµ-STAP is to induce a smearing and homog-

enization of the space-time samples to SIMO µ-STAP. The generation of the homogenized pulse

compressed data is similar to the pulse compression stage in (3.12)

qprime (m,n, t) = gprime (t)∗ zprime (m,n, t)

qsec,1 (m,n, t) = gsec,1 (t)∗ zprime (m,n, t)
...

qsec,k (m,n, t) = gsec,1 (t)∗ zprime (m,n, t)

(4.1)

where gprime is the primary homogenization filter and gsec,k are the kth secondary homogenization

filters for k = 1,2, . . . ,K . The primary filter is a time-delayed impulse designed to align the fast-

time snapshots appropriately with secondary filters while the initial pulse compression response is

unaffected. Secondary filters have a uniform amplitude and a stochastic phase. For a filter length
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T , primary and secondary filters respectively are

gprime (t) = δ

(
t− T

2

)
gsec,k (t) =

1√
T

e j2πθ k(t)
(4.2)

where δ (•) is the Dirac delta function and 0 ≤ t ≤ T . The phase of the secondary filters have a

uniform distribution θk (t)~U (−0.5,0.5) for k = 1,2, . . . ,K.

The primary, non-primary, and Pµ-STAP SCMs are estimated in a similar manner to (3.13-

3.15)

R̂Pµ,prime (`CUT ) =
1

n(Lprime)
∑

`∈Lprime
6̀=`CUT

qprime (`)qH
prime (`) (4.3)

R̂Pµ,NP (`CUT ) =
1

n(Lsec)K

K

∑
k=1

∑
`∈Lprime

qsec,k (`)qH
sec,k (`) (4.4)

R̂Pµ (`CUT) = R̂Pµ,prime (`CUT)+ R̂Pµ,NP (`CUT) . (4.5)

The Pµ-STAP filter is generated similar to (3.17). The adaptive Pµ-STAP SINR is developed from

(3.5).

A common characteristics Pµ-STAP has with µ-STAP is the ability to vary the number of sec-

ondary filters. Unlike µ-STAP, a key attribute is the ability to also vary secondary filter length

regardless of the transmit waveform. In the following subsections, in-depth analysis of homoge-

nization filters new characteristics are examined. After, Pµ-STAP performance is compared with

STAP and µ-STAP in heterogeneous high-fidelity simulated datasets

4.1 Homogenization Filter Length

The pulse compression stage in Pµ-STAP sets non-smeared, SNR-maximized mainlobe and

sidelobe responses in the autocorrelation. The homogenization filter decorrelates (similar to the

low-cross correlation filters in Chapter 3) to smear the mainlobe response. In µ-STAP, application
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of secondary pulse compression filters sets the smeared mainlobe and sidelobe responses. Conse-

quently, secondary pulse compression filters must be optimized based on the primary waveform.

If the secondary filters are not designed to have low-cross correlation with the transmit waveform,

homogenization does not occur. Fortunately, for GMTI the transmit waveform is known a priori

and generation of these secondary filters is fairly simple.

The amount of decorrelation is dependent on the length of the homogenization filters. This

allows more flexibility in their design. The filter length dictates the amount of power reduction

and extent of mainlobe and sidelobe responses. To see this effect, a LFM waveform with a time-

bandwidth product of Bτ = 100 is match filtered then homogenized with different filter lengths. In

the following figures, filter lengths of BT = 5, Bτ

2 ,Bτ,2Bτ corresponding to BT = 5,50,100,200

are examined. In order to have even order linear FIR filters, some lengths were adjusted to BT =

5, Bτ

2 −1,Bτ−1,2Bτ−1 corresponding to BT = 5,49,99,199. The primary homogenization filter

response is presented in black and the secondary filter is presented in red.

Consider filter length of BT = 5 presented in Figure 4.1. The primary filter response has

mainlobe and sidelobe response typical of a LFM with the first sidelobe being 13dB down of the

mainlobe. The decorrelation is obvious. The mainlobe decrease by -10dB. The sidelobes also

decreases. Mainlobe smearing is at a minimum. Even a small filter will cause significant loss.

Next, a filter length of BT = Bτ/2− 1 is depicted in Fig. 4.2. The mainlobe smearing is

more evident than in the previous figure. Note, based on filter the dynamic range of the mainlobe

smearing can drop -40dB. For this filter length, the range is primarily localized between -15 and

-30db. Also spurious responses occur in the secondary response sidelobes. However, due to the

aggregation in the covariance, these will be averaged out. Now consider BT = Bτ−1 in Fig. 4.3.

The mainlobe smearing increases. Also, the maximum power decreases by -3dB with a increased

dynamic range. The mainlobe extends to half of the sidelobes in the primary response. Finally,

consider the final length of BT = 2Bτ−1 in Fig. 4.4. As a result, the mainlobe smearing will span

the entire extent of the match filter response.

In summary, secondary mainlobe smearing and power reduction is proportional to the length
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Figure 4.1: Primary and Secondary Homogenization Response for BT = 5
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Figure 4.2: Primary and Secondary Homogenization Response for BT = Bτ/2−1
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Figure 4.3: Primary and Secondary Homogenization Response for BT = Bτ−1
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Figure 4.4: Primary and Secondary Homogenization Response for BT = 2Bτ−1
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of the homogenization filter. The width of the smearing is equal to the length of the filter. In order

for the secondary filter mainlobe response to span the entire primary filter response (mainlobe and

sidelobes), the filter length needs to be BT = 2Bτ − 1. Interestingly, this is equivalent to the size

of the linear convolution (autocorrelation) between the transmit waveform and match filter. In

addition to mainlobe smearing, sidelobes of the receive data will expend further out. This will

expand the length of the secondary datacube as well. Increasing the number samples possible for

covariance estimation.

To understand the benefit of different filter lengths have on covariance estimation, an SINR

loss analysis was performed using Monte Carlo simulation. A airborne radar traveling at an in-

terelement spacing of β = 1 is illuminating a scene with a LFM waveform from a for a N = 5

element ULA and processing M = 21 pulses in a CPI. A heterogeneous clutter scene is examined.

First, homogeneous clutter is generated similar to [8; 9; 10] by dividing the azimuthal range ring

into 246 equal-size angle clutter patches. The scattering from each patch is i.i.d. complex Gaus-

sian. The additive noise is similarly modeled as Gaussian noise. The clutter-to-noise ratio (CNR)

is approximately 54dB. Heterogeneous clutter is generated by randomly modulating the power of

complex Gaussian homogeneous clutter patches for each range and angle clutter patch using a

Weibull distribution with a shape parameter of 1.7 [20; 21]. The additional magnitude modulation

is randomly distributed from [0, 30] dB. A uniformly distributed ICM is introduced across ±2%

of the normalized Doppler response [8; 9; 10]. A total of 50 Monte Carlo trials were implemented.

Using (4.3-4.5), covariance estimation was performed using homogenized pulse compressed

data generated for filter lengths of BT = Bτ/2− 1,Bτ − 1,2Bτ − 1. Four homogenization filters

were implemented. In [8; 9; 10], an extensive analysis of the number of secondary filters to enhance

covariance estimation was examined. It was shown that having four secondary pulse compression

filters for received processing provides the best performance. Based on the similarities of µ-

STAP and Pµ-STAP, it can be expected that the same amount of filters would be necessary. In the

succeeding subsection, this notion is confirmed in a less extensive analysis. In Figure 4.5, SINR

loss from the optimal covariance matrix is compared between STAP and Pµ-STAP. The amount
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Table 4.1: Simulated Test Flight 1 Parameters

linear FM waveform, Bτ = 100
N=5 elements in ULA
M=21 pulses in CPI

β = 1 interelement spacing in one PRI
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Figure 4.5: SINR Loss for Various Homogenization Filter Lengths

of training samples satisfies RMB rule. As filter length increases, SINR increases and minimum

detectable velocities decreases. In all instances, Pµ-STAP SINR and MDV performance is greater

than STAP. The main contributor to the benefit is the increase in sample support. Recall Pµ-STAP

sample support is a factor of K greater than STAP by virtue of the additional datacubes. Thus,

STAP has 2MN − 3 in contrast to 2KMN − 3K for Pµ-STAP. The average improvement factor

ratio between SINR and optimal SINR is examined in Figure 4.6. Note that two range samples is

the minimum (one sample on each side of CUT).
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Figure 4.6: Average Improvement Factor for Various Homogenization Filter Lengths

For very low amounts of range samples in the covariance, Pµ-STAP AIF for all different filter

lengths are about the same. At 0.5MN (1/4 of the RMB rule), the performance benefit of different

homogenization lengths is seen. The highest length of BT = 2Bτ − 1 is 2dB greater than BT =

Bτ/2−1 and 4dB greater than STAP. For all filter lengths, Pµ-STAP outperforms STAP. As more

samples are added to the training data, STAP performance begins to increase. Henceforth, we will

consider the homogenization length to be BT = 2Bτ−1.

4.2 Number of Secondary Filters

A analysis is performed for the number of homogenization filters to affirm the results in [8; 9;

10]. Recall that the number of secondary filters, K, provides a multiplicative increases the number

of training samples. The additional data is not independent. Therefore, simply adding additional

filters will not satisfy the RMB rule. Furthermore, [8; 9; 10] showed a that four secondary filters

is adequate. Any additional filters would provide very minimal improve. Using the simulated

test parameters from Table 4.1, SINR loss and AIF are implemented with STAP and Pµ-STAP in

homogeneous and heterogeneous clutter previously described in the last section. A Monte Carlo
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Table 4.2: Training Data Combinations in SINR Analysis of Number Secondary Filters

Training Data Line style/color
primary solid blue

primary, secondary K = 1 solid green
primary, secondary K = 2 solid red
primary, secondary K = 3 solid teal
primary, secondary K = 4 solid purple

secondary K = 1 dotted green
secondary K = 2 dotted red
secondary K = 3 dotted teal
secondary K = 4 dotted purple

simulation of 50 trials was performed.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normalized Doppler

-8

-7

-6

-5

-4

-3

-2

-1

0

SI
N

R
/S

N
R

 (d
B

)

with Primary

without Primary

Optimal

Figure 4.7: SINR Loss at 0.5MN for Various Number of Secondary Filters in Homogeneous Clutter

First, SINR with low-sample support in homogeneous clutter is considered since this will be the

primary regime in heterogeneous clutter. Low sample support will be considered as one-fourth of

the RMB rule, i.e. n(L) = 2MN/4 = 0.5MN. Additionally, SISO Pµ-STAP (secondary covariance

matrices only) (3.14) is presented to provide a one-to-one comparison to SISO STAP. Table 4.2
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Figure 4.8: SINR Loss at 2MN for Various Number of Secondary Filters in Homogeneous Clutter

describes the different training data combinations used in the SINR analysis.

In Figure 4.7, SISO Pµ-STAP response is one par with STAP response with some subtle vari-

ability with SINR. As the number of secondary filters increase, with or without the primary, the

SISO Pµ-STAP SINR boosts by 2dB-3dB. Interestingly, using primary with K = k secondary filters

Pµ-STAP has similar response to using no primary with secondary K = k+ 1 Pµ-STAP. There-

fore, if the primary homogenization response is not used, simply adding an additional secondary

response will provide similar SINR. The minimum detectable velocity also benefits from the ad-

dition secondary filter responses. At η = −8db SINR loss, MDD increases from ωmin,prime(η =

−8dB) = −0.10 to ωmin,Pµ(η = −8dB) = −0.07, a 30% increase. Next, SINR loss is presented

at n(L) = 2MN range samples. Analysis of homogeneous clutter allows for a fair comparison of

STAP when enough training samples are available to satisfy the RMB rule. In Figure 4.8, unlike

low sample support, a SISO Pµ-STAP does not provide the same benefits. The increase sample

support provides a boost to the STAP performance. However, even at 2MN SIMO Pµ-STAP pro-

vides an SINR benefit. The minimum detectable velocities are fairly similar for the different filter
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Figure 4.9: Average Improvement Factor for Various Number of Secondary Filters in Homoge-
neous Clutter

combinations. Finally, average improvement factor is presented for the filter combinations in Fig-

ure 4.9. The AIF benefit at 0.5MN and 2MN from SINR in Figs. 4.7-4.8 are seen. As the sample

support of the covariance estimation decreases, STAP performance decreases at a greater rate than

SIMO Pµ-STAP. Each combination shows a asymptotic bound on performance. As the number of

secondary filters increases, the number of ranges samples in the training data Pµ-STAP needs to

reach this bound decreases. Again, SISO Pµ-STAP provides the same performance as STAP.

The different filter combinations in heterogeneous clutter will now be presented. In Figures

4.10-4.11, SINR Loss is shown at n(L) = 0.5MN and n(L) = 2MN, respectively. The affect het-

erogeneous clutter has on SINR performance is clear. In Fig. 4.10, the maximum SINR loss of the

different combinations is η =−7.0dB compared to η =−1.4dB in homogeneous clutter. The per-

formance benefit of Pµ-STAP over STAP is still the same. A 2-3dB improvement is still observed

and MDD increases. Fig 4.11 shows that SISO Pµ-STAP has a greater SINR loss than STAP and

SIMO Pµ-STAP provides a marginal increase in SINR. In Fig 4.12, AIF is presented. In com-
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Figure 4.10: SINR Loss at 0.5MN for Various Number of Secondary Filters in Heterogeneous
Clutter
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Figure 4.11: SINR Loss at 2MN for Various Number of Secondary Filters in Heterogeneous Clutter
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Figure 4.12: Average Improvement Factor per Range Sample Intervals for Various Number of
Secondary Filters in Heterogeneous Clutter

parison to homogeneous (Fig. 4.9), there is a -4dB or more decrease in AIF for all combinations.

SISO Pµ-STAP is no longer robust enough to contend with STAP. Otherwise, the performance

improvement trends are the same. SIMO Pµ-STAP AIF increases with the number of secondary

filters and needs less samples to do it.

In summary, Pµ-STAP provides greater minimal detectable velocity, less SINR loss, and greater

improvement factor with less samples in the training data than STAP. This was presented in low and

high sample support regimes in homogeneous and heterogeneous clutter. Similar to [8; 9; 10], four

secondary filters were shown to have the best benefit in performance. Henceforth, all Pµ-STAP

results will contain four secondary filters unless otherwise specified.

4.3 µ-STAP and Pµ-STAP Performance Comparison

Now that the basic characteristics of the homogenization filters in SIMO Pµ-STAP has been

concluded. A comparison to its counterpart, SIMO µ-STAP, can now be conducted. In this section,
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an SINR analysis of these algorithms are compared in heterogeneous clutter. A description of the

heterogeneous clutter generation was provided in section 4.1. In addition, two rigorous forms of

clutter heterogeneity is presented: clutter discrete in the CUT and targets in the training samples

[8; 9; 10]. A clutter discrete is a stationary scatterer that has a high power return. A clutter discrete

localized in a single range cell without similar clutter in training data will not be characterized

by the SCM. Therefore, the clutter discrete in a CUT will not be nullified [8; 9; 10; 22]. Targets

in training samples that have similar scatterer characteristics as a potential target in the CUT will

cause self-cancellation. In [8; 9; 10], µ-STAP was shown to provide a substantial benefit in SINR

and worst-case improvement factor over STAP in these heterogeneous scenarios. Here, Pµ-STAP

will provide a similar analysis to determine if it is also robust under similar circumstances. For

completeness, SISO forms of STAP, µ-STAP, and Pµ-STAP is also presented.
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Figure 4.13: µ-STAP and Pµ-STAP SINR Loss at 0.5MN in Heterogeneous Clutter

This analysis begins with examining these algorithms in heterogeneous clutter. In Figure 4.13,

SINR loss in the low sample support regime is presented. Table 4.3 shows the different algorithms
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and their corresponding line style and color. All SISO algorithms have similar SINR. Interestingly,

SIMO Pµ-STAP has better SINR performance than SIMO µ-STAP. This may due to several dif-

ferent things. One being the relationship between the number of samples in the training data and

homogenization filter length since Pµ-STAP secondary filter lengths can be increases beyond the

µ-STAP filter length. Another option may be that applying homogenization after pulse compres-

sion preserved some fidelity allowing for more robustness. More research need to be conducted

to examine this further. For the purposes of this analysis, the importance is that Pµ-STAP has

equal or greater performance than µ-STAP. Fig. 4.14 shows the AIF. At full support, µ-STAP has

a better improvement factor than Pµ-STAP. Also, STAP is overall better than SISO µ-STAP and

SISO Pµ-STAP algorithms.

The analysis continues with a high power 20dB clutter discrete in the CUT within a heteroge-

neous scene shown in Figure 4.15. The degradation of clutter discrete causes a overall decrease

in SINR loss and imbalance in SINR across detectable Doppler frequencies varying a couple deci-

bels. At low sample support, Pµ-STAP again outperforms µ-STAP. But, there is no improvement

in minimum detectable velocity. SISO µ-STAP and SISO µ-STAP are more robust to the clutter

discrete than STAP. This is further seen in the AIF in Fig. 4.16. STAP initially has better AIF but

the other SISO algorithms rapidly increase with increasing sample support.

Finally, targets in the training data is examined. In Figure 4.19, ten targets were placed in train-

ing samples (5 one each side of CUT after guard cells) in a heterogeneous clutter. The target power

of each was 15dB SNR. The impact of self-cancellation is seen at ω = 0.49. SISO and SIMO Pµ-

STAP is more robust to the clutter discrete with the former having the edge. All other algorithms

Table 4.3: Training Data Combinations in Performance Comparison

Algorithm Line style/color
STAP solid blue

SISO µ-STAP dotted green
SISO Pµ-STAP dotted red
SIMO µ-STAP dashed green

SIMO Pµ-STAP dashed red
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Figure 4.14: µ-STAP and Pµ-STAP Average Improvement Factor in Heterogeneous Clutter
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Figure 4.15: µ-STAP and Pµ-STAP SINR Loss at 0.5MN with Clutter Discrete in CUT
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Figure 4.16: µ-STAP and Pµ-STAP Average Improvement Factor with Clutter Discrete in CUT
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Figure 4.17: µ-STAP and Pµ-STAP SINR Loss at 0.5MN with Targets in Training Data
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under performed. The AIF was also examined. The results were similar to heterogeneous clutter

without self-cancellation (Fig. 4.14). Since the effect of self-cancellation is best seen in SINR, it

is not pertinent to present.

To summarize, in the presence of clutter discrete and self-cancellation, SISO µ-STAP and

SISO Pµ-STAP provide a improvement in performance over SISO STAP. However, for a simple

heterogeneous scene SISO STAP outperforms them. Incorporating additional secondary filters to

the family of µ-STAP algorithms will provide a improvement in detection performance. Over-

all, Pµ-STAP has similar or greater performance than µ-STAP. Whether it be pre- or post-pulse

compression, smearing for identically distributed data and multiple datacubes will provide a per-

formance benefits over STAP.

4.4 Pµ-STAP in High Fidelity Knowledge Aided Radar Architecture

Up to this point, analyses were performed on control simulated datasets that provided a great

baseline to the behavior of Pµ-STAP in heterogeneous clutter. A primary attribute of Pµ-STAP is

its ability to be performed on pulse compressed data without the necessity a priori knowledge of the

transmit waveform. As a true test of performance, Pµ-STAP was examined in a simulated, high-

fidelity Knowledge Aided Sensor Signal Processing and Expert Reasoning (KASSPER) dataset

developed as a challenge by Defense Advanced Research Projects Agency (DARPA) in 2002 [23].

KASSPER using knowledge aided adaptive radar architecture that incorporates environmental clut-

ter knowledge that operational radars encounter [24]. In KASSPER, the airborne platform is trav-

eling at 100m/s. A 8×11 UPA is vertically beamformed to N = 11 elements spaced at d = 10.9cm.

At a PRF of fr = 1284, M = 32 pulses are collected in a CPI. Therefore, low sample support will

be 0.5MN = 88 and full sample support is 2MN = 352. The interelement spacing traveled in one

PRI is β = 0.923. The dataset spans 35-50 km for 1000 range samples.

SINR Loss at low sample support for KASSPER range CUTs 26, 236, and 400 are pre-

sented. Each provide different deleterious effects to the STAP filter. STAP and Pµ-STAP are

presented in blue and red, respectively. In Figure 4.18, similar SINR response to a clutter dis-
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Figure 4.18: SINR Loss in KASSPER Range Sample 27

crete in the CUT is seen. In detectable Doppler frequencies where STAP has a large SINR loss

(ω = −0.32.− 0.09,0.32), Pµ-STAP provides the expected improvement in SINR. In addition,

Pµ-STAP increases the MDD. Although there is an improvement, this is a strong contrast to the

previous results (4.15). In the control results, Pµ-STAP was 2-3dB in improvement and STAP

never performed better than Pµ-STAP at any Doppler frequencies. Here, STAP outperforms at

ω = .25, .45.

This benefit over Pµ-STAP is further seen in the AIF in Fig. 4.19. In the lower sample support

regimes, Pµ-STAP is greater STAP. As n(L) increases, STAP performance suppresses Pµ-STAP.

Also, Pµ-STAP shows a dip in performance as number of samples increases. The improvement

factor shows AIFPµ (MN) < AIFPµ (0.5MN). In all previous results, as the number of samples

increased so did AIF such that AIFPµ (MN) > AIFPµ (0.5MN). Therefore, Pµ-STAP shows its

benefit may be scenario dependent.

In CUT 236 presented in Figure 4.20, STAP SINR degradation is very significant falling as

low as -18dB in frequencies outside of the clutter notch. This degradation is similar to targets in
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Figure 4.19: Average Improvement Factor in KASSPER Range Sample 27

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normalized Doppler

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

SI
N

R
/S

N
R

 (d
B

)

STAP

P -STAP

Optimal

Figure 4.20: SINR Loss in KASSPER Range Sample 236
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Figure 4.21: Average Improvement Factor in KASSPER Range Sample 236

the training data (Fig. 4.17) presented in the previous section. Pµ-STAP, in contrast, maintains a

SINR performance having no less than η = −7dB. However, there are some frequencies where

STAP still outperforms Pµ-STAP (ω =−0.31,0.31). Examination of AIF in 4.21 shows the stark

improvement in SINR Pµ-STAP as a function of range sample intervals. Pµ-STAP reaches the

asymptotic bound with very low sample support then slightly increases. Examining CUT 236

shows the great benefit Pµ-STAP can have in detection performance in the presence of significant

heterogeneity. However, test CUT 400 shows the first instance of Pµ-STAP under performing.

In Figure 4.22, SINR loss in CUT 400 in low sample support is presented. Due to the high

performance of STAP, the training data and test cell are homogeneous. Pµ-STAP performance is

still excellent where ηPµ >−2.5dB in the detectable velocities. However, homogenization causes

a opposite effect making the training data less i.i.d. In Fig 4.3, Pµ-STAP AIF shows that it does

not need much support to have high SINR. Nevertheless, STAP performance is better as sample

support increases.
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In summary, the large performance boost Pµ-STAP provides in heterogeneous cells comes at

the small expense of degradation in homogeneous cells. If this can be accepted, then Pµ-STAP is

applicable under any circumstance. Otherwise, Pµ-STAP is an environment specific algorithm and

needs to be further implemented on heterogeneous datasets to confirm this.
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Chapter 5

Partially Adaptive Multi-Waveform Space-Time Adaptive

Processing

Fully adaptive space-time adaptive processing has been assumed to this point. Fully adaptive

refers to using all available degrees of freedom for clutter cancellation. Sample support necessary

to satisfy RMB of 2MN− 3 may not be attainable due to constraints on the instantaneous band-

width [3]. Also, the number of homogeneous samples in a range interval may not be available for

accurate estimation of the fully adaptive covariance matrix. Additionally, inverting and estimating

a covariance matrix for every range cell can be computationally expensive making it not be feasi-

ble for real-time application. The number of operations to estimate and invert covariance matrix is

O(M2N2L) and O(M3N3), respectively [2]. Sample support constraints and computational cost is

directly related to the amount of pulses and elements. Reduction of either will lead to less sample

support requires and faster computations.

Partially adaptive STAP consist of reducing the temporal and/or spatial samples thereby reduc-

ing the amount of samples needed to satisfy the RMB rule. For temporal reduction, sub-CPIs is

formed from the CPI either pre- or post-Doppler processing. Similarly, spatial reduction occurs

when beamforming is performed on subarrays. In [3], a in-depth analysis of partially adaptive

algorithms with STAP showed that partially adapting the STAP filter will improve the aforemen-

tioned challenges. Furthermore, partial adaptations improves clutter cancellation over fully adap-

tive. Still, it is not very robust in the presence of heterogeneous clutter.

Fully adaptive µ-STAP and Pµ-STAP is very robust to clutter heterogeneity as seen in the

previous chapter. In addition, it outperforms STAP when each is faced with limited sample sup-
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port. However, they have similar computation complexity as fully adaptive STAP. Although their

inversion cost reminds the same, estimation slightly increases to O
(
M2N2 (Lp +KLs)

)
. Since this

is a common challenge, similar analysis of partially adaptive techniques for this multi-datacube

formulation is necessary to determine if it will still provide the clutter estimation benefits.

The partial adaptation considered will be data-independent, e.g. non-adaptive, using DFT ma-

trices [25]. Another method is principle components method. This uses a eigendecomposition of

the estimated covariance matrix is to create a orthogonality projection remove the clutter[2; 25].

A eigendecomposition is has the same computational cost as a matrix inversion. Therefore, this

method has a high computationally expense.

A overview of partially adaptive STAP from [3] will now be presented. Dimension reduc-

tion is performed using a linear transformation which characterizes the nature of the reduction,

whether it be temporal, spatial or both. Define matrix T as a transformation matrix. In general, the

transformation is applied to the covariance matrix and space-time steering vector as

R̃ = THRT (5.1)

c̃st = THcst (5.2)

where R is the STAP covariance matrix. The transformed adaptive filter is therefore

w̃ = R̃−1c̃st =
(
THRT

)−1THcst (5.3)

For analysis purposes to compare with fully adaptive STAP, it is best to map the transformed filter

on the full dimension space by

w̃c = Tw̃

= T
(
THRT

)−1THcst

(5.4)

The incorporation of µ-STAP and Pµ-STAP consist of simply replacing their covariance matrix
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with the STAP covariance matrix within (5.4).

Figure 5.1 diagrams the four possible combinations of dimension reduction. Element-space

pre-Doppler is full array pre-beamforming, sub-CPI pre-Doppler processing temporal reduction.

Element-space post-Doppler is full array pre-beamforming, sub-CPI post-Doppler processing tem-

poral reduction. Beam-space pre-Doppler is a sub-array post-beamforming, sub-CPI pre-Doppler

processing spatio-temporal reduction. Beam-space post-Doppler is a sub-array post-beamforming,

sub-CPI post-Doppler processing spatio-temporal reduction. Some form of coherent integration is

useful in the dimension reduction. Therefore, element-space pre-Doppler will be excluded from

analysis.

Figure 5.1: Partially Adaptive Algorithms [3]

The incorporation of the family of µ-STAP algorithms is fairly straight forward. The receiver

processing chain for partially adaptive Pµ-STAP is presented in Figure 5.2. The receive data is

pulse compressed and passed through the match filter. Discretization is perform using a analog-

to-digital converter. After, homogenization is performed using Pµ-STAP filters. Covariance esti-

mation is performed then aggregated to produce the Pµ-STAP covariance matrix. The covariance

is transformed then feed into the STAP processor. In the processor, the space-time steering vec-

tors are transformed, the partially adaptive filter is created, and applied to the pulse compressed
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data, z(`). Whether it is MIMO, SIMO pre-pulse compression, or SIMO post-pulse compression

µ-STAP, a single covariance is generated after aggregation (3.15,4.5). Therefore, the following

partially adaptive techniques is generalized to the family of µ-STAP algorithms.

Figure 5.2: Recieve Processing Chain for Partial Adaptive µ-STAP

In the following sections, a similar SINR analysis to Chapter 4 is performed. A N = 11 element

uniform linear array with d = λc/2 spacing emits M = 21 pulses in a CPI. The platform is traveling

at β = 1. Table 5.1 shows the simulated test flight parameters. The waveform is a optimized

polyphase-coded FM waveform [12; 13] with a Bτ = 100. PCFM waveforms use continuous

phase modulation form a code to generate a non-linear FM waveform. Non-linear FM waveform

provide great sidelobe benefits. Generation of this waveform is outlined in Appendix A of [10].

Four homogenization filters with a length of BT = 2Bτ − 1 are used. In Figure 5.3, the primary

(in black) and secondary homogenization response for a optimized PCFM is depicted. The three

clutter scenarios are examined: heterogeneous, clutter discrete in CUT, target in training data. The

clutter-to-noise ratio is 54dB. Additive noise is complex white Gaussian. The following sections

will now present the transformation matrix generation injunction with µ−STAP.
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Table 5.1: Simulated Test Flight 2 Parameters

Optimized PCFM waveform, Bτ = 100
N=11 elements in ULA

M=21 pulses in CPI
β = 1 interelement spacing in one PRI

Figure 5.3: Primary and Secondary Homogenization Filter Responses for PCFM Waveform

5.1 Element-Space Post-Doppler

In this section, Element-space multi-window post-Doppler µ-STAP is presented. This work

was previously presented in [26]. Element-space multi-window post-Doppler (ESPoD) µ-STAP

employs different Doppler filters to the pulsed echoes received at each antenna element. In other

words, for ESPoD the processing in Doppler is non-adaptive and localized to a set of Dt Doppler

bins. Spatial processing is then fully adaptive across the antenna elements. Therefore, each an-

tenna element has an identical bank of Dt filters for the mth Doppler bin to form a space-time

transformation matrix

Tm = F̃m⊗ IN (5.5)
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where F̃m is an matrix consisting of M×Dt filters of Dt length-M for the mth Doppler bin and IN is

a N×N identity matrix corresponding to the N antenna elements [3]. The set of filters used to form

the Doppler filter bank in (5.5) can be selected in two ways: PRI-staggered [3] and adjacent-Bin

[27].

PRI-staggered develops a Doppler filter that is a subset of the entire Doppler filters and slides

this filter over sub-CPIs. A set of M′ sub-CPIs is given a set of M pulses by

M′ = M−Dt +1 (5.6)

Define U = [u0 u1 · · · uM−1] as a M′×M DFT matrix constructed from the first M′ rows of a

DFT matrix where each um is length M′×1. Also, define b1 as a M′×1 taper. The mth Doppler

filter is defined as [3]

fm = b1�u∗m (5.7)

where � is a Hadamard product and (•)∗ denotes complex conjugation. A M×Dt Toeplitz matrix

is formed for the mth Doppler filter bank

F̃m =



fm (0) 0 · · · · · · 0 0

fm (1) fm (0) . . . ...
...

... fm (1) . . . . . . ...
...

fm (M′−1)
... . . . 0

...

0 fm (M′−1) fm (0) 0
... 0 . . . fm (1) fm (0)
...

... . . . . . . ... fm (1)
...

... . . . fm (M′−1)
...

0 0 · · · · · · 0 fm (M′−1)



(5.8)

Adjacent-bin post-Doppler combines spatial samples from Dt neighboring Doppler bins cen-

tered about the mth center bin such that the Doppler bins used for adapting to the mth bin are
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indexed as m−P, . . . ,m, . . . ,m+P, where

P = (Dt−1)/2 (5.9)

A similar DFT matrix U used for adjacent-Bin except um is length M× 1. Define b2 as a M× 1.

The tapered mth Doppler filter is defined as

fm = b2�u∗m (5.10)

The mth Doppler filter bank used in (5.5) is then given as

F̃m = [fm−P · · · fm · · · fm+P] (5.11)

For adjacent-Bin, note that Dt must be odd and the Doppler filter bank should wrap around the

edges of the Doppler space. Tapering differs for PRI-staggered and adjacent-Bin. In order to

ensure the matrix is full-rank, a tapering must be applied to the PRI-staggered. Typically a 20-

30dB Chebychev taper is suffice. The same is not necessary for adjacent-Bin. A uniform taper

is typically used unless additional sidelobe suppression is warranted. The transformed covariance

for µ-STAP (3.13) or Pµ-STAP (3.17) using general transformation formulation described in (5.1)

and the ESPoD transformation matrix is

R̃µ,m (`) = TH
mR̂µ (`)Tm

R̃µ,m (`) = TH
mR̂prime (`)Tm +TH

mR̂µ,NP (`)Tm

R̃µ,m (`) = R̃prime,m (`)+ R̃µ,NP,m (`)

(5.12)

Similarly, the ESPoD transformed space-time steering vector is

c̃st,m (θ ,ω) = TH
mcst (θ ,ω) (5.13)
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Therefore, the mth transformed µ-STAP adaptive filter is obtained in a similar fashion to (5.3) is

w̃m (`,θ ,ω) = R̃−1
m (`) c̃st,m (θ ,ω)

=
(
TH

mR̂(`)Tm
)−1TH

mcst (θ ,ω)

(5.14)

where R̂(`) corresponds to primary only, non-primary, or µ-STAP sample covariance matrix. Note

that difference in line style/color combinations than in previous chapters as shown in Table 5.2. A

solid line denotes a STAP, dashed line denotes SIMO Pµ-STAP, and dotted line denotes SISO

Pµ-STAP. The different color represent a different reduction amount.

Table 5.2: Training Data Combinations in SINR Analysis of Partial Adaption

Training Data Line style/color
Fully adaptive, SISO STAP solid blue

Fully adaptive, SIMO Pµ-STAP K = 4 dashed blue
Fully adaptive, SISO Pµ-STAP K = 1 dotted blue

Partially adaptive, SISO STAP solid red
Partially adaptive, SIMO Pµ-STAP K = 4 dashed red
Partially adaptive, SISO Pµ-STAP K = 1 dotted red

Partially adaptive, SISO STAP solid green
Partially adaptive, SIMO Pµ-STAP K = 4 dashed green
Partially adaptive, SISO Pµ-STAP K = 1 dotted green

In the first analysis, ESPoD is examined in heterogeneous clutter. The post-Doppler algorithms

reduce M = 21 to Dt,1 = 5 and Dt,2 = 11 pulses in each sub-CPI to compare the two sample support

regimes. Partial adaptivity does not occur over element-space. Therefore, the number of elements

remain the same at N. For tapering, PRI-Staggered processing uses a 20dB Chebychev taper and

adjacent-Bin processing is uniformly tapered. Fully adaptive STAP algorithms are also shown for

completeness.

5.1.1 Heterogeneous Clutter

Low sample support of .5NM = 115.5 will have enough samples to satisfy RMB rule reducing

to 2NDt,1 = 110. Therefore, a SINR loss analysis will be performed at n(L) = 2NDt,1. Consider
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PRI-Staggered algorithm presented in Fig. 5.4 Partially adaptation provides a benefit of perfor-

mance for STAP and Pµ-STAP. A lobing effect occurs when reducing to Dt,1 = 5. It consistent

for STAP and Pµ-STAP. This effect was similarly seen in [3]. It is due to mismatch loss from

implementing the staggered Doppler filters. Note this doesn’t occur at Dt,1 = 11. Nonetheless,

Pµ-STAP provides a benefit over STAP. The amount of benefit Pµ-STAP has over STAP decreases

proportionally with decreeing number of pulses in a sub-CPI. This is expected since the sample

support for partially adaptive STAP satisfies the RMB rule. Overall, STAP SINR loss is less than

Pµ-STAP.
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Figure 5.4: ESPoD PRI-Staggered SINR Loss at 2NDt in Heterogeneous Clutter

Figure 5.5 shows the average improvement factor for ESPoD. AIF between between Dt,1 = 5

and Dt,2 = 11 for Pµ-STAP is indistinguishable. Based on the lack of straddling by Dt,2 = 11 seen

in SINR Loss from Fig. 5.4, it can be consider as superior. Both are better than STAP. As sample

support increases, STAP reduction of Dt,1 = 5 improves at a faster rate than Dt,2 = 11. ESPoD

adjacent-Bin will now be considered in Figure 5.6. The filter mismatch is consistent in STAP

and Pµ-STAP. The greater the amount of reduction, the greater the benefit. For each reduction
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59



0 2ND
t1

2ND
t2

1.5NM 2NM

Range Samples

-6

-5

-4

-3

-2

-1

0

S
IN

R
/ o

p
ti

m
al

 S
IN

R
 (

d
B

)

P -STAP (1 secondary)
P -STAP (Primary + 4 secondary)
STAP

Fully Adaptive

Partially Adaptive
(D

t
=11)

Partially Adaptive
(D

t
=5)

Figure 5.7: ESPoD Adjacent-Bin Average Improvement Factor in Heterogeneous Clutter

Pµ-STAP is marginally better than STAP. In Figure 5.7, the AIF of adjacent-Bin ESPoD. As the

number of sub-CPIs are reduced, Pµ-STAP provides dwindling improvement over STAP. In spite

of this, Pµ-STAP compared to STAP is in the small sample support regime, which is the most

realistic regime for an operational system. Comparing PRI-Staggered (Fig. 5.5) and adjacent-Bin

(Fig. 5.7), the latter AIF is greater than the former by .5dB.

In summary, Pµ-STAP is applicable in element-space post-Doppler processing. In each reduc-

tion algorithm, Pµ-STAP detection performance is better than STAP. However, the improvement

Pµ-STAP has over STAP is not as much as in full adaptation since the RMB rule has been de-

creased.

5.1.2 Clutter Discrete in CUT

In Figure 5.8, ESPoD PRI-staggered is examined in heterogeneous clutter with a 20dB clutter

discrete in the CUT. Pµ-STAP robustness to a clutter discrete in fully adaptive processing also

occurs in partial adaptation. STAP performance degradation is greater than Pµ-STAP for both
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Figure 5.8: ESPoD PRI-Staggered SINR Loss at 2NDt with Clutter Discrete in CUT

reductions. Regarding reduction amounts, Dt,2 = 11 performance is greater than Dt,2 = 5. In

ESPoD PRI-staggered for heterogeneous clutter without a clutter discrete, the lower reduction was

on average the same as its counterpart. Here, the lower reduction loses fidelity due to clutter

discrete. Also, no significant straddling mismatch occurs at Dt,2 = 11. The AIF in Fig. 5.9

further confirms loss in performance of Dt,2 = 5. The performance curve for Dt,2 = 5 is less

than Dt,2 = 11 for each STAP algorithm. Pµ-STAP has a AIF(2NDt,2) = 3.8dB and STAP is

AIF(2NDt,2) = 4.9dB. A full 1dB improvement even with partially adaptive STAP satisfying

RMB rule. ESPoD adjacent-Bin SINR loss is presented in Figure 5.10. The adjacent-Bin algorithm

is less robust to the clutter discrete as the filter mismatch causing straddling across normalized

Doppler is greater than previously seen. Again, the algorithm does not affect STAP or Pµ-STAP

independently. Also, Pµ-STAP continues to show a SINR benefit. The AIF in Fig. 5.11 shows

adjacent-Bin Pµ-STAP provides a performance increase.
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Figure 5.11: ESPoD Adjacent-Bin Average Improvement Factor with Clutter Discrete in CUT

5.1.3 Targets in Training Data

Lastly, ESPoD is examined in heterogeneous clutter with targets in training data. Ten targets

were placed in training samples (5 one each side of CUT after guard cells) in a heterogeneous

clutter. The target power of each was 15dB SNR. Partially adaptive STAP robustness to self-

cancellation is less than fully adaptive Pµ-STAP as seen at ω = .49. It even falls below SISO

Pµ-STAP. Each of these are also effected by self-cancellation. However, for Pµ-STAP, a 3dB

benefit occurs when reducing to Dt,1 =. For adjacent-Bin in Fig 5.13, the robustness as far better.

The self-cancellation notch is greater than fully adaptive performance in one instance.

A couple conclusions can be made about ESPoD. Adjacent-bin provides a higher average im-

provement factor over PRI-staggered but has higher mismatch loss. If moderate sample support is

desired when performing ESPoD, PRI-staggered will provided the best response where mismatch

is at a minimal. If low sample support is required, on average, adjacent-Bin will best option. The

behavior of these partially adaptive algorithms is consistent in Pµ-STAP and STAP. In spite of

these, Pµ-STAP SINR performance was always greater by at least 1dB at low sample support. In
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Figure 5.13: ESPoD Adjacent-Bin SINR Loss at 2NDt with Targets in Training Data
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the presence of targets in training data, simulated results show both partially adaptive algorithms

in Pµ-STAP are very robust.

5.2 Beam-Space Pre-Doppler

Beam-space pre-Doppler (BSPrD) are a set of techniques related to displaced phase center

antenna processing (DPCA) [4] and is a dual of element-space post-Doppler, where spatial beam-

forming is performed before adaptive processing. The temporal adaptive processing may be car-

ried out across the full temporal space, but the amount of pulses within a CPI is often fairly large.

Therefore, it is more efficient to reduce the MN-dimensional problem by applying beamformers

over a subset of slow-time samples. A CPI of M pulses are subdivided into a set of M′ sub-CPIs

consisting of Dt pulses determined from (5.6).

Each m′th sub-CPI has an identical bank of Ds beamformers for the nth antenna element to

form a MN×DtDs space-time transformation matrix

Tm′n = Jm′⊗Gn (5.15)

where Jm′ is a sub-CPI selection matrix for sub-CPI m′ and Gn is the nth beamformer matrix. The

space-time dimension reduction total is D = DtDs . The selection matrix is formed by

Jm′ =


0m′×Dt

IDt

0(M−Dt−m′)×Dt

 (5.16)

The reduced dimension beamforming matrix Gn can be structured in two manners: displaced-beam

and adjacent-beam. These have similar structures to aforementioned PRI-staggered and adjacent-

Bin, respectively. PRI-staggered can be consider as standard DPCA and adjacent-Bin is similar

to DPCA using sum and difference beams [3; 4]. For displace-beam pre-Doppler, a set of N′
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sub-apertures given a set of N elements are

N′ = N−Ds +1 (5.17)

Define a N×N DFT matrix constructed from the first N′ rows of a DFT matrix and a1 be an N′×1

taper. The nth beamformer is defined as [3]

gn = bDB�u∗n (5.18)

A N×DS beamformer matrix is then formed in a Toeplitz structure similar to (5.8)

G̃n =



gn (0) 0 · · · · · · 0 0

gn (1) gn (0)
. . . ...

...
... gn (1)

. . . . . . ...
...

gn (M′−1)
... . . . 0

...

0 gn (M′−1) gn (0) 0
... 0 . . . gn (1) gn (0)
...

... . . . . . . ... gn (1)
...

... . . . gn (M′−1)
...

0 0 · · · · · · 0 gn (M′−1)



(5.19)

Adjacent-beam combines temporal samples from Ds adjacent beams centered about the nth bin

center frequency such that n−Q, . . . ,n, . . . ,n+Q, where

Q = (Ds−1)/2. (5.20)

The reduced dimension beamformer matrix for the nth antenna element is defined as

G̃n = [gn−Q · · ·gn · · ·gn+Q] . (5.21)
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In [3], an in-depth analysis of the impact of various beamformer matrix implementations. Here

traditional spatial beamforming in a single look direction θlook. The transformation is also applied

to the space-time steering vector such that

c̃st,m′,n (θlook,ω) = TH
m′ncst (θlook,ω) (5.22)

where c̃st,m′,n (θlook,ω) is DtDs×1. These outputs are applied to the µ-STAP SCMs to form

R̃µ,m′,n (`) = TH
m′,nR̂µ (`)Tm′,n

R̃µ,m′,n (`) = TH
m′,nR̂prime (`)Tm′,n +TH

m′,nR̂µ,NP (`)Tm′,n

R̃µ,m′,n (`) = R̃prime,m′,n (`)+ R̃µ,NP,m′,n (`)

(5.23)

Therefore, the nth adaptive beamformer for the m′ sub-CPI is

w̃m′,n (`,θ ,ω) = R̃−1
m′,n (`) c̃st,m′,n (θ ,ω)

=
(

TH
m′,nR̂(`)Tm′,n

)−1
TH

m′,ncst (θ ,ω)

(5.24)

where R̂(`) corresponds to primary only, non-primary, or µ-STAP sample covariance matrix.

5.2.1 Heterogeneous Clutter

In the following analyses, N = 11 is reduced to Ds = 5 and M = 21 to Dt,1 = 5 and Dt,2 =

11.The multi-dimension reduction decreases sample support of the test parameters to 2DsDt,1 = 50.

SINR loss analysis will be performed at n(L) = 2DsDt,1. The BSPrD analysis begins in Figure 5.14

showing displace-beam with heterogeneous clutter. The lobing effect from mismatch loss for the

BSPrD is quite significant. Fortunately, this is consist between STAP and Pµ-STAP. Therefore,

it is not a by product of covariance matrices but the reduction algorithms. As typically seen, Pµ-

STAP SINR performance is greater than STAP. In Fig. 5.15, AIF for displaced-beam BSPrD is

presented. As expected, Pµ-STAP improvement factor is also greater than STAP.
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Figure 5.14: BSPrD Displace-Beam SINR Loss at 2DsDt,1 in Heterogeneous Clutter
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Figure 5.15: BSPrD Displace-Beam Average Improvement Factor in Heterogeneous Clutter
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Figure 5.16: BSPrD Adjacent-Beam SINR Loss at 2DsDt,1 in Heterogeneous Clutter
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Figure 5.17: BSPrD Adjacent-Beam Average Improvement Factor in Heterogeneous Clutter

Adjacent-beam BSPrD SINR is presented in Figure 5.16. The mismatch is worst than displace-
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beam. The results drop below fully adaptive in some Doppler frequencies. The benefit Pµ-STAP

has over STAP is much less than being fully adaptive but still is better. Continuing onto the AIF

in Fig. 5.17, at 2DsDt,1 Pµ-STAP has a 1dB improvement over STAP. At the same point in full

adaptation, Pµ-STAP has a 1.5dB benefit. The improvement compared to STAP decreases with

reduction. Similar behavior at 2DsDt,2.

5.2.2 Clutter Discrete in CUT

Next, BSPrD algorithms will be examined in heterogeneous data with a clutter discrete in the

CUT. Figures 5.18-5.19, show the BSPrD displace-beam SINR and AIF, respectively. The clutter

discrete has the degrades SINR loss for all the different responses. The robustness Pµ-STAP had

in full adaptation is also seen here.
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Figure 5.18: BSPrD Displace-Beam SINR Loss at 2DsDt,1 with Clutter Discrete in CUT
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Figure 5.19: BSPrD Displace-Beam Average Improvement Factor with Clutter Discrete in CUT

In Figures 5.20-5.21, adjacent-beam SINR and AIF is presented. The SINR is similar to

displace-beam. The MDD at 2DsDt,1 decreases to the same frequency as fully adaptive STAP

for partially adaptive STAP and partially adaptive Pµ-STAP. At 2DsDt,1, MDD at for Pµ-STAP

slightly improves above fully adaptive Pµ-STAP. The difference between the two the reductions is

a fraction of a decibel throughout Pµ-STAP AIF. In contrast, the difference in AIF in STAP can be

a much as 1dB at 2DsDt,2.
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Figure 5.20: BSPrD Adjacent-Beam SINR Loss at 2DsDt,1 with Clutter Discrete in CUT
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Figure 5.21: BSPrD Adjacent-Beam Average Improvement Factor with Clutter Discrete in CUT
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5.2.3 Targets in Training Data

The final section in 5.2 will examine self-cancellation due to targets in the training data. In

previous chapters, Pµ-STAP was very robust to this heterogeneity. This carries over into partial

adaptation. Figures 5.22 and 5.23 show displace-beam and adjacent-beam BSPrD algorithms,

respectively. The self-cancellation is occurring at ω = 0.49. SIMO Pµ-STAP significantly boosts

performance such that target cancellation notch is not seen in partially adaption. This is for both

reduction amounts and algorithms .

To summarize, BSPrD algorithms consists of mismatch loss that is consistent on STAP and

Pµ-STAP. The benefits Pµ-STAP translates to partially adaptive BSPrD. There is SINR loss and

higher improvement factors in the presence of a clutter discrete in the CUT and great robustness to

a self-cancellation.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normalized Doppler

-16

-14

-12

-10

-8

-6

-4

-2

0

S
IN

R
/S

N
R

 (
d

B
)

P -STAP (1 secondary)

P -STAP (Primary + 4 secondary)

STAP

Partially Adaptive
(D

s
=5,D

t
=11)

Fully Adaptive

Partially Adaptive
(Ds=5,Dt=5)

Optimal

Figure 5.22: BSPrD Displace-Beam SINR Loss at 2DsDt,1 with Targets in Training Data
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Figure 5.23: BSPrD Adjacent-Beam SINR Loss at 2NDt with Targets in Training Data

5.3 Beam-Space Post-Doppler

Beam-space post-Doppler preprocesses spatial and temporal signals by utilizing the Doppler

filter bank F̃m and the beamformer matrix Gn presented in sections 5.1 and 5.2 [3]. PRI-staggered

or adjacent-Bin can be combined with either displace-beam or adjacent-beam. Analogous algo-

rithms from will be paired for reduction such that PRI-staggered (5.8) will be combined with

displace-beam (5.19), and adjacent-Bin (5.11) will be combined with adjacent-beam (5.21). Using

these algorithms, the transformation matrix for space-time partial adaptive is

Tmn = F̃m⊗ G̃n (5.25)

which is a MN×DtDs matrix. Applying this linear transformation to the space-time steering vector

and µ-STAP SCMs using (5.1-5.2) forms space-time steering vector and SCM set associated with
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the mth sub-CPI and nth antenna element as

c̃st,m,n (θ ,ω) = TH
mncst (θ ,ω) (5.26)

R̃µ,m,n (`) = TH
mnR̂µ (`)Tmn

R̃µ,m,n (`) = TH
mnR̂prime (`)Tmn +TH

mnR̂µ,NP (`)Tmn

R̃µ,m,n (`) = R̃prime,m,n (`)+ R̃µ,NP,m,n (`) .

(5.27)

The analysis of BSPoD algorithms in heterogeneous clutter scenarios will be presented in the

following subsections.

5.3.1 Heterogeneous Clutter

The reduction parameter for BSPoD are similar to BSPrD. SINR loss analysis will be per-

formed at n(L) = 2DsDt,1, the algorithm is reduced to N = 11 to Ds = 5, and M = 21 to Dt,1 = 5

and Dt,2 = 11. Recall multi-dimension low sample support is 2DsDt,1 = 50. The analysis begins

with PRI-staggered and displace-beam SINR and AIF in Figures 5.24 and 5.25 respectively. In-

corporation of the Doppler filter bank has significantly diminished the mismatch loss. Pµ-STAP

continues to translate in partially adaptive algorithms showing less SINR loss for detectable veloc-

ities and improved MDD. The AIF shows that the different reduction amounts are fairly similar for

Pµ-STAP.

The analysis continues with adjacent-Bin and adjacent-beam SINR in Figure 5.26. The reduc-

tion algorithm provides excellent SINR for STAP. At one Doppler frequency (ω =−4.8) for reduc-

tion DsDt,1 it is equal to Pµ-STAP. Nonetheless, Pµ-STAP SINR degrades less in the detectable

velocities and higher MDD than STAP. The AIF in 5.27 shows the very small benefit Pµ-STAP has

over STAP. STAP is within 1db or less at low sample support over the training sample intervals.
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Figure 5.24: BSPoD PRI-Staggered/Displace-Beam SINR Loss at 2DsDt,1 in Heterogeneous Clut-
ter
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Figure 5.25: BSPoD PRI-Staggered/Displace-Beam Average Improvement Factor in Heteroge-
neous Clutter
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Figure 5.26: BSPoD Adjacent-Bin/Adjacent-Beam SINR Loss at 2DsDt,1 in Heterogeneous Clut-
ter
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Figure 5.27: BSPoD Adjacent-Bin/Adjacent-Beam Average Improvement Factor in Heteroge-
neous Clutter
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5.3.2 Clutter Discrete in CUT

In Figure 5.28 and 5.29, the PRI-staggered and displaced-beam BSPoD algorithms SINR and

AIF are shown. The BSPoD is fairly robust to the heterogeneity. This is similarly seen in [3]. With

the addition of Pµ-STAP, the robustness increases. The AIF reduction of DsDt,1 is less than DsDt,2

as the number of training samples increase. In full adaptive SISO Pµ-STAP, there is a benefit over

STAP. This does not occur in partial adaptation as SISO Pµ-STAP less STAP.

Adjacent-beam and adjacent-bin results are shown in Figures 5.30 and 5.31. STAP performance

is on par with Pµ-STAP in some Doppler frequencies. The MDD is still greater for Pµ-STAP,

However the difference in performance between Pµ-STAP and STAP is marginal. this is further

depicted in the AIF at n(L) = 2DsDt,1 and n(L) = 2DsDt,2. SISO Pµ-STAP AIF is again below

STAP for this reduction algorithm.
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Figure 5.28: BSPoD PRI-Staggered/Displace-Beam SINR Loss at 2DsDt,1 with Clutter Discrete
in CUT
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Figure 5.29: BSPoD PRI-Staggered/Displace-Beam Average Improvement Factor with Clutter
Discrete in CUT

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normalized Doppler

-16

-14

-12

-10

-8

-6

-4

-2

0

S
IN

R
/S

N
R

 (
d

B
)

Optimal

Fully Adaptive

P -STAP (Primary + 4 secondary)

STAP

P -STAP (1 secondary)

Partially Adaptive
(Ds=5,Dt=11)

Partially Adaptive
(D

s
=5,D

t
=5)

Figure 5.30: BSPoD Adjacent-Bin/Adjacent-Beam SINR Loss at 2DsDt,1 with Clutter Discrete in
CUT

79



0 2D
s
D

t1
2D

s
D

t2
NM 1.5NM 2NM

Range Samples

-12

-10

-8

-6

-4

-2

0

S
IN

R
/ o

p
ti

m
al

 S
IN

R
 (

d
B

)

STAP
P -STAP (Primary + 4 secondary)
P -STAP (1 secondary)

Fully Adaptive

Partially Adaptive
(D

s
=5, D

t
=5)

Partially Adaptive
(D

s
=5, D

t
=11)

Figure 5.31: BSPoD Adjacent-Bin/Adjacent-Beam Average Improvement Factor with Clutter Dis-
crete in CUT

5.3.3 Targets in Training Data

The final results are the most promising. BSPoD for PRI-staggered/displace-beam in heteroge-

neous clutter with targets in training data is depicted in Figure 5.32. The benefit of two-dimension

space-time reduction provided a significant boost over a one-dimensional reduction as evident in

analysis in this section. Utilizing BSPoD with Pµ-STAP provides enough robustness to greatly

limit self-cancellation. At η(ω = .49) =−4dB, for example, the self-cancellation null in partially

adaptive Pµ-STAP is on par with partially adaptive STAP SINR frequencies self-cancellation does

not occur. In contrast, targets in training data cause a -6dB loss on PA STAP performance. This is

similarly seen in BSPoD adjacent-Bin/displaced-beam in (5.33). The amount of mismatch loss is

less than PRI-staggered/displace-beam
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Figure 5.32: BSPoD PRI-Staggered/Displace-Beam SINR Loss at 2DsDt,1 with Targets in Training
Data
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Figure 5.33: BSPoD Adjacent-Bin/Adjacent-Beam SINR Loss at 2DsDt,1 with Targets in Training
Data
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In summary, space-time reduction is the provides greatest robustness to heterogeneous clutter.

This reduces the amount of samples needed to satisfy the RMB rule and the size of the covariance

matrix to make real-time processing practical. Pµ-STAP further increases robustness. Although in

some cases, the benefit is marginal. The greatest benefit is seen in the presence of self-cancellation.

Self-cancellation is reduced to have little to no affect on SINR loss.
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Chapter 6

Conclusions

A new form of multi-waveform space-time adaptive processing (µ-STAP) called post pulse

compression multi-waveform space-time adaptive processing (Pµ-STAP) was proposed for legacy

systems performing ground moving target indication. The new formulation performs a homoge-

nization of pulse compressed data using multiple homogenization filters to induce a smearing to the

fast-time samples. This smeared data creates more identically distributed data, a critical assump-

tion space-time adaptive processing uses. In addition, the multiple filters provide a multiplicative

increase in training samples. Each of these provide a better space-time covariance estimate for

clutter cancellation which maximizes SINR and detection performance. Prior knowledge of the

transmit signal is not necessary for the proposed formulation A filter analysis of the homogeniza-

tion filters was performed in simulated homogeneous and heterogeneous clutter. This analysis

included filter length and number of secondary filters. Future work should examine SINR perfor-

mance based on the relationship between the number of samples in the training data and length of

the homogenization filter. Instead of based the filter length on time-bandwidth of the waveform, it

may be more feasible to determine based on the number of training samples.

A comparison between STAP, µ-STAP, and Pµ-STAP was presented in a homogeneous and

three heterogeneous clutter scenarios. The control simulated results showed that Pµ-STAP a pro-

vides a better SINR performance over STAP and µ-STAP. A similar comparison between STAP

and Pµ-STAP was performed in the high-fidelity, heterogeneous clutter dataset KASSPER. Pµ-

STAP was varied depending on the clutter environment. Due to this, it may only be applicable in

a certain clutter environments. The results showed a trade off must be made between minor re-

duction in homogeneous clutter for large improvement in heterogeneous clutter. Future work will
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require Pµ-STAP to be examined on experimental data to confirm this.

To mitigate computation cost, Pµ-STAP was examined with well-known partially adaptive

techniques in the same four controlled,simulated clutter scenarios and compared to partially adap-

tive STAP. Reduction was performed in element-space post-Doppler, beam-space pre-Doppler and

beam-space post-Doppler. Beam-space post-Doppler provided the best performance. Followed

by element-space post-Doppler then beam-space pre-Doppler. Partially adaptive Pµ-STAP further

enhances the performance of these algorithms. In each one, performance of Pµ-STAP is greater

than partially adaptive STAP. In addition, the reduced dimension Pµ-STAP formulation can be

generalized to all µ-STAP formulations due to their similar structure.

More future work should consider µ-STAP and Pµ-STAP covariance in censoring algorithms

such as generalized inner product [28], adaptive power residue [29], adaptive coherence estimation

[30; 31] and meta-algorithm FRACTA [32]. The work presented here will be presented in journal

form in [33].
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