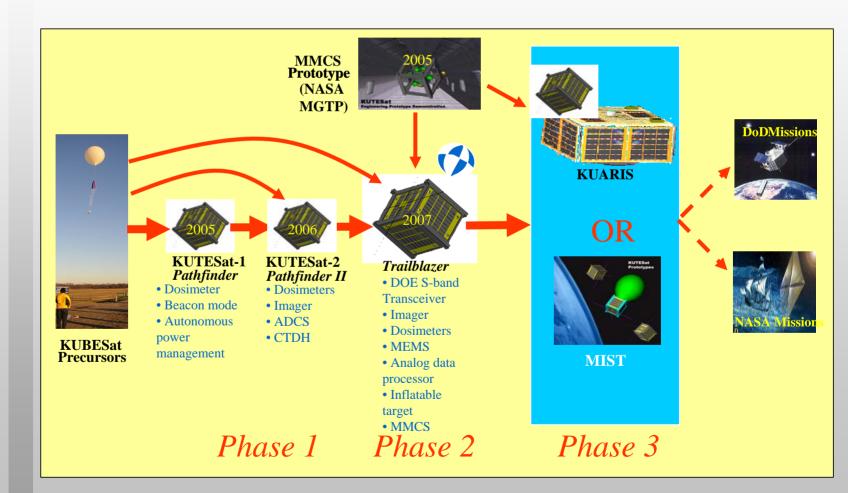


The HABS,KUBESat,KUTESat-1 Technical report; Design of a Modular platform for Picosatellites

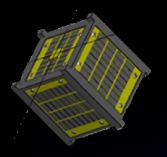
> Nikhil Paruchuri University of Kansas

20th January,2006



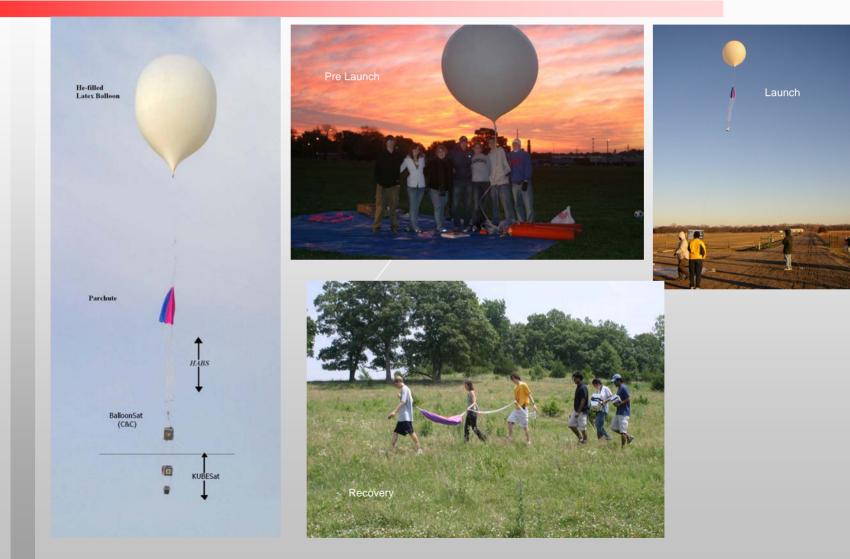
- Kansas Universities Technology Evaluation Satellite (KUTESat)
 - Development and operation of small satellites (< 30 kg) that will be engineering prototypes
 - ♦ Test latest nanotechnology and MEMS technology
 - JPL NASA
 - AFRL
 - NNSA KCP
 - ♦ Establish a space industry in Kansas
 - Train future space professionals (student run program)

KUTESat program overview



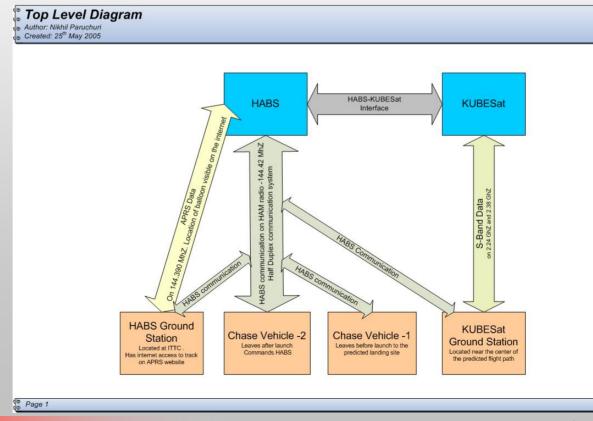
- Design HABS
- Design KUBESats for S-band communication system
- Integrate and test KUTESat-1
- Design modular platform for future systems
- Implementation of modular platform

The BalloonSat's



- Payloads KUBESats
- Near Space Environment testing
- 100 000 ft, 0.01 atm , -80 °C
- ~3 hrs of flight
- 30-150 miles LOS
- 12 pounds limit
- \$500 launch costs

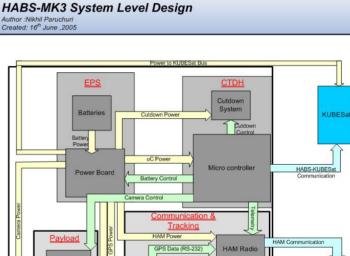
Balloon Flight

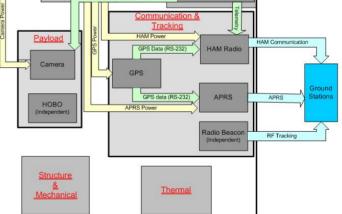


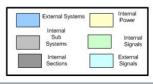
- Downlink GPS and Telemetry data
- HAM radio, APRS radio
- S-band communication system, student payloads

HABS series

- 13 flights since May 2003
- 3 series built

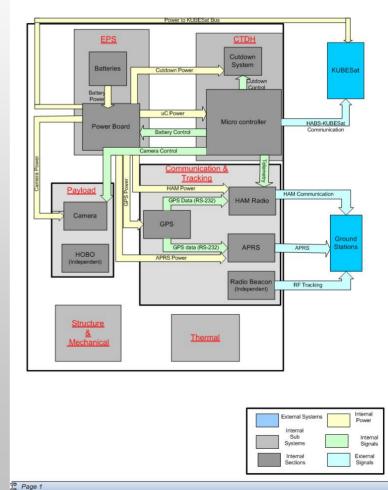

Flight	Series	Payloads	Date	Max. Altitude (km)	Tracked w/GPS	Flight termination method	Recovery
HABS-1	Initial	Temperature -HOBO	5/3/2003	Unknown	No	Burst	Yes
HABS-2	MK Ia	Temperature-HOBO	12/20/2003	14	Yes	Cutdown	Yes
HABS-3	MK Ia	Temperature-HOBO	4/3/2004	Unknown	Partly	Burst	Yes
HABS-4	MK II	Camera , Temperature-HOBO	9/24/2004	4.5	Yes	Cutdown	Yes
HABS-5	MK II	Camera, Temperature-HOBO	10/1/2004	32.8	Yes	Burst	Yes
HABS-6	MK II	Camera, Temperature-HOBO	10/23/2004	29.9	Yes	Burst	Yes
HABS-7	MK II	KUBESat-1,Temperature-HOBO	2/26/2005	19.3	Yes	Cutdown	Yes
HABS-8	MK II	AE 265 student modules .HOBO	5/1/2005	10.7	Yes	Cutdown	Yes
HABS-9b	MK II	KUBESat-1,Temperature-HOBO	6/25/2005	26.7	Yes	Cutdown	Yes
HABS-10	MK II	KUBESat-1,Temperature-HOBO	8/17/2005	28.7	Yes	Burst	Yes
HABS-11	MK III	Temperature-HOBO	10/22/2005	28	Yes	Burst	Yes
HABS-12	MK IIIa	Temperature-HOBO	11/5/2005	28.1	Yes	Burst	Yes
HABS-13	MK IIIa	XBS module, HOBO	11/19/2005	6.9	Yes	Cutdown	Yes




HABS – Mk2 system design

Page 1

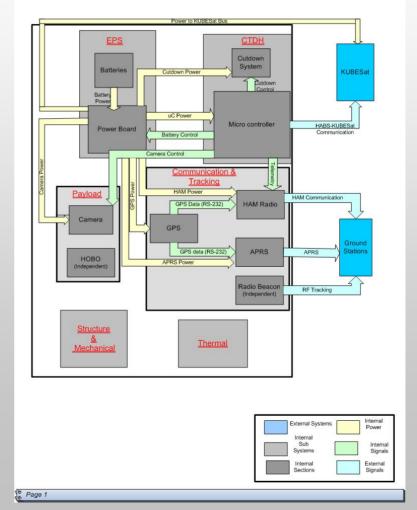
- HABS-Mk1
 - ♦ 2 flights
 - ♦ Unreliable
- HABS-Mk2
 - Redundant tracking system
 - ♦ Secondary batteries
 - ♦ GPS unit
 - Uplink commands from Ground Station
 - ♦ Film camera



20th January,2006 11

- Control Telemetry and Data Handling (CTDH)
 - ♦ Telemetry
 - Batteries, Temperature, Cutdown status
 - ♦ GPS data
 - Cutdown
 - ♦ Camera
 - Choose from Primary and Secondary power sources

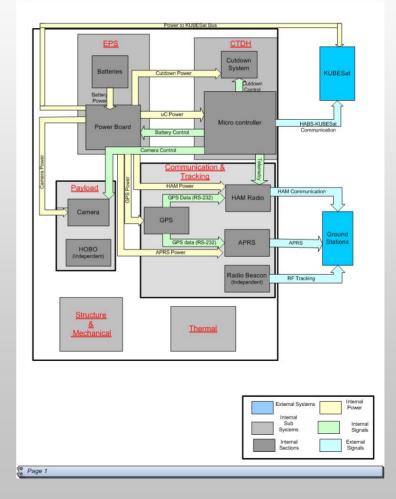
Author :Nikhii Paruchuri Created: 16th June ,2005



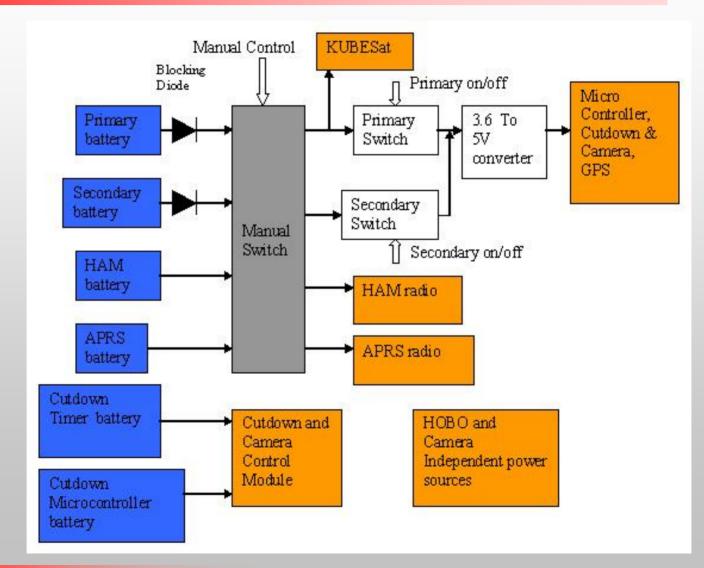
HABS-Mk2, subsystems

- HAM radio
 - ◆ 144.42 MHz
 - ♦ Call Sign
 - ◆ TH-D7AG
- Automatic Packet Reporting System (APRS)
 - Redundancy
 - ◆ 144.39 MHz
- GPS
 - ♦ 1 second updates
 - ♦ Garmin GPS-25
 - ♦ External antenna

HABS-MK3 System Level Design Author :Nikhil Paruchuri Created: 16th June, 2005

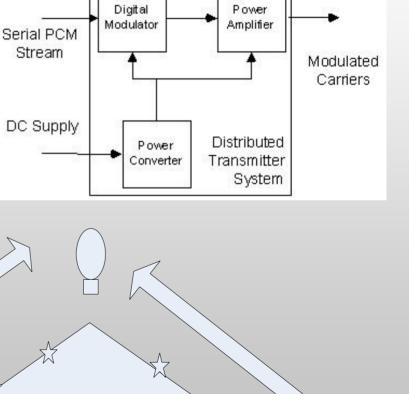


HABS-Mk2, subsytems


- Payload
 - ♦ Film Camera
 - ♦ HOBO
- Electrical Power System (EPS)
 - Primary and Secondary battery sources for Main system.
 - Independent battery sources for radios, Cutdown

HABS-MK3 System Level Design Author :Nikhil Paruchuri , Created: 16th June ,2005

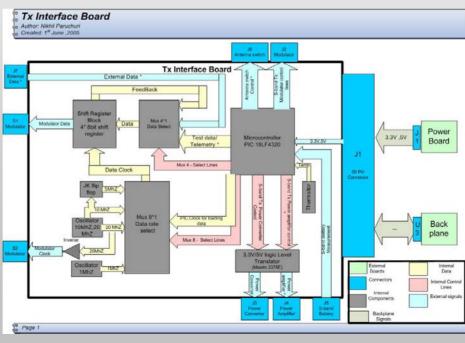
20th January,2006 14

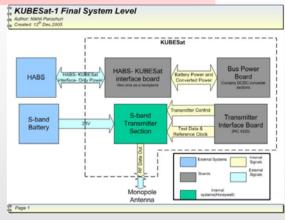

EPS cont.

	Requ	ired	Available								
System	Energy (Wh)- Ren	Max Current (A)	Battery Model	Chemsitry	Configurat ion	Nominal Voltage (V)	Capacity (Ah)	Max Current (A)	Energy (Wh) Aen	Energy Density (Wh/g)	Safety factor= (Aen/Ren)
5V bus , KUBESat	21.41	0.675	Samsung ICR18650 -22	Li-ion	3 cells in parallel	3.7	6.6	6.6	24.42	0.1769	1.1405202
5Vbus, backup	16.05	0.312	Samsung ICR18650 -22	Li-ion	3 cells in parallel	3.7	6.6	6.6	24.42	0.1769	1.5213738
HAM radio	5.63	0.52	Energizer e2 Lithium	Li/FeS2	4 cells in series	6	3	2	18	0.3103	3.1942078
APRS radio	0.869	0.11	Ultralife U9VL-J	Li/MnO2	1 cell	9	1.2	0.12	10.8	0.2967	12.417219
Cutdown	0.375	1.5	Kroeger 9V	Alkaline	2 cells in parallel	9	0.2	-	1.8	0.0197	4.8

KUBESat-1 : Introduction

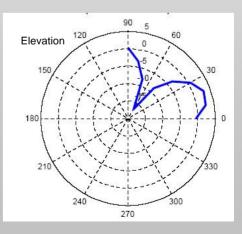
- S-band Transmitter
- Characterizing
 - ♦ Modulation
 - FSK,SOQPSK
 - ♦ Filtering
 - ♦ Data Rate
 - 1,5,10,20 Mbps
 - **RF** power
 - 1,2,4,10 watts

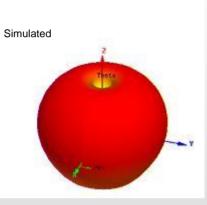




KUBESat-1 System Design

- HABS interface
- S-band Control and Data interface
 - Control
 - Test Data
 - Clock



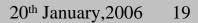


KUBESat-1 system design

- Antennas
 - Designed by EE Senior Classes
 - ♦ Balloon
 - Monopole
 - Characteristics

db(GainTotal) 2. 6595e+000 -3. 5916e-001 -3. 5376e+000

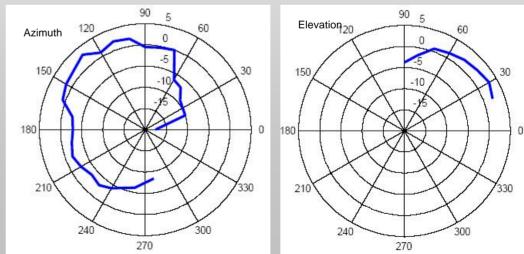
> -6.73546+000 -9.93516+000 -1.01046+001

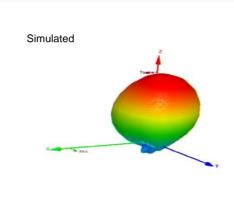

-1.6332e+001 -1.9531e+001 -2.2730e+001 -2.5928e+001 -2.9127e+001

-3.2328e+001 -3.5524e+001 -3.8723e+001

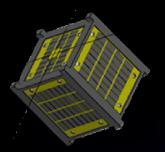
-4. 1922e+001

-4.51204+001 -4.83194+001

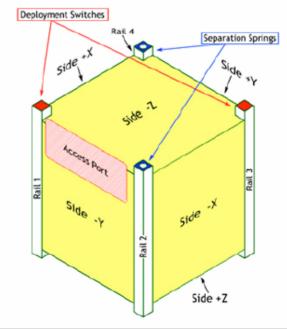




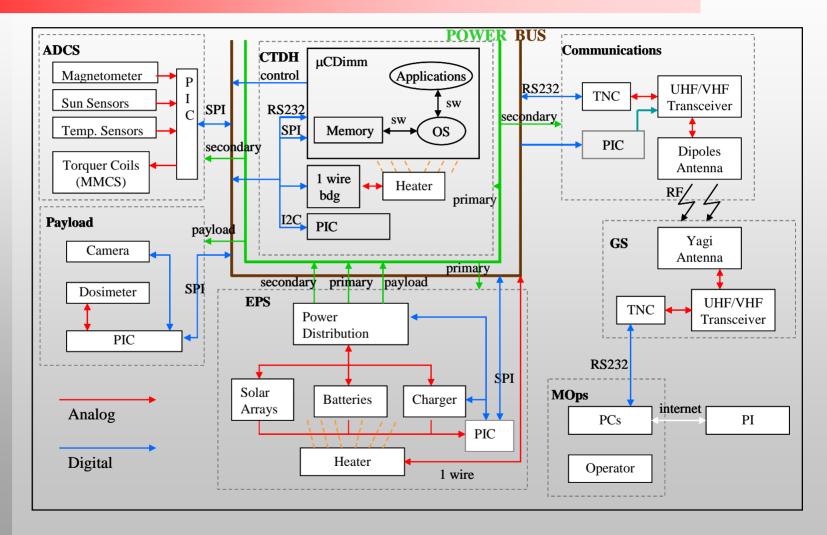
KUBESat-1 system design

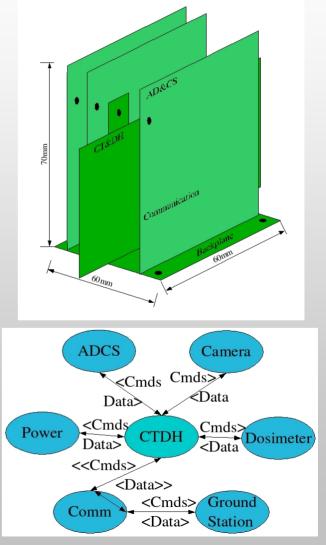

rETotal[mV]

- Antennas cont..
 - Ground Station
 - Patch
 - Characteristics


KUTESat-1 Pathfinder

Pathfinder

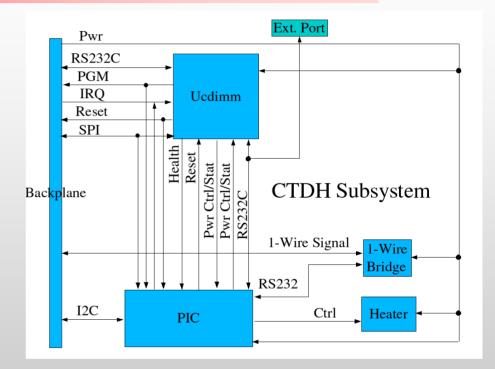

- CubeSat Standard
 - Picosatellites
 - Robert Twiggs, Stanford, 2000
 - ◆ <1 kg, 10 cm cube
 - ♦ California State Polytechnic University
 - ◆ P-POD



- CTDH
- Communication
 - ♦ HAM radio
- Attitude Determination and Control System (ADCS)
 - Magnetometer and Sun sensors
 - Torquer Coils
- Electrical Power system
 - ♦ Lithium batteries
 - ♦ GaAs Solar cells
 - Power distribution
- Payload
 - Dosimeter- Radfet
 - Camera- CMOS image sensor

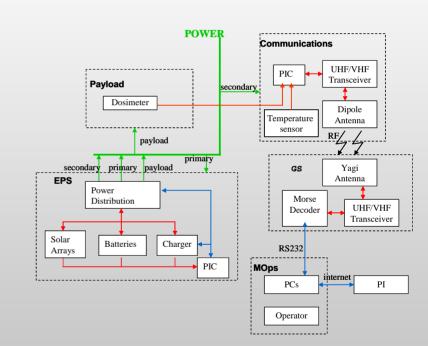
Control Telemetry & Data Handling

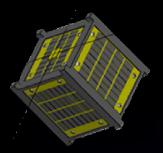
- Communicate with Ground Station
- Backplane: Interface with other subsystems
- Instrument and Health data capture
- Control modes of operation



- Communication
 - ◆ SPI
 - ◆ I2C
 - ◆ RS-232
 - ♦ 1-Wire
- Programming
 - In circuit serial programming (ICSP)
 - Enable Lines

- ♦ Health
- Single Event Upsets (SEU) and Latches (SEL)
- Radiation effects
 - SEU every 4436 days in stormy magnetic weather





Final design

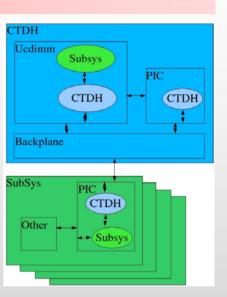
- Issues with subsystem communication
- Payload and ADCS subsystems not mature
- EPS PIC
 - Antenna deployment
 - Power to subsystems
 - Simple power management
- Analog Digital
- Communication PIC
 - ♦ Telemetry
 - Morse Code

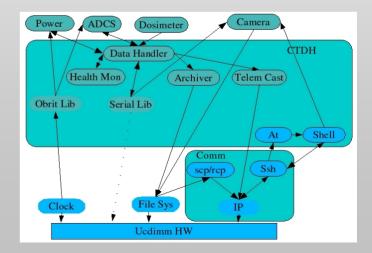
Modular Platform

Need for Standards

- Past lessons implemented
- Adopted by many
- Rapid development
 - DARPA Falcon program
 - ♦ Operationally Responsive (ORS) TacSat-1
- Space plug-n-play Avionics (SPA)
- ... implementation 5 years

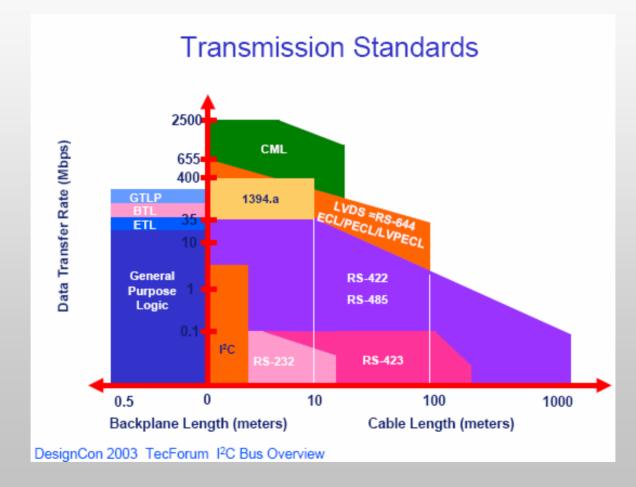
- Pros
 - ◆ Improve system design.
 - Replace modules
 - Design modules independently
 - Reduced integration and testing time
 - ♦ Reduce non recurring engineering costs.
 - Transfer of intellectual knowledge
 - Multiple missions
 - Emphasis on payload design
 - Mass production
- Cons
 - Initial costs high
 - Designed for particular developer
 - Not compatible with Specialized missions


Small Satellite modular designs

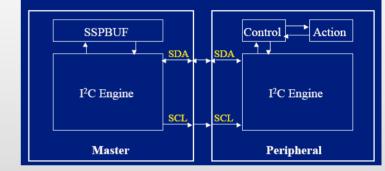


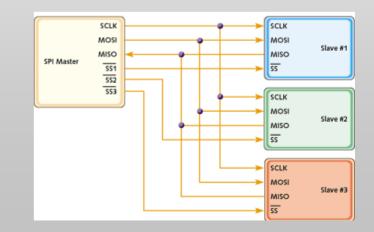
- SWARM
 - ◆ MIT
 - Bluetooth technology
- Aero Astro
 - ♦ Space Frame
 - ♦ SCOUT
 - ◆ SMARTBusTM
 - Plug and Sense
 - Layered Software
- TEST
 - ♦ CubeSats
 - University of Illinois, University of Taylor
 - ◆ Standard communication interface- RS-422,I²C
 - Interface module for each subsystem

Proposed Platform - Software


- Software and logical interface
 - Controllers on each subsystem
 - Application software on main processor
 - Standard interfaces
 - Resource requests, provider and arbiter
 - Reprogramming

Communication bus


Proposed Platform - Electrical


Proposed Platform - Electrical

- Communication bus cont..
 - ♦ I2C
 - Phillips
 - 2 wire- Data and Clock
 - Single or Multiple Masters
 - Addressable slaves- 128 or 1024
 - 100 kbps, 400 kbps , 3.4 Mbps

◆ SPI

- Motorola
- 3 wires- Data In, Data Out, Clock and x- number of slaves
- Single Master *
- >1 Mbps

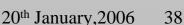
Proposed Platform - Electrical

- Communication bus cont..
 - ◆ RS-232
 - Common Standard
 - Asynchronous- Tx and Rx
 - Standard 19.2 kbps, but 115.2 kbps possible
 - Peer to Peer *
 - ♦ Final choice
 - RS-232:Control and Health Status
 - SPI: Legacy
 - I2C: Secondary bus, Video and Image collection

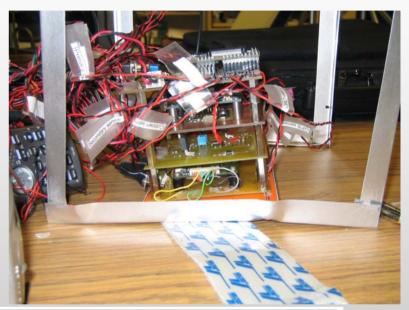
Proposed Platform - Electrical

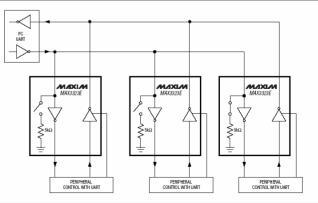
- Power distribution
 - Common voltage levels
 - Division of power
- Control
 - ♦ Interrupt
 - ◆ Reset
 - Programming
 - FPGA's
 - PIC's

Proposed Platform - Electrical

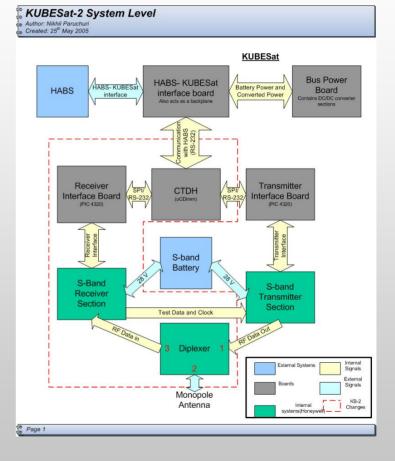


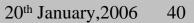
- Final design
- Separate analog and digital grounds
- 5 subsystems


Signal group	Туре	Number of lines	Signal group	Туре	Number of lines
Communications	RS-232 Tx	1	Power	Secondary 28 V	2
	RS-232 Rx	1		Payload 3.3 V	2
	RS-232 enable	5		Payload 5 V	2
	I2c Data	1		Payload 12 V	3
	I2c Clock	1		Payload 28 V	10
	SPI Data out	1		Analog ground	20
	SPI Data In	1	Control	Interrupt	5
	SPI clock	1		Reset	5
	SPI enable	5		Programming Data/TDI	1
Power	Primary 3.3 V	2		Programming Clock/TCK	1
	Primary 5 V	2		TMS	1
	Primary 12 V	2		TDO	1
	Secondary 3.3 V	2		Programming enable	5
	Secondary 5 V	3		Digital ground	5
	Secondary 12 V	3	Total		94


HABS-Mk3

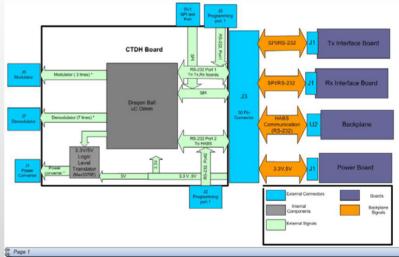
- Necessity
 - Reduce weight
 - ♦ Robust
 - Reduce time of assembly
- Changes made
 - Backplane implemented
 - Multiplex RS-232
- Results
 - ◆ 1 lb reduction
 - Assembly time reduced to 2 hours
 - ♦ 3 flights

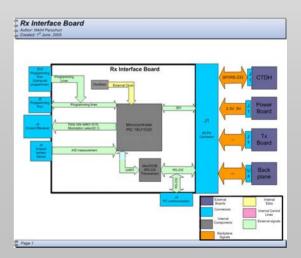

Masters Defense



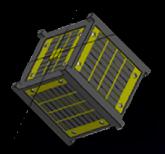
KUBESat-2

- S-band transceiver
- Ground Station control
- HABS interface
 - Power
 - Communication
 - Analog lines
 - ♦ Control


Masters Defense

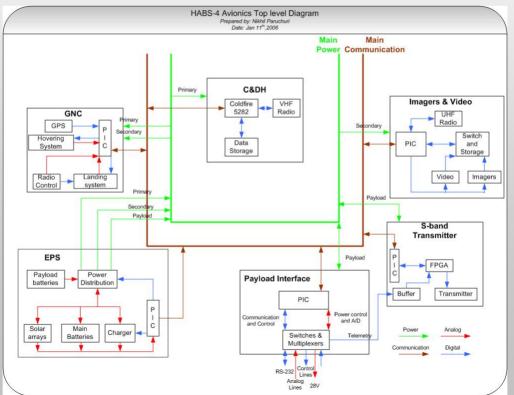

KUBESat-2 system design

- CTDH
 - Communication with HABS
 - Control of subsystems
 - Redundant communication buses
- Rx and Tx interface boards


Author: Nikhil Paruchuri
 Created: 31th May 2005
 Revision: 10th Jan 2006

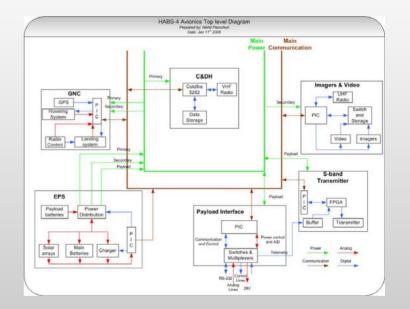
KUBESat CTDH -rev1

Future Work


- Testing of KUBESat-2 software
- HABS-Mk4
 - ♦ Hovering
 - Controlled landing
 - Standard payload interface
 - ♦ S-band transmitter
 - ♦ Video
 - Mass production

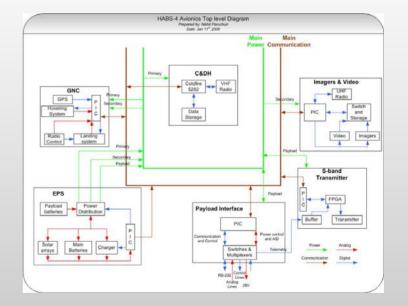
HABS-Mk4, proposal

- Future Satellites considered.
- Control and Data Handling (C&DH)
 - Top priority communication
 - Legacy processor- Coldfire

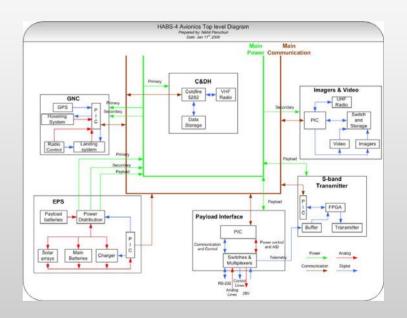

Masters Defense

HABS-Mk4, Avionics

- Guidance and Navigation Control (GNC)
 - ◆ GPS
 - DGPS
 - ♦ Hovering
 - Pressure valve
 - Ballast control
 - ♦ Landing
 - Spherachute
 - Radio Control



HABS-Mk4, Avionics



- Electrical and Power subsystem
 - ♦ Main power source
 - Rechargeable
 batteries
 - Solar cells
 - Payload power source
 - Adopted based on payload
- Images and Video
 - UHF link
 - Landing control

HABS-Mk4, Payload interface

- S-band transmitter
 - Payload data buffer and transmit
 - ◆ FPGA
- Multiple payloads
 - RS-232 control
 - 28 V standard power bus
 - Analog and Control lines
 - Route telemetry to Sband transmitter



- Phase-1 systems implemented and tested
- Modular platform developed from Phase-1 lessons
- HABS-Mk3 & KUBESat-2, limited implementation
- HABS-Mk4 base for future satellite designs
- Smart software, layering

Thank you !!

Masters Defense