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Abstract

With the advancement of arbitrary waveform generation techniques, new radar

transmission modes can be designed via precise control of the waveform’s time-

domain signal structure. The finer degree of emission control for a waveform (or

multiple waveforms via a digital array) presents an opportunity to reduce ambiguities

in the estimation of parameters within the radar backscatter. While this freedom opens

the door to new emission capabilities, one must still consider the practical attributes for

radar waveform design. Constraints such as constant amplitude (to maintain sufficient

power efficiency) and continuous phase (for spectral containment) are still considered

prerequisites for high-powered radar waveforms. These criteria are also applicable to

the design of multiple waveforms emitted from an antenna array in a multiple-input

multiple-output (MIMO) mode.

In this work, three spatially-diverse radar emission design methods are introduced

that provide constant amplitude, spectrally-contained waveforms implemented via a

digital array radar (DAR). The first design method, denoted as spatial modulation,

designs the radar waveforms via a polyphase-coded frequency-modulated (PCFM)

framework to steer the coherent mainbeam of the emission within a pulse. The

second design method is an iterative scheme to generate waveforms that achieve

a desired wideband and/or widebeam radar emission. However, a wideband and

widebeam emission can place a portion of the emitted energy into what is known

as the ‘invisible’ space of the array, which is related to the storage of reactive power

that can damage a radar transmitter. The proposed design method purposefully avoids

this space and a quantity denoted as the Fractional Reactive Power (FRP) is defined

iv



to assess the quality of the result. The third design method produces simultaneous

radar and communications beams in separate spatial directions while maintaining

constant modulus by leveraging the orthogonal complement of the emitted directions.

This orthogonal energy defines a trade-space between power efficiency gained from

constraining waveforms to be constant amplitude and power efficiency lost by emitting

energy in undesired directions.

The design of FM waveforms via traditional gradient-based optimization methods

is also considered. A waveform model is proposed that is a generalization of the

PCFM implementation, denoted as coded-FM (CFM), which defines the phase of

the waveform via a summation of weighted, predefined basis functions. Therefore,

gradient-based methods can be used to minimize a given cost function with respect to

a finite set of optimizable parameters. A generalized integrated sidelobe level (GISL)

metric is used as the optimization cost function to minimize the correlation range

sidelobes of the radar waveform. System specific waveform optimization is explored

by incorporating the linear models of three different loopback configurations into the

GISL metric to match the optimized waveforms to the particular systems.
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ūC = sinθC. The power reflection coefficient ∣Γa( fc)∣2 was calculated via the array

specifications in Section 3.2.2.2, and the FRP was calculated only on the array

factor of the standard beamformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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Chapter 1

Introduction

The implementation of radar has changed considerably since its discovery in the early 1900s,

however the mechanism in which radar operates has not. The radar is still bound by the same

laws that govern electromagnetic (EM) propagation. Thus we are bound by the advances in

radar technology which in turns leads to new theory and experimentation of contemporary radar

practices. In the past two decades, the advancement of arbitrary waveform technology has

spurred research into waveform diversity and its applications [1–5]. The breadth of this research

touches on spectral coexistence issues [6–8] which can entail interference management between

radar and communications signals [9, 10] or cooperative spectrum sharing among users of the

electromagnetic spectrum [11–13]. The variability of arbitrary waveform generation has also

extend to antenna array transmission to generate spatially-diverse emissions such as the frequency

diverse array (FDA) [14, 15] and multiple-input multiple-out (MIMO) radar [16–21].

The intersection between waveform diversity and spatial diversity is the the fully digital array

radar (DAR) [20], which utilizes independent hardware and waveform generation for each antenna

element in the array to achieve adaptable transmit and receive capabilities. With the cost and

size reduction of digital processing nodes [22], the DAR is the future trend for array technology

[22, 23]. The DAR concept enables the execution of multiple simultaneous radar functions by

having the system flexibility to allow the radar to operate in many different modes (e.g. traditional

focused beam, MIMO mode, multiple beams, etc.). Also, the DAR provides the means to operate

radar and communications functions in a space-division multiplexed mode through formation

of two simultaneous focused beams [24, 25]. The concurrent operation of multiple functions

via a DAR also alleviates timing requirements that constrain multi-function radars that execute
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functions sequentially by having better time-energy management of the available resources of the

array [20, 26–28]. The capabilities of this systems structure have applications in cognitive sensing

as the digital-at-every-element concept provides a flexible illumination capability combined with

a receive structure that retains a digital copy of the individually captured signals thus providing

maximum information to the cognitive system [29].

The wave of research into waveform and spatially diverse transmissions is driven by the

desire to attain better radar performance or functionality than what previously could be achieved.

Greater performance and functionality implies a higher level of radar sensitivity (e.g. a higher

dynamic range of estimated scattering powers). From a waveform/emission design standpoint,

there are many practical issues of concern in the implementation of waveform and spatially diverse

systems that could limit the fidelity achieved in the radar signal processor. Signal distortions in

the radio frequency (RF) chains, both linear and nonlinear, can limit the sensitivity of the radar

function through an increased sidelobe response of the waveform’s autocorrelation function. If

the waveform is not spectrally contained, bandlimiting within the radar transmitter can alter the

time-domain envelope of the waveform [3]. And for antenna arrays, mutual coupling can effect

the signal structure of a spatially-diverse transmission [30].

From a waveform design perspective, there are three methods of limiting the deleterious

effects of the hardware distortion: 1) the waveform(s) can be predistorted such that the desired

response is achieved after the distortion has taken place [31–37]; 2) choose a waveform/emission

structure that is robust to the detrimental distortion effects (e.g. constant amplitude and spectrally

contained) and 3) optimize the waveform with the system distortion incorporated into the design

process. In this work, methods 2 and 3 are discussed within the context of waveform diverse

and spatially diverse radar while preserving the pragmatic attributes of radar waveforms necessary

for implementation. In high powered radar systems, it is still considered a requirement that the

waveform be constant amplitude due to operation of the transmit amplifier in the saturation region

which could significantly distort a waveform that is amplitude modulated (AM). In addition, the

waveform must be spectrally contained as to 1) not interfere with proximate users of the EM
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spectrum, and 2) avoid distortion due to band-limiting effects in the radar transmitter [3, 38].

These two waveform constraints, constant modulus and spectral containment, are a running theme

throughout this work and were a catalyst for the reasoning behind the architecture of the waveform

design/optimization methods that are presented.

The main goal of this work is to setup/describe practical models for waveform optimiza-

tion/design (including frequency depending antenna patterns, mutual coupling, hardware distortion

models, robust waveform attributes, etc.). The majority of the waveform design/optimization

methods described throughout this work are system considerate, meaning the model of the

waveform/transmission is chosen such that it would be robust to nonlinear effects for general high

power applications, i.e. constant amplitude and spectrally contained [3]. In Chapter 5, system

specific optimization is considered by incorporating RF distortion modeling into the cost function

to account for the specific distortions of components, while maintaining a system considerate

waveform model to be robust against errors that might be present in the distortion model. For

this work, all methods of modeling reality are not considered and less are eventually applied to

waveform design/optimization, though it is the hope of the author that the presented work sets the

stage for the future work needed in system inclusive waveform/emission optimization.

In Chapter 2, an overview of standard radar processing and implementation is provided. Four

sections are included that cover different stages within a standard radar system: the waveform, the

transmission, the scattering and reception, and radar digital signal processing. This material lays

out a mathematical and conceptual foundation to the problem of practical waveform design that is

persistent throughout this work. The overview includes topics such as transmitter distortion and

fast-time Doppler effects that can effect the modulation structure of the waveform. It is shown that

the frequency modulated (FM) waveform provides the largest degree of robustness to nonlinear

transmit distortion effects present in high power radar transmitters thus are the chosen waveform

structure used throughout this work.

Chapter 3 is on the analysis of spatially-diverse transmissions, specifically on the improved

spatial resolution from operating in a MIMO mode and the effects of mutual coupling in uniform
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linear arrays (ULAs). The theorized improvement in spatial resolution when implementing a (non-

distributed) MIMO radar transmission mode is typically derived using the virtual array concept

which makes the assumption of orthogonality between the signals [39, 40]. Here, a angle-delay

ambiguity function is defined for a narrowband ULA that can be defined as the product between

two separable functions: beam factor and the diversity factor. The beam factor corresponds to

the traditional spatial resolution that is achieved given a certain array geometry while the diversity

factor illustrates the improvement in angle resolution solely due to waveform diversity in the spatial

dimension when operating in a MIMO mode. The mutual coupling of a uniform linear array is

defined from both a circuit and scattering points of view. The closed-form models of the self and

mutual impedances of between dipole antennas is utilized to characterize two arrays: one with half-

wavelength spacing and one with quarter-wavelength spacing. For a broadside impedance match,

the scan impedance variation [41] and resulting reflected/coupled energy is characterized for these

two arrays. For arrays with spacing less than half-wavelength, an array excitation can place

energy into what is known as the invisible space which corresponds to low radiation resistance

and high reactance. Because wide scan arrays are typically matched at broadside, excitations that

produce significant energy in these directions exhibit large reflected/coupled energy. For traditional

omnidirectional MIMO beampatterns, this presents an emission design issue as energy is inevitably

present in the excitations [42, 43]. A term denoted Fractional Reactive Power (FRP) is defined

that quantifies the amount of energy in this invisible space and is shown to well approximate the

reflected/coupled power in a spatially-diverse transmission mode for the quarter-wavelength array.

Chapter 4, entitled Waveform Design for Physical Spatially-Diverse Transmission, consists

of three spatially-diverse emission modes each requiring the DAR framework. The first-mode

is a implementation of a coherent beam that is steered within the pulse around a center look

direction. By using the polyphase-coded FM (PCFM) framework to realize the spatially modulated

emission [38, 44], the resulting waveforms are guaranteed to be constant amplitude and spectrally

contained thus robust to hardware distortion effects. It is shown that similar resolution capabilities

(as theorized with the MIMO virtual array) can also be achieved using this method while still
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maintaining a semi-focused transmit beampattern. The second emission mode designs a wideband

emission that jointly adheres to a desired spatial distribution and spectral shape that grants the

ability for a simultaneous multifunction radar capability. Because of the wideband nature of the

array, the warping of the beampattern over frequency may place energy in the invisible over a

certain range of frequencies, however the proposed method inherently avoids this region by placing

energy only in desired spatial regions known as “beamlets”. The final spatially-diverse emission

develops and analyzes an optimization scheme to generate an emission that simultaneously emits

multiple transmit beams to perform radar and communications functions on a single array while

constrained to have constant amplitude waveforms. In this section, the method is experimentally

validated on the Air Force Research Lab (AFRL) BEEMER (Baseband-digital at Every Element

MIMO Experimental Radar) MIMO system.

In Chapter 5, gradient-based optimization methods are implemented to minimize the autocor-

relation sidelobe response of FM waveforms. The ability to apply discrete optimization techniques

to continuous-time waveform is admitted via a basis representation where the phase function of

the waveform is defined using a finite summation of scaled basis functions. This waveform model,

denoted as the coded-FM (CFM), is therefore entirely defined using a finite set of optimizable

parameters. The sidelobes of the autocorrelation are minimized according to a metric defined as

the generalized integrated sidelobe metric (GISL) which takes the q-norm ratio of the correlation

sidelobes to the correlation mainlobe, thus encapsulating the traditional autocorrelation metrics:

peak sidelobe level (PSL) and integrated sidelobe level (ISL). In Section 5.2, the nonlinear

conjugate gradient (NLCG) descent method is used to minimize the GISL cost function when

using the PCFM basis. Within this section it is shown that the expected sidelobe floor (which is

typically thought to be a function of the waveform time-bandwidth product) is actually a function

of the sampled bandwidth and is largely independent of the time-bandwidth product. In Section

5.3, a quasi-Newton approach is used to minimize the GISL cost function for a waveform model

using the Legendre polynomial basis. The GISL metric for this case uses a modified correlation

function (in place of the autocorrelation) that takes into account the discrete-time nature of the
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matched filter and the continuous-time nature of the emission. A linear model for three different

loopback hardware chains is estimated and incorporated into the the optimization cost function to

predict and account for the RF distortion imparted to the signal structure in a loopback setting. It is

found that, through inclusion of the linear model, the captured signal can be accurately predicted

to a high degree thus the deleterious effects caused by hardware distortions are instead leveraged

during the design of the waveform, thus demonstrating the benefits of system specific waveform

design to achieve higher radar sensitivity.
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Chapter 2

Background and Radar Modeling

This chapter serves as a extensive background on waveform definitions, waveform analysis, and

factors that contribute to waveform distortion. Note that the topics included in this section are by

no means comprehensive, though provide a foundation of knowledge for the following chapters in

this work. This chapter is broken up into four main portions: The Waveform, The Transmission,

The Scattering and Reception, and Radar Digital Signal Processing (DSP); each stage analytically

defining how the modulation structure of the waveform is carried/modeled throughout. Because of

this, only a single pulse scenario is considered throughout this chapter though all aspects discussed

can be extrapolated to multiple pulse scenarios. In Section 2.1, the radar waveform is analytically

defined and multiple examples of common waveform archetypes are presented. Section 2.2 defines

the transmitter model and defines both linear and nonlinear waveforms distortions and under

what conditions they may be present. The scattering and reception of electromagnetic (EM)

energy is discussed in Section 2.3, and the chapter is concluded in Section 2.4 where radar DSP

examined. Note that not every aspect in this chapter is used throughout this work, but is included

for completeness.

2.1 The Waveform

The waveform generated and transmitted by the radar represents how the electromagnetic energy

emitted into free space is modulated. A single waveform can be expressed in two different

representations: passband and complex-baseband (sometimes referred to as complex-envelope).

The passband representation describes a waveform whose spectral content is centered around some
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Figure 2.1: Simple model for up-conversion of waveform s(t).
center frequency fc and is expressed using a real-valued continuous function spb(t) which is a

function of continuous time t. The complex-baseband representation of a waveform is independent

of a center frequency by defining the center of the spectral content around 0 Hz through a complex-

valued waveform representation denoted as s(t) = sI(t)+ jsQ(t) where sI(t) and sQ(t) are the

in-phase and quadrature portions of the waveform, respectively, and j = √−1 is the imaginary

number. Therefore, sI(t) =R{s(t)} and sQ(t) = I{s(t)} where R{●} and I{●} extract the real and

imaginary values of the signal, respectively. The complex-valued signal cannot by itself be emitted

and must be up-converted to a center frequency (either using local oscillators or with digital up-

conversion) as shown in Figure 2.1. Therefore the passband and complex-baseband representations

are related as

spb(t) =√2R{s(t)exp( j2π fct)}
=√2sI(t)cos(2π fct)−√2sQ(t)sin(2π fct), (2.1)

where the
√

2 scaling maintains equal energy between s(t) and spb(t) and

exp( jx) = e jx = cos(x)+ j sin(x), (2.2)

for real-valued number x where e = 2.71828 . . . is Euler’s number. Figure 2.2 illustrates the

difference in frequency content between the baseband signal s(t) (centered around 0 Hz) and

passband signal spb(t) (centered around fc). Here, the complex-baseband representation of the

waveform s(t) is adopted as the majority of the methods described in this work do not require an
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Figure 2.2: Representation of the frequency content of baseband signal s(t) (complex-valued) and

passband signal spb(t) (real-valued).

absolute center frequency to be defined. Both waveform models (s(t) and spb(t)) are considered

unitless quantities as they do not necessarily pertain to a physical absolute voltage/current.

2.1.1 Baseband Definition

The complex-baseband waveform can be represented as

s(t) = u(t)e jψ(t) (2.3)

where u(t) is the positive, real-valued, amplitude envelope and ψ(t) is the phase function. Using

this notation, the passband waveform from (2.1) can be written as

spb(t) =√2R{u(t)exp( j ⋅(2π fct +ψ(t)))}
=√2u(t)cos(2π fct +ψ(t))
=√2u(t)cos(ψpb(t)),

(2.4)

where
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ψpb(t) = 2π fct +ψ(t) (2.5)

is the passband phase function.

The waveform can be either continuous-wave (CW) which transmits continuously or pulsed

where the waveform is of finite duration and transmitted periodically. For this work only the

pulsed operation is considered. For pulse duration T , define u(t) over the interval t ∈ [0,T ] and

u(t) = 0 for t ∉ [0,T ], therefore ψ(t) must be defined over t ∈ [0,T ] and is undefined outside this

interval. Thus, the total analytical energy in the pulsed waveform s(t) can be defined as

Ea
s = ∥s(t)∥22 (2.6)

where ∥s(t)∥2
2

is the squared l2-norm of continuous signal s(t). The squared l2-norm of arbitrary

signal a(x) is defined as1

∥a(x)∥2
2
≜
∞̂

−∞
∣a(x)∣2dx <∞. (2.7)

Thus the squared l2-norm of finite duration waveform s(t) can be represented as

∥s(t)∥2
2
=
∞̂

−∞
∣s(t)∣2dt

=
T̂

0

∣s(t)∣2dt

=
T̂

0

(u(t))2dt.

(2.8)

The superscript (●)a in (2.6) indicates that the energy is analytical and not a physical energy (e.g.

an energy in Joules)2 thus is considered unitless. Likewise, the average analytical power is defined

1For function with 2 or more dependent variables, the l2 norm is integrated over time t or frequency f .
2In Section 2.2, a physical definition of the transmitted energy is provided.
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as the Ea
s normalized by the pulse duration,

Pa
s = 1

T
∥s(t)∥2

2
. (2.9)

The spectral response of the pulsed waveform s(t) as a function of continuous frequency f is

observed via the Fourier transform F{●},
S( f ) = F{s(t)}

=
∞̂

−∞
s(t)e− j2π f tdt

=
T̂

0

s(t)e− j2π f tdt,

(2.10)

which can be represented by real, positive-valued frequency-domain envelope U( f ) and phase

function Ψ( f ) similar to (2.3) as

S( f ) =U( f )e j Ψ( f ). (2.11)

Likewise, the spectral response of the passband waveform spb(t) is

Spb( f ) =
T̂

0

spb(t)e− j2π f tdt, (2.12)

where (2.10) and (2.12) are related as

Spb( f ) = 1√
2
(S( f − fc)+S∗( f + fc)). (2.13)

Applying Parseval’s identity [45], the squared-magnitude of S( f ) and Spb( f ) have the same total

(analytical) energy (from (2.6)) as the waveforms in time,

Ea
s = ∥s(t)∥22 = ∥S( f )∥2

2
= ∥spb(t)∥22 = ∥Spb( f )∥2

2
, (2.14)
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and is related to the average analytical power from (2.9) as

Pa
s = 1

T
∥s(t)∥2

2
= 1

T
∥S( f )∥2

2
= 1

T
∥spb(t)∥22 = 1

T
∥Spb( f )∥2

2
. (2.15)

Therefore, 1
T ∣S( f )∣2 represents the average power contribution per unit frequency. For notational

convenience, the pulse duration normalization 1
T is dropped and ∣S( f )∣2 is referred to as the power

spectrum3. The power spectrum is typically represented in decibel scale where

∣S( f )∣2 (dB) = 10log10{∣S( f )∣2}. (2.16)

2.1.2 Types of Waveforms

The most basic pulse radar waveform is the rectangular-windowed sinusoid (sometimes referred to

as a simple pulse). For pulse duration T , the complex-baseband representation of a simple pulse is

defined over t ∈ [0,T ]with phase function ψsp(t)= 0 and amplitude envelope usp(t)= 1 for t ∈ [0,T ]
and usp(t)= 0 for t ∉ [0,T ]. Using this type of pulse, the expected range resolution ∆R of the probed

environment after processing is

[∆R]sp = cT

2
. (2.17)

where c = 2.99792...×108 meters per second is the speed of light in free space. For this work only

free space propagation is considered.

Observing (2.17), the only means to improve range resolution using the simple pulse is to

reduce the pulse duration. However, the process of reducing the pulse duration also results in a

reduction of the total emitted energy limiting the maximum range that can be observed. Therefore,

to keep constant total energy the amplitude of the simple pulse must be increased. For example,

if we want a reduction of range resolution by two we must shorten the pulse duration by half,

and to maintain constant energy we must increase the pulse amplitude by
√

2 (since energy is

3In the literature ∣S( f )∣2 is also referred to as the energy spectral density [46]. However, to stay consistent with

existing publications on radar waveforms, ∣S( f )∣2 is referred to as the power spectrum [5].
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proportional to the square of the amplitude). This boost in pulse amplitude may not be feasible for

physical systems since the power supplied to the radar is finite thus directly limits the achievable

radar resolution of a simple pulse.

The bandwidth B of the simple pulse is approximately equal to the inverse of the pulse duration

B ≈ 1/T . Therefore the time-bandwidth product of the pulse (which is considered to be the

dimensionality of the pulse) is approximately unity, BT ≈ 1. By modulating the pulse, either

through the amplitude envelope u(t) or phase function ψ(t), the bandwidth of the waveform can

be increased independently from the pulse duration. Waveforms with BT > 1 are referred to as

pulse compression waveforms as the pulse duration can be “compressed” into a peak of receive via

matched filter processing. The range resolution of a pulse compression waveform is determined

by the waveform bandwidth as opposed to the pulse duration as

[∆R]pc ≈ c

2B
. (2.18)

which can designated without affecting the energy requirements of the radar.

A pulse compression waveform whose modulation is entirely defined via a continuous phase

function ψ(t) is known as a frequency modulated (FM) waveform. For this type of waveform,

the amplitude envelope u(t) is typically defined as a rectangular window thus constant amplitude

(sometimes referred to as constant envelope or constant modulus). This amplitude design is

inherently power efficient as the waveforms can be passed through a high power amplifier (HPA)

operating in saturation with low distortion [3]. The property of continuous phase implies that the

FM waveform is inherently spectrally contained because it is differentiable with respect to time as

fpb(t) = 1

2π

d

dt
ψpb(t)

= fc+ 1

2π

d

dt
ψ(t)

= fc+ f (t).
(2.19)

where
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f (t) = 1

2π

d

dt
ψ(t) (2.20)

is the baseband instantaneous frequency and fpb(t) is the passband instantaneous frequency of the

FM waveform. The phase function ψ(t) is related to the instantaneous frequency f (t) through the

integral

ψ(t) = 2π

t
ˆ

0

f (ζ)dζ +ψ0, (2.21)

where ψ0 is the initial phase offset of the waveform, ψ(0) =ψ0.

2.1.2.1 Phase-Coded Pulse

Before discussing different types of FM waveforms, the phase-coded pulse is introduced which is

defined entirely by a sequence of Nc phase values {ψ0,ψ1, . . . ,ψNc−1}. The original phase-coded

waveforms were binary thus ψn could only take on values {0,π} though have been extended for

polyphase constellations and continuous phase values [5]. The baseband phase-coded waveform is

constructed by forming an impulse train of Nc complex exponentials each having the phase of the

sequence,
Nc−1∑
n=0

δ(t −nTc)e jψn , where

δ(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 for t = 0

0 otherwise

(2.22)

is the impulse function. The impulses are spaced evenly over the pulse duration, separated by

duration Tc defined as

Tc = T

Nc
. (2.23)

The final stage is a convolution of the weighted impulse train with a shaping filter wc(t) to form

the complex-baseband, time-domain waveform scode(t) (not necessarily continuous),
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scode(t) =wc(t)∗Nc−1∑
n=0

δ(t −nTc)e jψn

= Nc−1∑
n=0

wc(t −nTc)e jψn ,

(2.24)

where ∗ represents a convolution which for arbitrary signals a(t) and b(t) is equal to

a(t)∗b(t) =
∞̂

−∞
a(ζ)b(t −ζ)dζ =

∞̂

−∞
a(t −ζ)b(ζ)dζ . (2.25)

In the frequency domain, the convolution becomes a multiplication of the respective spectrums,

A( f ) and B( f ),

F{a(t)∗b(t)} = A( f )B( f ). (2.26)

Therefore, the Fourier transform of (2.24) is expressed as

Scode( f ) =Wc( f )S̄code( f ), (2.27)

where

S̄code( f ) = Nc−1∑
n=0

e jψne− j2π f Tcn (2.28)

is the discrete-time Fourier transform (DTFT) of the phase-coded, complex exponential sequence

{e jψ0 ,e jψ1 , . . . ,e jψNc−1}. The spectrum in (2.28) is periodic and exists for all frequency, thus the

spectral containment of the waveform scode(t) is entirely controlled via the shaping filter wc(t)
(similar to time domain communications signals carrying information [47]). There are two schools

of thought in choosing the function for shaping filter wc(t): 1) maintaining constant amplitude for

saturated amplifier implementation (thus a rectangular function is used), and 2) choosing wc(t)
such that the spectral content of scode(t) is contained.

The rectangular function (RECT) for wc(t) is defined as
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wr
c(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for 0 ≤ t < Tc

0 otherwise

. (2.29)

The spectral content for this shaping filter is

W r
c ( f ) = sinc(π f Tc)e− jπ f Tc (2.30)

where

sinc(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 for x = 0

sinx

x
otherwise

(2.31)

is the sinc-function. To illustrate how to contain the code spectrum4, the square-root raised cosine

(SRRC) filter (denoted ws
c(t)) is used with duration 10Tc and roll-off factor of 0.5 shown in Figure

2.3. Figure 2.4 shows the power spectrums ∣Wc( f )∣2 for both the rectangular (blue) and SRRC

(red) shaping filters. The cost of constraining the waveform to be constant amplitude has produced

large lobes in frequency outside of the band of interest that contain a considerable amount of the

waveform energy. It is assumed that on receive the waveform is low-pass filtered and sampled at

the code rate fs = 1/Tc which corresponds to the energy contained between normalized frequencies

f Tc = ±0.5 in Figure 2.4. The DTFT waveform spectrum S̄code( f ) is approximately flat for many

well known codes [5], thus the total energy of the filter minus the energy between f Tc = ±0.5

represents the approximate waveform energy lost during receive processing. For the rectangular

filter, normalizing this lost energy by the total filter energy yields

∞̂

−∞
∣W r

c ( f )∣2d f −
0.5Tc
ˆ

−0.5Tc

∣W r
c ( f )∣2d f

∞̂

−∞
∣W r

c ( f )∣2d f

= 0.2263. (2.32)

4Many different filters may be used to constrain the spectral footprint. The SRRC function is only one such filter.
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Figure 2.3: Square-root raised-cosine (SRRC) shaping filtering with duration 10Tc and roll-off

factor of 0.5.

Therefore, the approximate lost energy when using the rectangular shaping filter is 22.63% of

the total waveform energy (−1.11 dB). An argument could be made for capturing the entirety

of the mainlobe (90% of the energy) for processing. Though, in this case, the captured signal

would deviate from the model of the phase sequence from which the waveform was derived. The

captured signal would be twice the sampling frequency of the phase code, and, if the code was

designed based on some optimality condition, would likely deviate from the expected response.

The phase function of rectangular filtered phase-coded waveform is discontinuous thus does not

have a well defined instantaneous frequency f (t). If one were to try and define an instantaneous

frequency for this function, it would only take on the three values {−∞,0,∞} which no doubt is

a contributor to the waveforms large spectral footprint. The instantaneous phase jumps cannot not

be achieved by a physical radar transmitter due to a finite bandwidth of the RF components in the

transmit chain [3]. This bandlimiting takes the form of “dips” in the time envelope of scode(t) that

are dependent on the angle between successive phase code values (more detail in Section 2.2.2).

The out-of-band energy for the rectangular shaping filter is troublesome when considering

where in the transmission process it should be dissipated. One extreme case is that all of the energy

is reflected and dissipated in the resistive elements of the transmit chain, which for high-powered

radar applications (∼ 10 kW− 1 MW peak power) could result in multiple kilowatts of power

to dissipate. The other extreme is to radiate the out-of-band energy into free-space though the
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Figure 2.4: Spectrum envelopes ∣Wc( f )∣2 (in dB) versus normalized frequency ( f Tc) for rectangu-

lar shaping filter wr
c(t) (blue) and square-root raised cosine shaping filter ws

c(t) (red).

radar emission is then liable to interfere with adjacent users within the spectrum (e.g. compliance

with the radar spectrum engineering criteria (RSEC) mask [48]). In reality, a combination of

the two extremes is responsible for the dissipation of the out-of-band energy, though the thought

experiment presents an interesting obstacle when considering implementation of these types of

waveforms in a high-power radar system.

The spectrum of the SSRC filter in Figure 2.4 (red) displays a much more contained response

compared to the rectangular filter. This precise management of the spectrum comes at the cost of

an amplitude modulated time envelope of the phase-coded waveform. Figure 2.5 shows the time

domain amplitude of a length Nc = 150 P4-code whose phase sequence is defined as [5]

ψP4,n = π
n2

Nc
−πn (2.33)

for n ∈ {0,1, . . . ,Nc − 1}. The envelope oscillates at the beginning at ends of the pulse where

the angle between successive phase code values is the highest. The high amount of amplitude

modulation on this waveform prevents high-power amplifier implementation without incurring

significant distortion effects (e.g. amplitude compression, intermodulation products, spectral
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Figure 2.5: Amplitude ∣scode(t)∣ versus normalized time (t/T) for rectangular shaping filter wr
c(t)

(blue) and square-root raised cosine shaping filter ws
c(t) (red).

regrowth [37]). However, the SRRC-filtered phased-code could be suitable for class-A amplifier

applications (i.e. low-power radar) where the requirements of the envelope structure are less

stringent. In Section 2.2.2, the bandlimiting effect for a rectangular filtered P4 code is shown

to be similar in amplitude shape to that of the SRRC-filtered P4 code.

The fact that the phase-coded waveform is defined via a discrete set of parameters does not

inherently produce the ill-effects when considering the signal for high-power radar applications.

In fact, a coded structure can be beneficial when optimizing waveforms with respect to a specified

cost function (Chapter 5). The culprit is in the how the waveform is modeled, i.e. the conversion

from the discrete sequence to the time-domain waveform structure. The code-to-waveform

conversion model defined in (2.24) in not generally suitable for high power radar waveform

design/optimization as it can only produce waveforms with a large spectral footprint at constant

amplitude. In Section 2.1.2.4 another generalized code-to-waveform model is presented that

produces FM waveforms whose phase function is continuous thus does not exhibit the spectral

broadening of the rectangular-filtered phase-coded waveform.
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2.1.2.2 Linear Frequency Modulated Waveform

The most well-known FM waveform is the linear frequency modulated (LFM) waveform which is

defined by a linear instantaneous frequency progression over the pulse duration which can either be

an increasing (an “up-chirped” LFM) or decreasing (a “down-chirped” LFM) function in time [49].

For bandwidth B, the baseband instantaneous frequencies of the complex-baseband up-chirped and

down-chirped LFM waveforms defined over t ∈ [0,T ] are

fLFM(t) = ±(−B
2 + B

T t) (2.34)

where (±) defines the type of LFM ((+) for up-chirp, (−) for down-chirp). Thus, the phase

function of the LFM is defined as

ψLFM(t) = 2π

t
ˆ

0

fLFM(ζ)dζ +ψ0

= ±2π ⋅(−B
2 t + B

2T t2)+ψ0,

(2.35)

where (⋅) indicates the expressions to the left and right are multiplied and not the function ‘π(●)’.
Thus, the complex-baseband representation of the LFM waveform is defined as

sLFM(t) = u(t)exp(± j ⋅(2π ⋅(−B
2 t + B

2T t2)+ψ0)) (2.36)

for t ∈ [0,T ]. Note that the amplitude envelope u(t) is generally considered to be a rectangular

window (constant amplitude) over the duration of the pulse though some tapering can be applied

(e.g. a Tukey shading) to control the spectral roll-off properties.

The linear frequency sweep of the instantaneous frequency fLFM(t) implies that the frequency

content of the LFM waveform SLFM( f ) should have an equal power distribution over ±0.5B (i.e. a

rectangular spectrum). However, the power spectrum ∣SLFM( f )∣2 only approximates a rectangular

window due to finite dimensionality of the waveform. The product of the pulse duration T and

bandwidth B defines the dimensionality of the waveform. As this quantity is increased, the better
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Figure 2.6: Baseband power spectra ∣SLFM( f )∣2 (in dB) for LFM waveforms of time-bandwidths

BT = 10 (blue), BT = 100 (red), and BT = 1000 (yellow).

the approximation of the rectangular spectral shape. To illustrate this effect, Figure 2.6 shows the

LFM power spectra ∣SLFM( f )∣2 for time-bandwidth products BT ∈ {10,100,1000}. Because the

LFM waveform is ubiquitous in radar culture it is used as a baseline case for many of the emission

implementations and optimization methods throughout this work.

2.1.2.3 Nonlinear Frequency Modulated Waveform

The LFM waveform is the simplest FM waveform to generate though has undesirable qualities in

the estimation of scattering amplitudes. On receive, the received energy is compressed into a peak

through a process known as pulse compression (discussed in more detail in Section 2.1.4). The

compression response in range is related to the inverse-Fourier transform of the power spectrum

∣S( f )∣2, thus for the LFM would produce a sinc-like response in time of the compressed pulse.

The high sidelobe level of the LFM compression response is undesirable as it create ambiguities in

time (range) that may mask targets offset in range with a lower power scattering. To alleviate this

problem one could taper the waveform in the time domain (non-rectangular amplitude envelope

u(t)) which is undesirable as it precludes the use of highly efficient amplifiers operating in the

saturation region [5]. Shaping of the spectral content (i.e. “spectral tapering”) on receive can

also be employed though this process removes the received signal energy thus decreasing the
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signal-to-noise ratio of profile estimate [5]. The nonlinear FM (NLFM) waveform is designed

to spectrally shape the waveform content (as would occur with spectral tapering) without the SNR

loss associated with time-envelope or spectral tapering.

The nonlinear FM (NLFM) waveform encompasses the remainder of FM waveforms having

nonlinear instantaneous frequency f (t). Thus, the NLFM does not have a strict definition except

for the prerequisite of being FM in structure and nonlinear in instantaneous frequency. The

traditional method of designing NLFM waveforms is via the principle of stationary phase (POSP)

[5, 50, 51] which can form the phase function ψ(t) given a time-domain amplitude function u(t)
and ideal (desired) frequency-domain envelope Ud( f ) for Ud( f ) ≥ 0.

The waveform s(t) can be written in terms of the spectral content S( f ) through the inverse

Fourier transform, and by using (2.11) can be written as

s(t) =
∞̂

−∞
S( f )e j2π f td f

≈
∞̂

−∞
Ud( f )e j(Ψ( f )+2π f t)d f .

(2.37)

The stationary point in the phase of the integrand is found when

d

d f
(Ψ( f )+2π f t) = 0. (2.38)

Assuming only a single stationary point at f = f̄ , the solution to (2.38) is expressed as

2πt = −Ψ
′( f̄ ), (2.39)

where Ψ′( f ) = d
d f Ψ( f ). In [50], is it shown that the amplitude envelope u(t) and desired spectral

envelope Ud( f ) are related as5

5Refer to [5, 50] for more information pertaining to the derivation of the POSP for NLFM waveform design.
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Figure 2.7: NLFM (a) amplitude envelope u(t) of duration T =4 µs and (b) desired spectral window

(Hamming) (in dB) for POSP waveform formation.

t
ˆ

∞

(u(ζ))2dζ =
f̄
ˆ

−∞

(Ud(η))2dη . (2.40)

Defining the left-hand side of the relationship as

C(t) =
t
ˆ

∞

(u(ζ))2dζ (2.41)

and the right-hand side as

D( f̄ ) =
f̄
ˆ

−∞

(Ud(η))2dη , (2.42)

the POSP-formed NLFM instantaneous frequency can be defined as

fPOSP(t) =D−1(C(t)). (2.43)

where D−1(●) is the inverse function of D(●). Therefore, the phase function ψPOSP(t) is found via

(2.21), completing the formation of NLFM waveform s(t) = u(t)exp( jψPOSP(t)).
Figures 2.7(a,b) show an example of a time-domain envelope u(t) and desired frequency-
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Figure 2.8: NLFM power spectrum ∣S( f )∣2 (in dB) designed via POSP for Hamming spectral

window (shown in gray) and rectangular time envelope with duration T = 4 µs.

Figure 2.9: Instantaneous frequency f (t) (in MHz) for NLFM waveform designed via POSP for

Hamming spectral window and rectangular time envelope with duration T = 4 µs.

24



Figure 2.10: Implementation of polyphase-coded FM waveforms

domain envelope Ud( f ), respectively. The amplitude envelope in this case is the typical rectangular

window with pulse duration set to T = 4 µs. The desired spectral window is a Hamming window

defined over f ∈ [−25,25]MHz and Ud( f ) = 0 for f ∉ [−25,25]MHz. The NLFM power spectrum

designed via the POSP formulation for these initializations in shown in Figure 2.8. Note that the

spectrum only approximates the desired window, however this approximation is improved with

increasing time-bandwidth product6. The NLFM instantaneous frequency is shown in Figure 2.9.

The amount of time the instantaneous frequency “spends” around a particular frequency directly

relates to the power level of ∣S( f )∣2 at that frequency. Thus the large slopes at the beginning and

ends of f (t) produce the tapered structure of the NLFM power spectrum.

2.1.2.4 Polyphase-coded Frequency Modulated Waveform

The Polyphase-Coded FM (PCFM) waveform implementation arises from Continuous Phase

Modulation (CPM) used in communications which is employed for aeronautical telemetry [52],

deep-space communications [53], and the BluetoothTM wireless standard [54]. The CPM

implementation produces continuous, constant-amplitude waveforms that are power efficient

and spectrally well-contained [38]. This waveform framework was originally designed to

convert phase codes (Section 2.1.2.1) into FM waveforms (thus the namesake). The successive

difference between a phase code sequence produces a discrete sequence of Np parameters

xw = [α0 α1 ⋯ αNp−1]T (for (●)T the transpose operation) that represent piecewise instantaneous

angular frequencies.

6This property is reminiscent of the LFM rectangular spectral approximation. In fact, for a rectangular windowed

desired spectral envelope the POSP formulation produces an LFM waveform.
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The PCFM implementation (shown in Figure 2.10) forms a length Np impulse train with time

separation Tp, where the nth impulse is weighted by αn for n ∈ {0,1, . . . ,Np−1} and

Tp = T

Np
. (2.44)

The weighted impulse train is then convolved with the rectangular shaping filter7

wp(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
Tp

for 0 < t ≤ Tp

0 otherwise

. (2.45)

The filtered impulse train is then integrated to form the continuous phase function, ψ(t;xw) which

can be simplified to the form

ψ(t;xw) =
t
ˆ

0

wp(ζ)∗Np−1∑
n=0

αnδ(ζ −nTp)dζ +ψ0

=
t
ˆ

0

Np−1∑
n=0

αnwp(ζ −nTp)dζ +ψ0

= Np−1∑
n=0

αn

t
ˆ

0

wp(ζ −nTp)dζ +ψ0

= Np−1∑
n=0

αnhn(t)+ψ0

(2.46)

defined over t ∈ [0,T ] for pulse duration T =NpTp, where

hn(t) =
t
ˆ

0

wp(ζ −nTp)dζ (2.47)

is the nth PCFM basis function8. Figure 2.11 displays the time-shifted ramp structure of the nth

PCFM basis function hn(t) and time-shifted shaping function wp(t − nTp). The summation of

7For CPM systems, the shaping filter wp(t) can be any function that integrates to a specified constant [47], however

in this work only a rectangular function defined over duration Tp that integrates to unity is considered.
8In Chapter 5, the functions hn(t) for n ∈ {0,1, . . . ,Np−1} from (2.47) are generalized to any set of basis functions

of which the PCFM basis set is one example.
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Figure 2.11: Illustration of the nth PCFM basis function hn(t) and time-shifted shaping function

wp(t −nTp).
basis functions in (2.46) equates to a piecewise linear phase function. Thus, the continuous FM

waveform s(t;xw) is

s(t;xw) = u(t)exp( jψ(t;xw))
= u(t)exp

⎛⎝ j ⋅⎛⎝
Np−1∑
n=0

αnhn(t)+ψ0

⎞⎠⎞⎠
(2.48)

for t ∈ [0,T ] and s(t;xw) = 0 for t ∉ [0,T ]. The amplitude envelope u(t) is included for generality

however is typically assumed to be unit amplitude (u(t) = 1) to maintain power efficiency

(discussed further in Section 2.2.2). Using (2.20), the instantaneous frequency of the PCFM

waveform can be represented as

f (t;xw) = 1

2π

Np∑
n=1

αnwp(t −nTp). (2.49)

Note that for any instant in time the instantaneous frequency is defined using only one of the

parameters αn for n ∈ {0,1, . . . ,Np−1} (i.e. f (t) = 1
2π

αn

Tp
for nTp < t ≤ (n+1)Tp).

In Chapter 5, this code-to-FM waveform framework is generalized to include any arbitrary

basis such that the values contained in xw are no longer associated with instantaneous frequency

values. This new general waveform structure, entitled Coded-FM (or CFM), allows for the phase
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function of the FM waveform to be comprised of any chosen basis with the PCFM waveform being

a single subset of the CFM waveform.

2.1.3 Bandwidth

To this point the bandwidth B has been presented as a generic bandwidth with no set definition.

However, because we are considering waveforms of finite pulse duration, the spectral content of the

waveform theoretically extends over the entirety of the electromagnetic spectrum. While defining

the bandwidth as infinite might be technically correct, it would also be meaningless. In reality,

the spectral footprint of the waveform beyond a certain frequency range will be attenuated to a

point where one can define an effective bandwidth. The guidelines for defining this frequency

range are different depending on the application of the waveform. For this reason, there are many

interpretations of bandwidth considered in practice.

The definition of bandwidth used in the LFM definition from (2.36) is the analytical bandwidth

which will now be denoted as Ba and defined as

Ba =max
t
{ f (t)}−min

t
{ f (t)}. (2.50)

While this bandwidth definition is informative for the LFM waveform, it is not sufficient to

describe the spectral behavior of other FM waveforms (particularly as a function of frequency).

Because the instantaneous frequency of the LFM waveform is a linear function, one would expect

the baseband spectral response to be flat over the analytical bandwidth Ba. However, for more

complicated instantaneous frequency functions the allocation of power in the frequency domain is

not so obvious thus requiring a more thorough analysis.

The two remaining bandwidth definitions considered here are derived from the power spectrum

∣S( f )∣2: one based on power beneath maximum spectral power and one based on percentage

of average power. The 3 dB bandwidth (or half-power bandwidth), denoted B3dB, defines the

frequency range when the power spectrum drops by half its maximum. If ∣S( f )∣2 is unimodal
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(or general shape approximates unimodal) there are two frequencies that meet this criteria: a

frequency greater than the maximum point (denoted f hi) and a frequency less than the maximum

point (denoted f lo). These frequencies can be found by solving the equation

∣S( f )∣2
max

f
{∣S( f )∣2} = 0.5. (2.51)

Thus the 3 dB bandwidth is defined as

B3dB = f hi− f lo. (2.52)

Alternatively, bandwidth can be defined as containing a certain percentage of the average power.

Here, the 98% average power (for short 98% power) bandwidth is considered and can be found by

solving

B98%/2
ˆ

−B98%/2

∣S( f )∣2d f = 0.98

∞̂

−∞
∣S( f )∣2d f (2.53)

for B98%, the 98% power bandwidth.

The time-bandwidth product of a waveform is a common measure of the waveform dimen-

sionality and is defined simply as the product of the waveform bandwidth and the waveform pulse

duration. However, depending on the spectral content of a waveform, the bandwidth can vary

considerably based on which definition is used. In general, the time-bandwidth product (denoted

BT ) is defined according to the 3 dB bandwidth of the waveform,

BT = B3dBT. (2.54)

The range resolution (discussed further in Section 2.1.4) is dependent on 3 dB bandwidth of

the waveform thus is a natural choice for defining the waveform dimensionality. Although, if

either of the bandwidths Ba or B98% are more suited for describing the waveform bandwidth

for a certain design, it is perfectly valid to define the waveform dimensionality based on these
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quantities. Thus, we can define the analytical time-bandwidth as BaT and the 98% time-bandwidth

as B98%T . However, the short-hand definition of time-bandwidth ‘BT ’ is designated for the 3 dB

time-bandwidth, B3dBT .

The ratio of the waveform bandwidth to the passband center frequency, called the fractional

bandwidth, provides a metric on the width of the waveform’s spectral occupancy relative to its

‘average’ frequency. Similar to the time-bandwidth product, the fractional bandwidth is a function

of chosen bandwidth definition. Thus, three fractional bandwidths can be defined using the three

bandwidth interpretations as

[%BW]a = Ba

fc
, (2.55)

for the analytical bandwidth Ba,

[%BW]3dB = B3dB

fc
, (2.56)

for the 3 dB bandwidth B3dB, and

[%BW]98% = B98%

fc
, (2.57)

for the 98% bandwidth B98%, where 0 ≤%BW ≤ 2. A radar waveform is considered narrowband

for [%BW]3dB < 1%, wideband for 1% ≤ [%BW]3dB < 25%, and ultra-wideband (UWB) for

[%BW]3dB ≥ 25% [55].

To illustrate the difference in these bandwidth definitions, the power spectra for an up-chirped

LFM and nonlinear FM (NLFM) waveform are generated each having a rectangular amplitude

envelope u(t) and the same analytical bandwidths Ba and pulse duration T whose product is the

analytical time-bandwidth, BaT = 200. Figure 2.12 shows the instantaneous frequencies f (t) for

the LFM and NLFM waveforms. The NLFM waveform is the same that was described in Figures

2.8 and 2.9. The LFM instantaneous frequency response is linearly increasing while the NLFM

response forms a “sideways-S” curve shape which produces a less ambiguous pulse compressed
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Figure 2.12: Normalized instantaneous frequency ( f (t)/Ba) versus normalized time (t/T) for

LFM (blue) and NLFM (red).

response (discussed in Section 2.1.4).

Figure 2.13 displays the bandwidths B3dB, B98%, and Ba on the power spectra ∣S( f )∣2 of the

LFM and NLFM waveforms. The approximately flat spectrum of the LFM waveform, shown in

Figure 2.13(a), results in nearly identical bandwidths for all three definitions with B3dB and B98%

being 94.6% and 98% of the Ba, respectively9. The power spectrum for the NLFM waveform

(Figure 2.13(b)) follows a Gaussian-like shape where B3dB and B98% are now 34.3% and 66% of

Ba, respectively. The time-bandwidth products for these two waveforms are [B3dBT ]LFM = 189.2

for the LFM waveform and [B3dBT ]NLFM = 68.6 for the NLFM waveform (∼2.76 times less than

the LFM) even though these two waveform have identical analytical time-bandwidth products.

The disparity between these bandwidth definitions indicates that for non-LFM waveforms a single

bandwidth definition may not sufficient to fully describe the spectral behavior of the waveform.

9Because the three definitions are nearly identical for the LFM, the distinction between the bandwidth definitions

is typically not discussed.
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Figure 2.13: Bandwidths B3dB, B98%, and Ba illustrated on the power spectra ∣S( f )∣2 (in dB) versus

normalized frequency ( f /Ba) for (a) LFM and (b) NLFM.

2.1.4 Pulse Compression

In the radar receiver, the scattered returns are filtered to increase the signal-to-noise ratio (SNR)

of the raw signal and, if a pulse compression waveform is used, compress the scattered pulse into

a peak with range resolution defined in (2.18). A rise in SNR amounts to increased detection

probability and estimation performance during processing. The filter that maximizes the SNR

is called the matched filter which is derived from of the waveform s(t). In Section 2.4.2, a

derivation is provided (for discretized signals) that proves that the matched filter is the only filter

that maximizes the SNR post-correlation. If the noise is assumed to be white and stationary (which

is typically the case) the optimal filter for maximization of the SNR is the waveform itself,

wMF(t) = γs(t), (2.58)

scaled with some arbitrary constant γ . Thus expected matched filter output χa(τ) for s(t) (as a

function of continuous delay τ) takes the form of the correlation function,
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χa(τ) =
T̂

0

w∗MF(t −τ)s(t)dt

= γ

T̂

0

s∗(t −τ)s(t)dt,

(2.59)

where (●)∗ is the complex-conjugate, which for a complex variable x =R{x}+ jI{x}, is defined

as

x∗ =R{x}− jI{x}. (2.60)

Therefore, the correlation operation of a waveform with itself (known as the autocorrelation)

represents the nominal expected response of an isolated scatter in the absence of noise and

interference, thus is a standard tool to rate the performance of a waveform. It is useful to scale

(2.59) such that the peak is unity (χa(0) = 1), thus (2.58) is normalized by the analytical energy Ea
s

as

wMF(t) = 1Ea
s

s(t)
= s(t)
∥s(t)∥2

2

.
(2.61)

Therefore, the autocorrelation function of complex-baseband waveform s(t) is defined as

χa(τ) = 1

∥s(t)∥2
2

T̂

0

s∗(t −τ)s(t)dt, (2.62)

which is related to the power spectrum ∣S( f )∣2 through the inverse Fourier transform as

χa(τ) = 1

∥s(t)∥2
2

∞̂

−∞
∣S( f )∣2 exp(− j2π f τ)d f . (2.63)

Only finite duration waveforms are considered therefore the autocorrelation function extends over

delays −T < τ < T and is zero outside of these limits.
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Figure 2.14: Illustration of mainlobe (green) and sidelobes (yellow) for autocorrelation response∣χa(τ)∣2 of LFM waveform for normalized delays τ/T ∈ (−0.1 0.1).
The autocorrelation processing from (2.62) compresses most (but not all) of the energy into

a duration τ ∈ [−∆τ ∆τ] of χa(τ) where ∆τ << T . This region is called the mainlobe of the

autocorrelation where ∆τ is the peak-to-null width of the mainlobe. The remaining energy

contained in the autocorrelation function is manifested in a sidelobe structure that extends from

∆τ < ∣τ ∣ < T in χa(τ). Figure 2.14 illustrates the mainlobe (green) and sidelobes (yellow) of a

portion of the autocorrelation function for the LFM waveform whose power spectrum is displayed

in Figure 2.13(a). The characterization of the sidelobes of ∣χa(τ)∣2 is significant as the peaks could

mask the mainlobe response of a smaller scattering target offset in delay (range).

The quality of a given waveform is generally determined via some measure of its autocorrela-

tion [3], with the most well-known being peak sidelobe level (PSL) which is the ratio of the peak

sidelobe level to the peak of the mainlobe defined as

PSL =max
τ
{∣χa(τ)∣2∣χa(0)∣2} for τ ∈ [∆τ,T ] (2.64)

and integrated sidelobe level (ISL) which is the ratio of energy in the sidelobe to energy in the

mainlobe defined as
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Figure 2.15: Autocorrelation response ∣χa(τ)∣2 for LFM (blue) and NLFM (red) waveforms.

ISL =
−∆τ
ˆ

−T

∣χa(τ)∣2dt +
T̂

∆τ

∣χa(τ)∣2dt

∆τ
ˆ

−∆τ

∣χa(τ)∣2dt

. (2.65)

The lower the quantities are in (2.64) and (2.65), the more desirable the autocorrelation response.

Figure 2.15 shows the squared-magnitude (in dB) of the autocorrelation responses for the LFM

(blue) and NLFM (red) waveforms whose power spectra are displayed in Figure 2.13. The PSL

(in dB) of the autocorrelation of the NLFM waveform is ∼−39.5 dB while the PSL of the LFM

autocorrelation is ∼−13.2 dB. The ISL for the NLFM waveform is ∼−26.7 dB while the ISL of

the LFM is ∼−9.7 dB. The approximate rectangular shape of the LFM power spectrum results in a

sinc-like structure in the time-domain while the lower sidelobe response of the NLFM waveform

can be attributed to the rounded spectral shape from Figure 2.13(b).

The peak-to-null width of the autocorrelation function in range is known as the Rayleigh

resolution defined as ∆R [56]. For two-way free-space propagation, this resolution is related to

the peak-to-null duration ∆τ as
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∆R = c∆τ

2
. (2.66)

The peak-to-null mainlobe width ∆τ of the autocorrelation is approximately equal to the inverse of

the 3 dB bandwidth B3dB as

∆τ ≈ 1

B3dB

. (2.67)

Inserting (2.67) into (2.66), the dependence of the range resolution on the waveform 3 dB

bandwidth from (2.18) is revealed as

∆R ≈ c

2B3dB

. (2.68)

Note the similarity between (2.66) and the range resolution of a simple pulse from (2.17). The

range resolution is decreased by a factor of T /∆τ (known as the pulse compression ratio) which

represents the improvement in resolution due to modulation of the pulse. Using (2.67), the pulse

compression ratio T /∆τ is approximately equal to the time-bandwidth product,

T

∆τ
≈ B3dBT = BT. (2.69)

Figure 2.16 shows the autocorrelation mainlobes of the LFM (blue) and NLFM (red) versus

normalized delay τ/T . In each figure, the normalized peak-to-null width ∆τ/T is displayed (the

inverse of the pulse compression ratio T /∆τ). The normalized peak-to-null mainlobe duration for

the LFM and NLFM waveforms is [∆τ/T ]LFM = 0.00502 and [∆τ/T ]NLFM = 0.01405. From (2.69),

∆τ/T is approximately equal to the inverse of the time-bandwidth product [B3dBT ]−1. Therefore,

according to the measured normalized peak-to-null mainlobe widths the time-bandwidths of the

waveforms should be [BT ]LFM ≈ 199 for LFM and [BT ]NLFM ≈ 71.2 for NLFM. In Section 2.1.3,

the time-bandwidths for the example LFM and NLFM waveforms were calculated using the

actual 3 dB bandwidth measurements as [BT ]LFM = 189.2 and [BT ]NLFM = 68.6, respectively.
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Figure 2.16: Rayleigh range resolution ∆R of autocorrelation response ∣χa(τ)∣2 for (a) LFM and

(b) NLFM.

This approximate relationship is helpful in Chapter 5 where optimization methods are used to

design waveforms of approximate time-bandwidth products by fixing the normalized peak-to-null

autocorrelation mainlobe widths within the optimization process.

2.1.5 Delay-Doppler Ambiguity Function

A scatterer moving at some radial velocity v with respect to a monostatic radar10 will impart a

Doppler shift of the center frequency of the passband waveform spb(t) by some amount

fD = 2v

c
fc, (2.70)

known as the Doppler frequency11, where v > 0 represents a scatterer moving towards the radar.

Assuming the passband waveform model spb(t) from (2.4) is the reflected signal, the Doppler

shifted waveform model can be expressed as

10A monostatic radar is one whose transmitter and receiver are collocated and operate using the same antenna via a

circulator or transmit/receive (T/R) switch.
11The derivation of the Doppler frequency fD from the radial velocity v is shown in Section 2.3.3.
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spb(t, fD) =√2u(t)cos(2π ⋅( fc+ 2v
c fc)t +ψ(t))

=√2u(t)cos(2π ⋅( fc+ fD)t +ψ(t))
=√2u(t)cos(2π fct +ψ(t)+2π fDt)
=√2u(t)cos(ψpb(t)+ψD(t)),

(2.71)

where

ψD(t) = 2π fDt (2.72)

is the Doppler phase function. The term ψD(t) distorts the phase of waveform spb(t) and,

depending on the size of the product fDT and modulation of the waveform via u(t) and ψ(t),
may significantly affect the correlation response during receive processing.

Define the complex-baseband representation of (2.71) as

s(t, fD) = u(t)e jψ(t)e jψD(t)

= s(t)e jψD(t).
(2.73)

The expected distortion can be predicted by correlating (2.73) with the non-Doppler-shifted copy

of the baseband waveform s(t) (from (2.3)) as

χD(τ, fD) = 1

∥s(t)∥2
2

T̂

0

s∗(t −τ)s(t, fD)dt

= 1

∥s(t)∥2
2

T̂

0

s∗(t −τ)s(t)e jψD(t)dt

= 1

∥s(t)∥2
2

T̂

0

s∗(t −τ)s(t)e j2π fDtdt.

(2.74)

The expression in (2.74) is referred to as the delay-Doppler ambiguity function and is equivalent

the the autocorrelation function from (2.62) when fD = 0,
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χD(τ, fD = 0) = χa(τ). (2.75)

The delay-Doppler ambiguity function has a maximum at

∣χD(0,0)∣ = 1 ≥ ∣χD(τ, fD)∣, (2.76)

and has constant energy,

∞̂

−∞

∞̂

−∞
∣χD(τ, fD)∣2dτd fD = constant. (2.77)

Refer to [5] for proofs of these properties.

For pulse duration T , the Doppler phase term ψD(t) from (2.72) rotates 2π fDT radians during

the pulse. The sensitivity of s(t) to this Doppler shift is dependent on its specific modulation of the

waveform. For example, consider the LFM and NLFM waveforms defined in Section 2.1.3. The

delay-Doppler ambiguity response for the LFM and NLFM waveforms as a function of normalized

delay (τ/T) and normalized Doppler ( fD/Ba) are shown in Figures 2.17 and 2.18, respectively. As

the Doppler frequency increases, both waveforms retain a high correlation with the non-Doppler-

shifted waveform s(t). The high correlation is depicted by the ridges that are formed across the

delay-Doppler space. These ridges indicate that these waveforms are Doppler tolerant because the

correlation response degrades gracefully with increasing Doppler shift. The sidelobe structure of

the LFM waveform stay relatively constant when Doppler shifted, however the NFLM waveform

experiences an increased sidelobe level off of the zero-Doppler cut (a well-known drawback to

NLFM waveforms [57, 58]).

An example of a waveform that is not Doppler tolerant is an FM noise waveform. One such

waveform is the pseudo-random optimized FM (PRO-FM) waveform which is optimized using an

alternating projections approach to generate a pulsed, constant amplitude waveform whose spectral

content closely matches a desired spectral mask [59] (PRO-FM has also been demonstrated for an

FM continuous-wave (FMCW) implementation [60, 61]). Consider a PRO-FM noise waveform
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Figure 2.17: Ambiguity function ∣χD(τ, fD)∣2 (in dB) via (2.74) versus normalized delay (τ/T)
and normalized Doppler ( fD/Ba) of LFM waveform with analytical time-bandwdith BaT = 200.
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Figure 2.18: Ambiguity function ∣χD(τ, fD)∣2 (in dB) via (2.74) versus normalized delay (τ/T) and

normalized Doppler ( fD/Ba) of an NLFM waveform with analytical time-bandwdith BaT = 200.
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Figure 2.19: Ambiguity function ∣χD(τ, fD)∣2 (in dB) via (2.74) versus normalized delay (τ/T)
and normalized Doppler ( fD/B3dB) of an FM noise waveform with time-bandwdith BT = 200.
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with time-bandwidth BT = 200 matched to a Gaussian spectral template. Figure 2.19 shows the

ambiguity function ∣χD(τ, fD)∣2 (in dB) for this waveform. Note how the peak correlation response

at χD(0,0) drops off significantly with increasing Doppler shift. Therefore a target moving off

zero Doppler that highly correlates with the LFM and NLFM may not correlate with the FM noise

waveform. This effect can be lessened by incorporating a bank of filters on receive each of them

matched to a different Doppler shifted version of the waveform.

2.2 The Transmission

A radar waveform can be created via digital-to-analog conversion (DAC) techniques (e.g. arbitrary

waveform generator (AWG), direct digital synthesizer (DDS)) or analog waveform generation

techniques (e.g. swept/CW local oscillators (LO), amplified thermal noise). The complexity of

the waveforms design/optimized in this work require precise control of the amplitude and phase

functions of the waveform currently not feasible for analog-only waveform generation. Therefore,

we will limit our discussion to analytical waveform designs and DAC waveform implementation.

Therefore, the pulsed complex-baseband waveform s(t) can be realized at passband via either

analog or digital up-conversion (see (2.1)). The digital method would require a DAC with a high

enough sampling rate to adequately represent the waveform at the center frequency.

Once generated, the continuous passband signal spb(t) is then sent through amplification and

filtering stages and subsequently transmitted into free-space through an antenna designed for the

proper band and polarization12. A majority of the transmit chain of RF components can be

characterized via their frequency response thus can be modeled as a linear time-invariant (LTI)

system. However, to maximize power efficiency of the transmission, the waveform is typically

sent through a high-powered amplifier (HPA) operating in saturation which is a nonlinear system

which cannot be fully characterized via a frequency response. Therefore, the analytical waveform

s(t) can experience significant distortion if not properly designed. However, if the waveform

12This simple description of a radar transmit chain does not do justice to the complexities of (and ongoing research

into) radar transmitters [56]. Though this distilled description allows for a general mindfulness of transmitter effects

when designing/optimizing radar emissions.
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Figure 2.20: Equivalent circuit model of the radar transmitter.

is FM (i.e. constant envelope and spectrally contained) the nonlinear distortion imparted onto

waveform is reduced thus is the standard choice for high-power applications. In Section 2.2.2, an

in-depth analysis is provided to illustrate exactly why the FM waveform is suited for high-powered

amplification.

2.2.1 Equivalent Circuit Model

Figure 2.20 displays an equivalent circuit of the transmission process, where Zs is the source

impedance, Z( f ) is the frequency-dependent antenna terminal impedance, Z0 is the characteristic

impedance of the transmission line, V( f ) and I( f ) are the antenna terminal voltage and current as a

function of freqeuncy, and Ttx{Spb( f )} is transformation (linear and/or nonlinear) of the waveform

Spb( f ) inflicted by the RF chain. The circuit model is implemented in the frequency domain to

capture the frequency-dependent effects of the system13. It is assumed that Zs and Z0 have a flat

frequency response over some chosen definition of the waveform bandwidth (see Section 2.1.3)

and are real-valued and equal (matched source),

R{Zs} =R{Z0} (2.78)

13Note that transient responses of the system are assumed to be negligible, though it may be possible to rework the

circuit model in Figure 2.20 within the Laplace-domain to capture these effects.
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and

I{Zs} = I{Z0} = 0. (2.79)

Thus the transmission line is lossless and there is no reflected energy at the source. The antenna

impedance Z( f ) is not assumed to be a matched load thus the reflection coefficient at the antenna

terminals as a function of frequency is defined as

Γ( f ) = Z( f )−Zs

Z( f )+Zs
(2.80)

which can assume the values, 0 ≤ ∣Γ( f )∣ ≤ 1. Note that this is a system parameter and is not

dependent on the excitation Spb( f ). The reflection coefficient can also be defined in terms of

forward (towards the antenna) and backward (away from the antenna) traveling wavefronts as

Γ( f ) = V−( f )
V+( f ) , (2.81)

where V+( f ) and V−( f ) are the Fourier transform of the forward and backward traveling waves

(V+(t) and V−(t)) at the antenna terminals. It is assumed that any reflected energy at the antenna

terminals gets dissipated in the source impedance and/or resistive components of the RF chain. The

reflection coefficient in (2.81) (sometimes referred to as the S11 scattering parameter) is measured

using a network analyzer. Another variant called return loss discards the phase information of

(2.81) and focuses on the magnitude squared. The return loss is typically measured in decibels and

is a positive quantity defined as

RL( f ) = −10log10 ∣Γ( f )∣2. (2.82)

All three quantities describe the radiation efficiency of an antenna. A return loss of 10 dB or higher

(∣Γ( f )∣ ≤ √0.1) is typically considered satisfactory. In Section 3.2 we will return to the scattering

parameter formulation to describe the mutual coupling between antenna elements in an array.
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The spectral content forward traveling wave is defined as the RF transformation of ideal

waveform spectral content Spb( f ),

V+( f ) = Ttx{Spb( f )}, (2.83)

which transforms the unitless signal Spb( f ) into a voltage. The operator Ttx{●} can include linear

effects (e.g. filtering, gain, attenuation, dispersion) and/or nonlinear effects (e.g. harmonics, in-

termodulation products, compression, waveform generation nonlinearities14, and memory effects).

Rearranging (2.81), the spectral content of the backward traveling wave is defined as

V−( f ) = Γ( f ) V+( f ). (2.84)

The voltage and current at the antenna terminals can then be found as a combination of the forward

and backward traveling wavefronts (also at the antenna terminals) as15

V( f ) =V+( f )+V−( f )
=V+( f )(1+Γ( f )) (2.85)

and

I( f ) = V+( f )−V−( f )
Z0

=
V+( f )

Z0

(1−Γ( f )). (2.86)

2.2.1.1 Time-Domain Representation

Taking the inverse-Fourier transform of the reflection coefficient Γ( f ),

Γ(t) =F−1{Γ( f )}, (2.87)

14Even though Ttx{●} is defined as the RF chain distortion, the waveform generation distortion effects are also

included to simplify the model.
15Note the expressions (2.80) – (2.86) are only true at the antenna terminals and are not generally true throughout

the RF chain.
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the backward traveling wave (in the time domain) can be expressed via convolution of the foward

traveling wave (V+(t) =F−1{V+( f )}) and the time-domain reflection coefficient,

V−(t) =V+(t)∗Γ(t). (2.88)

Note that the signals Γ(t), V+(t), and V−(t) are all real-valued signals as their corresponding

spectrums are conjugate symmetric (i.e. Γ(− f ) = Γ∗( f )) which has a real-valued time-domain

response (i.e. all signals are represented at passband). Note that this must be true as the impedance

variation with frequency Z( f ) is derived from physical measurements and V+( f ) and V−( f ) are

derived from Spb( f ) which is the Fourier transform of real-valued signal spb(t). Using V−(t)
and V+(t), the expression in antenna terminal voltage and current in the time-domain can be

represented as

V(t) =V+(t)+V−(t)
=V+(t)+V+(t)∗Γ(t)
=V+(t)∗(δ(t)+Γ(t))

(2.89)

and

I(t) = V+(t)−V−(t)
Z0

=
V+(t)

Z0

∗(δ(t)−Γ(t)). (2.90)

Through inspection it can be seen that (2.89) and (2.85) and (2.90) and (2.86) are Fourier transform

pairs. Because the analysis is performed at passband, V(t) and I(t) are both real-valued signals

oscillating at center frequency fc. Therefore, it is useful to define V(t), I(t), V+(t), and V−(t) in

terms of their respective complex-valued envelopes, Ve(t), Ie(t), V+e (t), and V−e (t), as

V(t) =R{Ve(t)e j2π fct}, (2.91)
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I(t) =R{Ie(t)e j2π fct}, (2.92)

V+(t) =R{V+e (t)e j2π fct}, (2.93)

and

V−(t) =R{V−e (t)e j2π fct}. (2.94)

The complex envelopes are related as

Ve(t) =V+e (t)+V−e (t) (2.95)

and

Ie(t) = V+e (t)−V−e (t)
Z0

. (2.96)

To avoid confusion between the signals in the time and frequency domains, below is a list of the

Fourier transform pairs between the two domains16:

Γ(t) F←→ Γ( f )
V(t) F←→V( f )
I(t) F←→ I( f )

V+(t) F←→V+( f )
V−(t) F←→V−( f )

16The functions Γ(t), V(t), I(t), V+(t), and V−(t) are all real-valued (passband) expressions.
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2.2.1.2 Instantaneous Powers, Average Powers, and Energies

The instantaneous dissipated power (in Watts) in the antenna is found by taking the product of the

terminal voltage V(t) and the terminal current (recall these are both real-valued signals). This

power represents the transmitted into free-space though also includes ohmic losses within the

antenna. Here, it is assumed that all of the dissipated power is converted into transmitted power

(zero ohmic losses in the antenna), therefore the instantaneous dissipated energy is equivalent to

the instantaneous transmitted energy defined as

Ptx(t) =V(t)I(t). (2.97)

Using (2.89), (2.90), (2.93), and (2.94), the instantaneous power Ptx(t) can be written in terms of

the complex-envelopes of the forward and backward traveling voltages as

Ptx(t) = 1
Z0
((V+(t))2−(V−(t))2)

=
∣V+e (t)∣2− ∣V−e (t)∣2

2Z0

+R⎧⎪⎪⎪⎨⎪⎪⎪⎩
(V+e (t))2−(V−e (t))2

2Z0

e j4π fct

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
(2.98)

The first term in (2.98) is the slowly varying transmitted power typically associated with the

average transmitted power. The second term is a oscillating factor at twice the center frequency

2 fc.

The power incident on the antenna terminals (sometimes referred to as the available power) is

dictated by the forward traveling voltage V+(t) and the characteristic impedance of the RF chain

Z0,

P+tx(t) = ∣V+(t)∣2
Z0

=
∣V+e (t)∣2

2Z0

+R{(V+e (t))2
2Z0

e j4π fct} . (2.99)

The terms in (2.99) comprise half of the terms for (2.98). The other half are the reflected power

terms that make up the instaneous reflected power P−tx(t) defined as the difference between the
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incident and transmit

P−tx(t) =P+tx(t)−Ptx(t)
=
∣V−(t)∣2

Z0

(2.100)

which is equal to the instantaneous power of the backward traveling voltage (towards the

generator). In terms of the complex envelopes, P−tx(t) is expressed as

P−tx(t) = ∣V−(t)∣2
Z0

=
∣V−e (t)∣2

2Z0

+R{(V−e (t))2
2Z0

e j4π fct} . (2.101)

The total transmitted energy (in Joules) for a single pulse can be found though a simple integration

of the instantaneous transmitted power,

Etx =

∞̂

−∞
Ptx(t)dt

=
∥V+(t)∥2

2
−∥V−(t)∥2

2

Z0

=
∥V+e (t)∥22−∥V−e (t)∥22

2Z0

.

(2.102)

Note that the second term from (2.98) disappears due to the oscillation between positive and

negative powers17. Likewise, the total incident and reflected energies for a single pulse are found

via integration of (2.99) and (2.101), respectively, as

17Note that the “negative” power from the oscillating term just reduces the total instantaneous power P tx(t)
when combined with the first term preventing the instantaneous power from becoming negative which would break

conservation of energy.
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E+tx =
∞̂

−∞
P+tx(t)dt

=
∥V+(t)∥2

2

Z0

=
∥V+e (t)∥22

2Z0

(2.103)

and

E−tx =
∞̂

−∞
P−tx(t)dt

=
∥V−(t)∥2

2

Z0

=
∥V−e (t)∥22

2Z0

.

(2.104)

Just as in (2.102), the oscillating term disappears leaving the integration of the power in the slowly

varying envelopes, V+e (t) and V−e (t). The transmitted power (during transmission of the pulse) is

found by averaging the energy over the pulse duration as

Ptx =
Etx

T

=
∥V+(t)∥2

2
−∥V−(t)∥2

2

Z0T

=
∥V+e (t)∥22−∥V−e (t)∥22

2Z0T
.

(2.105)

The corresponding incident and reflected average powers are respectively defined as

P+tx = E+tx
T

=
∥V+(t)∥2

2

Z0T

=
∥V+e (t)∥22

2Z0T

(2.106)
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and

P−tx = E−tx
T

=
∥V−(t)∥2

2

Z0T

=
∥V−e (t)∥22

2Z0T
.

(2.107)

It is also useful to define the spectral powers per unit frequency for the transmitted, incident,

and reflected signals as

P̄tx( f ) = ∣V+( f )∣2(1−∣Γ( f )∣2)
Z0

, (2.108)

P̄+tx( f ) = ∣V+( f )∣2
Z0

, (2.109)

and

P̄−tx( f ) = ∣Γ( f )∣2∣V+( f )∣2
Z0

. (2.110)

Note that these representations of power are not the Fourier transform of the instantaneous powers

Ptx(t), P+tx(t), and P−tx(t), thus are demarcated by the bar, ●. However, like the instantaneous

signals, the total energies can be obtained by integrating the signals over their domain (in this

case frequency), (i.e. Etx = ∥P̄tx( f )∥2
2
). The power spectrums (2.108) – (2.110) represent the time-

harmonic average powers for frequency f . This form is useful when defining the spectral power

per unit frequency.

2.2.2 Transmit Chain Distortion

It is important to design the analytical waveform model s(t) (and/or spb(t)) in such a way that the

forward traveling voltage V+(t) is a desired response. One way you can do this is by modeling the
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entirety of the RF transmit chain such that V+(t) can be predicted from the waveform model spb(t).
If the desired signal is known, spb(t) can be predistorted such that V+(t) is the desired response

after the modeled distortion occurs [31–34]. However, depending on the linearity of the amplifier,

accuracy/sensitivity of the amplifier model, and signal structure of s(t), predistortion may not

recreate the signal with the fidelity required to achieve the desired radar performance. Though

predistortion techniques using the memory polynomial model have been shown to highly linearize

non-constant amplitude radar waveforms [31–33]18. Another method of designing waveforms is to

not try and compensate for the distortion, but choose a waveform model that is known to be robust

to nonlinear effects in RF transmit chains (i.e. FM waveforms). By imposing the restrictions of

constant amplitude amplitude u(t) and continuous-time phase function ψ(t), the waveform can be

designed such that linear distortions (e.g. bandlimiting) or nonlinear distortions (e.g. harmonics,

intermodulation products) do minimal harm to the signal structure of of the ideal waveform.

2.2.2.1 Linear Distortion

The ideal RF transmitter transformation Ttx{●} from (2.83) is a scaled and delay-shifted copy of the

waveform. In the frequency-domain, this ideal transformation (assuming zero propagation delay

within the transmit chain) is depicted as,

V+( f ) =w1Spb( f ), (ideal model) (2.111)

where w1 is a real-valued scalar that transforms the unitless signal Spb( f ) into a voltage. This

transformation model captures only scaling (gain/attenuation) and time-shifting of the passband

signal. Generalizing the model from (2.111), assume only linear properties are present in the RF

transmit chain. Linear effects include but are not limited to filtering, dispersion, and linear-region

amplification. Like any linear model, it can be described via a frequency response (denoted Wtx( f )
in this case) which, when applied to the ideal waveform Spb( f ), produces the expected response

18Specifically, the compensation effect that is discussed is “open-loop” predistortion. Closed-loop distortion

compensation through a hardware-in-the-loop or transmitter-in-the-loop configuration has been shown to be more

effective as the compensation does not rely on a model though is high in complexity [34, 62, 63].
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of the system model,

V+( f ) =Wtx( f )Spb( f ). (linear-only model) (2.112)

The linear distortion model is a simple tool that can capture many of the distortions in an RF

transmit chain. However, that does not mean it cannot impart significant distortion onto the

waveform via bandlimiting.

A simple experiment was conducted to compare the linear distortions imparted to a rectangular-

filtered P4 coded signal of length Nc = 150 (generated using the method from Section 2.1.2.1)

and an LFM waveform of time-bandwidth product BT = 150. Both signals were realized at a

center frequency of fc = 1.85 GHz at a duration of T = 1 µs. A Tektronix AWG70002A arbitrary

waveform generator operating at 15 GHz DAC sampling rate was used to generate the P4 coded

signal and a Tektronix DPO70404C oscilloscope captured the loopback signal directly at passband

(no analog down-conversion)19 at a sampling rate of 25 GHz. The signal was digitally down-

converted to complex-baseband and resampled to a sampled rate of 1.5 GHz (×10 the approximate

3 dB bandwidth). Two simple loopback configurations were employed: a direct connection using a

Pasternack PE300-36 3 ft cable, and an in-line 300 MHz K&L customized band-pass filter centered

1.85 GHz connected using two PE300-36 cables.

Figure 2.21 shows the power spectra and time envelopes for the ideal P4 coded signal response

and both loopback configurations. Recall that a rectangular-filtered P4 code ideally has a constant

time envelope as shown in Figure 2.21(b). For the directly connected loopback configuration

(Figures 2.21(c,d)), the time envelopes oscillates due to bandlimiting even with 1.5 GHz of sampled

bandwdith. If the sidelobes of the spectrum are filtered out using the 300 MHz bandpass filter

centered at 1.85 GHz (Figures 2.21(e,f)), the ringing in the envelope becomes exaggerated and

starts to resemble the envelope of the SRRC-filtered P4 coded signal from Figure 2.4. Note that

the in-band content of the P4 code (±75 MHz) is effectively unaltered in these tests (compared to

the ideal), thus the loopback captures can still be processed without issue (as long as no aliasing

19More on down-conversion in Section 2.3.
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Figure 2.21: Linear distortion due to bandlimiting/filtering in loopback configuration for rectangu-

lar filtered P4 code: (a) ideal power spectrum, (b) ideal time envelope, (c) loopback with direct

connection power spectrum, (d) loopback with direct connection time envelope, (e) loopback

with filter power spectrum, and (f) loopback with filter time envelope. Darkened areas are fine

oscillations.
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occurs during sampling). However, the ringing that occurs due to bandlimiting in amplitude could

theoretically exacerbate nonlinear distortions caused by the HPA if the linear distortion is imparted

to the signal prior to amplification.

The ringing in amplitude is caused by the massive increase in instantaneous bandwidth20 at the

phase transitions of the phase-coded pulse. The system cannot handle this explosion in bandwidth,

thus the signal becomes bandlimited causing the ringing in the envelope. In [3], the authors liken

the behavior to a vector rotating around a unit circle in the complex plane. For a constant amplitude

waveform, the length (amplitude) of the vector is constant and the phase of the vector rotates

according to the phase function ψ(t). For a coded-waveform, the instantaneous jump in phase

causes the vector to jump through the unit circle causing a reduction in length (amplitude) of the

vector due to the bandwidth limitations of the system.

Figure 2.21 shows the power spectra and time envelopes for the ideal LFM waveform response

and both loopback configurations. The LFM does not have the issue of rapid increase in

instantaneous bandwidth thus the envelope of both loopback captures do not have ringing in

amplitude as seen in the P4 coded case. Both loopback captures have a small variation in

amplitude most likely caused by non-flat frequency response of the system though the envelopes

remain similar to that of the ideal LFM waveform. Therefore, it can be understood that spectral

containment of a waveform allows for bandlimiting/filtering to occur without drastically altering

the signal structure in time.

2.2.2.2 Nonlinear Distortion

In high power radar systems, along with linear distortion, there exists significant nonlinearities

which cannot be modeled using the linear filter Wtx( f ). The nonlinearities are mostly generated

within the transmitter HPA, however LO nonlinearities are also present21 [64]. The HPA nonlinear-

ities include harmonics, intermodulation distortion (IMD), AM/AM, AM/PM, and long/short-term

20Recall from Section 2.1.2.1 that the instantaneous frequency of a rectangular filtered phase-coded waveform can

only take on the values {−∞,0,∞}.
21The LO nonlinearities are assumed to be much smaller than the amplifier distortions thus are not considered in

this work.
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Figure 2.22: Linear distortion due to bandlimiting/filtering in loopback configuration for LFM: (a)

ideal power spectrum, (b) ideal time envelope, (c) loopback with direct connection power spectrum,

(d) loopback with direct connection time envelope, (e) loopback with filter power spectrum, and

(f) loopback with filter time envelope. Darkened areas are fine oscillations.
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Figure 2.23: Output power versus input power gain curve for a typical amplifier.

memory effects [36, 65–67]22. Harmonic distortion produces harmonic copies of the waveform at

multiples of the center frequency (and bandwidth). IMD occurs when the frequency components of

a non-tonal signal interact within the amplifier. IMD is the source of spectral regrowth that occurs

to either side and within the waveform band [68]. The distortions AM/AM and AM/PM occur

during signal compression and describe the process of converting amplitude modulation (AM)

of the signal into to either a distorted amplitude modulation (from amplifier saturation) or phase

modulation (PM) at the output of the amplifier (another source of spectral regrowth) [34]. When

the output of an HPA is dependent on the signal conditions prior to its arrival, the amplifier is said

to have “memory” which is most difficult nonlinearity to model [34]. Amplifier memory can occur

in two different time scales: short-term memory, where the input signals are dependent on time

scales relative to carrier period (1/ fc) caused by transients in reactive elements of amplifier; and

long-term memory, where the input signals are dependent on time scales relative to the signal’s

envelope (i.e. pulse width for radar) typically attributed to thermal effects within the device [67].

The input versus output power of an amplifier (shown in Figure 2.23) can be characterized by

three distinct regions: 1) the linear region, where the output signal is a scaled copy of the input;

2) the compression region, where the output signal begins to compress the peaks of the sinusoid

22In some texts (e.g. [64]), IMD is used generally to describe the entirety of the nonlinear distortion effects within

an amplifier.
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causing nonlinear distortions (also known as the “knee” of the amplifier); and 3) the saturation

region, the most power efficient region of the amplifier, where an increase in input amplitude

does not result in an increase in output amplitude and severe nonlinear distortions can occur to

clipping of the inputted signal23. It is typical practice in high power radar systems to operate in the

saturation region of the HPA where high amplifier efficiency is required to necessitate sufficient

energy-on-target to meet a minimum detectable signal (MDS) on receive [3, 5, 69]. Unfortunately,

the nonlinear amplifier distortions are exasperated by operating in the saturation region of the

HPA [66, 68]24.

Methods of modeling high-power amplifier nonlinear distortion (with memory)25 include but

are not limited to the Volterra, Wiener, Hammerstein, Wiener-Hammerstein, memory polynomial,

and neural network models [66, 68, 70]. Some of these models produce very accurate results

though can be quite complex to implement. One particular model that is a good trade-off between

complexity and performance is the Wiener-Hammerstein model (Figure 2.24) which has been

shown to accurately predict the nonlinear behavior of both traveling-wave tube (TWT) and solid-

state (transistor-based) power amplifiers [68]. The model is comprised of two linear distortion

stages denoted as W i
A
( f ) and W o

A
( f ), respectively, and a memoryless nonlinear distortion stage

denoted as TA{●} (e.g. the power series model [64, 68]). Thus for a system with multiple

amplification stages, the model in Figure 2.24 can be cascaded multiple times (or connected in

parallel) to model the system nonlinearities.

The nonlinear amplification model can be tied back to the transmit chain distortion model

Ttx{●} from (2.83) which converts the ideal passband spectral content Spb( f ) into the forward

traveling wavefront incident on the antenna V+( f ). If we assume that only a single amplifier stage

is present in the transmit chain, the nonlinear distortion model for Ttx{●} can be built as shown in

23Note that these operating modes for some amplifiers may not be as distinct as presented in Figure 2.23. For

example, some traveling-wave tube (TWT) amplifiers may have some slight nonlinearity over the “linear” region [68].
24These nonlinear effects can be reduced through “amplifier backoff” (typically administered in communication

systems with AM) where the input power is reduced until the maximum waveform instantaneous power is near the

knee of the amplifier where a trade-off between nonlinear distortion and linearity is researched [36,65,68], though this

region is not consider here.
25Note that there are two types of memory effects: long-term and short term memory.
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Figure 2.24: The Wiener-Hammerstein model for characterizing an HPA with nonlinear distortion

effects (including memory) [68].

Figure 2.25: Transmit distortion model Ttx{●} (frequency-domain) for single amplifier transmitter.

Figure 2.25, where T q
tx {●} is a nonlinear transformation representing DAC quantization (and any

other nonlinearities) in the waveform generation26, W i
tx( f ) is the linear model of the RF chain prior

to the amplifier, and W o
tx( f ) is the linear model for the RF chain after the amplifier. The amplifier

model for the single stage amplification is placed between the input and output linear models of the

RF chain. In Figure 2.25, the Wiener-Hammerstein model is implemented though any nonlinear

system representing the amplifier can be used. Thus, the transformation in (2.83) can be expressed

analytically as

V+( f ) = Ttx{Spb( f )} =W o
tx( f )W o

A( f )TA{W i
A( f )W i

tx( f )T q
tx {Spb( f )}}. (2.113)

The nonlinear distortion that is most significant is in-band and near-band, therefore the

discussion will be limited to these topics. The nonlinear distortion of the HPA also creates

products at multiples the center frequency of the inputted signal though are not considered here

26The DAC nonlinear transformation T q
tx {●} represents quantization of the waveform, images of the waveform

at Nyquist zones of the transmitter sampling rate, harmonic generation, and intermodulation products. While these

distortions will affect the signal structure of the waveform, the major source of distortion is the HPA which is the focus

of the analysis within this section.
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as it does not overlap the spectrum of the fundamental signal thus can be filtered out via harmonic

termination/shorting [34, 36, 71]. In-band distortions may alter the modulation structure of the

inputted signal while near-band distortion are difficult to filter out due to the vicinity to the signal

band. The sources of these types of distortions are IMD, AM/AM, and AM/PM. Because these

distortions occur (or are worsened) during compression of the signal, spectral regrowth is not

typically a problem for linear systems. One method of characterizing this distortion is through the

memoryless power series model [64,66,68,72] which is a summation of the fundamental (inputted)

signal with high order components of the same signal. Because this model is memoryless, it can be

used as the transformation stage of the Wiener-Hammerstein model TA{●} shown in Figure 2.24.

Assuming the distortion prior to this memoryless model is small, the power series model can be

defined using analytical waveform Spb( f ) as

TA{Spb( f )} =w1Spb( f )+w2(Spb( f )∗Spb( f ))+w3(Spb( f )∗Spb( f )∗Spb( f ))+⋯ (2.114)

where wi is the real-valued amplitude of the ith order component27.

For example, the fundamental through fifth-order products28 for an LFM with bandwidth

Ba = 500 MHz and pulse duration T = 300 ns at a center frequency of fc = 2 GHz is shown in

Figure 2.26. The even-order products create harmonics at even multiples of the center frequency

(and bandwidth) while the odd-order products create the harmonics at odd multiples. Note that the

spectral content at the center frequency is either low in energy (even-order products) or similar

in shape to LFM fundamental. In fact, the spectral content that appears in the fundamental

frequency (for the odd-order product) is indistinguishable from the fundamental itself. Recall

that the memoryless nonlinear distortion is a superposition of the fundamental waveform with

scaled copies of the higher order products, thus the in-band spectral content of the LFM waveform

will be largely unaltered no matter the combination of the products. This lack of distortion in the

27Note that the convolutions in (2.114) are multiplications in the time domain.
28The spectra in Figure 2.26 are normalized to have equal energy. Typically the higher-order terms will be less than

the fundamental depedning on the signal structure and how hard the amplifier is driven into saturation.
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Figure 2.26: Fundamental through fifth-order terms of the power series nonlinear distortion model

for LFM of bandwidth Ba = 500 MHz, pulse duration T = 300 ns, and center frequency fc = 2 GHz.
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fundamental frequency band is a feature of the LFM being constant amplitude.

The property of low nonlinear distortion for constant amplitude waveforms can be proven

simple trigonometry. Using the passband waveform model of spb(t) from (2.4), the third-order

term (in the time domain) can be written as

(spb(t))3 = (u(t)cos(2π fct +ψ(t)))3 (Third-order product)

= (u(t))3(3
4 cos(2π fct +ψ(t))+ 1

4 cos(2π(3 fc)t +3ψ(t))). (2.115)

Thus if u(t) is designed to be constant amplitude, the signal structure of the fundamental cosine

term cos(2π fct +ψ(t)) remains undistorted (similar analyses can be performed for all odd-order

products). Therefore it can be understood that the overall impact that the HPA nonlinearity has

on the in-band content of a waveform is dependent on its signal structure, namely the amount of

amplitude variation in the signal envelope. Quantitatively, this fluctuation in signal amplitude is

characterized by the ratio of the peak instantaneous power to the signal average power, also known

as the peak-to-average power ratio (PAPR), defined as29

PAPR =
max

t
{∣s(t)∣2}

1
T
∥s(t)∥2

2

=
max

t
{∣u(t)∣2}

1
T
∥u(t)∥2

2

, (2.116)

for PAPR ≥ 1. Thus a waveform having unity PAPR (PAPR = 1) implicitly means the waveform is

robust to nonlinear effects in HPAs.

Take for an example the non-constant amplitude waveform discussed in Section 2.1.2.1 which

is an SRRC-filtered P4 code with Nc = 150 phase code values. The phase code is implemented

at the same pulse duration and center frequency as the LFM ( fc = 2 GHz and T = 300 ns). The

amplitude envelope for this waveform (shown in Figure 2.5) has a PAPR of 2.15 (or 3.33 dB),

thus will not exhibit the same low in-band distortion property as the LFM waveform (as shown by

the (u(t))3 term in the third-order product example (2.115). Figure 2.27 displays the fundamental

through fifth order products for the SRRC-filtered P4 code. For the odd-order products, the in-

29Note the PAPR is occasionally defined with respect to the passband signal spb(t), thus would have a minimum of√
2.
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Figure 2.27: Fundamental through fifth-order terms of the power series nonlinear distortion model

for SRRC-filtered P4 code of Nc = 150 code values, pulse duration T = 300 ns, and center frequency

fc = 2 GHz.
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band spectral content starts to distort compared to the fundamental and large spikes of energy form

in the near-band frequencies around the fundamental. This growth in spectral energy around the

fundamental band is called spectral regrowth [37, 64, 66, 68] which is not present for the constant

amplitude LFM higher-order analysis in Figure 2.26. This spectral regrowth can only be lowered

by reducing the nonlinearities within the amplifier by through either power back-off [37, 68] to

the linear region of the amplifier or a predistortion method that attempts to linearize the nonlinear

distortion [31–34]. To achieve the same amount of transmitted power as the LFM waveform with

power back-off would require an amplifier with enough “head-room” to operate in the linear region

(e.g. for this scenario, you would need a 215 W amplifier instead of a 100 W amplifie to achieve

the same output energy as the LFM). Linearization of the a compressed/saturated amplifier can be

employed though waveform predistortion of the signal or feedforward/feedback techniques which

rely of systems architectures though typically only works in for slightly compressed (signals i.e.

operating in the knee of the amplifier operating region) [34–37].

The distortion characteristics (both linear and nonlinear) of constant amplitude FM waveforms

make it an attractive candidate for high power radar applications. The spectral containment of an

FM waveform minimizes distortions due to bandlimiting that would occur in a radar transmitter.

Likewise, the constant amplitude structure of an FM waveform has very little in-band and near-

band distortions (i.e. spectral regrowth) that occur due to non-linear effects within the HPA.

Therefore, if the FM waveform is designed properly, the in-band content of the forward voltage

incident on the transmitting antenna V+( f ) is approximately proportional to the ideal waveform

Spb( f ),

V+( f ) ≈w1Spb( f ), (constant amplitude) (2.117)

where w1 is the amount of amplitude gain imparted to the fundamental spectrum. The convenience

of this assumption greatly simplifies analysis and optimization of FM waveforms. Though the

constraints of constant amplitude and spectrally contained impose a hard restriction during the

waveform design. Also, as sensitivity increases, as does the need for higher model fidelity.
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Figure 2.28: Spatial geometry of free-space propagation.

In Chapter 5 it is shown that greater waveform performance (in terms of correlation sidelobe

level) can be achieved by considering a system specific design that employs both a highly robust

waveform model (i.e. FM) with the linear model of a simple loopback scenario. This waveform

design method is akin to predistortion though the waveform is optimized along side the distortion

model. The optimization problem is designed to try and limit the sensitivity of the optimized

waveform performance to model errors by not combining high volatile waveforms (i.e. susceptible

to transmitter distortion) with complex transmitter models.

2.2.3 Geometry and Emitted Fields

Once transmitted, the pulsed electromagnetic (EM) energy travels in free space at the speed of

light on a vector pointed away from the radar transmitter and illuminates a desired region in space.

Figure 2.28 shows the geometry of the free-space where ϕ is measured as the angle off the y-axis

in the xy-plane and θ is the angle measured off the xy-plane. The phase center of the antenna is

located at the origin therefore R is the distance (in meters) from the antenna.

Assuming the electric-field is polarized in the θ dimension, the far-field electric and magnetic

field spectral contents with respect to the forward voltage V+( f ) can be written as
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E⃗ (R,θ ,ϕ; f ) =√ η

Z0

e− j
2π f

c R

R
√

4π
F( f ,θ ,ϕ)V+( f ) a⃗θ [V/m/Hz] (2.118)

and

H⃗ (R,θ ,ϕ; f ) = 1

η
(E⃗ (R,θ ,ϕ; f )● a⃗θ) a⃗ϕ [A/m/Hz], (2.119)

where ● is the dot product, η ≈ 120π Ω is the intrinsic impedance of free space, F( f ,θ ,ϕ)
is the frequency-dependent antenna pattern in the domainant polarization (θ in this case), and

a⃗θ and a⃗ϕ are the unit vectors in the θ and ϕ dimensions, respectively. In this configuration,

the antenna pattern F( f ,θ ,ϕ) is calculated via an S21 scattering parameter measurement in an

anechoic chamber over all angles and frequencies of interest. The pattern is corrected for spherical

spreading losses and normalized by the total incident power on the antenna thus would include

losses due impedance mismatch variation with frequency. The scaling term
√

η
Z0

is a convenient

factor when comparing the squared-amplitude of the antenna pattern ∣F( f ,θ ,ϕ)∣2 to the reflection

coefficient ∣Γ( f )∣2 (relationship shown later in section). The inverse-Fourier transform of (2.118)

and (2.119) produces the real-valued instantaneous fields expressed as

E⃗ (R,θ ,ϕ;t) =√ η

Z0

F(t,θ ,ϕ)
R
√

4π
∗V+ (t − R

c
) a⃗θ [V/m] (2.120)

and

H⃗ (R,θ ,ϕ;t) = 1

η
(E⃗ (R,θ ,ϕ;t)● a⃗θ) a⃗ϕ [A/m]. (2.121)

Taking the cross-product of the fields yields the instantaneous Poynting vector,

P⃗(R,θ ,ϕ;t) = E⃗ (R,θ ,ϕ;t)×H⃗ (R,θ ,ϕ;t)
=

1

Z0

1

4πR2
(F(t,θ ,ϕ)∗V+ (t − R

c
))2 a⃗R [W/m2]. (2.122)

The radiation intensity of the emission is found by taking the dot product of (2.122) with a⃗R and
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removing the dependence on range,

U (t,θ ,ϕ) = 1

4πZ0

(F(t,θ ,ϕ)∗V+ (t))2 [W/unit solid angle]. (2.123)

The total emitted energy can be found by integrating (2.123) over all space and time. Assuming no

ohmic losses within the antenna, this energy is equivalent to the energy dissipated in the antenna

load model ((2.102) in Section 2.2.1). Therefore, (2.102) can be expressed in terms of V+( f ) and

F( f ,θ ,ϕ) as30

Etx =

∞̂

−∞

2π
ˆ

0

π/2
ˆ

−π/2

U (t,θ ,ϕ)cosθdθdϕdt

=
1

4πZ0

∞̂

−∞
∣V+( f )∣2

2π
ˆ

0

π/2
ˆ

−π/2

∣F( f ,θ ,ϕ)∣2 cosθdθdϕd f .

(2.124)

For better comparison, (2.102) can be rewritten in terms of V+( f ) and Γ( f ) as

Etx =
1

Z0

∞̂

−∞
∣V+( f )∣2(1− ∣Γ( f )∣2)d f . (2.125)

The equivalence between the energies dissipated in the transmit chain and the energy transmitted

implies that the average transmitted power Ptx is also equivalent in both domains given the

definition of (2.105). Also note that because F( f ,θ ,ϕ) and Γ( f ) are derived off of time-harmonic

measurements, we can make the conclusion that the antenna pattern is related to the reflection

coefficient as

1

4π

2π
ˆ

0

π/2
ˆ

−π/2

∣F( f ,θ ,ϕ)∣2 cosθdθdϕ = 1− ∣Γ( f )∣2. (2.126)

The directivity of the antenna describes the power distribution in space relative to an isotropic

radiator. Because we are assuming a lossless antenna, the directivity is equivalent to the gain of

30The derivation of (2.124) is provided in Appendix A.1.
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Figure 2.29: Relationship between antenna and scatterer geometry.

the antenna. Thus, the gain (and directivity) can be defined in terms of F( f ,ϕ,φ) as [73]

G( f ,θ ,ϕ) = 4π
∣F( f ,θ ,ϕ)∣2

2π́

0

π/2
´

−π/2
∣F( f ,θ ,ϕ)∣2 cosθdθdϕ

=
∣F( f ,θ ,ϕ)∣2
1− ∣Γ( f )∣2 .

(2.127)

The effective gain is defined as the gain multiplied by the reflection mismatch efficiency [73],

Ge( f ,θ ,ϕ) = G( f ,θ ,ϕ)(1− ∣Γ( f )∣2)
= ∣F( f ,θ ,ϕ)∣2. (2.128)

2.3 The Scattering and Reception

After transmission, the emitted energy scatters off the illuminated scene. Once the energy is

scattered, the continuum of scatterers can be modeled as individual sources of energy. The fields
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scattered from a single scatterer at range R (for a single polarization) can be defined as31

E⃗
s(R′,θ ′,ϕ ′; f ) = ϒ( f ,θ ′,ϕ ′)(E⃗ (R,θ ,ϕ; f )● a⃗θ) e− j

2π f
c R′

R′
√

4π
a⃗θ ′, (2.129)

where R′ is the range from the scatterer, ϕ ′ and θ ′ are the transformed coordinates, and ϒ( f ,θ ′,ϕ ′)
is the complex-valued effective length of the scatterer (in meters) which captures the incident field

and scatters the energy irregularly in space and frequency. The chosen transformed scattering

coordinates axes for the scattered field are shown in Figure 2.29. There are an infinite number of

ways to define the coordinate axes. However, for a monostatic (or quasi-monostatic32) system, a

portion of the scattered energy reflects back to the collocated receive antenna from the direction it

was transmitted (known as backscatter). Thus, this orientation is chosen because ϕ ′ =ϕ and θ ′ = θ

corresponds to a backscattered trajectory.

The incident field at the monostatic receiver for the single scatterer at range R corresponds to

(2.129) when R′ = R, ϕ ′ = ϕ , and θ ′ = θ , thus can be expressed as33

E⃗
s(R′ = R,θ ′ = θ ,ϕ ′ = ϕ; f ) =√ η

Z0

e− j
4π f

c R

4πR2
ϒ( f ,θ ,ϕ)F( f ,θ ,ϕ)V+( f ) a⃗θ ′. (single scatterer)

(2.130)

Taking the magnitude-squared of this incident field yields the incident power density per unit

frequency for this single scatterer scenario as

P̄ i
rx( f ) = 1

η
∣E⃗ s(R′ = R,θ ′ = θ ,ϕ ′ = ϕ; f )● a⃗θ ′ ∣2

=
σRCS( f )(4π)2R4

∣F( f ,θ ,ϕ)∣2 ∣V+( f )∣2
Z0

, (single scatterer)

(2.131)

31Note that generally there would be two polarized elements in (2.129), the co-polarized element and the cross-

polarized element. However, because we are assuming a receive antenna with the same polarization at the transmit

antenna, only one polarization needs to be defined.
32A quasi-monostatic system has dedicated collocated transmit and receive antennas that can function simultane-

ously.
33The “single scatterer” specification is present to remind the reader that this equality is conditioned on the

assumption of a single isolated scatterer and is not true in general.
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where

σRCS( f ) = ∣ϒ( f ,θ ′ = θ ,ϕ ′ = ϕ)∣2 [m2] (2.132)

is the frequency-dependent backscattered radar cross section (RCS) in square-meters. Using

(2.108) and (2.128), the (2.131) can be rewritten as

P̄ i
rx( f ) = σRCS( f )(4π)2R4

G( f ,θ ,ϕ) P̄tx( f ). [W/m2/Hz] (single scatterer) (2.133)

The received power per unit frequency is found through a multiplication of the incident power

density by the effective area of the receive antenna denoted Ae( f ,θ ,ϕ) in square-meters.

Assuming the same antenna is used on receive, the effective area is defined as

Ae( f ,θ ,ϕ) = c2

4π f 2
Ge( f ,θ ,ϕ)

=
c2

4π f 2
G( f ,θ ,ϕ)(1− ∣Γ( f )∣2), [m2] (2.134)

which encapsulates the reflected power at the antenna terminals (same as on transmit) [73]. Thus

the power captured (per unit frequency) by the antenna can be expressed as

P̄c
rx( f ) =Ae( f ,θ ,ϕ)P̄ i

rx( f )
= σRCS( f ) c2

f 2(4π)3R4
(G( f ,θ ,ϕ))2 (1− ∣Γ( f )∣2) P̄tx( f ). (2.135)

At the radar receiver, the backscatter of the illuminated scene is captured by the receive antenna,

amplified using a low-noise amplifier (LNA), band-pass filtered (BPF), mixed down to the in-phase

and quadrature components (down-converted), low-pass filtered (LPF) for sampling via an analog-

to-digital converter (ADC). After amplification and receive filtering, the received power per unit

frequency captured from a single scatterer at a range of R is expressed as
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Figure 2.30: Analog down-conversion receiver model.

P̄rx( f ) = σRCS( f ) c2

f 2(4π)3R4
(G( f ,θ ,ϕ))2 Gsys( f )P̄+

tx( f ), (single scatterer) (2.136)

where Gsys( f ) represents both transmit and receive power reflections as well any losses/gains in the

receiver. Note that (2.136) is reminiscent of the well-known radar equation [56] albeit dependent

on frequency. The total received energy captured by the monostatic radar system for single pulse

scattered at range R with backscatter RCS σRCS( f ) can be found by integrating (2.136) over all

frequency, Erx = ∥P̄rx( f )∥2
2
. Note that σRCS( f ) is typically considered frequency independent (i.e.

constant over the bandwidth of the transmission), thus σRCS( f ) = σRCS.

2.3.1 Down-conversion to Baseband

Define ypb(t) as the passband signal captured by the receive antenna normalized by the square-

root of characteristic impedance of the line. Therefore ypb(t) is a normalized wave amplitude

with units of square-root watts. Assuming that the LNA stage of reception imparts minimal

nonlinear distortion34 onto receive signal ypb(t), the distortion in the receiver chain can be

represented by three real-valued filters: wrx,pb(t) that represent filtering prior to mixing, and wI(t)
and wQ(t) which represent filtering in the in-phase and quadrature chains, respectively. These

34The receive LNA operates in the linear region thus does not impart as much nonlinear distortion as the transmit

HPA. The largest contributor of nonlinear distortion on receive may come LO leakage in the down-conversion process

(shows up as a spike at 0 Hz) though is not considered here.
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filters represent both deliberate filtering (i.e. bandpass/lowpass filtering) and as well unintentional

filtering (distortion) caused by the uneven frequency responses of the RF components. The in-

phase (yI(t)) and quadrature (yQ(t)) signal components of this analog down-conversion receiver

model35 (shown in Figure 2.30) can be defined analytically as

yI(t) = ((ypb(t)∗wpb,rx(t))cos(2π fct))∗wI(t) (2.137)

and

yQ(t) = −((ypb(t)∗wpb,rx(t))sin(2π fct))∗wQ(t). (2.138)

These signals are sampled using synchronized analog-to-digital converters (ADCs) and combined

digitally into a complex signal within the processor. The low-pass filter bandwidth (contained

within wI(t) and wQ(t)) is assumed to greater than the waveform bandwidth but smaller than the

receiver sampling frequency of the ADC to minimize any distortion that might occur during the

sampling process (e.g. aliasing). The complex combination of the down-converted signals

y(t) = yI(t)+ jyQ(t) (2.139)

represents the continuous, complex-baseband representation of the received signal before sam-

pling. A proof of the down-conversion process is provided in Appendix A.2. There are certainly

variations on the model of the radar receiver in Figure 2.30 (or completely different systems models

for the case of stretch processing [55]) however this description is sufficiently general for analysis

purposes and is used throughout this work.

The receiver model can be simplified greatly by using a single complex-valued filter wrx(t) to

take the place of the three real-valued filters: wpb,rx(t), wI(t), and wQ(t). In the frequency domain,

35Down-conversion to complex-baseband can also be performed digitally (after sampling) using a single ADC at

when the received signal is still at passband frequency or down-converted to a lower center frequency (but still offset

of 0 Hz).
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Figure 2.31: Simplified receiver model for analog down-conversion.

this comprehensive receiver distortion/filtering model is expressed in terms of the three filters as36

Wrx( f ) = 1
2Wpb,rx( f + fc)(WI( f )+WQ( f )). (2.140)

Therefore, the down-conversion process can be simplified to a frequency shift and single filtering

stage (Figure 2.31). The spectral content of the received complex-baseband signal using this

approach is

Y( f ) =Ypb( f + fc)Wrx( f ), (2.141)

and in the time-domain,

y(t) = (ypb(t)e− j2π fct)∗wrx(t). (2.142)

A variation of this signal filter model is used in Chapter 5 to model the distortion of an RF chain

for use in a waveform optimization cost function.

2.3.2 Received Signal Model

For simulation purposes (or any general radar analysis), it is typical to form a model of the received

signal in terms of the scattering profile and the emitted signal. In doing so, it is typical practice to

make some general assumptions for the emission structure to simplify the modeling. Making the

antenna pattern F( f ,θ ,ϕ) a constant over frequency (i.e. F( f ,θ ,ϕ) = F(θ ,ϕ)) turns the emitted

36Proof of this equality is provided in Appendix A.3.
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field from (2.120) into a multiplication between two separable variables, F(θ ,ϕ) and V+(t), which

greatly simplifies analysis37. Another assumption that is made is one discussed in Section 2.2.2

where the forward transmit voltage V+( f ) is approximately proportional to the waveform Spb( f ).
Typically these assumptions are associated with narrowband signals since the frequency response

of RF device over a small bandwidth can be assumed constant.

Using these two assumptions, the received signal ypb(t) for a scatterer at coordinates (R,θ ,ϕ)
can be modeled using time-domain waveform spb(t) as

ypb(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xpb(τ,θ ,ϕ)spb(t −τ)+ zpb(t) for τ ≤ t ≤ τ +T

zpb(t) otherwise

, (single scatterer) (2.143)

where

τ =
2R

c
(2.144)

is the time delay (in seconds) between transmission of the waveform and reception of the scattering

from a target at range R, xpb(τ,θ ,ϕ) is the positive, real-valued, amplitude of the scatterer

which encapsulates all gains/losses of the target scattering into one variable (e.g. antenna pattern,

spherical spreading losses)38, and zpb(t) is the additive white Gaussian noise (AWGN) (or thermal

noise) signal generated at the passband frequencies and is assumed to be a wide-sense stationary

(WSS), zero mean, white Gaussian random process39 [74]. Like ypb(t), the units of xpb(τ,θ ,ϕ)
and zpb(t) are assumed to be normalized wave amplitudes in square-root watts. Therefore the

averaging the squared-magnitude of xpb(τ,θ ,ϕ)spb(t −τ) over τ ≤ t ≤ τ +T represents the average

37With this assumption, the antenna impedance Z( f ) would also be considered a constant over frequency f , thus

simplifying the analysis in Section 2.2.1.
38The scattering response of an object viewed over a large bandwidth will be dependent on frequency. However,

in this work, the model of xpb(τ,θ ,ϕ) is assumed to have scattering of constant amplitude over the bandwidth of

Spb( f ). Perhaps the most famous illustration of frequency-dependent scattering is the Rayleigh, resonance, and optical

scattering regions of a metallic sphere [56].
39In reality, thermal noise is injected continuously and not just at the beginning of receive chain. However, for

analysis purposes it is convenient to define the noise at this point and carry it throughout the down-conversion process.
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received power Prx for this scatterer,

Prx =
1

T

τ+T
ˆ

τ

∣xpb(τ,θ ,ϕ)spb(t −τ)∣2dt (single scatterer)

=
(xpb(τ,θ ,ϕ))2

T

τ+T
ˆ

τ

∣spb(t −τ)∣2dt

=
(xpb(τ,θ ,ϕ))2

T

T̂

0

∣spb(t)∣2dt

= (xpb(τ,θ ,ϕ))2Pa
s ,

(2.145)

where Pa
s is the analytical power (unitless) from (2.9), an arbitrary quantity which is dependent on

our choice of envelope u(t). Assuming u(t) is normalized such that Pa
s = 1, xpb(τ,θ ,ϕ) can be

expressed in terms of the receive power Prx as

xpb(τ,θ ,ϕ) =√Prx. [W 1
2 ] (single scatterer) (2.146)

The passband signal captured by the receiver for a continuous scattering profile (not just one

scatterer) is represented as the convolution over all delays τ and and integration over spatial angles

ϕ and ϑ as40

ypb(t) =
2π
ˆ

0

π/2
ˆ

−π/2

∞̂

0

xpb(τ,θ ,ϕ)spb(t −τ)dτdθdϕ + zpb(t). (2.147)

This model assumes a single antenna configuration thus the scattering profile xpb(τ,θ ,ϕ) is not

separable in θ and ϕ during the estimation process, therefore it can be represented as a one-

dimensional scattering profile dependent on delay τ as

xpb(τ) =
2π
ˆ

0

π/2
ˆ

−π/2

xpb(τ,θ ,ϕ)dθdϕ. (2.148)

40This receive signal model assumes zero fast-time Doppler distortion as discussed in Section 2.1.5.
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Thus, (2.147) can be simplified to the form

ypb(t) =
∞̂

0

xpb(τ)spb(t −τ)dτ + zpb(t). (2.149)

Assuming the receive filter wrx(t) imparts minimal distortion to the waveform spb(t), the

corresponding complex-baseband representation of (2.149) after down-conversion is

y(t) =
∞̂

0

x(τ)s(t −τ)dτ + z(t) (2.150)

where

x(τ) = xpb(τ)e− j2π fcτ (2.151)

is the frequency-shifted, complex-valued impulse response of the illuminated scene and

z(t) = (zpb(t)e− j2π fct)∗wrx(t) (2.152)

is the down-converted, low-pass filtered, complex-baseband noise signal assumed to be wide-sense

stationary (WSS), complex-Gaussian random process [74] with zero mean and noise power defined

as

σ2
z = lim

T ′→∞
1

2T ′

T ′
ˆ

−T ′

∣z(t)∣2dt. (2.153)

Therefore, the initial SNR for receive power Prx of the single scatterer at delay τ is

SNRinit =
Prx

σ2
z

. (2.154)

Using (2.145) and (2.151), (2.154) can be rewritten as
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SNRinit = ∣x(τ)∣2
σ2

z

. (2.155)

2.3.3 The Doppler Effect

Consider a single scatterer traveling at a radial velocity of v meters per second (where v > 0

represents a scatter moving towards the radar). A monostatic radar illuminates the scatterer with

a pulse of duration T . If the scatterer is moving towards the radar (v > 0) then the reflected pulse

will have a slightly shorter pulse duration (Tref < T) (for Tref the duration of the reflected pulse)

due to the motion of the scatterer during the reflection. Conversely, if the scatterer is moving away

from the radar (v < 0) then the reflected pulse will have a slightly longer pulse duration (Tref > T).
This effect is referred to as time dilation [75] which is responsible for the Doppler effect and, in

extreme cases, can significantly alter the modulation of the pulse.

Figure 2.32 illustrates time dilation for the case when the scatterer is moving towards the radar.

The pulse initially has pulse duration T which corresponds to a range extent of cT . The leading

edge of the pulse first arrive at the scatterer at time t = 0. At time t = τ ′, the trailing edge of the

pulse reflects off the scatterer, thus ending the scattering interaction. During this τ ′ second duration

the scatterer travels vτ ′ meters while both the leading and traveling edges of the pulse travel cτ ′

meters. From observation, the range extent of the pulse cT is equal to the summation of vτ ′ and

cτ ′. Likewise, the range extent of the reflected pulse cTref is equal to the difference between cτ ′

and vτ ′. Thus, the reflected pulse duration Tref and duration τ ′ can be calculated from the equations

cT = (c+v)τ ′ (2.156)

and

cTref = (c−v)τ ′. (2.157)

Thus the duration τ ′ can be expressed as
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Figure 2.32: Illustration of the time dilation for pulse of duration T reflected off a scatterer traveling

v meters per second.
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τ ′ = cT

c+v
= cTref

c−v
. (2.158)

The new pulse duration Tref in terms of the original pulse length T is thus

Tref = c−v

c+v
T. (2.159)

The expression in (2.159) is valid for both positive and negative velocities.

Assuming the passband waveform spb(t) is the reflected signal, the time dilation term (c−v
c+v
) is

used to model the reflected signal as spb((c+v
c−v
)t). Thus, if v > 0 (traveling towards the radar) the

pulse is compressed (Tref < T) and if v < 0 (traveling away from the radar) the pulse is stretched

(Tref >T). The reflected waveform representation spb((c+v
c−v
)t) can be approximated as the Doppler-

shifted waveform spb(t, fD) from (2.71) using simplifying relationships that, for most cases in

radar, impart negligible distortion to the signal model.

The Fourier transform pair of spb((c+v
c−v
)t) is represented as

spb((c+v
c−v
)t) F←→ (c−v

c+v
) ⋅Spb((c−v

c+v
) f ) (2.160)

where Spb( f ) is the passband frequency content from (2.10). Because the speed of light c will

always be much greater than the scatterer velocities that are observed in radar, the time dilation

term (c−v
c+v
) can be approximated using the first two terms of the Taylor series,

c−v

c+v
≈ 1− 2v

c
if c >> v. (2.161)

Thus, the frequency content of the reflected signal is approximated as

(c−v
c+v
) ⋅Spb((c−v

c+v
) f ) ≈ (1− 2v

c
) ⋅Spb((1− 2v

c
) f )

≈ Spb( f − 2v
c f ), (2.162)

where the contribution of the scalar term (1− 2v
c
) is negligible. Using (2.13), Spb ( f − 2v

c f ) can be
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expressed in terms of the baseband spectral content S( f ) as

Spb( f − 2v
c f ) = 1√

2
(S( f − fc− 2v

c f )+S( f + fc− 2v
c f )). (2.163)

Assuming the waveform is narrowband (by some measure of the bandwidths discussed in Section

2.1.3), the frequency-shifted baseband spectrums can be approximated as

S( f − fc− 2v
c f ) ≈ S( f − fc− 2v

c fc) (2.164)

and

S( f + fc+ 2v
c f ) ≈ S( f + fc+ 2v

c fc), (2.165)

resulting in the approximate relationship,

Spb( f − 2v
c f ) ≈ 1√

2
(S( f −( fc+ 2v

c fc))+S( f +( fc+ 2v
c fc))). (2.166)

Taking the inverse Fourier transform of the expression in (2.166) yields the Fourier transform pair

√
2u(t)cos(2π ⋅( fc+ 2v

c fc)t +ψ(t)) F←→ 1√
2
(S( f −( fc+ 2v

c fc))+S( f +( fc+ 2v
c fc))), (2.167)

where 2v
c fc is known as the Doppler frequency fD (as defined in (2.70)). Note that the reflected

signal has the form of the incident signal with a shifted center frequency, fc+ fD. Thus the reflected

signal spb((c+v
c−v
)t) can be well-approximated as the Doppler-shifted waveform spb(t, fD) from

(2.71),

spb((c+v
c−v
)t) ≈ spb(t, fD) =√2u(t)cos(ψpb(t)+ψD(t)). (2.168)
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2.4 Radar Digital Signal Processing

The radar digital signal processor represents the entirety of the digital realm of the data handling

(e.g. from the ADC to the outputted synthetic aperture radar (SAR) image). There are many

processing methods that combine this data different ways: SAR, space-time adaptive processing,

pulse-Doppler processing, monopulse radar, multistatic configurations, and so on [55, 56, 76, 77].

Most of these methods can be boiled down into a single core component: the matched filter

response of a signal pulse. Because this work describes the performance of a waveform/emission

during a single pulse, the discussion is limited to this scope. Though the results throughout this

work form that core component of many radar processing methods (i.e. the matched filter response)

thus can be extrapolated accordingly. Here, the theory behind sampling and the optimality of the

matched filter (under certain conditions) is presented.

2.4.1 Digitization

On receive, the signals yI(t) and yQ(t) (from (2.137) and (2.138)) are sampled using two ADCs

at sampling rate fs = 1/Ts (for Ts the sampling period). The two ADCs sampling two real-valued

signals can be equivalently modeled as one ADC sampling the complex signal y(t). The Nyquist

sampling theorem states that to sufficiently capture the information of band-limited complex-

baseband signal, one must sample at a rate greater than or equal to the bandwidth, fs ≥ B, where

each sample is complex-valued. However, because all real-world signals theoretically have infinite

bandwidth due to a finite duration (e.g. pulse duration), the sampling frequency must be defined

relative to a bandwidth chosen from various definitions discussed in Section 2.1.3. Here, the

sampling rate is defined relative to the 3 dB bandwidth B3dB of waveform s(t) as

fs = κB3dB (2.169)

where κ ≥ 1 is the 3 dB receiver over-sampling factor. For FM waveforms, κ is typically set high

enough to maintain sufficient fidelity of the spectral roll-off of the waveform [3, 38, 44].
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Figure 2.33: Comparison between a continuous-time signal spectrum and the corresponding

discrete-time signal spectrum after sampling.

The sampling of signal y(t) can be represented in continuous-time by an infinite impulse-train

product, y(t) ⋅ ∞∑
ℓ=−∞

δ(t−ℓTs). The Fourier transform of this sampled signal is Y( f )∗ ∞∑
ℓ=−∞

δ( f −ℓ fs)
which creates the Fourier transform pair

y(t) ⋅ ∞∑
ℓ=−∞

δ(t −ℓTs) F←→Y( f )∗ ∞∑
ℓ=−∞

δ( f −ℓ fs). (2.170)

Figure 2.33 compares an example spectrum of the continuous-time signal y(t) and the spectrum

of the sampled signal y(t) ⋅ ∞∑
ℓ=−∞

δ(t − ℓTs). The spectrum of y(t) is repeated every multiple of

fs in the frequency domain from the convolution with the infinite summation of impulses. If

the spectrum of y(t) extends beyond the sampling frequency, the spectral content from adjacent

Nyquist zones wrap into each other causing interference known as aliasing. A common practice

to prevent aliasing is via the LPF in the down-conversion model from Figure 2.30. This LPF (also

referred to as an anti-aliasing filter) filters out a majority of the energy outside the frequencies

± fs/2 resulting in negligible aliased energy.

82



The ADC has a finite number of bits brx to represent the real and imaginary parts of a complex

sample. The sampled voltage rounds to the nearest quantized voltage represented in the 2brx

total voltage states. This rounding produces a small error in the captured signal referred to as

quantization noise which is a common figure of merit for ADCs. If the quantization noise is below

the noise floor (ideally 10 times smaller [78]), then it only has a negligible effect on the captured

signal. To do this the least significant bit (LSB) must be set to a voltage level to sufficiently capture

the system noise.

The dynamic range (in power) of an ADC is dictated by the square of the number of the voltage

states, (2brx)2 = 22brx , which in decibels is expressed as

10log10 (22brx) = 2brx ⋅10log10(2)
= brx ⋅20log10(2)
≈ 6.02brx.

(2.171)

Therefore, for each additional bit the dynamic range of the ADC increases by ∼6 dB. The dynamic

range can be set to measure a certain range of voltages. The minimum measurable voltage should

be set such that the quantization noise is beneath the system thermal noise, and the maximum

measurable voltage should be set to capture the maximum expected voltage on receive without

saturating. If an ADC saturates, the data for the duration of saturation is severely distorted and

may be unusable.

The nonlinear behavior of quantization of the ADC is considered minimal, and thus is not

addressed throughout a majority of this work. In Chapter 5, the quantization of an ADC is

reexamined when the sensitivity of a waveform design calls for a higher fidelity RF model.

2.4.2 Matched Filtering

After sampling of the receive signal y(t) from (2.150) at rate fs, the sampled sequence is digitally

filtered to increase the SNR. It is advantageous to maximize this SNR to improve both estimation

and detection performance [56]. The correlation filter that maximizes SNR at the output of the
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filter is called the matched filter and is derived from sampled versions of the noise signal z(t) and

baseband waveform s(t).
Sampling the waveform s(t) at sampling rate fs forms the N ×1 vector

s = [s[0] s[1] ⋯ s[N −1]]T (2.172)

where

N = fsT = κB3dBT = κBT (2.173)

is the discretized length of the waveform, (●)T is vector transpose, and s[n] = s(nTs +ξ) where

ξ ∈ [0,Ts] is a subsample time-shift of the waveform. The value of ξ dictates how the waveform

s(t) is discretized for the matched filter and is chosen somewhat arbitrarily in practice. Though ξ

does have an effect on the matched filter response when the captured signal is straddled compared

to s (Section 2.4.3). In Section 5.3 the subsample time-shift ξ is incorporated in a waveform

optimization problem to find the optimal value of ξ for a particular waveform.

Another method of generating the matched filter is via a loopback capture where the waveform

is sent through the transmit and receive chains and captured by the ADC. This sampled copy of

the waveform is used to form matched filter which has the added benefit of capturing distortions

caused by the RF chains. In this case, the value of ξ is dictated by the propagation delay between

the waveform generator and the ADC. If the analytical waveform s(t) is optimized based on some

criteria, this distortion should be accounted for in the optimization process. If the distortion model

is not available or too complex to generate, the analytical model of s(t) must be chosen such that

the distortion of the RF chains is of limited impact to the captured signal structure (as would be

the case for spectrally-contained, constant amplitude waveforms).

Define the ℓth received sample as y[ℓ] for ℓ ∈ {0,1,2, . . .} where y[ℓ] = y(ℓTs) then the N

samples corresponding scattering at delay τ = ℓTs are formed into the N ×1 receiver vector,
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y = [y[0] y[1] ⋯ y[N −1]]T (2.174)

Within (2.174) the noise signal z(t) is also sampled and can be defined separately as the N × 1

vector

z = [z[0] z[1] ⋯ z[N −1]]T , (2.175)

where z[ℓ] = z(ℓTs). The signal z(t) is zero mean therefore

E{z[ℓ]} = 0N×1 (2.176)

where E{●} is the expected value and 0N×1 is a length-N vector of zeros. The positive definite,

N ×N noise covariance of z[ℓ] is defined as

E{z[ℓ]zH[ℓ]} =Rz (2.177)

where the diagonal elements are equal to the noise power from (2.153),

σ2
z = E{∣z[ℓ]∣2} = E{∣z[ℓ+1]∣2} = ⋅ ⋅ ⋅ = E{∣z[ℓ+N −1]∣2}. (2.178)

Define w as the N×1 vector used to estimate the complex amplitude of the scattering at sample

delay ℓ via the vector inner product,

x̂[ℓ] =wHy[ℓ] = N−1∑
n=0

w∗[n]y[ℓ+n] (2.179)

where [●]H = ([●]T )∗ is the complex-conjugate (or Hermitian) transpose. We want to form w to

maximize the SNR of ∣wHy[ℓ]∣2 to improve both the estimate and detection performance of the

scattering at delay ℓ.

For example, assume the receive vector y[ℓ] is comprised of a single scatter at sample delay ℓ
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in the presence of noise as

y[ℓ] = x[ℓ]s+z[ℓ] (single scatterer) (2.180)

where x[ℓ] = x(ℓTs). Applying the filter w to (2.180) is represented as

wHy[ℓ] = x[ℓ]wHs+wHz[ℓ]. (single scatterer) (2.181)

The signal and noise power components of ∣wHy[ℓ]∣2 can be found by taking the expected value as

E{∣wHy[ℓ]∣2} = E{∣x[ℓ]wHs+wHz[ℓ]∣2} (single scatterer)

= ∣x[ℓ]∣2wHssHw+wH(E{z[ℓ]zH[ℓ]})w+2R{x∗[ℓ]sHwwH(E{z[ℓ]})}
= ∣x[ℓ]∣2∣wHs∣2+wHRzw.

(2.182)

Therefore the signal-to-noise ratio after filtering can be expressed as

SNR = ∣x[ℓ]∣2 ∣wHs∣2
wHRzw

. (2.183)

Because Rz is positive definite, a Cholesky decomposition can be applied as [79]

Rz =AzAH
z , (2.184)

where Az is also an N ×N, positive definite matrix. Therefore the SNR can be rewritten as

SNR = ∣x[ℓ]∣2 ∣wHs∣2
wHAzAH

z w
. (2.185)

The Cauchy-Schwartz inequality for two N ×1 vectors p and q is [46]

∣pHq∣2 ≤ ∥p∥2
2
∥q∥2

2
. (2.186)
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If we define p =AH
z w and q =A−1

z s, the inequality becomes

∣wHs∣2 ≤ (wHRzw)(sHR−1
z s). (2.187)

Rearranging the inequality, the form of the SNR normalized by ∣x[ℓ]∣2 is evident,

SNR

∣x[ℓ]∣2 = ∣w
Hs∣2

wHRzw
≤ sHR−1

z s. (2.188)

Thus the SNR is maximized when

∣wH
MFs∣2

wH
MFRzwMF

= sHR−1
z s. (2.189)

The Cauchy-Schwartz inequality is equal only when p = γq where γ is any non-zero scalar.

Therefore (2.189) is maximized when AH
z wMF = γA−1

z s. Solving for wMF yields

wMF = γ (AH
z )−1

A−1
z s

= γ (AzAH
z )−1

s

= γ R−1
z s.

(2.190)

The scalar γ is chosen such that wH
MFy[ℓ] estimates the complex scattering amplitude x[ℓ] without

scaling which is the same as constraining wH
MFs = 1. Plugging in the relationship from (2.190) to

this constraint yields

γ = 1

sR−1
z s

. (2.191)

Thus, inserting (2.191) into (2.190) produces the scaled matched filter

wMF = R−1
z s

sHR−1
z s

. (2.192)

which is the generalized matched filter for any noise covariance Rz resulting in the matched filter

estimate of x[ℓ] as
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x̂MF[ℓ] =wH
MFy[ℓ]

=
sHR−1

z y[ℓ]
sHR−1

z s
.

(2.193)

Therefore, The maximum SNR after matched filtering from (2.183) using (2.192) is

SNRMF = ∣x[ℓ]∣2 ∣wH
MFs∣2

wH
MFRzwMF

= ∣x[ℓ]∣2sR−1
z s.

(2.194)

Assume that the bandwidth of the LPF in down-conversion stage from Figure 2.30 is equal to

fs/2, therefore the sampled signal z[ℓ] can be treated as additive white Gaussian noise (AWGN)

where each sample is independent and identically distributed (IID) [74]. The assumption of

statistical independence between the noise samples allows for the calculation of the off-diagonal

entries of Rz as

E{z[ℓ+n]z∗[ℓ+m]} = E{z[ℓ+n]} ⋅E{z∗[ℓ+m]} = 0 (2.195)

for n ≠m. Thus, the IID-AWGN covariance reduces to

Rz = σ2
z IN , (2.196)

where IN is the N ×N identity matrix defined as an all zeros matrix with ones on the diagonal,

IN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0 0

0 1 0 0

⋮ ⋱ ⋮
0 0 1 0

0 0 ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.197)

Thus, for the case of IID white noise, the matched filter from (2.192) reduces to
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Rz = σ2
z IN Ô⇒ wMF = 1

∥s∥2
2

s. (2.198)

where

∥s∥2
2
= N−1∑

n=0
∣s[n]∣2 (2.199)

is the squared l2-norm of discrete vector s which has the approximate relationship with (2.6) as

∥s∥2
2
≈ 1

Ts

∥s(t)∥2
2
, (2.200)

and with (2.9) as

1

N
∥s∥2

2
≈ 1

T
∥s(t)∥2

2
. (2.201)

In this work ∥s∥2
2

and 1
N
∥s∥2

2
are referred to as the vector energy and vector average power,

respectively. Unless specified otherwise, the form of the matched filter in (2.198) is used and

IID white noise is implicitly assumed.

The SNR after matched filtering from (2.194) using the reduced form of the matched filter from

(2.198) is

SNRMF = ∣x[ℓ]∣2
σ2

z

∥s∥2
2
. (2.202)

Note that the maximum SNR depends only on the scattering amplitude x[ℓ] and vector energy ∥s∥2
2

of the discretized waveform, and not the specific modulation of s [80]. Using the approximate

relationship from (2.201), (2.202) can be written in terms of (2.155) as
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SNRMF =N
∣x[ℓ]∣2

σ2
z

1

N
∥s∥2

2

≈N
∣x[ℓ]∣2Pa

s

σ2
z

≈N ×SNRinit.

(2.203)

Thus the SNR increase after matched filtering is equal to the number samples in the discretized

waveform N. Note that the SNR relationship in (2.203) is only the case when the noise samples in

z[ℓ] are independent (a requirement for the form of SNR in (2.202)).

Though the matched filter is optimal in an SNR sense, the derivation does not account for

interference from scatterers offset in range. The sidelobes of the correlation response (discussed

in Section 2.1.4)) extend in range in both directions a range extent equal to cT /2. These

sidelobes coherently add with the correlation mainlobe of the estimated scatterer, an interference

not accounted for in matched filter derivation. Thus the match filter may not be optimal in a signal-

to-interference plus noise (SINR) sense. Therefore, it is desirable to minimize these sidelobes to

prevent this type of distortion. One method that is widely used to minimize the sidelobes of the

correlation response is via application of a spectral window on the receive data, though this method

results in a loss is SNR of the estimated scattering response [5]. Mismatch filtering approaches are

also common to the reduction of correlation sidelobes and have been found to achieve good results

for FM waveforms with low loss [81,82] though perform best when a waveform already has a low

sidelobe autocorrelation response. The ideal method to minimize SINR (via sidelobes of offset

scatterers in range) is to use an optimized FM waveform with low sidelobes and compress the

response using a matched filter on receive to limit SNR degradation.

2.4.3 Digital Correlation and Waveform Straddling

Along with the delay-Doppler ambiguity function χD(τ, fD) and continuous autocorrelation χa(τ)
from Section 2.1.5, the digital autocorrelation function for the receiver sampling rate fs is also used

to evaluate the quality of a radar waveform. The digital autocorrelation r[ℓ] for sample delay ℓ is
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defined as

r[ℓ] = 1∥s∥2
2

N−1∑
n=0

s∗ [n−ℓ]s[n]
=

1∥s∥2
2

N−1∑
n=0

s∗((n−ℓ)Ts+ξ)s(nTs+ξ) (2.204)

which introduces the sampled nature of the radar digital signal processor into the evaluation of

the waveform. Recall that ξ is a subsample shift of the utilized when discretizing the continuous

waveform s(t) for the matched filter (Section 2.4.2). If amplitude envelope u(t) from (5.1) is a

rectangular window, a lower bound on the digital autocorrelation peak sidelobe level (PSL) can be

defined as

PSLRECT-bound (dB) = 20log10( 1

N
) = −20log10 (N) (2.205)

which corresponds to the ratios of amplitudes of r[ℓ] at ℓ = ±(N −1) and ℓ = 0.

The fact that the digital autocorrelation is a function of discretized continuous functions has

consequences that are otherwise unseen when observing the continuous autocorrelation. Assume

the received signal that is incident on the receiver ADC is the continuous waveform s(t) in the

absence of noise. The ADC samples every Ts seconds however how the points at which the samples

land within the waveform are random, thus the sampled sequence does not necessarily match that of

the matched filter. This loss caused by the mismatch between the received signal and the matched

filter is known as straddling loss and is worst when the received signal is sampled exactly halfway

between the points of the matched filter [56]. The net effect is an apparent loss in scattering

SNR though the severity of the straddling can be lessened through interpolation techniques or by

increasing the sampling rate [56]. Define r[ℓ;̺] as the matched filter straddled response when

the receive signal is offset by subsample shift ̺ ∈ [−Ts
2 ,

Ts
2
] relative to the matched filter samples

expressed as

r[ℓ;̺] = 1∥s∥2
2

N−1∑
n=0

s∗((n−ℓ)Ts+ξ)s(nTs+ξ +̺). (2.206)
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Thus the digital cross-correlation function r[ℓ;̺] becomes the digital autocorrelation function r[ℓ]
when ̺ = 0. Note that the subsample shift ξ is associated with the discretization of the waveform

for matched filtering, and the subsample shift ̺ represents the shift of the receive signal relative to

the digital matched filter.

2.5 Summary

This chapter provides a extensive background to modeling and analysis of radar waveforms and

how its modulation is carried throughout multiple stages: the transmission, the scattering, the

receptions, and finally the sampling and subsequent processing. In high power radar applications,

it is advantageous to to constrained the waveform structure to be both constant amplitude and

spectrally contained to limit the distortion caused by the HPA used on transmit (the largest source

of distortion in a radar system).
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Chapter 3

Spatially-Diverse Transmission Analysis

In Chapter 2, a background was provided that the mathematical foundation for analysis of a single

waveform radar transmission. Here, the analysis is extended to multiple independent, collocated

radar transmitter/receivers that have the capability to emit different waveforms, thus granting the

ability to produce a spatially-diverse emission; otherwise known as a fully digital array radar

(DAR) [20]. The term ‘spatially-diverse’ is a term that is not widely used, but is used here as

‘catch-all’ for any radar transmission mode that has a spatially-dependent modulation structure,

which could include simultaneous multifunction beams or a MIMO mode. The distinction is

made here to distinguish between a spatially-diverse emission that provides an enhance spatial

resolution capability (MIMO), and a spatially-diverse emission that is comprised of multiple

(spatially-separated) beams executing different functions but not necessarily achieving a resolution

improvement (simultaneous multifunction). A spatially-diverse emission could dedicate a wide

sector of space for a MIMO function while still simultaneously operating a focused (though low

total energy) beam performing an separate function.

Here, the angle-dependent far-field emission is defined as well as multiple assumptions that

can be made (namley the large-array and narrowband assumptions) that can significantly simply

emission modeling. The angle-delay ambiguity function is defined which illustrates the achieved

spatial resolution enhancement when operating the radar in a MIMO mode by defining the function

as the product of two functions: the beam factor and the diversity factor. The beam factor

corresponds to the nominal array resolution given a certain geometry, and the diversity factor

illustrates the improvement in resolution that can be achieved through the decorrelation of the

signal structure in space. An example is presented that compares a DAR operating in the MIMO
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mode to that of a traditional phased array radar. As expected, the MIMO mode achieves a better

single pulse spatial resolution compared to the phased-array through with a commensurate loss in

focused energy. However, flexibility in time-energy-management of the DAR can compensate for

the loss in focused energy with longer dwells due to a larger single pulse coverage and relaxed

radar function scheduling [20].

In addition to the single waveform analysis in Chapter 2, the mutual coupling present in

uniform linear array (ULA) is considered in this chapter. The mutual coupling is defined from

both a circuit and scattering perspective. The analytical models for half-wavelength dipole self

and mutual impedances (derived using the induced emf method [73]) are utilized to analyze the

mutual coupling behavior of two uniform linear arrays matched for broadside transmission: an

array with half-wavelength spacing and an array with quarter-wavelength spacing. As the array

is scanned, the active impedance behavior of the array changes which can alter the match of the

array. In an extreme case, for ULAs with less than half-wavelength spacing, the radar can excite

the array such that a majority of the energy lies within what is called in invisible space which

is associated with low radiation resistances and high reactance. In is shown that for the quarter-

wavelength array, there exist array excitations that can reflect/couple 99.99% of the energy back

into the array which for high power radar applications can result in RF component damage. Three

examples of a spatially-diverse emissions are simulated for both the analyzed arrays to show that

the general criteria for array performance in the analysis of scanning arrays can also be applied to

spatially-diverse emissions.

3.1 Processing and Evaluation of Spatially-Diverse Emissions

The free-space propagation of electromagnetic waves is a classic example of a linear system which

has the property that the state of the system can be defined as a superposition of the system effects

caused by its individual components. The state of the electromagnetic spectrum is thus a coherent

combination of the individual signals present in the environment at any given coordinate and time.

Using this principle, the emission generated by an radar with an array of antenna elements with
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Figure 3.1: Spatial geometry of free-space propagation for uniformly spaced linear array with

inter-element spacing d.

independent waveform generation can be predicted. The property of superposition can be applied

to any antenna array geometry though only the uniform linear array (ULA) is considered.

3.1.1 Array Beamforming

The geometry of a uniform linear array is shown in Figure 3.1. It is assumed that the array is

arranged of M identical antenna elements with uniform spacing d laid on the z-axis and placed

such that the origin pertains to the center of an array. Assume that the dominant polarization of

each element is linearly polarized in the ϖ dimension (e.g. an array of parallel dipoles), and that

the maximum of the antenna pattern is pointed in the direction (θ = 0○,ϕ = 0○). The angle ϖ is

defined as the angle off the x-axis and is solely defined to describe the polarization of the antennas

and is related to θ and ϕ as1

cosϖ = sinϕ cosθ . (3.1)

The elements are arranged on the z-axis so there is a symmetry about the coordinate ϕ . Note that

this arrangement does not imply that the array is “vertical” as no absolute coordinates (e.g. zenith

1Note that the polarization definition is only true for the plane waves in the far-field of the antennas since all of the

elements are not placed at the origin of the coordinate axis.
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Figure 3.2: Uniform linear array (ULA) geometry.

or nadir) are defined for this system. Figure 3.2 shows the ϕ = 0○ cut of the array geometry where

each element is indexed from m = −M−1
2 and m = M−1

2 , thus the collection of indices is represented

by the set

m ∈ {−M−1
2 ,−M+1

2 , . . . , M−3
2 , M−1

2
} . (3.2)

The elements are evenly spaced by by inter-element spacing d, thus the corresponding z-coordinate

for element m is

zm =md. (3.3)

The far-field electrical field for these antennas can be defined using the forward voltages for

each antenna (denoted V+m ( f )) and active element patterns (denoted Fm( f ,θ ,ϕ)) as [83, 84]

E⃗ (θ ,ϕ,R; f ) =√ η

Z0

e− j
2π f

c R

R
√

4π
∑
m

Fm( f ,θ ,ϕ)V+m ( f ) a⃗ϖ . (3.4)

The active element pattern is measured for each element while the others elements are terminated

to the line impedance, thus the active element pattern incorporates mutual coupling effects,

impedance mismatches, and delay of propagation differences between elements [84] (more on

these topics in Section 3.2.2). Assuming that each generated waveform is undistorted by the

transmit chain, we can replace the forward voltages on each of the element in (3.4) with a scaled

copy of the ideal waveform Spb,m( f ) (via 2.117) as
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E⃗ (θ ,ϕ,R; f ) =w1

√
η

Z0

e− j
2π f

c R

R
√

4π
∑
m

Fm( f ,θ ,ϕ)Spb,m( f ) a⃗ϖ , (3.5)

and in the time-domain,

E⃗ (θ ,ϕ,R;t) =w1

√
η

Z0

1

R
√

4π
∑
m

Fm(t,θ ,ϕ)∗ spb,m(t − R
c
) a⃗ϖ . (3.6)

Thus summation term describes the coherent summation of the far-field plane wavefronts of each

antenna at range R. By removing the dependence on range we can define

g̃pb(t,θ ,ϕ) = 1

M
∑
m

Fm(t,θ ,ϕ)∗ spb,m(t) (3.7)

as the far-field, time-varying beampattern of the ULA (at passband) for the assumption of zero

transmitter distortion (it is customary to normalize the summation by the number of elements M).

In the frequency domain, (3.7) is expressed as

G̃pb( f ,θ ,ϕ) = 1

M
∑
m

Fm( f ,θ ,ϕ)Spb,m( f ). (3.8)

The passband representations of the far-field signals in (3.7) and (3.10) can likewise be

represented as the complex-baseband signals

g̃(t,θ ,ϕ) = 1

M
∑
m

(Fm(t,θ ,ϕ)e− j2π fct)∗ sm(t) (3.9)

and

G̃( f ,θ ,ϕ) = 1

M
∑
m

Fm( f + fc,θ ,ϕ)Sm( f ), (3.10)

respectively. Using the form of Spb( f ) from (2.13), the passband spectral content of the far-field,

time-varying beampattern can be rewritten in terms of the baseband waveform spectral content

Sm( f ) as
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G̃pb( f ,θ ,ϕ) = 1

M
√

2
∑
m

Fm( f ,θ ,ϕ)(Sm( f − fc)+S∗m( f + fc)). (3.11)

3.1.1.1 Large Array Assumption

For an infinite ULA, each element theoretically “sees” the same environment, therefore the active

element pattern is identical for each antenna [84]. This limiting case leads to the large array

approximation where the active element pattern is measured for a single antenna element (typically

the center antenna) and is used as an approximation for the element patterns for the entirety of the

array. For a finite array, the patterns for the edge elements deviate from the infinite array active

element pattern, though if the array is large enough these “edge effects” are overpowered by the

quantity of elements that do not have edge effects [41, 84]. Therefore, this process ignores edge

antenna effects thus greatly simplifying the analysis of large arrays as is it cumbersome to measure

the active pattern for all elements [41, 83, 84]. The typical criterion used to assume negligible

array edge effects is an array of total length greater than 5λ [85] (10 elements for half-wavelength

spacing)2

Define Fa( f ,θ ,ϕ) as the approximate active antenna pattern used for all elements. The delay

of propagation between the antenna elements that was implicit in the individual active element

patterns Fm( f ,θ ,ϕ) must now be compensated for with the large array approximation. Assuming

the approximate common active element is measured from the origin of the coordinate system, the

time delay difference between the common pattern and the mth element for an emission toward

(θ ,ϕ) is

∆tm(θ) = zm

c
sinθ

=m∆t(θ), (3.12)

where

2This rule is dependent on frequency, thus for wideband transmission the array needs to be a length of 5λ according

to the lowest operating frequency (largest wavelength) [85].
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∆t(θ) = d

c
sinθ (3.13)

is the successive time delay between elements in the ULA. Note that this delay is independent of

angle ϕ . For the large array approximation, the electric field from (3.5) can be expressed as

E⃗ (θ ,ϕ,R; f ) =w1

√
η

Z0

e− j
2π f

c R

R
√

4π
Fa( f ,θ ,ϕ)∑

m

Spb,m( f )e j2π f m∆t(θ) a⃗ϖ (Large array) (3.14)

and in the time-domain,

E⃗ (θ ,ϕ,R;t) =w1

√
η

Z0

1

R
√

4π
Fa(t,θ ,ϕ)∗∑

m

spb,m (t − R
c +m∆t(θ)) a⃗ϖ , (Large array) (3.15)

where Fa(t,θ ,ϕ) =F−1{Fa( f ,θ ,ϕ)}. The term ∑
m

sm (t − R
c +m∆t(θ)) is called the delay-and-sum

beamformer which represents the contribution of the array structure to the electric field (Fa(t,θ ,ϕ)
represents the element contribution). This decoupling of array and element components is called

pattern multiplication [41, 73, 84] as the summation is multiplied by the active antenna pattern (in

the frequency domain (3.14))3. These separation of factors allows for an independent analysis of

the antenna array term (called the array factor) which is typically defined only from a narrowband

perspective [41,73,84]. The generality of the summation term allows for calculation of the antenna

contribution for both wideband and narrowband emissions. However, for both wideband and/or

MIMO emissions the array factor is dynamic over time, thus define

gpb(t,θ) = 1

M
∑
m

spb,m (t +m∆t(θ)) (3.16)

as the time-varying array factor at passband. Note that because of the geometry of the array, this

expression is independent of angle ϕ . The frequency content of (3.16) is denoted as Gpb( f ,θ) and

3Note that the form of (3.4) is, in general, not separable thus does not have this decoupling property.
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is the summation term of (3.14),

Gpb( f ,θ) = 1

M
∑
m

Spb,m( f )e j2π f m∆t(θ). (3.17)

Using (2.13), (3.17) can be rewritten in terms of the complex-baseband waveforms Sm( f )∀m

(where ∀m represents ‘for all m’) as

Gpb( f ,θ) = 1

M
√

2
∑
m

(Sm( f − fc)+S∗m( f + fc))e j2π f m∆t(θ). (3.18)

The expression in (3.16) can likewise be expressed via the complex-baseband representations

in the time-domain g(t,θ) and frequency domain G( f ,θ),
g(t,θ) = 1

M
∑
m

sm(t +m∆t(θ))e j2π fcm∆t(θ)

=
1

M
∑
m

sm(t +m∆t(θ))e jm
2π
λc

d sinθ
(3.19)

and

G( f ,θ) = 1

M
∑
m

Sm( f )e j2π ⋅( f+ fc)m∆t(θ), (3.20)

where sm(t) and Sm( f ) are the time-domain and frequency-domain complex-baseband representa-

tions of the waveform emitted by the mth element, respectively. Proof of the relationship between

gpb(t,θ) and g(t,θ) is provided in Appendix A.4.

The distribution of emitted power with respect to spatial angle θ can be found by averaging the

energy of these signals over time as

A(θ) = 1

T

T̂

0

∣g(t,θ)∣2dt =
1

T

∞̂

−∞

∣G( f ,θ)∣2d f =
1

T

T̂

0

∣gpb(t,θ)∣2dt =
1

T

∞̂

−∞

∣Gpb( f ,θ)∣2d f . (3.21)

where A(θ) is the aggregate beam pattern of time-varying array factor. The equalities in (3.21)
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come from the Parseval’s identity [45] and the up-conversion process from (2.1) which maintains

constant energy between s(t) and spb(t).
To maximize the the aggregate beampattern A(θ) towards a desired spatial direction θC, the

time-varying array factor gpb(t,θ) must also maximize the energy in this direction for the entirety

of the pulsewidth. From (3.16), it is clear that the summation of the waveforms must be such

that they coherently align in the direction θC. Therefore, all antenna elements must emit the same

waveform spb(t) delayed by −m∆t(θC) to compensate for propagation delays. This beamforming

is what we will call standard beamforming as it is the current standard practice for transmit

beamforming. Thus, the mth passband waveform emitted from the array for the case of standard

beamforming towards angle θC is

spb,m(t;θC) = spb(t −m∆t(θC)). (standard beamforming) (3.22)

The equivalent complex-baseband representation is

sm(t;θC) = s(t −m∆t(θC))e− jm
2π
λc

d sinθC . (standard beamforming) (3.23)

Note that the each of the array factor formulations in (3.16) – (3.20) has a corresponding far-

field time-varying antenna pattern through proper application of the approximate active antenna

pattern Fa(t,θ ,ϕ). Thus the far-field time-varying beampattern from (3.7) when applying the large

array assumption is represented as

g̃pb(t,θ ,ϕ) = Fa(t,θ ,ϕ)∗gpb(t,θ) (Large array)

=
1

M
Fa(t,θ ,ϕ)∗∑

m

spb,m (t +m∆t(θ)) . (3.24)

The frequency content of the far-field time-varying beampattern g̃pb(t,θ ,ϕ) can be expressed using

either (3.17) or (3.18) as
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G̃pb( f ,θ ,ϕ) = Fa( f ,θ ,ϕ)Gpb( f ,θ) (Large array)

=
1

M
Fa( f ,θ ,ϕ)∑

m

Spb,m( f )e j2π f m∆t(θ)

=
1

M
√

2
Fa( f ,θ ,ϕ)∑

m

(Sm( f − fc)+S∗m( f + fc))e j2π f m∆t(θ).

(3.25)

At complex-baseband these signals can be represented as

g̃(t,θ ,ϕ) = (Fa(t,θ ,ϕ)e− j2π fct)∗g(t,θ) (Large array)

=
1

M
(Fa(t,θ ,ϕ)e− j2π fct)∗∑

m

sm (t +m∆t(θ)) . (3.26)

and

G̃( f ,θ ,ϕ) = Fa( f + fc,θ ,ϕ)G( f ,θ) (Large array)

=
1

M
Fa( f + fc,θ ,ϕ)∑

m

Sm( f )e j2π f m∆t(θ),
(3.27)

respectively.

3.1.1.2 Receive Beamforming

For a plane waveform impinging onto an ULA, the received signals are delayed with respect to each

other depending on the angle of arrival. Assuming that each element has an independent receive

chain and ADC, the data for each element can be stored and combined after sampling as opposed

to analog phase shifting that combines the responses prior to sampling. Before combining the data

captured by each of the elements, the delays between the received signals must be compensated

for by time-shifting the individual signals according to a desired receive spatial angle (denoted as

ϑ – the receive counterpart to angle θ )4. The delay-and-sum beamforming concept can be applied

to maximize the energy incident from receive angle ϑ . Defining ypb,m(t) as the passband signal

captured by the mth antenna element in a receive array configuration, the combined signal for a

receive angle of ϑ is defined as

4For the defined geometry, the uniform linear array can only spatially separate sources in the θ dimension. If a two

or three dimensional array geometry is employed the array would also be able to separate sources in the ϕ dimension.
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ypb(t,ϑ) = 1

M
∑
m

ypb,m(t −m∆t(ϑ)), (3.28)

with corresponding baseband representation expressed as

y(t,ϑ) = 1

M
∑
m

ym(t −m∆t(ϑ))e− jm
2π
λc

d sinϑ
, (3.29)

where ym(t) is the baseband representation of ypb,m(t) and ypb(t,ϑ) and y(t,ϑ) are the respective

passband and baseband representations of the received signal beamformed toward receive angle ϑ .

The factor 1
M normalizes the beamformed signal to the original amplitude of the signal received by

each element. Note that the signals ypb(t,ϑ) and y(t,ϑ) are not indicative of the processing that

occurs within a digital signal processor, though are helpful expressions for use in array analysis.

For example, the digital signals combined to beamform toward ϑ on receive could be modeled as a

complex-valued sampling of the signal y(t,ϑ). Note that array tapering is also common practice in

transmit and receive beamforming [56] though is not considered here as it might convolute analysis

of the emission design methods presented in this work, however this does not necessarily preclude

implementation of tapering.

If a spatially-diverse emission is used, it is sometimes desirable to match filter each received

signal ym(t)∀m by each emitted waveform sm(t)∀m for a total of M2 responses (if the same array is

used for both transmit and receive) [39, 40]. This process of separating channel paths is beneficial

if the desire is to taper the MIMO virtual array (discussed in Section 3.1.3.2) which can further

improve spatial resolution although at the cost of decreased SNR [86]. Here, it is assumed that zero

virtual array tapering is being applied thus the received signals can be beamformed using (3.29)

prior to range compression.

3.1.1.3 The Narrowband Assumption

For a signal impinging on or emitted from an array, the methods used to define whether a signal is

narrowband depends not only on the spectral content of the signal but also on the geometry of the
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array. As a result, there are two distinct narrowband definitions: one that we shall call the spectral

narrowband definition and the other the array narrowband definition. The spectral narrowband

definition is based purely on the bandwidth of the signal as compared to the center frequency. This

definition uses the fractional bandwidth %BW defined in Section 2.1.3. The array narrowband

definition is based on the array geometry and the bandwidth of the signal as [87]5

B98% ⋅∆tmax << 1 (3.30)

where ∆tmax is the maximum delay between any two antennas in the array. For the case of a ULA

∆tmax is the propagation delay between the end elements of the array. The propagation distance is

(M−1)d thus the maximum delay is

∆tmax = (M−1)d
c
. (3.31)

If the array narrowband assumption condition holds then the complex-baseband representations

can be simplified. The array factors g(t,θ) and G( f ,θ) from (3.19) and (3.20) can be expressed

as the narrowband models

g(t,θ) = 1

M
∑
m

sm(t)e jm 2π
λc

d sinθ
(Narrowband)

=
1

M
∑
m

sm(t)e jmφ( fc,θ)
(3.32)

and

G( f ,θ) = 1

M
∑
m

Sm( f )e jmφ( fc,θ). (Narrowband) (3.33)

where

5In [87], this narrowband criterion is defined using a band-limited bandwidth which has been modified to the 98%

bandwidth definition for this work. The 2% of energy not considered with this definition is assumed insufficient to

alter the array narrowband properties.
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φ( fc,θ) = 2π

λc
d sinθ , (3.34)

is referred to as the electrical angle which defines the successive phase difference between antenna

elements.

Another property of a narrowband transmission is that the active antenna pattern Fm( f ,θ ,ϕ)
(and likewise the approximate pattern Fa( f ,θ ,ϕ)) can assumed to be constant over the operating

band, Fm( f ,θ ,ϕ) =Fm(θ ,ϕ) and Fm(t,θ ,ϕ) = δ(t)Fm(θ ,ϕ). Thus using the approximate narrow-

band active element pattern Fa(θ ,ϕ), the complex-baseband far-field time-varying beampattern

for narrowband transmission from a large array can be defined from the expressions

g̃(t,θ ,ϕ) = Fa(θ ,ϕ)g(t,θ) (Narrowband and large array)

=
1

M
Fa(θ ,ϕ)∑

m

sm(t)e jmφ( fc,θ).
(3.35)

and

G̃( f ,θ ,ϕ) = Fa(θ ,ϕ)G( f ,θ) (Narrowband and large array)

=
1

M
Fa(θ ,ϕ)∑

m

Sm( f )e jmφ( fc,θ).
(3.36)

If the large-array assumption cannot be invoked, these expressions generalize to

g̃(t,θ ,ϕ) = 1

M
∑
m

Fm(θ ,ϕ)sm(t) (Narrowband only) (3.37)

and

G̃( f ,θ ,ϕ) = 1

M
∑
m

Fm(θ ,ϕ)Sm( f ). (Narrowband only) (3.38)

Likewise, the definition of the complex-baseband standard beamformer from (3.23) after invoking

the narrowband assumption is
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sm(t;θC) = s(t)e− jm
2π
λc

d sinθC (Narrowband standard beamforming)

= s(t)e− jφ( fc,θC).

(3.39)

And the receive beamformer from (3.29) given the narrowband assumption can be represented as

y(t,ϑ) = 1

M
∑
m

ym(t)e− jmφ( fc,ϑ). (Narrowband) (3.40)

Note that it is possible that the spectral and array narrowband assumptions hold while the antenna

pattern remains frequency dependent over the in-band frequencies. However, for simplicity, this

work assumes that the if the narrowband definitions hold, the responses of the RF components

(including the antenna) are considered constant over the band of the emission.

Often it is useful to define sinθ as its own variable commonly referred to as u-space [87]

defined as

ū(θ) = sinθ . (3.41)

Thus the electrical angle φ( fc,θ) can also be written in terms of ū(θ) as

φ( fc,θ) = 2π

λc
d ū(θ). (3.42)

3.1.2 Angle-Dependent Receive Processing and Angle-Delay Ambiguity

Function

Here, a receive signal model is defined using the same method as described in Section 2.3.2.

From this model we can define an angle-dependent matched filtering process which allows for

the processing of spatially-diverse emissions. The definition of the angle-dependent matched filter

is different from that seen in the MIMO literature [21] where the beamforming is applied after

matched filtering. Ordering the processing in this way prevents application of a virtual array taper
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although is useful in deriving a simple relationship between receive beamforming and spatial-

diversity that illustrates the spatial resolution improvement of collocated MIMO transmissions

(Section 3.1.3.2). A proof between the equivalence of the angle-dependent matched filtering

method presented here and the traditional MIMO processing method of filtering each received

signal by each waveform is provided in Appendix A.5.

The angle-dependent matched filter model is used to develop the angle-delay ambiguity

function which gives the theoretical performance of a specific spatially-diverse emission as a

function of scatterer angle θ , receive beamforming angle ϑ , and delay τ . Note that fast-time

Doppler could also be incorporated though is left out for clarity of presentation (see Section 2.1.5

for more info). See [88] for more information on generalized MIMO ambiguity functions.

Assuming a narrowband transmission and monostatic fully digital transmit and receive

configuration, the aggregate reflected signal incident upon the mth antenna element can be

expressed at complex-baseband as

ym(t) =
2π
ˆ

0

π/2
ˆ

−π/2

∞̂

−∞

x(τ,θ ,ϕ)g(t −τ,θ)e jmφ( fc,θ)dτdθdϕ + zm(t) (3.43)

where zm(t) is the noise signal present on the receive chain of the mth element and x(τ,θ ,ϕ)
is the complex-valued scattering as a function of time (delay) and angles θ and ϕ encapsulating

all gains/losses of the target scattering into one variable (e.g. antenna pattern, spherical spreading

losses). The term e jmφ(θ) takes into account the narrowband propagation delay between the receive

antenna elements. Note that because the time-varying array factor is independent of ϕ , the three-

dimensional scattering can be represented in two-dimensions by integrating over ϕ as

x(τ,θ) =
2π
ˆ

0

x(τ,θ ,ϕ)dϕ. (3.44)

Thus, the received signal from (3.43) can be expressed with only two integrations as
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ym(t) =
π/2
ˆ

−π/2

⎛⎜⎝
∞̂

−∞

x(τ,θ)g(t −τ,θ)dτ
⎞⎟⎠e jmφ( fc,θ)dθ + zm(t). (3.45)

The expression in (3.45) can be combined with (3.40) to form the expression for the receive

beamformed signal,

y(t,ϑ) = 1

M
∑
m

π/2
ˆ

−π/2

⎛⎜⎝
∞̂

−∞

x(τ,θ)g(t −τ,θ)dτ
⎞⎟⎠e jm(φ( fc,θ)−φ( fc,ϑ))dθ + z(t,ϑ), (3.46)

where

z(t,ϑ) = 1

M
∑
m

zm(t)e− jmφ(ϑ) (3.47)

is the noise signal resulting from beamforming in the direction ϑ .

Assuming stationary, white Gaussian noise, the angle-dependent matched filter for scattering

received from the direction ϑ is the signal emitted in that direction,

wMF(t,ϑ) = γ(ϑ)g(t,ϑ), (3.48)

where γ(ϑ) is an angle-dependent, non-zero scalar. Thus the estimate of the scattering at delay τ

and receive angle ϑ is

x̂MF(τ,ϑ) =
∞̂

−∞

w∗MF(t −τ,ϑ)y(t,ϑ)dt

= γ(ϑ)
∞̂

−∞

g∗(t −τ,ϑ)y(t,ϑ)dt.

(3.49)

Typically, the scalar γ(ϑ) would be equal the inverse of the energy contained in the signal

g(t,ϑ) (i.e. γ(ϑ) = ∥g(t,ϑ)∥−2

2
) so that the estimate x̂(τ,ϑ) is not scaled relative to x(τ,ϑ).

However, if the emission is spatially-variant, the transmitted spatial distribution of power may be
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spread unevenly in space. Thus, if the filter normalization is applied as γ(ϑ) = ∥g(t,ϑ)∥−2

2
then

the average power of the beamformed noise z(t,ϑ) would be dependent on beamforming angle,

ϑ . Therefore, for spatially-diverse signals is it advantageous to normalize wMF(t,ϑ) such that the

noise remains constant over ϑ . This unit-gain formulation would be

wMF(t,ϑ) = γ
g(t,ϑ)∥g(t,ϑ)∥

2

, (3.50)

where γ is now a scalar that normalizes the entirely of the output for all ϑ . Using the form of the

matched filter in (3.50) prevents fluctuation of the noise power with receive angle ϑ though the

matched filter estimator in (3.49) is now biased. However, the scalar γ can be chosen so that there

is no bias for the case of standard beamforming when ϕ = θC. Thus the updated angle-dependent

matched filter is

wMF(t,ϑ) = (M∑
m

∥sm(t)∥22)
− 1

2 g(t,ϑ)∥g(t,ϑ)∥
2

. (3.51)

The matched filter estimate of a scatterer at delay τ and receive angle ϑ from (3.49) can be

expressed as

x̂MF(τ,ϑ) =
∞̂

−∞
w∗MF(t −τ,ϑ)y(t,ϑ)dt

= ( 1
M
∥g(t,ϑ)∥2

2
∑
m

∥sm(t)∥22)
− 1

2
∞̂

−∞
g∗(t −τ,ϑ)y(t,ϑ)dt.

(3.52)

The angle-delay ambiguity function can be found by placing a unit amplitude scatterer at a

delay of τ = 0 and angle of θ = θT in the absence of the noise signals zm(t)∀m (recall that this ULA

configuration cannot estimate the ϕ dimension of a scatterer thus is defined independent of this

variable). For this scenario, the “received” signal beamformed toward ϑ is

y(t,ϑ) = 1

M
g(t,θT)∑

m

e jm(φ( fc,θT)−φ( fc,ϑ)). (3.53)
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Matched filtering this signal using (3.49) and (3.51) yields the estimate of this theoretical scatterer

as

x̂(τ,ϑ) = (M∥g(t,ϑ)∥2
2
∑
m

∥sm(t)∥22)
− 1

2
∞̂

−∞
g∗(t −τ,ϑ)g(t,θT)dt∑

m

e jm(φ( fc,θT)−φ( fc,ϑ)). (3.54)

Generalizing this expression for any target angle (i.e. transmission direction) θ and expanding

φ( fc,θ) into the form from (3.34) yields the angle-delay ambiguity function as

χs(τ,θ ,ϑ) = (M∥g(t,ϑ)∥22∑
m

∥sm(t)∥22)
− 1

2
∞̂

−∞
g∗(t −τ,ϑ)g(t,θ)dt ∑

m

e
jm 2π

λc
d(sinθ−sinϑ)

, (3.55)

which gives the expected estimator response over delay τ for a single scatterer at angle θ received

in a beam directed toward ϑ . The ambiguity function is normalized such that it is unity for standard

beamforming (directed toward angle θC) at the point χs(τ = 0,θ = θC,ϑ = θC). Note that this

representation is only true when invoking the narrowband assumption. In Section 4.2, the angle-

delay ambiguity function is revisited from a wideband perspective.

3.1.3 Beampattern and Spatial Resolution

Figure 3.3 displays the beampattern (ignoring element patterns) pointed towards broadside (θ =0○)
for a ULA of M = 30 elements spaced d = λc

2 in three different spaces: θ -space, φ -space, and

ū-space. The relationships between these three variables are given in (3.34) – (3.42). This

beampattern could either be the receive beamformer (when ϑ = 0○) or the transmit beamformer for

the case of standard beamforming (when θC = 0○)6. For the receive beamformer, the beampattern

illustrates the “filter” response of the beamformer in the spatial dimension, thus other sources of

energy coming from directions corresponding to the sidelobes will “leak” into the beamformed

6Again the beampatterns can be altered via array tapering [56] though is not considered here.
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Figure 3.3: Normalized beampattern (in dB) in different spaces for an M = 30 element ULA with

d = λc
2 .
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signal response y(t,ϑ) causing interference in the estimation. How much the signals leak is

dependent on the source power and sidelobe level of the interferer direction of arrival. On transmit,

the beampatterns in Figure 3.3 are equivalent to the peak-normalized aggregate beampattern A(θ)
(in three different spaces) when employing standard beamforming with maximum steered towards

θC = 0○. For spatially-diverse emissions, the spatial allocation of energy in A(θ) may appear

drastically different than the stadard beamforming case depending on how the set of M waveforms

are designed.

3.1.3.1 Receive-only Spatial Resolution

For a moment consider a ULA operating in a receive-only mode estimating direction-of-arrival of

RF energy sources. Here, only consider the traditional “matched filter” type beamformer that has

been discussed up until now. The spatial resolution of a source estimate that can be achieved (on

receive) using a ULA is dictated by the array beampattern shown in Figure 3.3. There are two main

methods of defining the spatial resolution of the beampattern: the peak-to-null and 3 dB mainbeam

(or mainlobe) widths.

The trigonometric relationship of the geometry of the linear array to the spatial dimension θ

results in a sidelobe-width broadening toward endfire (θ = ±90○) for the θ -space beampattern.

This stretching of the beampattern likewise occurs in the mainbeam when steered towards endfire.

Thus the θ -space dimension would not be suitable to measure the spatial resolution of the array is

it would be dependent on the look angle of the beampattern.

The φ -space coordinate system does not have the sidelobe warping issue of the θ -space, thus

the resolution of the beampattern is invariant of the beampattern look angle. The resolutions in

φ -space are [87]

[∆φ]p-n =
2π

M
(3.56)

for the peak-to-null mainlobe width, and
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[∆φ]3dB = 0.891
2π

M
(3.57)

for the 3 dB mainlobe width. These resolutions are equivalent to the frequency resolution of a

discrete-time Fourier transform (DTFT) where the number of elements M would be the “time

samples” of the DTFT. While the resolutions are quite simple and easy to calculate, they do not

provide much perspective on the achievable resolution in physical space given the parameters of a

ULA.

The resolution in the ū-space coordinate system is likewise invariant of the look angle and is

tied to the physical spatial angle θ through a trigonometric relationship (recall that ū = sinθ ), thus

is best candidate for measuring the spatial resolution of an array. The resolutions of the array in

ū-space is defined via the operating wavelength λc, the inter-element spacing d, and the number of

elements M as [87]

[∆ū( fc)]p-n =
λc

Md
(3.58)

for the peak-to-null mainlobe width, and

[∆ū( fc)]3dB = 0.891
λc

Md
(3.59)

for the 3 dB mainlobe width. Note that the resolutions defined here are the finest achievable using

this method of beamforming for a given array structure. Any attempt to apply tapers to the receive

beamforming to lower sidelobes will result in a spoiling (broadening) of the mainbeam and a loss

in estimated SNR [56].

3.1.3.2 Target Spatial Resolution in a MIMO Transmission Mode

The theorized improvement in spatial resolution when implementing a collocated MIMO radar

transmission mode is typically derived using the virtual array concept which makes the assumption

of orthogonality between the signals [39, 40]. However, as discussed in [39] each dimension
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Figure 3.4: Effective receive array geometry for phased array and MIMO virtual array (convolution

of physical array) for M = 4 element ULA (d = λc
2 ).

of orthogonality (time division, frequency division, and code division) have their individual

drawbacks. Though for the purposes of derivation, the waveforms emitted by each element are

considered orthogonal, then any deviation from this assumption is attributed to interference or

error in the scattering estimation.

If the waveforms are orthogonal then the individual contributions of each waveform can be

separated on receive. Thus by match filtering each received signal ym(t)∀m by each waveform

sm(t)∀m, M2 decoupled responses are achieved (assuming M elements for both transmit and

receive). The decoupled responses form the MIMO virtual array which can then be steered in

a desired direction. For a ULA, the M2 responses form 2M−1 unique phase centers where M2−2

are over-represented. The responses form a triangular array weighting, as shown in Figure 3.4 for

an M = 4 element ULA, which amounts to a convolution of the physical array.

For the assumption of orthogonal waveforms, the transmit aggregate beampattern A(θ) (from

(3.21) of the time-varying array factor g(t,θ) is isotropic. Figure 3.5 compares the aggregate

beampatterns for standard beamforming and for a MIMO transmit mode (orthogonal waveforms)

for the M = 4 element ULA. Note how the MIMO emission does not coherently beamform in the

direction sinθ = 0 which results in a decreased estimation SNR for the MIMO transmission (in

this direction) [18]. On receive, the over-representation of the phase center locations amounts to

a triangular array taper in the receive virtual array. Figure 3.6 shows the resulting beampatterns

for the phased array and MIMO virtual arrays as shown in Figure 3.4. The MIMO virtual array

beampattern has an improvement of 1/√2 in 3 dB spatial resolution over the traditional phased

array [86]. Note that the triangular array weighting could be flattened via a virtual array taper (thus

improving the spatial resolution further) though would result in a loss in SNR [86]. Because a
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Figure 3.5: Aggregate beampattern A(θ) relative to isotropic antenna power (dBi) for M = 4

element ULA (d = λc
2 ) vs. transmit angle sinθ for standard beamforming (blue) and MIMO

transmission (with orthogonal signals) (red).
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Figure 3.6: Receive beampatterns (in dB) for M =4 element ULA (d = λc
2 ) vs. receive beamforming

angle sinθ for phased array (blue) and MIMO virtual array (red) for scatterer at θ = 0○
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spatially-diverse emission already induces an SNR loss on transmit, this virtual array tapering is

not considered here. For this four element example, the first sidelobe (which represents the largest

spatial ambiguity) is at −11.3 dB for the phased array and −22.6 dB for the MIMO virtual array.

Thus the orthogonal MIMO array produces a “doubling” (in dB) effect of the expected spatial

ambiguity sidelobe level for a uniform array taper.

The insight that the virtual array provides is useful for determining the theoretical spatial

resolution given a transmit and receive array in a MIMO mode. However when considering the

implementation of the physical waveforms, the performance of the array may vary. Specifically,

the issues that arise when implementing truly orthogonal waveforms [39]. Here, it is assumed

that the waveforms that are transmitted simultaneously and occupy the same bandwidth, thus are

separable only via the waveform modulation sometimes referred to as “coding diversity”. It can be

shown that the if two signals signals occupy the same bandwidth, the cross-correlation is limited

by the energy contained in the product of the two waveform spectrums. Thus, for waveforms with

finite time-bandwidth products orthogonality via coding diversity is not possible over all delays

in the waveform cross-correlation. Another issue of the orthogonal waveform assumption is that

the energy is spread evenly over all space when it is possible that the some directive properties

are desired in the emission [21, 89–92]. It is unclear how the virtual array concept applies to non-

isotropic (non-orthogonal) transmissions thus requires a more specific analysis. The angle-delay

ambiguity diagram χs(τ,θ ,ϑ) (from (3.55)) can be used to directly observe the spatial resolution

for a theoretical target location.

The expected spatial resolution of scatterer whose complex amplitude is estimated via the

matched filtered method presented in Section 3.1.2 is predicted via the angle-delay ambigu-

ity function χs(τ,θ ,ϑ) from (3.55). Note that terms in (3.55)
∞́

−∞
g∗(t − τ,ϑ)g(t,θ)dt and

∑
m

e
jm 2π

λc
d(sinθ−sinϑ)

are separable thus can be independently analyzed. The cross-correlation

term
∞́

−∞
g∗(t − τ,ϑ)g(t,θ)dt purely represents the spatial diversity of g(t,θ), while the term

∑
m

e
jm 2π

λc
d(sinθ−sinϑ)

is the separability contributed by receive beamforming. Thus, define
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χ̄s,b(θ ,ϑ) = 1

M
∑
m

e
jm 2π

λc
d(sinθ−sinϑ)

(3.60)

as the beam factor of the angle-delay ambiguity diagram which is entirely based on the receive

array geometry (and any tapers that would be applied), and

χ̄s,d(τ,θ ,ϑ) = ( 1
M
∥g(t,θ)∥2

2
∑
m

∥sm(t)∥22)
− 1

2
∞̂

−∞

g∗(t −τ,ϑ)g(t,θ)dt (3.61)

as the diversity factor of the angle-delay ambiguity diagram which defines the separability of the

emission solely due to the spatially-diverse structure. The full angle-delay ambiguity diagram is

found by taking the product of these two functions, χs(τ,θ ,ϑ) = χ̄s,d(τ,θ ,ϑ)χ̄s,a(θ ,ϑ).
As an example, consider an M = 30 element ULA with d = λc

2 implementing standard transmit

beamforming steered toward θ = 0○ via (3.39). The spatial resolution of the emission is observed

at the τ = 0 cut of the angle-delay ambiguity diagram. For the case of standard beamforming the

modulation of the waveforms sm(t)∀m do not effect the spatial resolution results, however the

waveforms are chosen to be LFM with analytical time-bandwidth product BaT = 100.

Figure 3.7 shows the square-magnitudes (in dB) of (a) the beam factor, (b) the zero-delay cut

of the diversity factor, and (c) the zero-delay cut of the angle-delay ambiguity diagram (product

of (a) and (b)) versus the scatterer direction sinθ and receive direction sinϑ for the standard

beamforming transmission. The beam factor in Figure 3.7(a) shows a diagonal lobe sweeping

left to right representing the receive beamformer sweeping over all ϑ . The horizontal (constant θ )

cuts through the beam factor illustrate the expected receive beamformed response for a particular

scatterer direction sinθ . The diversity factor in Figure 3.7(b) for standard beamforming has a

constant lobe centered at the transmission direction sinθ = 0 and is independent of receive angle

ϑ thus indicating that g(t,θ) is not a spatially-diverse time-varying array factor. The product of

the two factors yields χs(τ,θ ,ϑ) in Figure 3.7(c). The resolution of the of χs(τ,θ ,ϑ) remains the

same as the beam factor χ̄s,b(θ ,ϑ) due to the lack of spatial diversity in g(t,θ).
Now consider a spatially-diverse time-varying antenna factor g(t,θ) using the same array
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Figure 3.7: (a) Beam factor ∣χ̄s,b(θ ,ϑ)∣2 (in dB), (b) zero-delay cut of diversity factor ∣χ̄s,d(τ =
0,θ ,ϑ)∣2 (in dB) , and (c) zero-delay cut of angle-delay ambiguity diagram ∣χs(τ = 0,θ ,ϕ)∣2 (in

dB) (product of (a) and (b)) vs. sinθ and sinϑ for M = 30 element ULA (d = λc
2 ) and standard

beamforming steered toward θC = 0○.
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Figure 3.8: (a) ∣G( f ,θ)∣2 (in dB) vs. sinθ and normalized frequency ( f /B3dB), (b) ∣g(t,θ)∣2 (in

dB) vs. sinθ and normalized time (t/T), and (c) beampattern A(θ) (in dB) vs. sinθ for spatially-

diverse emission with M = 30 elements (d = λc
2 ) and BT = 100.
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parameters as the case above. Figures 3.8(a,b) show the squared-magnitude of the spectral

content ∣G( f ,θ)∣2 and time-varying antenna factor ∣g(t,θ)∣2 for a spatially-diverse transmission

mode. The waveforms sm(t)∀m were optimized using the method presented in Section 4.2 for

a narrowband scenario7. The time-varying antenna factor g(t,θ) was optimized to place an even

amount of energy between sinθ =−0.2 and sinθ = 0.2 for a Gaussian shaped spectral content while

constraining the set of M waveforms to be constant amplitude. The structure of ∣g(t,θ)∣2 in Figure

3.8(b) confirms that this is a spatially-diverse array factor. Figure 3.8(c) shows the aggregate

beampattern A(θ) which displays spatial power distribution of g(t,θ) which was chosen to be

flat between sinθ = −0.2 and sinθ = 0.2. The aggregate beampattern is normalized such that 0

dB represents the array factor maximum (only acheived with standard beamforming), thus (for a

single pulse) this transmission would result in a loss of approximately 8 dB relative to standard

beamforming.

Figure 3.9 shows the square-magnitudes (in dB) of (a) the beam factor, (b) the zero-delay cut

of the diversity factor, and (c) the zero-delay cut of the angle-delay ambiguity diagram (product of

(a) and (b)) versus the scatterer direction sinθ and receive direction sinϑ for the spatially-diverse

emission depicted in Figure 3.8. Note that because the beam factor is independent of g(t,θ), the

response in Figure 3.9(a) is identical to that of the standard beamforming case in Figure 3.7(a).

The spatial diversity in g(t,θ) translates into the diagonal response in the diversity factor in Figure

3.9(b). Recall that the diversity factor for standard beamforming was invariant over the receive

beamforming angle sinϑ , therefore the only contributor to the spatial resolution of the estimator

was the beam factor. However because the signal structure of g(t,θ) varies with transmission angle

θ , the diversity factor χ̄s,d(τ,θ ,ϑ) further improves the target spatial resolution over a range of

angles. The τ = 0 cut of the angle-delay ambiguity function for the spatially-diverse transmission

(shown in Figure 3.9(c)) is elongated on the diagonal and lowered in magnitude relative to the loss

due to the spreading of energy in space. In fact, the diagonal of Figure 3.9(c) corresponds to the

normalized aggregate beampattern A(θ) in Figure 3.8(c).

7Section 4.2 introduces a method of generating wideband spatially-diverse emissions though is generalizable to

narrowband as well.
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Figure 3.9: (a) Beam factor ∣χ̄s,b(θ ,ϑ)∣2 (in dB), (b) zero-delay cut of diversity factor ∣χ̄s,d(τ =
0,θ ,ϑ)∣2 (in dB) , and (c) zero-delay cut of angle-delay ambiguity diagram ∣χs(τ = 0,θ ,ϕ)∣2 (in

dB) (product of (a) and (b)) vs. sinθ and sinϑ for M = 30 element ULA (d = λc
2 ) and the spatially-

diverse emission portrayed in Figure 3.8.
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Figure 3.10: Comparison of estimation resolution χs(τ,θ ,ϑ) (black), χ̄s,b(θ ,ϑ) (red), and

χ̄s,d(τ,θ ,ϑ) (blue) at τ = 0 and θ = 0○ with a M = 30 element ULA (d = λc
2 ) for (a) standard

beamforming steered toward (θC = 0○) and (b) the spatially-diverse emission portrayed in Figure

3.8.
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The τ = 0 and constant sinθ cut of the ambiguity diagram provides the spatial filter response

of the estimator for a particular scatterer location (transmit direction) θ . Through observation of

Figures 3.9(a,b), the product of the two responses narrows the spatial resolution of an estimated

scatterer (as compared to standard beamforming). To illustrate this beam narrowing, Figure 3.10

compares the τ = 0 and θ = 0○ cuts of the angle-delay ambiguity function as well as both the

beam and diversity factors of the emission. Recall that the τ = 0 and θ = 0○ cut of χs(τ,θ ,ϑ)
represents expected spatial responses for a single theoretical scatterer of unit amplitude at delay

τ = 0 and angle θ = 0○. For the standard beamforming case in Figure 3.10(a), the responses of the

beam factor (red) and angle-delay ambiguity function (black) are identical due to the flat response

of the diversity factor (blue). Though the spatial response for the standard beamforming case is

maximized (0 dB) at ϑ = 0○ because the cut is taken at θ = θC = 0○. For the spatially-diverse

emission in Figure 3.10(b), the beam factor (red) is the same as for standard beamforming and

the diversity factor response has a mainlobe surrounded by a high sidelobe response. The product

of the curvatures of the diversity and beam factors produces a narrowed 3 dB spatial resolution

of 0.04217 (in sinθ or ū-space) compared to the standard beamforming case of 0.0594 calculated

using (3.59). The theorized spatial resolution improvement from the virtual array is the standard

beamforming resolution divided by
√

2 which results in a resolution of 0.0594/√2 = 0.04200.

Therefore the spatially-diverse array factor and the theorized MIMO spatial resolution have

difference in spatial resolution of 0.00017 (in ū-space).

Recall that the resolution derived from the MIMO virtual array assumes orthogonal waveforms

which implies an isotropic aggregate beampattern. Figure 3.8 shows that even for a directive

(non-isotropic) emission, the theoretical MIMO virtual array spatial resolution can be met.

However, the beam peak for the spatially diverse scenario exhibits a loss of approximately 8 dB

compared to standard beamforming (the same loss seen in the aggregate beam pattern in Figure

3.8(c)). For a single pulse, the spatially diverse emission achieves a finer 3 dB spatial resolution

and wider spatial coverage where standard beamforming achieves the maximum focused beam

amplitude. Depending on the current priorities of the radar, the DAR may switch between standard
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beamforming and a spatially-diverse transmission mode on a pulse by pulse basis.

3.2 Mutual Coupling in Uniform Linear Arrays

For any transmission involving multiple antenna elements the physical electromagnetic interaction

between these elements needs to be considered. This mutual coupling interaction can be described

using a frequency-dependent mutual impedance between each pair of antennas (Zmk( f ) for m ≠
k) just as every antenna has a frequency-dependent self-impedance (Zmm( f )). The impedance

relationship describes the coupling of energy between antennas in the array which directly alters

the phase and amplitude of the terminal currents and voltages on each element. It is assumed that

the coupling only scales these terminal voltage/current values and does not affect the shape of the

current distribution on the element (thus the antenna pattern remains constant) [83]. However, the

excitation of a single element also excites the other M−1 elements in the array, thus the net total

antenna pattern of a single element deviates from the isolated antenna pattern. This new pattern

response is called the active antenna pattern [83,84] which was defined as Fm( f ,θ ,ϕ) in (3.4). The

active element pattern inherently encapsulates all the individual coupling relationships between the

elements that effect the far-field pattern though does not explicitly indicate how much energy is

returned to the array transmitters through reflection/coupling of energy back into the array.

There are two methods of analysis when considering coupled energy into an array: a circuit

model point of view (i.e. currents, voltages, and impedances), and a scattering point of view (i.e.

forward/backward traveling waves and the scattering matrix). Here, both methods are considered

as each could provide different insights into the behavior of the antenna coupling. The circuit point

of view is based around the effective impedance at the terminals of the antenna elements when

placed in the array which deviates from that of an isolated element. In fact, the effective impedance

is dependent on the phase and amplitude of the array excitation thus is denoted the active element

impedance (sometimes called driving impedance) [73,93]. The match of the antenna is determined

by this active element impedance thus could result in significant reflected/coupled energy with the

radar given certain excitations [41]. The scattering matrix point of view models the array as a
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Figure 3.11: Antenna array modeled as a lossy M-port network with simple matching L-network.

lossy M-port network where the power dissipation represents radiated energy (and ohmic losses

if a lossy antenna is considered). This network illustrates a more direct coupling behavior where

the backward traveling waves for all elements are determined directly from the forward wavefronts

excited by each element and the scattering matrix.

Figure 3.11 illustrates the M-port network model of an antenna array including an independent

transmission chain model and a simple matching L-network for each antenna where L and C

are the inductance and capacitance of the matching network, respectively. For spatially-diverse

transmission, the array must be matched over the spatial sector that we wish to emit (which

may be quite large) so as to not inadvertently couple energy back into the array. These desired

properties for a spatially-diverse transmission align with that of a traditional scanning phased-

array which also must be matched over a sector in space. The matching network is assumed to be
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designed based on a broadside transmission (excluding array tapering) which is typical practice for

a scanning array [73,84]. The L-network is a simplistic model for impedance matching though it is

satisfactory for analysis purposes. There exist more complex methods for wide-angle impedance

matching (WAIM) that utilize dielectric sheets to match the array over wide-angles [94–96].

If the spacing between the elements is less than λ /2, the array could radiate a portion of its

energy into the invisible space of the array. The term “radiate” is really a misnomer in this context

as the majority of the power is actually not radiated due to the element active impedances becoming

primarily reactive within this region. The result is storage of energy locally in the near field of the

array, in the matching networks of each element, or in any of the transmit chains of the antenna

array. This “reactive” region resides beyond the endfire direction for linear arrays and does not

correspond to a physical angular direction8. If the array is not designed to place energy into

this region (which is the case for scanning phased-arrays) the array will not be matched thus the

energy is reflected/coupled back into the array and dissipated within the transmit chain which could

damage the transmitter [42]. Likewise, the angle-dependent element impedance variation can also

result in what is known as blind angles where the mismatch between the transmitter and antenna

is such that little to no power is transmitted in a particular transmit angles [41]. These directions

have been linked to angles at which a grating lobe appears in visible space [41, 97] thus exist for

arrays that have spacing d ≥ λ
2 .

3.2.1 Active Element Impedance and the Scattering Matrix

The mutual impedance between elements in the array describes the relationship between the

antenna terminals and currents as

Vm( f ) =∑
k

Zmk( f )Ik( f ) (3.62)

where Zmk( f ) is the mutual-impedance between the mth and kth antenna elements and Zmm( f ) is

8The invisible space is leveraged in the design of super-directive array patterns, which are known to store large

amounts of energy [41, 84, 95].
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the self-impedance of the mth element for m,k ∈ {−M−1
2 , . . . , M−1

2
}. These impedance elements are

collected into an M×M matrix form known as the impedance matrix where the (m,k)th element is

[ZZZ( f )]mk = Zmk( f ).
Because the mutual impedances are derived from the terminal voltage and current of the

antenna, they do not inherently capture the effect of the matching network. If the L-network

from in Figure 3.11 is assumed to be the same for each element (to maintain array symmetry) [98],

the impedance matrix measured from the beginning of the matching network (denoted ZZZ′( f ))
expressed in terms of ZZZ( f ) is

ZZZ′( f ) = (ZZZ−1( f )+ j2π fCIM)−1+ j2π f LIM. (L-network transformation) (3.63)

Assuming that the generator impedance Zs is real and equal to the characteristic impedance of

the transmission line Z0, the model from Figure 3.11 can be simplified to an M-port network

and equivalent sources that include the effects of the matching networks and transmit chains,

respectively, shown in Figure 3.12.

The scattering matrix for this updated M-port network is found via the new impedance matrix

ZZZ′( f ) as [99]

SSS( f ) = (ZZZ′( f )+Z0IM)−1(ZZZ′( f )−Z0IM). (3.64)

The backward traveling wave at the mth element, V−m ( f ) is expressed as a summation of the coupled

energy from the forward voltages from all antenna elements,

V−m ( f ) =∑
k

Smk( f )V+k ( f ) (3.65)

where Smk( f ) = [SSS( f )]mk. The voltages and currents at the terminals of the matching networks are

found via a combination of the forward and backward traveling waves as
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Figure 3.12: Simplified M-port network including antenna matching networks.
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V ′m( f ) =V+m ( f )+V−m ( f )
=V+m ( f )+∑

k

Smk( f )V+k ( f ) (3.66)

and

I′m( f ) = V+m ( f )−V−m ( f )
Z0

=
V+m ( f )

Z0

− 1

Z0
∑
k

Smk( f )V+k ( f ), (3.67)

respectively. Thus, define the active element impedance9. for element m (as a function of function

f ) as the ratio of these two quantities,

Za
m( f ) = V ′m( f )

I′m( f ) . (3.68)

Note that the matching network terminal voltages and currents are also related through the

transformed impedance matrix ZZZ′( f ) as

V ′m( f ) =∑
k

Z′mk( f )I′k( f ). (3.69)

Therefore, the active element impedance from (3.68) can be written in terms of the currents at the

matching network terminals,

Za
m( f ) =∑

k

Z′mk( f ) I′
k
( f )

I′m( f ) . (3.70)

The active reflection coefficient at the matching network terminals of the mth antenna element

(as a function of frequency f ) describes the ratio of power returned to the generator to the power

incident on the matching network. This quantity can be defined using both the circuit and wave

models as [84, 95]

9Term scan element impedance is also used to describe the excitation-dependent terminal impedance [41] though

implies that only scanning excitations are applied to the array thus does not qualify here.
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Γ
a
m( f ) = Za

m( f )−Z0

Za
m( f )+Z0

=
V ′m( f )−Z0I′m( f )
V ′m( f )+Z0I′m( f )

(3.71)

and

Γ
a
m( f ) = V−m ( f )

V+m ( f )
=∑

k

Smk( f )V+k ( f )
V+m ( f ) ,

(3.72)

respectively. Note that because this formulation of reflection coefficient includes energy from

coupled sources (instead of just V+m ( f )), the magnitude of the “reflection” coefficient can be

greater than unity. The definition of the reflection coefficient from (2.80) was based on system

parameters only (antenna impedance and characteristic impedance), however the formulation in

(3.71) is dependent on the array excitation (due to the coherent combination of coupled waves)

thus is termed the active reflection coefficient for element m. The total active reflection coefficient

describes the square-root ratio of the total reflected/coupled power to the total incident power as a

function of frequency defined as

Γ
a( f ) = ⎛⎜⎝

∑
m
∣V−m ( f )∣2
∑
m
∣V+m ( f )∣2

⎞⎟⎠
1
2

. (3.73)

The frequency-dependent form of the reflection coefficients from (3.72) and (3.73) are

convenient for visualizing the reflected/coupled energy as a function of frequency and for time-

harmonic analysis. However the ratio of the integrated reflected/coupled energy to incident energy

for each element is a more practical quantity when considering energy dissipation within each

transmit chain for a finite duration emission. Thus define net energy flow crossing the mth antenna

element for a single pulse as

130



Etx,m = E+tx,m−E−tx,m
=
∥V+m ( f )∥2

2
−∥V−m ( f )∥2

2

Z0

,

(3.74)

where

E+tx,m = ∥V+m ( f )∥2
2

Z0

(3.75)

and

E−tx,m = ∥V−m ( f )∥2
2

Z0

(3.76)

are the incident and reflected/coupled energies corresponding to the mth element, respectively.

Express the square-root ratio of the reflected/coupled energy to the incident energy on the mth

element as

Γ
a
m = (E−tx,mE+tx,m)

1
2

=
∥V−m ( f )∥2∥V+m ( f )∥2 ,

(3.77)

and the square-root fraction of total incident energy coupled back into the array as

Γ
a =
⎛⎜⎝
∑
m
E−m
∑
m
E+m
⎞⎟⎠

1
2

=
⎛⎜⎝
∑
m
∥V−m ( f )∥2

2

∑
m
∥V+m ( f )∥2

2

⎞⎟⎠
1
2

.

(3.78)

Define (3.77) as the integrated reflection coefficient for the mth element and (3.78) as the total

integrated reflection coefficient. The time domain equivalents for the derivations in this section are

provided in Appendix A.6.
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3.2.2 Coupled Energy and the Invisible Space

The periodic nature of the array is illustrated via the grating lobe series [93, 100] which for an

infinite ULA is represented as an infinite series of impulse functions in ū-space. Figure 3.13 shows

the grating lobe series for an infinite array steered toward θC = 0○ for d = λc
2 , d = λc

4 , and d = λc.

As the array is scanned these grating lobes leave and enter the visible space (sometimes called

the real space) which corresponds to ∣sinθ ∣ ≤ 1. The space ∣sinθ ∣ > 1 corresponds to the invisible

space (sometimes called imaginary space) which contains the remainder of the infinite grating lobe

series [93].

For the case of d = λc
4 from Figure 3.13(b), the grating lobe series can be steered such that the

spacing between grating lobes straddles the visible-space. At this point no energy can radiate and

only evanescent waves are possible [98]. This property is true for any infinite array with d < λc
2 .

From a active impedance point of view, the radiation resistance of the elements when steering into

the invisible space reduces to zero thus the impedance is completely reactive and contributes only

to reactive power [93, 98]. For the case of d = λc from Figure 3.13(c), multiple beams can be

present in visible space at the same time (e.g. when sinθC = 0.5). The behavior of the array when

a grating lobe enters the visible space depends on the antenna pattern in those directions. If a null

is present at sinθ = ±1, then the entrance of the grating lobe has little effect on active impedance

of the infinite array. However if the antenna has a non-zero antenna pattern toward endfire, a

discontinuity occurs turning the active impedance resistive to reactive as the grating lobe enters the

visible space [93] resulting total reflection and a blind angle in the array beampattern [41]10.

As the infinite array is scanned, the active impedance of each element varies with look direction

θC. This scan impedance variation is dependent on the element type as well as the spacing

between the elements. If the array is matched at boresight (typical for a general scanning array) the

impedance variation limits the usable sector in space where the reflected/coupled energy is at an

acceptable level. For an infinite parallel dipole ULA with spacing d ≤ λc
2 , it can be shown that the

10These qualitative behaviors of an infinite array (along with scan impedance variation) can be visualized via the

grating lobe series and the impedance crater for a particular antenna element [100].
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Figure 3.13: Visible and invisible regions for an infinite ULA steered toward θC = 0○ for (a) d = λc
2 ,

(b) d = λc
4 , and (c) d = λc.
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resistive portion of the active impedance diverges to infinity (reduces to 0 Ω for a collinear dipole

array) as the beam is scanned resulting in total reflection at θ = ±90○ [73, 93, 100, 101].

Figure 3.14 shows the grating lobe series for a finite M = 30 element ULA steered toward

θC = 0○ for (a) d = λc
2 , (b) d = λc

4 , and (c) d = λc. Instead of the series taking the form of

impulses like the infinite array case, the finite nature of the array creates lobing across space

that is dependent on the size of the array. For finite arrays, the impedance discontinuities that

occur in infinite arrays translate into steep impedance variations. The end elements of the array

experience a different surrounding than the center elements, thus the variation in impedance is also

different. It is desirable to use the same matching network for each element thus the variation in

scan impedance over the desired region in space must be minimized [98]. Dielectric sheets and

reduced element spacing have been shown to limit this impedance variation where the reactive

portion of active impedance is balanced using a ground plane. This array building method called

wide-angle impedance matching (WAIM) allows for the array to match at extreme scan angles (and

bandwidths) [95, 96, 102].

For the d < λc
2 finite array, instead of the radiation resistance reducing to zero when the

mainlobe of the array is steered into the invisible space, there still exists a small radiation

resistance for each element that corresponds to the sidelobes that still exist in the real space.

However, the reactive portion of the active impedance dominates the resistive portion thus making

matching in this scenario difficult. This type of excitation creates a superdirective beam which are

notoriously difficult to match without experiencing large ohmic losses in the antenna, matching

network, or transmit chain due to large circulating currents exchanging energy between the reactive

components and the near field of the array [41]11. Define the region between 1 < ∣sinθ ∣ < λc
2d as the

reactive region as the portion of energy placed into this region contributes to the overall reactive

power of the array excitation [42].

In the following sections, two finite uniform linear arrays are investigated using time-harmonic

11Because these superdirective excitations are difficult to match and scanning beam pattern are typically matched at

broadside. It may be possible to match an array at broadside and for superdirective excitations though no evidence of

any theoretical development could be found.
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Figure 3.14: Visible and invisible regions for an M = 30 element ULA steered toward θC = 0○ for

(a) d = λc
2 , (b) d = λc

4 , and (c) d = λc.
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analysis: an array with half-wavelength spacing (Section 3.2.2.1), and an array with quarter-

wavelength spacing (Section 3.2.2.2). The time-harmonic analysis and dipole dimensions are

evaluated according to frequency f = fc. Define the time-harmonic voltages, active impedance,

mutual impedance and scattering matrix for frequency f = fc as V+m ( fc), Za
m( fc), Zmk( fc) and SSS( fc),

respectively. The time-harmonic active reflection coefficient from (3.72) and total active reflection

coefficient from (3.73) are Γa
m( fc) and Γa( fc), respectively. The arrays are comprised of M = 30

identical parallel half-wavelength dipoles with diameter 0.001λc. The self and mutual impedances

are found via the induced emf method [73] as it has a analytical approximation of the mutual

impedances between elements. The mutual impedance between two dipoles given these parameters

is shown in Figure 3.15 versus distance in wavelengths. The arrays are matched using the simple

L-networks [84] shown in Figure 3.11 and calculated based on the initial active impedance based

on a boresight standard beamforming excitation12. Because the active impedances are different

for each element, the calculated matching network parameters are averaged over all elements to

maintain identical matching networks. Assume that the shape current distributions on each wire of

the dipole are balanced and not altered with mutual coupling.

3.2.2.1 Time-harmonic Analysis of ULA of Parallel Half-wavelength Dipoles with Half-

wavelength Spacing

Figure 3.16 shows the magnitude (in dB) of the mutual and self impedances for the ULA comprised

of M = 30 half-wavelength dipoles at half-wavelength spacing. These magnitudes correspond to the

black curve in Figure 3.15 relating to the magnitude of the mutual impedance with distance. These

impedances are measured at the terminals of the antennas prior to application of the matching

networks. The magnitude of the impedance decays approximately proportional to the inverse of

the distance between the elements [73], thus showing that the elements have less interaction the

further they are spread apart.

The L-network values for each element were determined via a broadside steering excitation

12Note that the L-network is used for simplicity of analysis.
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Figure 3.15: Resistance, reactance, and magnitude of time-harmonic mutual impedance Zmk( fc)
between two parallel, half-wavelength dipoles of diameter 0.001λc vs. distance (in wavelengths)

calculated via the induced emf method [73].
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Figure 3.16: Magnitude of mutual and self impedances (before matching) ∣Zmk( fc)∣ (in dB) for

M = 30 element ULA of half-wavelength dipoles and half-wavelength spacing calculated using

induced emf method [73].
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Figure 3.17: Total active reflection coefficient ∣Γa( fc)∣2 (in dB) from (3.73) vs. standard

beamforming steering direction sinθC for M = 30 element ULA with half-wavelength spacing

before matching network (blue) and after matching network (red).

prior to the addition of a matching network. The averaged values for the network parameters are

j2π fcC = j0.00646 Ω−1 for the parallel capacitive susceptance and j2π fcL= j13.94 Ω for the series

inductive reactance. Figure 3.17 shows the total active power reflection coefficient ∣Γa( fc)∣2 from

(3.73) for standard beamforming excitations steering from sinθC = −1 to sinθC = +1 before and

after L-network matching. The active power reflection coefficients ∣Γa
m( fc)∣2∀m from (3.72) are

shown in Figure 3.18 versus sinθC . Note that the inner elements have similar integrated reflection

coefficients while the outer elements experience much different responses due to the edge effects

of the array.

The standard criterion for antenna operation is any reflection below 10 dB is considered

satisfactory. Thus the usable sectors in space for the unmatched and matched arrays are sinθ =

±0.6267 (θ = ±38.8○) and sinθ = ±0.6733 (θ = ±42.3○). These scan angles are not very wide

though could be increased through use of a more sophisticated matching network. Note that

the total active reflection coefficient at the endfire scanning angles (θ = ±90○) is ∣Γa( fc)∣2 (dB) =

−1.425 dB. Therefore 72.03% of the total incident power is being reflected/coupled back into

the array at these angles. This amount of reflected power (as well as the increasing reflection

coefficient toward endfire) can be attributed to the emergence of a grating lobe as the mainlobe is
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Figure 3.18: Active power reflection coefficient ∣Γa
m( fc)∣2 (in dB) from (3.72) vs. element index m

and standard beamforming steering direction sinθC for M = 30 element ULA with half-wavelength

spacing after matching.

steered out of visible space. The antenna pattern of a dipole in the endfire (array) direction does

not contain a null thus the active impedance in this region changes dramatically from that of the

broadside excitation [93].

The change in active impedance versus scan angle θC can be seen in Figure 3.20 for resistance

(above) and reactance (below) after matching. Note that this response is particular to the L-

network with a parallel capacitance and series inductance and would be different for a parallel

inductance and series capacitance. While the resistance and reactance images would be different

for the alternate L-network configuration, the resulting reflection/coupled power response would be

similar to that of Figures 3.17 and 3.18. Towards endfire, the active impedance for most elements

increases in resistance and becomes highly capacitive which degrades the match of the array at

these angles. The active impedances for the center elements are relatively similar however the

edge elements experience much a different scan impedance variation. These edge effects can

be minimized by including dummy elements terminated to the line impedance, thus effectively

increasing the array size from the viewpoint of the edge elements and reducing the impedance

variation. Note that the matching network would need to be redetermined if dummy elements are

introduced.
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Figure 3.19: Time-harmonic active resistance R{Za
m( fc)} (above) and active reactance I{Za

m( fc)}
(below) from (3.70) vs. element index m and standard beamforming steering direction θC for

M = 30 element ULA with half-wavelength spacing after matching.
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Figure 3.20: Squared-magnitude of eigenvalues (in dB) and corresponding eigenvector beampat-

terns (in dB) vs. sinθ for the decomposed scattering matrix SSS( fc) of an M = 30 element ULA with

half-wavelength spacing at the terminals of the matching network.

Perhaps the easiest method to analyze how power is reflected/coupled back into the array is

via an eigendecomposition of the time-harmonic scattering matrix SSS( fc). Recall from (3.65) that

the backward traveling waves for each transmit chain are determined by the scattering matrix

and the forward traveling voltages. The eigendecomposition of SSS( fc) provides both eigenvectors

and eigenvalues of the scattering matrix. The eigenvectors provide an orthogonal basis of array

excitations that have a coupling behavior determined by the corresponding eigenvalue. Figure

3.20 shows the eigenvalues (left) and the beampatterns of the corresponding eigenvectors (right)

for the half-wavelength spaced ULA. The representation of both the eigenvalues and eigenvector

beampatterns are in square-magnitudes thus represent powers. It should be noted that the

eigenvalues of the scattering matrix are complex valued which represents propagation delays

between the elements. The beampatterns correspond to the array factor of the corresponding

eigenvector excitation.

The beampattern corresponding to the lowest eigenvalue (top row) represents the array

excitation that results in the least amount of coupled power (for unit incident power). In fact, for
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Figure 3.21: Eigen-excitation (left) and beampattern (right) corresponding to lowest eigenvalue in

the scattering matrix for a ULA comprised of M = 30 parallel half-wavelength dipoles space d = λc
2

apart.

these “eigen-excitations”, the squared-magnitude of the eigenvalue corresponds to the total active

power reflection coefficient ∣Γa( fc)∣2. Thus the beampattern with the lowest eigenvalue produces

a total power reflection coefficient of ∣Γa( fc)∣2 (dB) ≈ −66 dB and is pointed directly at boresight.

The amplitude of this excitation and corresponding beampattern are shown in Figure 3.21. The

fact that a beampattern at boresight produces the lowest coupled power makes intuitive sense as

the array was matched at boresight however the excitation has a taper across the elements thus is

not constant amplitude. This tapering produces a broadening of the beam, but more importantly

a lowering of the sidelobe level. For a uniform amplitude boresight array excitation with M = 30

elements, the sidelobe level drops to approximately −30 dB near endfire relative to peak power

whereas the beampattern in Figure 3.21 is approximately −60 dB. This result is qualitative, though

there is no doubt that the sidelobe level at the edges (where the reflected/coupled power is highest)

is a contributing factor as to why the beam pattern in Figure 3.21 couples less power than a uniform

amplitude boresight excitation.

As the eigenvalue index decreases, two symmetric lobes start to form in the eigenvector

beampatterns. As the total reflected powers (i.e. the eigenvalues) increase, so does the separation

between the two lobes until the lobes reach endfire. Thus the excitation that produces to highest
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Figure 3.22: Magnitude of time-harmonic mutual and self impedances (before matching) ∣Zmk( fc)∣
(in dB) for M = 30 element ULA of half-wavelength dipoles and quarter-wavelength spacing

calculated using induced emf method [73].

reflected/coupled power for this M = 30 element, half-wavelength spacing ULA is the endfire

beampattern shown in the last row of Figure 3.20 which corresponds to a total active power

reflection coefficient of Γa( fc) (dB) = −1.368 dB. Therefore 72.98% of the incident power is

reflected/coupled back into the array for this eigen-excitation.

3.2.2.2 Time-harmonic Analysis of ULA of Parallel Half-wavelength Dipoles with Quarter-

wavelength Spacing

Consider the same array M = 30 element uniform linear comprised of parallel half-wavelength

dipoles however the spacing between them has been reduced to d = λc
4 . Arrays of spacing d < λ

2 are

called over-sampled arrays as the critically spatial sampled array has inter-element spacing d = λ
2 .

This spacing produces the reactive regions shown in Figure 3.14(b) where it is possible to create

excitations that place a majority of energy within this region. The closer spacing between the

elements increases the mutual impedances between the elements as shown in Figure 3.22 which is

directly tied to the “sampling” of the impedance curve in Figure 3.15 at points closer to the origin.

Thus, the surrounding elements have a greater influence on the terminal voltages and currents (as

compared to the d = λc
2 array).
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Figure 3.23: Total active power reflection coefficient ∣Γa( fc)∣2 (in dB) from (3.73) vs. standard

beamforming steering direction sinθC for M = 30 element ULA with quarter-wavelength spacing

before matching network (blue) and after matching network (red).

The L-network values were calculated based on a boresight excitation absent of a matching

network. The calculated values were averaged to enforce identical matching networks across the

array. The average parallel capacitive susceptance is j2π fcC = j0.00660 Ω−1, and the averaged

series inductive reactance is j2π fcL= j60.60 Ω. Figure 3.24 shows the total active power reflection

∣Γa( fc)∣2 from (3.73) before and after boresight matching versus standard beamforming scan angle

θC for −2 ≤ sinθC ≤ 2. Before the matching network is applied, the total reflection coefficient does

not dip below the −10 dB threshold to satisfy operation. After matching using the L-network, the

acceptable scan range for this array is between sinθC = ±0.735 or θC = ±47.31○, a modest increase

in scan range compared to the half-wavelength space ULA. Again, this limited scan range is most

like constrained by the simplistic matching network however is sufficient for analysis purposes.

Note how the total active power reflection coefficient is near unity for scan angles where ∣sinθC∣> 1

where the mainbeam of the beampattern is within the invisible space. As will be shown, this

characteristic is a result of the active impedance of the array become primarily reactive (hence the

name, reactive region) with very low radiation resistance.

Figure 3.24 shows the active power reflection ∣Γa
m( fc)∣2∀m from (3.72) versus standard

beamforming scan angle θC after matching for −2 ≤ sinθC ≤ 2. The blackened areas of the image
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Figure 3.24: Active power reflection coefficient ∣Γa
m( fc)∣2 (in dB) from (3.72) vs. element index

m and standard beamforming steering direction sinθC for M = 30 element ULA with quarter-

wavelength spacing. Blackened areas indicate ∣Γa
m( fc)∣2 > 1.

correspond to the active power reflections greater than unity for the corresponding element. In

these regions, more power is reflected/coupled back into the transmit chain than was initially

incident on the antenna. For this array configuration there exist two distinct operating regions:

the center blue region which corresponds to a satisfactory array operating region, and the red/black

region which corresponds to high amounts of reflected/coupled energy back into the array which

would dissipate within the transmitter causing heating and possibly damage [42]. Therefore, care

must be taken when designing spatially-diverse emissions so as to not transmit within these regions

for this array configuration.

Figure 3.25 shows the active resistance R{Za
m( fc)} (blue) and active reactance I{Za

m( fc)}
(red) for (one of) the center elements versus the standard beamforming steering direction sinθC

for −2 ≤ sinθC ≤ 2 after matching13. The active resistance reduces to negligible amounts within

the reactive region allowing for no (or very little) dissipation (radiation) of the antenna in this

region14. For this matching network the reactive region is dominated by an inductive reactance.

The combination of the low resistance and high reactance results in a poor match of the array for

13Note that this response is particular to the L-network with a parallel capacitance and series inductance. However,

the important qualitative aspects of the response do not change when considering a different L-network configuration.
14The negative resistances within the reactive region correspond angles where active power reflection coefficient is

greater than unity.
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Figure 3.25: Time-harmonic active resistance R{Za
m( fc)} (blue) and active reactance I{Za

m( fc)}
(red) from (3.70) vs. standard beamforming steering direction sinθC for middle element of

M = 30 element ULA with quarter-wavelength spacing after matching with L-network comprised

of parallel capacitive susceptance and series inductive reactance.

these excitations resulting in an almost total reflection of the incident energy on the array.

The squared-magnitude of the eigenvalues and eigenvector beampatterns of the scattering

matrix SSS( fc) for this M = 30 element, quarter-wavelength spaced ULA are shown in Figure 3.26.

Recall that the eigenvectors of the scattering matrix correspond to “eigen-excitations” that produce

an total active power reflection coefficient equal to the corresponding square-magnitude of the

eigenvalue. The excitation that produces the lowest amount of reflected/coupled power for this

particular array and matching network corresponds to a beam in the first row of Figure 3.26

which has a similar tapered response and beam shape as that of Figure 3.21 (instead ranging from

−2 ≤ sinθC ≤ 2). This excitation produces a low total active power reflection of approximately −46

dB.

Much like Figure 3.20, as the eigenvalue index decreases the beampatterns split into a two

lobes which separate until they reach the edges of the feasible excitations. Note that this limit is not

endfire (like for the case of half-wavelength spacing), but an excitation that places the mainlobe(s)

of the beampattern deep within the reactive region. The beampattern of the array excitation that

produces the most reflected/coupled power (for unit incident power) is seen in the final row of
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Figure 3.26: Squared-magnitude of eigenvalues (in dB) and corresponding eigenvector beampat-

terns (in dB) vs. sinθ for the decomposed scattering matrix SSS( fc) of an M = 30 element ULA with

quarter-wavelength spacing at the terminals of the matching network.

Figure 3.26. This excitation reflects/couples 99.99% of the total incident power implying that

there would be essentially zero radiation. In fact, eigenvalue indices 0 thru 9 have greater than 95%

reflected coupled energy, and only eigenvalue indices 18 and greater correspond to excitations that

meet the −10 dB threshold for satisfactory performance.

3.2.2.3 Geometric Quality Factor and Fractional Reactive Power

For superdirective arrays (and antennas), the invisible spaced was leveraged to form array/antenna

patterns that theoretically have a higher directivity than a standard array/antenna of the same

size [41, 73, 84]. To form these superdirective beams, a portion of the incident energy is purposely

placed in the invisible space resulting in a low radiation resistance and high reactance impedance

at which to match the antenna/array [41]. Because of the high reactance, the matching network

applied to the antenna/array result in large circulating currents exchanged between the near field

and matching network of the antennas [41]. The large amount of energy exchanged between

that matching network and near field of the array “magnifies” any ohmic losses in the antenna
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or matching network [41], thus the realized gain of the antenna might not be any better than the

standard implementation. Although the study of these arrays brought with it metrics to define how

superdirective (i.e. how much energy is within the invisible space) in a given array excitation.

Define the quality (Q) factor of the array as the ratio of reactive power to radiated power [103].

The Q-factor (of an array, antenna, or circuit) has been proven to limit the usable bandwidth as the

ratio increases [84]. The Q-factor for superdirective arrays is high due to the large storage of

energy therefore must be narrowband the maintain a match for the array. For spatially-diverse

transmission where broad spatial beams and wide bandwidths may be desired, the Q-factor of the

array (over the entirety of the emission) must be as small as possible.

It is useful to define the Q-factor in terms of isotropic antennas to assess the propensity of the

array factor to emit into the invisible region. This factor, derived in [104], was termed the geometric

quality factor Qg, where the overall quality of the array Q is approximated be the product of the

geometric quality factor and the quality factor of an individual element Qe, as Q =QgQe. For a

ULA with inter-element spacing d and the array geometric quality factor for the time-harmonic

excitations V+m ( fc) is defined as [103–105]

Qg =
∑
m
∣V+m ( fc)∣2

∑
m
∑
k

V+m ( fc)V+k ( fc)∗ sinc((m−k)2π
λc

d) , (3.79)

where sinc(●) is defined in (2.31). The Qg-function allows for analysis of the quality variation

specifically due to the geometry of the array absent of any individual antenna patterns.

Figure 3.27 displays the geometric quality factorQg for a ULA with spacing d = λc
4 for standard

beamforming excitations scanning over sinθC = ±2. The Qg-factor stays at approximately 0.25

over a majority of the visible space scan angles. Outside of this region, the Qg-factor starts to rise

dramatically at scan angles ∣sinθC∣ > 0.9, indicating that for this array and these scans angles, the

array Q-factor will be large. Note that this conclusion was made irrespective to the element that is

used within the array.

A brute force method of approximating the impact of emitting into the invisible space is simply
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Figure 3.27: Qg-factor versus standard beamforming scan angle sinθC for a ULA with inter-

element spacing d = λc
4 .

to integrate the array factor power over the reactive region and normalize it by the total array factor

power. Because the invisible space is dominated by reactive impedance, we call this ratio the

fractional reactive power (FRP). Define G( fc, ū) = 1
M∑

m
V+( fc)e j 2π

λc
dū

as the time-harmonic array

factor for a ULA in ū-space. Thus, for an inter-element spacing of d < λc
2 the FRP is defined as15

FRP =

−1
ˆ

− λc
2d

∣G( fc, ū)∣2dū+
λc
2d
ˆ

1

∣G( fc, ū)∣2dū

λc
2d
ˆ

− λc
2d

∣G( fc, ū)∣2dū

. (time-harmonic) (3.80)

where ū = ±1 represents the edges of the visible space and ū = ± λc
2d represents the bounds on the

feasible excitations. Note that because the array is discrete the array factor is periodic in the

invisible space (i.e. the grating lobe series). Calculations similar to (3.80) have been defined for

continuous aperture antennas where limits of the integrals in ū-space extend out to infinity (see [84]

15The FRP in (3.80) is specified as a time-harmonic expression as later in Section 4.2 the FRP is redefined for

wideband transmission.
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Figure 3.28: Fractional reactive power (FRP) from (3.80) and total active power reflection

coefficient ∣Γa( fc)∣2 (after matching) versus standard beamforming scan angle ūC = sinθC. The

power reflection coefficient ∣Γa( fc)∣2 was calculated via the array specifications in Section 3.2.2.2,

and the FRP was calculated only on the array factor of the standard beamformer.

for an approximation of antenna Q for a superdirective line source). These two antenna scenarios

(discrete array and continuous aperture) mimic that of Fourier transform (continuous aperture to

continuous beampattern) and the discrete “time” Fourier transform (discrete array to continuous

beampattern). The calculation of energy in the spectrum/beampattern for these two transformations

is from −∞ to∞ for the Fourier transform and −π to π for the DTFT. Thus the total energy of the

ULA beampattern is integrated from electrical angles φ = −π to φ = +π , where the limits ū = ± λc
2d

correspond to the electrical angles φ = ±π .

If the assumption is made that all energy within the real space is transmitted and all energy

within the invisible space is reflected back into the transmitter, then the FRP should approximate

the total power reflection coefficient for a given excitation. Note that this does not incorporate

matching networks or active impedances into the approximation. However, if it is assumed that

the array has a good match at boresight and over a wide range of angles, the shapes of the FRP

and reflection coefficient are similar. Figure 3.28 shows the FRP and total active power reflection

coefficient ∣Γa( fc)∣2 (after matching) versus standard beamforming scan angle ūC = sinθC for the
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M = 30 element half-wavelength parallel dipole ULA with spacing d = λc
4 . Note that while the shape

of the traces deviate in the visible space, they match to a high degree once the beam is steered in the

invisible space. Thus the FRP provides a useful metric in evaluating array factors (time-varying or

not) when the array spacing is d < λc
2 when the frequency-dependent scattering matrix is unknown.

The geometric quality factor and fractional reactive power represent metrics that can be applied

to generic arrays with element spacing d < λc
2 . These metrics (along with constant amplitude and

spectrally containment) represent system considerate waveform/emission design metrics that can

be used when specific array information is not present. If the scattering matrix SSS( f ) for a specific

array is known, Qg and FRP are not needed as metrics because the amount of reflected/coupled

energy can be directly calculated given an array excitation from the scattering model. In this

scenario, the design would be system specific as the unique properties of the array would be known

during the waveform/emission design process.

3.2.3 Mutual Coupling for Spatially-Diverse Transmission

The array excitations analyzed in Section 3.2.2 were limited to standard beamformed, time-

harmonic signals. Applying other excitations (e.g. phase-only tapers, multi-lobe beampatterns)

will have an effect on the array that has not yet been characterized. Furthermore, for spatially-

diverse transmissions, the waveforms emitted by each element are different thus the excitation

across the array is a time-varying response which produces a non-zero bandwidth for the

emission. Thus the time-harmonic results versus scan angle in Section 3.2.2 may not be directly

applicable to spatially-diverse transmissions, however they do provide valid analytic approaches

and a qualitative basis of understanding of how mutual coupling might affect a spatially-diverse

transmission.

The scattering matrix of the array is valid for any excitation, thus remains a strong analysis

tool for evaluating the reflected/coupled energy on an array. If the array and/or transmission is

not considered narrowband then the scattering matrix must become frequency dependent like the

analysis in Section 3.2.1. By performing a eigendecomposition of the scattering matrix, a natural
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excitation basis is created in the form of eigenvectors. This basis can be used in the optimization

of array factors to execute a certain function but are constrained to limit the amount of coupled

energy (see [106] for an circular array example). Likewise, this functionality can be extended to

the design of time-varying array factors for spatially-diverse applications where the limits in the

usable spatial transmission region can be tested.

If provided with a set of waveforms that produce a spatially diverse transmission, the scattering

matrix may be used to predict the reflected/coupled power of the array. If the coupled energy is

deemed too high, the eigenvectors (excitation basis) of the scattering matrix can be used to remove

high coupling components from the set of waveforms via an orthogonal projection. Similarly

in [42, 43] the waveforms of a MIMO emission of an oversampled over-the-horizon radar are

transformed into a beamspace approach where the energy in the invisible region is reduced via

reconstruction of the emission via Slepian beams. In [107], it was shown that the active VSWR

of a spatially-diverse emission can be reduced via application of an inverted coupling matrix to

the waveforms16. All of these mutual coupling reduction methods have the detriment of altering

the envelopes of the spatially-diverse waveforms that are to be emitted. If a constant amplitude

waveform implementation is required due to saturated amplifiers (Section 2.2.2) none of these

methods would be a viable choice.

To circumvent the issue of waveform distortion when applying the coupling reduction

transformation methods, the spatially-diverse waveforms can be designed/optimized with potential

implementation issues in mind. However, this practice requires at least some knowledge of the

array that is excited by the waveforms. Ideally, the design method would be system specific where

the active element patterns Fm( f ,θ ,ϑ)∀m and scattering matrix SSS( f ) are accurately known for

all in-band frequencies. This knowledge would allow for the design of physical waveforms while

accurately predicting both the far-field solution and the amount of reflected/coupled energy during

transmission. If only the active element patterns are known, it was shown in [108] that both the

16The ULA was spaced at half-wavelength and the waveform were implemented via Gold codes (binary sequences)

for a d = λc

2
. Therefore, adjacent elements would either have 0○ or 180○ relative instantaneous phase producing large

coupling between elements.
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scattering matrix and active input impedance can be obtained from the active element pattern data.

If neither the active element pattern or scattering matrix are known a system considerate

design approach can be utilized where the geometry of the array, frequency of operation, and

general antenna pattern can be presumed. For example, say a time-varying antenna factor is

being designed for a spatially-diverse emission for a ULA with half-wavelength spacing. Are

the antennas assumed to be directive or omnidirectional in the scan plane of the array? If the

assumption is directive, over what spatial region are the antennas directive? We would not want to

design a time-varying antenna factor that places energy over a broad region in space if the antenna

pattern is directive in the scan plane. If the array is over-sampled (over at least some portion

of the bandwidth) the invisible space must be avoided to prevent reflections due to low radiation

resistance. And if the array is spaced at half-wavelength, the endfire direction should generally be

avoided as the impedance variation in those directions would also cause reflections.

To attain the best results for the waveform/emission design, the scattering matrix and active

antenna patterns are necessary. However, simulated analysis of a spatially-diverse emission can

be insightful as to what its behavior/performance could be under certain scenarios. The general

assumptions described in the previous paragraph allow us to place reasonable constraints on the

emission design/optimization problem without having knowledge of a specific array data.

To illustrate why these general array constraints are helpful in emission design, consider the

design of a single pulse, spatially-diverse emission with time-bandwidth BT = 100 for a M = 30

element ULA without consideration of element patterns, scattering matrix, or element spacing17.

Three different sets of M = 30 waveforms are designed18 to be constant amplitude with equal

energy, constrained to a Gaussian spectral shape, and designed to place energy over three different

spatial extents: case 1) an omnidirectional pattern, where energy is place over all φ -space; case

2) a quasi-omnidirectional pattern, where energy is placed in electrical angles φ ∈ [−0.9π, 0.9π];
and case 3) a spatially-constrained beampattern, where energy is placed in φ ∈ [−0.45π, 0.45π].

17Because the emission is designed absent of any antenna spacing, the dimension of design is in electrical angle

φ -space from (3.34) instead of ū-space.
18The waveform sets are optimized using the narrowband version of the optimization procedure discussed in Section

4.2.
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Figure 3.29: Aggregate beampatterns A(ū) in ū-space versus ūH and ūQ spaces for case 1 (blue),

case 2 (red), and case 3 (yellow) transmissions.

Assuming the transmission is narrowband (no frequency-dependence), these optimized sets of

waveforms can then be applied to the simulated half-wavelength dipole ULA models discussed in

Sections 3.2.2.1 (d = λc
2 ) and 3.2.2.2 (d = λc

4 ). The edges of the φ -space (before phase wrapping)

φ = ±π correspond to ūH = ±1 for the half-wavelength spaced array and ūQ = ±2 for the quarter-

wavelength spaced array in ū-space.

Figure 3.29 shows the aggregate beampatterns in ū-space (A(ū)) for the three different design

cases. Note that the bottom horizontal axis is electrical angle φ where the top horizontal axis

contains both the ūH and ūQ axes. The aggregate beampatterns were normalized such that 0

dB represents the maximum output of the array. Thus the case 1 beampattern, at a constant of

−10log10 M = −10log10 30 = −14.77 dB, represents an isotropic power level. The beam patterns of

cases 2 and 3 increase in power level (only slightly for case 2) due to the focusing of energy away

from endfire. Figure 3.30 shows the complex-baseband power spectra ∣G( f , ū)∣2 (in ū-space)19

of the time-varying array factor for case 1 (left), case 2 (middle), and case 3 (right). Recall that

each waveform is constrained to be constant modulus and to produce an emission with a spectrum

19The variable G( f , ū) is the same form as G( f ,θ) from (3.20) and (3.33) with sinθ replace with ū.
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Figure 3.30: Power specta ∣G( f , ū)∣2 (in dB) of the time-varying array factor for case 1 (left), case

2 (middle), and case 3 (right) transmissions.

constrained to a Gaussian shape (which can be seen in all three cases in Figure 3.30). For the array

with spacing d = λc
2 , case 1 places energy over all space ūH = ±1, case 2 places energy between

ūH = ±0.9, and case 3 places energy between ūH = ±0.45. For the array with spacing d = λc
4 , cases

1 and 2 place significant energy within the invisible space (ūQ > 1), while case 3 places a majority

of the energy between ūQ = ±0.9 (some sidelobe energy remains in invisible space).

The scattering matrices from Sections 3.2.2.1 and 3.2.2.2 are applied to the waveforms to

simulate the predicted amount reflected/coupled energy for the three optimized emissions when

applied to two differently spaced dipole ULAs. The waveform constraints of constant amplitude

and spectral containment allow us to assume the signals V+m ( f )∀m incident on the terminals

of the matching network are proportional to the optimized waveforms Sm( f )∀m. Thus the

backward traveling waves V−m ( f )∀m are calculated via (3.65) which allows for the calculation

of the integrated reflection coefficient Γa
m∀m via (3.77).

Figure 3.31 shows the integrated power reflection coefficient ∣Γa
m∣2∀m for the d = λc

2 (blue)

and d = λc
4 (red) arrays and case 1 (left), case 2 (middle) and case 3 (right). For the d = λc

2 array,

the omnidirectional beampattern results in a integrated power reflection coefficient > 0.1 for all

elements in the array, thus does not meet the standards for a satisfactory emission. By moving
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Figure 3.31: Integrated power reflection coefficient ∣Γa
m∣2∀m from (3.77) for case 1 (left), case 2

(middle), and case 3 (right) transmissions.

energy away from endfire as in case 2 (middle), all elements are now beneath the acceptable

threshold for operation. This change in reflection coefficient indicates that the energy in the time-

varying antenna factor near endfire in case 1 was reflected when implemented on the d = λc
2 array.

By making a slight modification in the emission constraints, we can achieve a near-omnidirectional

beampattern with satisfactory reflection performance. The case 3 reflected energy for the d = λc
2

array is reduced more than in case 2 as the energy is focused between ūH = ±0.45 which in nearer

to the boresight match of the array.

For the d = λc
4 ULA (shown in red in Figure 3.31), cases 1 and 2 both result in a large amount of

reflected energy that could damage the transmit chains of the elements if operated at high enough

power. At the very least, the emission is inefficient as half of the pulse energy is dissipated in

the resistive elements of the transmit chain and not radiated. By spatially containing the energy

as in case 3 (which corresponds to energy placement between ūQ = ±0.9), the active integrated

power reflection coefficients for each element is beneath ∣Γa
m∣2 = 0.1 threshold for satisfactory

performance. The energy of the d = λc
4 time-varying array factor is largely placed away from

endfire and the reactive region to limit the amount of reflected/coupled power.
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Table 3.1: Total integrated power reflection coefficient from (3.78) and FRP from (3.80)

d = λc
2 d = λc

4∣Γa∣2 ∣Γa∣2 FRP

Case 1 0.1182 0.5177 0.5010

Case 2 0.0780 0.4831 0.4643

Case 3 0.0122 0.0797 0.0359

Table 3.1 shows the total integrated power reflection coefficient ∣Γa∣2 (calculated using (3.78))

for each array configuration and each transmission case, and the fractional reactive power (FRP)

from (3.81) for the d = λc
4 array for comparison. Recall that the form of the FRP from (3.80)

is only valid for a time-harmonic emission (a static array factor), thus cannot evaluate the FRP

for a spatially-diverse emission. The FRP can generalized by integrating the complex-baseband,

time-varying array factor over time (or frequency) as

FRP =

T̂

0

⎛⎜⎜⎜⎝
−1
ˆ

− λc
2d

∣g(t, ū)∣2dū+
λc
2d
ˆ

1

∣g(t, ū)∣2dū

⎞⎟⎟⎟⎠dt

T̂

0

λc
2d
ˆ

− λc
2d

∣g(t, ū)∣2dūdt

(spatially-diverse and narrowband)

=

∞̂

−∞

⎛⎜⎜⎜⎝
−1
ˆ

− c
2 fcd

∣G( f , ū)∣2dū+
c

2 fcd
ˆ

1

∣G( f , ū)∣2dū

⎞⎟⎟⎟⎠d f

∞̂

−∞

c
2 fcd
ˆ

− c
2 fcd

∣G( f , ū)∣2dūd f

.

(3.81)

Note that because the waveforms contained in each waveform set have equal energy, the total

integrated power reflection coefficient ∣Γa∣2 corresponds to the mean of the integrated power

reflection coefficients from Figure 3.31 and thus retain similar behaviors to that discussed above.

Recall that the FRP for the dipole array with spacing d = λc
4 gave a rough approximation of
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the expected reflected power for the standard beamforming excitations (see Figure 3.28). This

approximation also holds for cases 1 and 2 (within 2%) when the time-varying array factor has half

the waveform energy in the invisible space. The approximation is less accurate when the reflection

coefficient is small (case 3) likely due to the deviation between the FRP and ∣Γa∣2 responses for

excitations in the visible space shown in Figure 3.28. However, the correlation between the FRP

and the total integrated power reflection coefficient ∣Γa∣2 shows the FRP is valid metric for system

considerate emission design methods where the specific array parameters are unknown.

3.3 Summary

In this chapter an analytical model of the far-field transmission was defined along with simplifying

assumptions that are practical in certain radar transmission modes. The large array assumption

allows for an approximate active element pattern to be used which decouples the array and element

contributions. For a spatially-diverse emission mode, the array contribution takes the form of

the time-varying antenna factor g(t,θ) which can be constructed and analyzed independent to

the elemental pattern. The narrowband assumption allows the angle-delay ambiguity function

χs(τ,θ ,ϑ) to be separated into two individual components: the beam factor, which represents the

nominal array resolution; and the diversity factor, which qualitative represents the spatial resolution

enhancement achieved when operating in a MIMO transmission mode. The relationship between

the invisible space/reactive region and reflected energy was made for dipole arrays with element

spacing less than half-wavelength that are matched for broadside transmission. The invisible space

is also discussed in the following chapter for a wideband spatially-diverse emission mode where

the element spacing (in terms of wavelength) is frequency-dependent. Therefore the size of the

reactive region changes depending on the operating frequency, antenna spacing (in meters), and

bandwidth of the transmission.
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Chapter 4

Waveform Design for Physical Spatially-Diverse Transmission

The practical insights to waveform and emission analysis provided by Chapters 2 and 3 provide a

foundation for the design of spatially-diverse emissions with realistic restrictions/considerations.

The waveforms that are optimized and designed throughout this chapter are all chosen to be con-

stant amplitude and spectrally contained to limit both linear and nonlinear transmitter distortions

to better model the modulation structure of the far-field emission, and to maximize efficiency of

the overall emission (see Section 2.2.2). Furthermore, a spatially-diverse emission implies a DAR

implementation thus the mutual coupling between elements must also be considered. In Chapter 3

it was shown that certain array excitations can produce more reflected/coupled energy than others.

Assuming that the array is matched to broadside, energy directed towards endfire (via the array

excitation), for arrays of element spacing half-wavelength or less, is reflected/coupled back into the

array. Thus, the spatially-diverse emissions are constrained/designed to avoid emitting significant

energy towards these directions. In this chapter, three different spatially-diverse transmission

design modalities are presented with various levels of complexity and application1.

In Section 4.1 a form of MIMO transmission is presented that is inspired by the fixational

movements of the human eye [92, 109]. The emission maintains a coherent beam throughout its

transmission and modulates the beam look direction throughout the pulse duration. This spatially-

modulated emission was recently demonstrated to provide an improvement in spatial resolution

similar to that theorized by the MIMO virtual array but with highly correlated waveforms. By

maintaining a focused beam in this MIMO mode, spatial modulation could be applied to tracking

1Note that these sections all invoke the narrowband and large-array assumption differently based on possible

applications. However, all emissions designs can be generalized to any combination of assumptions if desired.
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situations where a higher energy-on-target is needed but a MIMO capability is still desirable.

A design approach is presented in Section 4.2 that jointly optimizes the beampattern and

spectral content of a wideband spatially-diverse radar emission within the context of physically

realizable frequency-modulated (FM) waveforms emitted from a uniform linear array [90,91]. The

design approach is a specific form of alternating projections that shapes the emission spectrum as

a function of spatial angle while intrinsically addressing the problem of the reactive region that

arises for the wideband emission. This scheme also permits incorporation of joint space-frequency

nulling to facilitate spectrum cohabitation with other nearby RF users. The design process is

performed in a discretized manner that is “over-sampled” relative to waveform 3-dB bandwidth

to capture a sufficient portion of the spectral roll-off to realize the physical waveform, which is

subsequently implemented via the polyphase-coded FM (PCFM) structure. This flexible emission

structure matches well with the flexibility of the DAR to form emissions that can perform multiple

simultaneous radar functions.

Section 4.3 explores a spatial diversity technique where predetermined radar and communica-

tions signals having the same time and spectral support are simultaneously transmitted in different

spatial directions via a digital array [24]. To increase the power efficiency of the emission, an

iterative process denoted far-field radiated emission design (FFRED) is introduced that establishes

a constant amplitude waveform constraint. The power efficiency of the emission under different

scenarios is characterized through a percent orthogonal power and energy on target metric. Finally,

the spatially-dependent bit error rate performance of the communications is analyzed under

different scenarios. In [25], experimental results of this multifunction spatially-diverse mode were

presented using the AFRL BEEMER system [110] and are also presented here.

4.1 Fast-time Spatial Modulated Radar

The physical waveform implementation of the PCFM waveform discussed in Section 2.1.2.4

A portion of the text in Section 4.1 is taken from “Adaptive Receive Processing of Spatially Modulated Physical

Radar Emissions” by McCormick et al. printed in IEEE Journal of Selected Topics in Signal Processing in December

2015. ©2011 IEEE
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can extend to likewise parameterize a form of intra-pulse spatial modulation during the pulse by

controlling the relative phases across the antenna array during the pulse transmission [38, 44].

Much like the frequency-diverse array (FDA) concept [15,111–114], spatial modulation maintains

a coherent beam throughout the transmission, however because the implementation of the emission

is at the waveform level (as opposed to the carrier frequency as with FDA) the instantaneous beam

location is not limited to constant scanning over all space thus avoiding the endfire regions of the

array which were shown to reflected energy in Section 3.2.2. The spatial modulation emission

architecture allows the waveform designer to uninhibitedly control the beam direction permitting

precise command the spatial power distribution thus may have applications in tracking where the

beamloss from omnidirectional spatially-diverse transmission would not be acceptable.

The spatially modulated emission structure was inspired by the biological process of the human

eye (and of other animals possessing fovea) known as fixational eye movement in which the

eye performs slow movements known as drift and rapid movements known as microsaccades

[115, 116]. The current scientific consensus is that such movements enhance contrast and aid

in resolving spatial ambiguities. There is even evidence [117] that these eye movements adapt

according to environmental conditions (e.g. amount of lighting) and the active attention of the

observer, thus suggesting a connection to cognitive sensing [29] within the visual cortex for this

waveform-diverse emission paradigm [1, 2, 4].

It is observed that the “goodness” of a particular spatially modulated emission is dependent on

the underlying waveform and the specific nature of the spatial modulation [92]. For example, use

of a linear frequency modulated (LFM) chirp combined with relatively linear intra-pulse spatial

steering provides what amounts to a tapering effect in the range domain that realizes significant

range sidelobe suppression (with the associated range resolution degradation as well). Here it

is demonstrated that, using only standard (non-adaptive) pulse compression and beamforming,

spatial resolution and target discrimination can be enhanced by as much as 30%, albeit with a

commensurate trade-off in range resolution and focused energy in the directions of transmission

[92, 109].
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4.1.1 Assumptions and Restrictions

It is assumed that the waveforms designed in Section 4.1 are implemented in a high power

transmitter design thus necessitate the use of a high power amplifier operating in saturation.

To limit distortions imparted to the signals traveling through a transmit chain with saturated

amplifiers, each waveform is restricted to FM with constant amplitude envelope u(t) (Section

2.2.2), thus the forward voltage at each element V+(t) is assumed to be a scaled version of the

ideal waveform spb(t). The assumption is made that the spectral content of the emission and

array geometry are considered narrowband, therefore the active antenna patterns are assumed

to be frequency-independent (Section 3.1.1.3). Also, the spatially modulated transmissions are

designed for an M = 30 element uniform linear array with d = λc
2 inter-element spacing thus

the large array approximation is invoked (Section 3.1.1.1). Each transmit chain is assumed to

have independent waveform generation and identical transmit hardware, antennas, and matching

networks. Assuming the array is at matched broadside, the impedance variation across space can

be assumed low if the time-varying antenna factor focuses the energy near broadside (Section 3.2).

Recall from (3.35) that the complex-baseband, far-field time-varying beampattern g̃(t,θ ,ϕ)
when invoking both the narrowband and large array assumptions is the product between the

approximate narrowband active antenna pattern Fa(θ ,ϕ) and the time-varying antenna factor

g(t,θ). Because Fa(θ ,ϕ) only scales our emission in space, we consider just the time-varying

antenna factor for Section 4.1.

4.1.2 Spatially Modulated Emission Structure

The time-varying array factor for spatial modulation maintains a coherent beam throughout the

duration of the pulse duration T , thus the array pattern is a focused beam for any instant in time.

The focused beam allows for precise control of the emitted energy in space without the need for

iterative optimization methods. The energy of the beam can intuitively be allocated by simply

scanning the beam over a desired region in space. This implementation is inherently spatially

diverse thus benefits from an improved spatial resolution as discussed in Section 3.1.3.2.
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Structure of the spatially modulated transmission is represented by two decoupled terms:

the waveform s(t) and the steering function φs(t;θC) which defines how the transmit beam is

controlled with respect to the center look direction θC. Thus, the continuous waveform generated

by the mth array channel is defined as a time-varying implementation of narrowband standard

beamforming from (3.39) as

sm(t) = s(t)e− jmφs(t;θC)

= exp(− j ⋅(ψ(t)−mφs(t;θC))), (4.1)

where u(t) is assumed to be constant over the pulse duration. Here, the waveform phase function

ψ(t) is realized via the PCFM waveform structure (Section 2.1.2.4) to achieve a continuous-phase.

Recall that the phase function of the PCFM waveform was parameterized by a discrete sequence

xw = [α0, . . . ,αNp−1]T . Likewise, define xs = [ε0, . . . ,εNp−1]T as the length Np discrete sequence

that parameterizes the spatial modulation phase φs(t;θC). This sequence is constructed via a set

of Np+1 spatial angle offsets ∆0, ∆1, ⋯, ∆Np relative to center direction θC. Thus, the nth spatial

modulation parameter εn is defined as the different between the equivalent electrical angles of the

spatial offset sequence,

εn =
2π

λc
d ⋅(sin(θC+∆n+1)− sin(θC+∆n)) (4.2)

for n ∈ {0, . . . ,Np −1}, noting that each ∆n can be positive or negative. It shall be assumed that

the values of ∆n are sufficiently small to avoid steering the beam near endfire. The spatial phase

modulation can then be represented as a time-varying electrical angle (from (3.34)) via the PCFM

formulation as

φs(t;xs,θC) = Np∑
n=1

εnhn(t)+ 2π

λc
d sin(θC+∆0), (4.3)

for t ∈ [0,T ], where hn(t) is the PCFM phase function from (2.47) and 2π
λc

d sin(θC+∆0) is the initial

phase offset to steer toward θC+∆0. The sequence of spatial phase changes from (4.2) are collected
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in the Np×1 spatial modulation code vector xs = [ε1, ε2, . . . , εNp]T that defines the fast-time spatial

modulation.

Combining the spatial modulation signal φs(t;xs,θC) with the waveform PCFM implemented

waveform phase function ψ(t;xw), the waveform generated by the mth antenna element is

expressed as

sm(t;xw,xs,θC) = exp( j ⋅(ψ(t;xw)−mφs(t;xs,θC)))
= exp

⎛
⎝ j ⋅⎛⎝

Np∑
n=1
(αn−mεn)hn(t)+ψ0,m

⎞
⎠
⎞
⎠

(4.4)

where

ψ0,m =ψ0−m
2π

λc
d sin(θC+∆0) (4.5)

is the initial phase of the mth waveform. In the case of no spatial modulation, the set of

spatial offsets are ∆0 = ∆1 = ⋯ = ∆Np = 0, such that the resulting Np phase changes are likewise

ε0 = ε1 =⋯ = εNp−1 = 0. As a result, (4.3) simplifies to φs(θC) = 2π
λc

d sinθC, which is simply the

electrical angle from (3.34) needed to steer a stationary beam in the direction of spatial angle θC,

thus realizing standard beamforming.

Recall from Section 2.1.2.4 that the code values αn are equivalent to the instantaneous

frequencies given the form of the PCFM basis function from (2.47). Thus by observing (4.4),

the code values of the spatially modulated waveforms are controlled by both the base waveform

s(t;xw) and the spatial modulation φs(t;xs,θC), where the nth code value of the mth waveform

is αn−mεn. Therefore, it is to be expected that the inclusion of the spatially-modulated structure

will alter the spectral response of each waveform sm(t). Because the spatial modulation code εn is

multiplied by m ∈ {−M−1
2 , . . . , M−1

2 }, the spectral deviation is exaggerated at the ends of the array.

However, it is shown that the waveform code vector xw and the spatial modulation code vector xs

can be designed together to limit the spectral responses from shifting out of the bandwidth of the

base radar waveform s(t).
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4.1.3 Spatially Modulated Emission Evaluation

To evaluate the physical emission structure described in Section 4.1.2, a length Np = 200 waveform

parameter vector xw is considered to produce a PCFM approximation2 to an up-chirped, linear

frequency modulated waveform (LFM) of analytical time-bandwidth of BaT = 200. The array is

comprised of M = 30 antenna elements arranged in a ULA configuration with element spacing

d = λc
2 .

Four different spatial modulation vectors xs are generated to form four different time-varying

array factors all centered about θC = 0○. Case 1 is implemented as standard beamforming to serve

as a baseline case for comparison. Case 2 is a linearly steered spatially modulated transmission

beginning at sinθ = −0.0667 and ending at sinθ = 0.0667. The angles sinθ = ±0.0667 correspond

to the first null locations of the M = 30 beampattern when pointed towards θC = 0○. The case 3

transmission scans linearly beginning and ending at the second null locations, sinθ = ±0.1333.

The final case 4 time-varying array factor implements a half-cycle sinusoidal scan beginning and

ending at the first null locations.

Figure 4.1 shows the squared-magnitude of the time-varying array factor ∣g(t,θ)∣2 (in dB) for

all four spatial modulation cases as a function of normalized time t/T and spatial angle sinθ . The

identifying characteristic of the spatial modulation mode is apparent as the beams in all four cases

remain coherent throughout the pulse duration. Observing the spatial beampattern of each case at

a cut of any instant in time would have the equivalent form of an M = 30 element beampattern with

rectangular weighting (steered toward a look direction).

Averaging the energy of the time-varying array factor over the pulse duration T produces the

aggregate beampattern from (3.21) shown in Figure 4.2 for all four cases. The beampatterns are

normalized such that the maximum possible value A(θ) can assume is 0 dB. This maximum

is achieved by the standard beamforming case (blue) at A(θC) (dB) = 0 dB due to the “staring”

property of standard beamforming that achieves maximum energy toward θC. For cases 2 – 4, the

2The rectangular filter wp(t) in the PCFM implementation amounts to a piecewise linear phase function

ψ(t;xw) thus cannot fully express the up-chirped LFM phase function from (2.35). However, the piecewise linear

approximation produces minimal distortion as compared to the ideal waveform from (2.36).
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Figure 4.1: Time-varying antenna factor ∣g(t,θ)∣2 (in dB) for (a) standard beamforming (case

1), (b) null-to-null linear spatial modulation (case 2), (c) second null-to-second null linear spatial

modulation (case 3), and (d) null-to-null half-cycle sinusoidal spatial modulation (case 4).
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Figure 4.2: Aggregate beampattern A(θ) (in dB) from (3.21) for (a) standard beamforming (case

1), (b) null-to-null linear spatial modulation (case 2), (c) second null-to-second null linear spatial

modulation (case 3), and (d) null-to-null half-cycle sinusoidal spatial modulation (case 4).
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Figure 4.3: Beam factor ∣χ̄s,b(θ ,ϑ)∣2 from (3.60) (in dB) for M = 30 element ULA with d = λ
2

spacing.

energy in spread in space thus reducing the aggregate beampattern below 0 dB. The first null to first

null linear steering emission (case 2) has the least loss at the center look direction for the remaining

three cases with A(θC) (dB) = −3.45 dB. Case 4 resulted in a loss of A(θC) (dB) = −5.09 dB,

however aggregate beam pattern increases in transmitted power on either side of θC due to

the sinusoidal spatial modulation structure. Finally, case 3 had the most significant loss at

A(θC) (dB) = −6.25 dB however has the most spatial coverage due to the second null to second

null spatially modulated sweep.

Figure 4.3 displays the beam factor ∣χ̄s,b(θ ,ϑ)∣2 (in dB) from (3.60) versus spatial angle sinθ

and receiver beamformed angle sinϑ for the M = 30 element ULA. Recall from Section 3.1.3.2

that the beam factor is completely independent of the emission thus remains constant over all

four transmission cases. Figure 4.4 shows the τ = 0 cut of the diversity factor ∣χ̄s,d(τ,θ ,ϑ)∣2
from (3.61) for all four spatially-modulated time-varying array factors. Note that the standard

beamforming case in Figure 4.4(a) does not contribute to the spatial resolution for this spatially-

dependent matched filter estimator (see Section 3.1.3.2 for more details). Cases 2 thru 4 in Figures

4.4(b,c,d) do provide spatial diversity thus will contribute to improving the spatial resolution for

the illuminated region.
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Figure 4.4: Zero delay τ = 0 cut of the diversity factor ∣χ̄s,d(τ = 0,θ ,ϑ)∣2 (in dB) from (3.61) for

(a) standard beamforming (case 1), (b) null-to-null linear spatial modulation (case 2), (c) second

null-to-second null linear spatial modulation (case 3), and (d) null-to-null half-cycle sinusoidal

spatial modulation (case 4).
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Figure 4.5: Zero delay τ = 0 cut of the angle-delay ambiguity function ∣χs(τ = 0,θ ,ϑ)∣2 (in dB)

from (3.55) for (a) standard beamforming (case 1), (b) null-to-null linear spatial modulation (case

2), (c) second null-to-second null linear spatial modulation (case 3), and (d) null-to-null half-cycle

sinusoidal spatial modulation (case 4).

The product of the beam factor χ̄s,b(θ ,ϑ) and the diversity factor χ̄s,d(τ,θ ,ϑ) produces

the angle-delay ambiguity function χs(τ,θ ,ϑ) from (3.55) which gives the theoretical spatially-

dependent matched filter response for a unit amplitude scatterer in the absence of noise at location

(τ = 0,θ) when receive beamforming toward ϑ . Figure 4.5 displays the τ = 0 cut of the angle-

delay ambiguity function ∣χs(τ,θ ,ϑ)∣2 which displays the cross-correlation of the spatially-diverse

transmission while incorporating receive beamforming. The extent of the center lobe is elongated

with relation to the the allocation of energy in space. In fact, the values on this diagonal

∣χs(τ =0,θ ,ϑ =θ)∣2 are equivalent to the aggregate beapatten for the case when A(θ) is normalized

such that 0 dB is the maximum for standard beamforming.
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Figure 4.6: Peak-normalized τ = 0 and θ = 0○ cut of the angle-delay ambiguity function∣χs(τ = 0,θ = 0○,ϑ)∣2 (in dB) from (3.55) for (a) standard beamforming (case 1), (b) null-to-null

linear spatial modulation (case 2), (c) second null-to-second null linear spatial modulation (case

3), and (d) null-to-null half-cycle sinusoidal spatial modulation (case 4).

Figure 4.6 shows the peak-normalized, τ = 0 and θ = θC = 0○ cut of ∣χs(τ,θ ,ϑ)∣2 versus receive

beam angle sinϑ . The sidelobe response of this beampattern illustrates how scatterering from

a target at θ = θC = 0○ responds when received beamformed and matched filtered over all sinϑ .

The sidelobe response may mask lower power scattering coming from directions off θc thus it

is advantageous to reduce the sidelobe energy when possible. The first sidelobe of the standard

beamforming scenario (case 1) is −13.2 dB down from the peak response which is the typical

sidelobe response when using a rectangular receive window. All of the spatial modulation cases

reduce the sidelobe response relative to the baseline standard beamforming case: case 2 reduces the

first sidelobe to a level of −22.4 dB (an improvement of 9.1 dB), case 3 reduces the first sidelobe

to −25.9 dB (an improvement of 12.7 dB), and case 4 had the most improvement at 14.7 dB with

a sidelobe level of −27.9 dB.

The spatial modulation scenarios (cases 2 – 4) also result in a spatial resolution enhancement

of the theoretical scatterer as compared to the standard beamforming case as theorized in the
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Figure 4.7: Peak-normalized τ = 0 and θ = 0○ cut of the angle-delay ambiguity function∣χs(τ = 0,θ = 0○,ϑ)∣2 (in dB) from (3.55) (zoomed-in) for (a) standard beamforming (case 1),

(b) null-to-null linear spatial modulation (case 2), (c) second null-to-second null linear spatial

modulation (case 3), and (d) null-to-null half-cycle sinusoidal spatial modulation (case 4).

diversity factor (Figure 4.4). Figure 4.7 shows a zoomed-in look at the peak-normalized, τ = 0

and θ = θC = 0○ cut of ∣χs(τ,θ ,ϑ)∣2 versus receive beam angle sinϑ as was shown in Figure 4.6.

For M = 30 element with d = λc
2 , the 3 dB resolution beamwidth for the standard beamforming

case is calculated using (3.59) as ∆ū3dB = 0.0594 in ū = sinθ space [87]. The 3 dB resolution

beamwidth for case 2 has a ū-space resolution of ∆ū3dB = 0.0454 which corresponds to a

1−0.0454/0.0594 = 23.6% spatial resolution improvement. The 3 dB beamwidth for case 3 has

a resolution of ∆ū3dB = 0.0436 (26.6% resolution improvement). Finally, case 4 provides the best

performing spatial resolution with a 29.6% spatial resolution enhancement corresponding to a half

power beamwidth of ∆ū = 0.0418. For comparison, the theoretical spatial resolution improvement

calculate using the MIMO virtual array concept is ∆ū = 0.0420 from Section 3.1.3.2, thus the half-

cycle sinusoid actually improves upon the spatial resolution for the orthogonal waveform virtual

array derivation while maintaining a directive aggregate beampattern.

Figure 4.8 shows the θ = 0○ cut of the angle-delay ambiguity diagram ∣χs(τ,θ = 0○,ϑ)∣2 for
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Figure 4.8: θ = 0○ cut of the angle-delay ambiguity function ∣χs(τ,θ = 0○,ϑ)∣2 (in dB) from (3.55)

for (a) standard beamforming (case 1), (b) null-to-null linear spatial modulation (case 2), (c) second

null-to-second null linear spatial modulation (case 3), and (d) null-to-null half-cycle sinusoidal

spatial modulation (case 4).
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all four transmission cases which shows the theoretical range-angle response of a scatterer located

at (τ = 0,θ = 0○). Figure 4.7 displays the typical range sidelobe response of an LFM (see Figure

2.15). Interestingly, the time-varying array factor for cases 2 – 4 result in a much lower sidelobe

response. The reduction of the sidelobes can be attributed to an effective time envelope tapering,

not applied at the waveform level, but caused from steering the beam in space thus resulting in

a corresponding range resolution degradation and SNR loss. Figure 4.9 show the ϑ = 0○ and

θ = 0○ cut of the angle-delay ambiguity function ( ϑ = 0○ cut of Figure 4.8) which shows the range

response of a theoretical scatterer located at (τ = 0,θ = 0○). The SNR loss (peak loss) for each case

is exactly equal to that of the aggregate beampatterns shown in Figure 4.2 in the direction sinθ = 0

which coincides with spatial diversity beam loss from spreading energy in space. Note that this

sidelobe reduction is a particular attribute of using an LFM as the base radar waveform s(t) due to

its time-frequency relationship. Though that is not to say that this could not be accomplished with

a different base waveform and corresponding spatial modulation.

Figure 4.10 shows the power spectrum of the base LFM radar waveform ∣S( f )∣2 versus

normalized frequency f /Ba. Figures 4.11 and 4.12 show the spectral responses of the waveforms

associated with each edge element as well as a center element3 for the first null-to-first null and

second null-to-second null spatially modulated scenarios (cases 2 and 3), respectively. Note how

spectral content of the edge waveforms deviate from that of the base radar waveform (Figure 4.10)

due to the inclusion of the spatial modulation term mεn in the PCFM formulation from (4.4). The

center element stays relatively similar to the base radar spectral shape (if there were an odd number

of elements it would be exactly the base radar shape). Not surprisingly, the case 3 beam steering

scenario produces a larger deviation in the spectral content as the beam is steering over a larger

spatial swath during the pulse thus is traveling “faster” than in case 2. This “faster” beam amounts

to a “faster” phase change (i.e. frequency) thus results in a larger frequency deviation.

Figure 4.13 shows the spectra of the edge and center elements for the half-cycle sinusoidal

beam steering scenario (case 4). All three spectrums remain within the bandwidth of the base radar

3Note that there is no center element as the array contains an even number of antennas. Instead, one of the center

elements is shown as there is little difference between the two center elements.
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Figure 4.9: θ = 0○ and ϑ = 0○ cut of the angle-delay ambiguity function ∣χs(τ,θ = 0○,ϑ = 0○)∣2 (in

dB) from (3.55) for (a) standard beamforming (case 1), (b) null-to-null linear spatial modulation

(case 2), (c) second null-to-second null linear spatial modulation (case 3), and (d) null-to-null

half-cycle sinusoidal spatial modulation (case 4).
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Figure 4.10: Power spectrum of base radar waveform ∣S( f )∣2 versus normalized frequency ( f /B).

Figure 4.11: Power spectra ∣Sm( f )∣2 for both edge elements and a center element for Case 2 versus

normalized frequency ( f /Ba).
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Figure 4.12: Power spectra ∣Sm( f )∣2 for both edge elements and a center element for Case 3 versus

normalized frequency ( f /Ba).
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Figure 4.13: Power spectra ∣Sm( f )∣2 for both edge elements and a center element for Case 4 versus

normalized frequency ( f /Ba).
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spectral response. Therefore, it can be inferred that the entirety of waveform spectral responses

are also contained with the base radar spectral response. This contained response is a result of

the combination of the waveform code vector xw and the spatial modulation code vector xs. The

waveform code vector in this case is the PCFM-approximated up-chirped LFM thus the edges of

the spectral response (high and low frequencies) occur at the beginning and ends of the pulse.

Observing the time-varying array factor for this case in Figure 4.1(d), there is little beamsteering

at the beginning and ends of the pulse thus the spatial modulation code εn at these points is small

and does not contribute much to the overall instantaneous frequency of the waveforms. The spatial

modulation steers the fastest in the middle of the pulse where the frequency content of the LFM

is near the center frequency, thus any frequency deviation that occurs does not extend outside the

bandwidth of the base radar waveform spectral response.

4.1.4 Summary

In Section 4.1, a practical MIMO emission framework is presented denoted spatial modulation

that steers a coherent beam over a region in space. The PCFM framework is expanded to for

implementation of a spatial coded structure that allows for precise control over the beam location

and thus the spatial distribution of energy in space. The angle-delay ambiguity function for four

transmit scenarios was analyzed. The three spatially-diverse transmission scenerios were shown to

improve the spatial resolution with respect to the standard beamforming control scenario. The two

linear spatially-modulated emissions were close to achieving the theoretical virtual array resolution

(for θ = 0○) while the half-cycle sinusoid actually achieves a resolution below that of the virtual

array.
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4.2 Wideband Spatially-Diverse Frequency Modulated Emission Design

with Space-Frequency Nulling

Within the broader context of waveform diversity [1–4], the design of spatially-diverse radar

emissions is typically approached from a narrowband perspective where the steering vectors of

the array are assumed to be constant throughout the bandwidth of the emission (the narrowband

assumption) [17, 118, 119]. The optimal power allocation in space for traditional wideband

emissions has also been investigated [120, 121]. Likewise in [89], the wideband MIMO

beampattern was optimized using the relationship between the beampattern and the cross-spectral

density matrix. In [122] the waveform matrix was obtained by first determining the optimal

waveform spectra (in a least-squares sense) that matches a desired space-frequency beampattern

and then optimizing the waveform matrix in the time-domain given a PAPR constraint.

Here an iterative wideband spatially-diverse waveform design scheme is presented where

the spectrum in certain transmission angles, denoted as “beamlets”, are shaped according to a

predefined spectral window that includes a sufficient portion of the spectral roll-off region [90,91].

In so doing, physical waveforms can be realized in a discretized fashion that a) are constant

amplitude and spectrally well-contained so as to be robust to the distortion induced by the

transmitter power amplifier (Section 2.2.2), b) minimize the reactive power otherwise generated

by omnidirectional wideband MIMO emissions (Section 4.2.3), and c) can be readily implemented

with high fidelity via the polyphase-coded FM (PCFM) framework (Section 2.1.2.4) [38].

Space-frequency nulling is incorporated into the emission design to facilitate coexistence with

other spectrum users in the vicinity of the radar. The space-frequency beampattern matching

problem using the alternating projections algorithm [123–128]) cannot produce nulls of sufficient

depth, thus an additional stage is needed to enforce null constraints. To do so, the reiterative

uniform weight optimization (RUWO) method [129] is included within the larger emission design

A portion of the text and figures in Section 4.2 are taken from “Wideband MIMO Frequency-Modulated Emission

Design With Space-Frequency Nulling” by McCormick et al. printed in IEEE Journal of Selected Topics in Signal

Processing in March 2017. ©2011 IEEE
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scheme. Analysis of the overall design process is presented to evaluate emission correlation,

calculation of the fractional reactive power (FRP), and convergence behavior.

The proposed design scheme leverages the body of work on phase retrieval algorithms (e.g.

[123–128]) which typically applied to cost functions that do not have closed form solutions but

can be solved via an iterative transform method generally referred to as alternating projections.

Such methods have been shown to be effective to synthesize polyphase codes via shaping of

the power spectral density (PSD) [128]. Similar methods have likewise been recently shown to

facilitate the optimization of frequency modulated (FM) waveforms [60, 130]. Typically, signal

synthesis algorithms of this type possess sets of constraints in two domains referred to as the

object and image domains. A solution is found by alternating between the two domains, enforcing

the constraints during each stage. For this joint space/frequency formulation, the object domain is

element-time, with a constant amplitude constraint on the waveform generated by each of the

M array elements. The image domain is space-frequency, with the time-varying array factor

constrained to particular spatial directions (the “beamlets”) with predefined spectral windows.

The construction of wideband, wide scan angle arrays leverages low scan impedance variation

and wide achievable bandwidths from closely spaced antennas and wide angle impedance matching

(WAIM) via dielectric sheets [94, 96, 131–133]. Standard design guidelines require an element

spacing that excludes the appearance of grating lobes for all operating frequencies over extreme

scan angles to prevent rapid impedance variation that might occur [98]. In fact, in [134] it is shown

that array blindness may occur at angles nearer to broadside than an angle at which a grating lobe

occurs, thus the element spacing must be a few percent less than half-wavelength over all operating

frequencies to limit this effect [133].

The element spacing must be close to half-wavelength according to the highest operating

frequency (smallest wavelength), therefore the spacing according to the lowest frequency in the

wideband transmission is highly oversampled. For example, assume an array is spaced half-

wavelength according to the largest frequency. For an array operating over an octave bandwidth

(highest frequency is twice the lowest frequency), the array is spaced at a quarter-wavelength with
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respect to the lowest frequency. In Section 3.2.2, it was shown that spacing an array less than half-

wavelength makes the array susceptible to placing energy within the invisible space which can be

reflected at the terminals of the element matching networks back into the transmit array when the

array is matched for broadside transmission [18, 42, 43, 135]. Thus for wideband transmission, the

frequency dependence of the emission must be consider to avoid placing energy in this region to

maximize efficiency of the array. The fractional reactive power (FRP) metric (defined in (3.80)) is

redefined for wideband transmission and used to measure the percentage of energy imparted to this

region. It is shown that the proposed emission design effectively mitigates the energy contained in

this region ensuring the spatial angles of the beamlets reside within the visible space.

To demonstrate the utility of this approach three wideband emission scenarios are considered:

1) three spatially separated narrow beams (e.g. to track multiple targets in different spatial

directions simultaneously), 2) a near omnidirectional wide beam comprised of many closely-

spaced beamlets (e.g. for SAR applications [19]), and 3) a moderately wide beam concurrent with a

narrow secondary beam in a different spatial direction (e.g. for multi-mode operation [136]). Each

case includes one to two space-frequency nulls that encompass large regions in space-frequency.

For each scenario, the frequency content of the designed emission and spatial beampattern are

presented along with convergence plots, correlation analysis, and determination of the FRP.

4.2.1 Assumptions and Restrictions

Again is it assumed that the waveforms that are designed in Section 4.2 are implemented in a high

power transmitting mode thus require the use of a high power amplifier operating in saturation. In

Section 2.2.2 it was shown that spectrally contained, constant amplitude (constant u(t)) waveforms

can be modeled as being undistorted by the transmitted chain, thus it is assumed that the forward

voltage V+m ( f )∀m is approximately a scaled version of the ideal passband waveforms Spb,m( f )∀m.

When considering the frequency-dependent element spacing of a wideband transmission, the

98% bandwidth definition B98% from (2.53) is attractive as it limits the amount of energy in the

roll-off region to a small percentage of the total. The array spacing is placed to be λ
2 based on
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the highest frequency content of the bandwidth, thus the energy beyond this “highest frequency”

is 1% of the total and is considered negligible. At these high of frequencies, the array appears

undersampled thus is associated with grating lobes which can produce blind angles [41], thus it is

standard practice to avoid designing arrays where a portion of the band appears undersampled in

space [133]. Likewise, the energy content below the lowest frequency is 1% of the total thus is also

considered negligible. Therefore the frequency range containing the significant portion energy (i.e.

the bandwidth) is clearly defined for analyzing the energy in invisible space.

The array is assumed to be comprised of M = 30 elements that are spaced at half-wavelength

according to the highest frequency in the emission bandwidth which is assumed to have a fractional

bandwidth of [%BW]98% = 0.4 from (2.57). Thus at the lowest frequency in the 98% bandwidth,

the array appears to be at 0.32 wavelengths which exposes the array to placing energy within the

invisible space (or reactive region). The lowest frequency (largest wavelength) in the band results

in the “smallest” array length (in wavelengths) of 30(0.32λ) = 9.6λ . Recall that the array must

be greater than 5λ to invoke the large array assumption [85] which can separate the far-field time-

varying beampattern g̃pb(t,θ ,ϕ) into two components: the approximate active element pattern

Fa(t,θ ,ϕ), and the time-varying array factor gpb(t,θ). Thus, to analyze the wideband array the

true-delay emission models with the large-array assumption from (3.24) – (3.27) are implemented,

which achieves an accurate assessment of the far-field emission.

In Section 4.2, no measured antenna patterns or frequency-dependent scattering matrices are

applied during the analysis of the wideband array. Thus only practical constraints are applied in

this system considerate design method. In Section 3.2.2, it was shown that the fractional reative

power (FRP) closely matches that of the total integrated power reflection coefficient ∣Γa∣2 from

(3.78) when the spatially oversampled dipole array was matched to broadside. Thus, it is assumed

that the array analyzed in Section 4.2 is matched over the entire visible space and the energy in

the invisible space is completely reflected. As a precaution, the entirety of the array mainlobe

(for all in-band frequencies) is constrained to be within the visible domain to limit energy placed

within the invisible space. During analysis of the emission, the array pattern is assumed to be
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isotropic over the band of the emission which may not be practical when applying a design using

the proposed method to a physical array. It is assumed that the frequency-dependent approximate

active element pattern F( f ,θ ,ϕ) and scattering matrix S( f ) are available during the design of the

emission, thus the mathematical formulation is derived using these variables.

4.2.2 Wideband Array Analysis

Recall from (3.25) the form of the passband spectral content of the far-field time-varying

beampattern G̃pb( f ,θ ,ϕ) in terms of the spectral content of the time-varying beampattern

Gpb( f ,θ) is

G̃pb( f ,θ ,ϕ) = Fa( f ,θ ,ϕ)Gpb( f ,θ). (4.6)

For positive frequencies ( f > 0), the spectral content of the time-varying array factor Gpb( f ,θ)
from (3.18) can approximated as

Gpb( f ,θ) ≈ 1

M
√

2
∑
m

Sm( f − fc)e jmφ( f ,θ), (4.7)

where

φ( f ,θ) = 2π f

c
d sinθ (4.8)

is the frequency-dependent electrical angle (compare to the narrowband electrical angle from

(3.34)). The positive frequency approximation from (4.7) holds as long as ∣Sm( f )∣2 ≈ 0 for f < − fc

for all m.

Define the element spacing d as half of wavelength λE corresponding to some frequency fE,

d =
λE

2
=

c

2 fE

. (4.9)

Thus, the frequency-dependent electrical angle from (4.8) can be defined as
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φ( f ,θ) = π
f

fE

sinθ . (4.10)

This form of the electrical is convenient for analyzing wideband arrays as it does not depend on an

absolute element spacing d.

Using the 98% fractional bandwidth [%BW]98% from (2.57) and element spacing d from (4.9),

the form of the array narrowband assumption from (3.30) can be expressed as

1 >> B98%∆tmax = [%BW]98%
M−1

2 fE/ fc
. (4.11)

To indicate the extent of the wideband nature of the emission, the expression in (4.11) is defined

as the metric

Π = [%BW]98%
M−1

2 fE/ fc
, (4.12)

which we will refer to as the wideband factor. Thus, the number of array elements M, the frequency

ratio fE/ fc and the fractional bandwidth [%BW]98% are the three relative parameters that fully

characterize a wideband ULA4.

Now consider an N ×M discretized complex-baseband waveform matrix S in which the

columns correspond to discretized waveforms emitted by each of the M antenna elements for

N the length of the discretized waveforms in the time-domain. Thus, the mth column of

S is the N × 1 discretized waveform vector sm = [sm[0], . . . ,sm[N − 1]]T and sm[n] is the nth

sample of the waveform corresponding to the mth antenna element for n ∈ {0,1, . . . ,N − 1} and

m ∈ {−M−1
2 , . . . , M−1

2 }. The matrix can be vectorized into an MN ×1 vector

sv = vec{S}, (4.13)

where vec{●} is the vectorize operation that stacks the columns of a matrix (leftmost vector on top

4The 98% bandwidth is only one example of a bandwidth definition that could be used here.
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and rightmost on bottom). To adequately represent these continuous waveforms in discrete form,

it is necessary to “over-sample” (in time) with respect to some bandwidth measure so as to capture

an adequate portion of the spectral roll-off (which is theoretically infinite due to the pulsed nature

of the signal). The sampling rate using B98% is defined as

fs = κ̄B98%, (4.14)

where κ̄ is the over-sampling factor with respect to the 98% bandwidth chosen such that it captures

an adequate portion of the spectral roll-off. The vector length N in this case can be defined using

(4.14) as

N = fsT = κ̄B98%T. (4.15)

Define the MN ×1 space-frequency steering vector as

t( f ,θ) = v( f ,θ)⊗a( f ) , (4.16)

where ⊗ is the Kronecker product,

v( f ,θ) = [ 1 exp(− jφ( f ,θ)) ⋯ exp(− j ⋅ (M−1)φ( f ,θ)) ]T (4.17)

is the M×1 frequency-dependent steering vector, and

a( f ) = [ 1 exp( j2π f− fc
fs
) ⋯ exp( j2π ⋅(N −1) f− fc

fs
) ]T (4.18)

is the N ×1 discrete-time Fourier transform (DTFT) vector as a function of frequency f . Because

the waveforms are over-sampled relative to the bandwidth B98%, the passband emission Gpb( f ,θ)
from (4.7) (for f > 0) can be well approximated as the inner-product

Gpb ( f ,θ) ≈ 1

M
√

2
[t( f ,θ)]HsV. (4.19)
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Discretizing the frequency spectrum into QF equally spaced points, define the discrete passband

frequencies as

fq = − fs

2
+ q

QF
fs+ fc (4.20)

for q ∈ {0,1, . . . ,QF−1}. Thus, the DTFT vector (4.18) can be represented as the N×1 DFT vector

associated at discretized passband frequency fq as

a( fq) = [ 1 exp( j2π (−1
2 + q

QF
)) ⋯ exp( j2π(N −1)(−1

2 + q
QF
)) ]T . (4.21)

Define

gF(θ) = [ Gpb( f0,θ) Gpb( f1,θ) ⋯ Gpb( fQF−1,θ) ]T
≈ 1

M
√

2
TH(θ)sv

(4.22)

as the QF×1 vector containing the passband spectral points { f0, f1, . . . , fQF−1} of Gpb( f ,θ), where

T(θ) = [ t( f0,θ) ⋯ t( fQF−1,θ) ] (4.23)

is the MN ×QF transformation matrix that steers towards spatial angle θ and performs a

discrete Fourier transform. Thus, the discretized frequency content of the far-field time-varying

beampattern can likewise be represented as the QF×1 vector

g̃F(θ ,ϕ) = [ G̃pb( f0,θ ,ϕ) G̃pb( f1,θ ,ϕ) ⋯ G̃pb( fQF−1,θ ,ϕ) ]T
= f(θ ,ϕ)⊙gF(θ),

(4.24)

where ⊙ is the Hadamard product, and

f(θ ,ϕ) = [Fa( f0,θ ,ϕ) Fa( f1,θ ,ϕ) ⋯ Fa( fQF−1,θ ,ϕ)]T (4.25)

is the QF×1 vector of the approximate active antenna pattern Fa( f ,θ ,ϕ) sampled in frequency.
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In [90], it was stated that the number of frequency points QF needs to be “over-represented”

with respect to N to account for true-time delays to occur in wideband processing as well as to

reduce the aliasing of the Gibbs phenomenon that produces time sidelobes that occur during non-

integer sample shifts in the discrete domain [137]. These two considerations are valid, however

the most strict limitation is in the accuracy of the spectral matching for improved correlation

performance. Over-specifying the spectrum (i.e. QF > N) amounts to zero padding in the time

domain thus accounting for the pulsed nature of the spatially-diverse emission. A number of

frequency points QF ≥ 2N−1 sufficiently zero pads the signals to prevent any unintentional aliasing

from occuring during the discrete correlation analysis of the optimized transmission model. The

restriction of QF ≥ 2N −1 inherently accounts for both the true-time delay and reduces the Gibbs

sidelobe aliasing to a negligible amount.

4.2.3 Coupled Energy and The Invisible Space for Wideband Arrays

In Section 3.2.2, the link between the reactive region and reflected/coupled energy was made for

a narrowband ULA (matched to boresight) with d < λc
2 . For a wideband scenario, the electrical

spacing (in wavelengths) between antenna elements cannot be assumed to be constant over the

bandwidth of the emission. Figure 4.14 shows how the ratio of invisible space to visible space

changes as the normalized frequency f / fE is varied. The frequency f in Figure 4.14 is varied from

0 to 2 fE on the vertical axis. The diagonal traces correspond to particular values of sinθ . The

vertical dashed lines signify the points at which the electrical angle is φ = ±π . The frequency

f = fE is the point at which the vertical dashed lines intersects the diagonal solid black lines

(corresponding to sinθ =±1). The area bounded in red is the reactive region as described in Section

3.2.2 for frequencies less than fE. The reactive region can become a problem for wideband, wide

beam emissions where energy could unknowingly be placed within the reactive region.

The fractional reactive power metric from (3.80) in Section 3.2.2 was shown to approximate

the total reflected energy for the narrowband array (when matched to boresight) and was calculated

using only the time-varying array factor. Here, the FRP is redefined for wideband transmission as
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Figure 4.14: Visible and invisible regions for an M = 30 element narrowband array with variable

f / fE. The reactive region is bounded inside the red triangles. ©2017 IEEE

FRP =

fE
ˆ

0

⎛⎜⎜⎜⎜⎝
−1
ˆ

− fE
f

∣Gpb( f , ū)∣2dū+
fE
f
ˆ

1

∣Gpb( f , ū)∣2dū

⎞⎟⎟⎟⎟⎠
d f

∞̂

0

fE
f
ˆ

− fE
f

∣Gpb( f , ū)∣2dūd f

, (4.26)

where ū = ± fE
f corresponds to the bounds of electrical angle φ = ±π (before phase wrapping) for

f < fE.

To examine how a spatially-diverse set of waveforms might affect a widband ULA, consider

an array comprised of M = 30 equispaced elements designed for a wideband emission with

fractional bandwidth [%BW]98% = 40% and half-wavelength inter-element spacing set according

to frequency fE = 1.2 fc (the highest frequency within the bandwidth) to prevent grating lobes from

appearing in-band [87, 98]. A set of M = 30 FM waveforms (with Gaussian spectral shapes)
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are applied to this array over the entirety of the band. The waveforms are designed to produce

a spatially-diverse emission with an omnidirectional beampattern without consideration of the

reactive region. The omnidirectional beampattern implies that the waveforms are orthogonal (in

terms of zero-delay inner product) [17, 89] which is a common assumption in MIMO applications

[21].

Figure 4.15 shows the passband frequency content of the time-varying array factor ∣Gpb( f ,θ)∣2
(in dB) of the described emission versus electrical angle φ( f ,θ) and normalized frequency f / fc.

Note the intersection points of sinθ = ±1 and φ = ±π occurs at frequency fE = 1.2 fc. The reactive

region is again bounded by the red triangles. Using (4.26), the FRP for this scenario is 0.174

which, if assumed to be approximately equal to the total integrated power reflection coefficient,

exceeds the ∣Γa∣2 = 0.1 level for satisfactory transmission. This scenario shows the need to consider

the invisible space for wideband emission design when a portion of the bandwidth has an electrical

antenna spacing less than a half-wavelength.

The energy placed into the reactive region by the time-varying array factor can be minimized

by either 1) increasing the spacing between antenna elements such that no portion of the bandwidth

has an electrical spacing below half-wavelength or 2) constraining the emitted energy to the visible

space either by design or traditional beamforming. The first method, while valid, does not prevent

grating lobes from appearing [98, 138]. Thus we shall consider how to design of the emission

spectral content in the visible space as a means to minimize the power in the reactive region.

4.2.4 Spatially-Diverse, Wideband Waveform Optimization Goals

Here, we define the “big picture” goals for both the spatially-diverse transmission and the design

of waveforms that produce the emission. The goals, listed briefly, include: constant amplitude and

spectrally contained waveforms, desired space-frequency beampattern (including minimal energy

put into the reactive region), and a space-frequency nulling capability. These attributes, while are

desirable from a radar transmission point of view, are not cooperative from an emission design

standpoint. For instance, better spectral containment can be achieved by relaxing the constant

189



Figure 4.15: Spectrum of the time-varying array factor ∣Gpb( f ,θ)∣2 (in dB) of wideband

([%BW]98% = 40% bandwidth) omnidirectional MIMO emission vs. electrical angle φ( f ,θ) for

an M = 30 element ULA with fE = 1.2 fc. The reactive region is bounded inside the red triangles

with FRP = 0.174 from (4.26). ©2017 IEEE
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amplitude waveform constraint.

4.2.4.1 Constant Amplitude and Spectrally Contained Waveforms

Just as in Section 4.1, the waveforms that produce the spatially-modulated emission are constrained

such that they are constant amplitude (thus can be sent through a saturated amplifier with minimal

distortion) and spectrally contained (to minimize envelope distortion due to bandlimiting within

the transmitter) (see Section 2.2.2 for more information). The waveform design problem for

the wideband, wide-beam transmission is investigated using the over-sampled discretized model

of the waveform set as shown in (4.13). Thus the constant modulus constraint is enforced by

requiring the amplitude of each sample in (4.13) to be equal, (i.e. ∣sm[n]∣ = ‘constant’ ∀m,n). Also,

by constraining the discretized waveforms to be spectrally contained, the conversion back into

continuous-time can be implemented with little distortion. In Section 4.2.6, it is shown how the

discretized waveform vectors can be implemented in continuous-time using the PCFM waveform

model discussed in Section 2.1.2.4. Here, the spectrum of the waveforms are contained by

designing the far-field transmission to have a desired space-frequency power distribution (Section

4.2.4.2) by leveraging the fact that the spectral content of the designed waveforms is inherently

contained by containing the spectral content of the emission.

4.2.4.2 Space-Frequency Power Distribution

To form the desired allocation of energy in space-frequency, the spectral energy spectrum is

shaped in certain pre-defined angles denoted as “beamlets”, where each beamlet has a specific

spectral window (e.g. Gaussian) with predefined 98% bandwidth. The spectral containment of the

waveforms is controlled directly by the choice in spectral window. The distribution of energy in

space is structured simply by placing the beamlets in directions where energy is scheduled to be

allocated and scaling the beamlet to control the relative power level.

Denote Θ = {θ0, . . . ,θPB−1} as the set containing the PB beamlets representing the desired

transmission spatial angles to be included in the emission design. Using (4.20), the frequency-
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dependent electrical angles from (4.10) can be expressed as

φ( fq,θp) = π
( fs ⋅(−1

2 + q
QF
)+ fc)

fE

sinθp, (4.27)

for q ∈ {0,1, . . . ,QF −1} over the set of p ∈ {0,1, . . . ,PB −1} beamlets. Inserting fs = κ̄B98% into

(4.27) and dividing the numerator and demoninator by fc yields

φ( fq,θp) = π
(κ̄ [%BW]98% ⋅(−1

2 + q
QF
)+1)

fE/ fc
sinθp, (4.28)

which can be readily inserted into (4.17) to form the steering vector v( fq,θp) and subsequently the

space-frequency steering vector t( fq,θp) using (4.16) that corresponds to the pth beamlet and qth

frequency. The formulation in (4.28) allows for direct implementation of the fractional bandwidth

[%BW]98% and the ratio fE/ fc which sets the intersection points of sinθ = ±1 and φ = ±π as

described in Figures 4.14 and 4.15.

In Section 3.1.1, the assumption was made that the embedded antenna pattern Fm( f ,θ ,ϕ)∀m

is maximized toward ϕ = 0○. Because the wideband ULA has no degree of beampattern control

in the ϕ-dimension, the far-field spectral content emitted toward ϕ = 0○ is shaped according to a

desired spectral window for each beamlet. Define the QF×1 (magnitude) spectral window for the

pth beamlet as

ũ(θp) = [Ũ( f0,θp) ⋯ Ũ( fQF−1,θp)]T , (4.29)

where Ũ( fq,θp) is the positive, real-valued desired spectral magnitude for G̃pb( fq,θp,ϕ = 0○) at

frequency fq and angle θp. Thus, ũ(θp) is the desired spectral magnitude for g̃F(θp,ϕ = 0○),
the discretized far-field spectral content from (4.24) corresponding the direction (θp,ϕ = 0○).
The vector ũ(θp) is scaled such that ∥ũ(θp)∥22 is equal to a desired amount of energy for the

corresponding beamlet. Note that the spectral window extends over the frequency interval fc± fs/2,

such that the 98% bandwidth is contained in 1/κ̄ of the total spectral window centered at fc.

Recall from (3.25) that for the large array assumption the relationship between the spectral
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content of the time-varying far-field beampattern and the time-varying antenna factor is the

application of the approximate active antenna pattern, G̃pb( f ,θ ,ϕ) = Fa( f ,θ ,ϕ)Gpb( f ,θ) (shown

in discretized frequency form in (4.24)). Therefore, the QF × 1 discretized (in frequency)

approximate active antenna pattern at ϕ = 0○ from (4.25) can be applied to (4.29) to form the

desired spectral magnitude for gF(θp) from (4.22) as

u(θp) = ũ(θp)⊘ f(θp,ϕ = 0○)
= [U( f0,θp) ⋯ U( fQF−1,θp)]T , (4.30)

where ⊘ is the element-wise vector division and

U( fq,θp) = Ũ( fq,θp)
F( fq,θp,ϕ = 0○) (4.31)

is the desired spectral magnitude for Gpb( fq,θp). The shaping the magnitude of gF(θp) according

to the desired response in (4.30) amounts to a predistortion of desired spectral response such that

the desired far-field spectral content G̃( fq,θp,ϕ = 0○) approximates the desired spectral window

Ũ( fq,θp) after application of the approximate active antenna pattern.

Note that it is assumed that the choice of beamlet direction θp and frequency fq is contained

to a region in space-frequency where the array is designed for operation. Thus, for all beamlets θp

for p ∈ {0,1, . . . ,PB−1} and frequencies fq for q ∈ {0,1, . . . ,QF−1}, the approximate active antenna

pattern Fa( fq,θp,ϕ = 0○) does not contain any nulls or low transmission/high reflection points in

the beampattern which would cause U( fq,θp) to be exceedingly large from the predistortion in

(4.31). This assumption implicitly addresses the invisible space of the wideband array as well. To

limit the energy contained within the invisible space, we limit the available beamlet directions in

Θ such that the entire mainlobe of each beamlet is within the visible space according to the lowest

frequency (widest spatial beamwidth) as

∣sinθp∣ ≤ 1− 2 fE/ fc

M ⋅(1− [%BW]98%

2 ) . (4.32)
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for p ∈ {0,1, . . . ,PB−1}. This constraint is established in Appendix A.7.

The beampattern matching problem for the desired spectral responses u(θp) for all PB beamlets

can be formulated as

minimize
sv

PB−1∑
p=0
∥∣ 1

M
√

2
TH(θp)sv∣−u(θp)∥2

2

. (4.33)

Note that (4.33) is based only on the form of the time-varying array factor from (4.22) and its

desired spectral content u(θp). The desired spectral content ũ(θp) for the true emission g̃F(θp) is

implied in the predistorted u(θp).
4.2.4.3 Nulled Regions in Space-Frequency

A nulled region is space-frequency can be formed by defining Ln space-frequency points to

be nulled ( fℓ,θℓ) for ℓ ∈ {0,1, . . . ,Ln − 1}. Denote Rn = {( f0,θ0), . . . ,( fLn−1,θLn−1)} as the set

containing the ordered pairs of spatial angles and corresponding frequencies to be nulled. These

points can be condensed into a region to achieve a broad null or can be placed individually.

Collecting the corresponding space-frequency steering vectors into the MN ×Ln nulling matrix

yields

D = [ t( f0,θ0) t( f1,θ1) ⋯ t( fLn−1,θLn−1) ] . (4.34)

Thus the nulling problem can be represented as

minimize
sV

∥DHsv∥22. (4.35)

If the space-frequency null locations defined by the set Rn coincide with a value in U( fq,θp),
for p ∈ {0,1, . . . ,PB−1} and q ∈ {0,1, . . . ,QF−1}, then the spectral window points U( fq,θp) in Rn

must be set to zero to prevent competing goals in problems (4.33) and (4.35). Note that zeroing

values within a spectral window necessitates additional scaling to compensate for the energy that

is removed.

194



4.2.5 Wideband Spatially-Diverse Emission Design with Space-Frequency

Nulling

The goals discussed Section 4.2.4 show that the wideband emission design problem is convoluted

when considering the aggregate of desired emission properties. Here, a heuristic iterative design

method is discussed that qualitatively accomplishes all the design goals. The method cannot be

directly linked to optimization theory though is shown to converge onto a satisfactory solution. In

the future, this design problem will be reexamined using strict optimization theory in an attempt

to improve on the presented results. The proposed design method was first presented in [91] and

extended in [90] to also include space-frequency nulling to address spectral coexistence issues

[6, 8]. In general, this manner of optimization is inspired by the class of alternating projection

approaches, such as [123–128].

The QF×1 frequency vector of the pth beamlet at the ith iteration of the design can be found

via (4.22) as

gF,i(θp) = 1

M
√

2
TH(θp)sv,i. (4.36)

In (4.33), it is assumed that the relative scaling between u(θp) and gF(θp) is such that they can be

directly compared. However, it has been found that this relationship tends to not occur due to the

constant amplitude constraint. Thus, a normalized emission design cost function can be defined as

JB(sv,i) = PB−1∑
p=0

XXXXXXXXXXX
∣gF,i (θp)∣√

γg,i
− u(θp)√

γu

XXXXXXXXXXX
2

2

, (4.37)

where

γg,i =
PB−1∑
p=0
∥gF,i(θp)∥22 (4.38)

and
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γu = PB−1∑
p=0
∥u(θp)∥22 (4.39)

are the summations of the vector energies contained in the beamlets of the current iteration i and

the predefined spectral windows, respectively. The formulation in (4.37) compares the relative

difference rather than the absolute difference to prevent artificially increasing cost due to scaling.

Note that the cost function in (4.37) serves as only an observation of the performance of the

heuristic approach.

At this point, the desired spectral magnitude u(θp) from (4.30) is forced by only retaining the

phase of gF,i(θp) and applying it to u(θp) as

bi(θp) = u(θp)⊙exp( j∠gF,i(θp)), (4.40)

where ⊙ is the Hadamard product and∠ extracts the phase angle of the argument (for each element

in the vector). The standard beamforming set of finite duration waveforms (in vectorized form) that

approximates the desired emission bi(θp) (4.40) for a single beamlet θp is represented as

s̃v,i(θp) =T(θp)bi(θp). (4.41)

Therefore there are PB different standard beamforming sets of waveforms s̃v,i(θp)∀p that ap-

proximate the desired transmissions bi(θp)∀p. The total unconstrained (in amplitude) vectorized

waveform set at the ith iteration can then be constructed via a weighted summation of the different

beamlet contributions as

s̃v,i = PB−1∑
p=0

ςi(θp)s̃v,i(θp). (4.42)

where ςi(θp) is the adaptive weighting corresponding to the pth beamlet θp. The weighting is

needed as the PB beamlets will likely be correlated to some extent. Therefore the relative scaling

of the standard beamforming contributions sv,i(θp) must be adapted to prevent the design process
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from overemphasizing (or underemphasizing) the energy in a certain direction, thus ensuring

that the desired beampattern is formed. The weighting is adaptive and is updated each iteration

depending on the resulting energy levels in the desired transmission directions contained in Θ.

Using (4.36), the adaptive weighting for the pth beamlet is updated as

ςi(θp) = ςi−1(θp)
¿ÁÁÁÁÁÀ ∥u(θp)∥22/γu

∥gF,i(θp)∥22/γg,i

. (4.43)

For example, if the energy in the direction ∥gF,i(θp)∥22 is under the desired amount ∥u(θp)∥22, the

adaptive weight ςi(θp) is increased thus increasing the relative contribution of s̃v,i(θp) in (4.42).

This process eventually yields a weighting ς(θp) that produces the desired spatial beam energy

specified in u(θp). As the iterative design progresses the term inside the
√● either converges

unity or the beamlet is removed altogether (ςi(θp) = 0). A removal of a beamlet only occurs when

designing for a wide beampattern where not all the points θp∀p are needed to form the desired

spatial beampattern. At the beginning of the design process the adaptive scaling is initialized to

unity for all beamlets.

If no space-frequency nulling is required, the constant amplitude condition is forced as

sv,i+1 = exp( j∠s̃v,i), (4.44)

and the iteration index i it increased by 1. The expression (4.44) is then in turn used in the

calculation of (4.36) and the process is repeated until convergence.

If nulling is required, (4.42) is inputted into the Reiterative Uniform-Weight Optimization

(RUWO) algorithm which iteratively enforces nulls specified in interference matrix Rn while

maintaining constant amplitude vectors [129]. The deterministic form of the MN ×MN wideband

space-frequency interference matrix can be defined using D from (4.34) as

Rn =
1

LN
DDH +ηIMN (4.45)
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where η is a loading factor and IMN is the MN ×MN identity matrix. The loading factor η

supplements the rank of the interference matrix so that it can be inverted. If the loading factor is too

large, the depth of the null will decrease due to the loading factor masking essential eigenvalues.

The RUWO algorithm is also an iterative process, thus the entirety of the design process (when

nulling) has two nested loops: the outer loop, which allocates the transmitted energy in space-

frequency; and the inner loop (RUWO), which enforces the space-frequency nulls.

Denote the current RUWO iteration as k and the total number of iterations K. The RUWO loop

is initialized using the current estimate of the unconstrained waveforms as r0,i = exp( j∠s̃V,i). The

update of the nulled, vectorized waveform set is defined as [129]

rk+1,i = exp( j∠(R−1
n rk,i)) (4.46)

where R−1
n is the inverse of the interference covariance matrix from (4.45). The RUWO algorithm

is not guaranteed to converge onto a solution that has nulls of a desired depth, though it has been

proven that the cost function in null depth reduces at each iteration k establishing that it does

not diverge [129, 139, 140]. The convergence speed of RUWO is dependent on the eigenspread

of interference covariance matrix Rn, but typically converges to a stable solution within K = 50

iterations [129].

The vectorized waveform set is then updated as

sv,i+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
rK,i, when nulling

exp( j∠s̃v,i) , otherwise

. (4.47)

The process is repeated a predefined5 number of times, Φ. Table 4.1 provides a summary of the

optimization steps. If nulling is being applied, the per iteration computational cost is dominated

by the RUWO loop and is O(K(MN)2) in complexity. If no nulling is applied (K = 0), then the

cost is O(MNPQ) in complexity.

5Note a convergence criteria could be included though is not considered here.
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Table 4.1: Wideband Spatially-Diverse Emission Design with Space-Frequency Nulling

1. Establish the number of antenna elements M and discretized waveform length N for over-

sampling factor κ̄ and 98% time-bandwidth product B98%T .

2. Select quantity PB and specific directions Θ of the beamlets, the number of frequency bins

QF, fractional bandwidth [%BW]98%, and the ratio fE/ fc that dictates element spacing.

3. (optional) Determine the Ln space-frequency points Rn to be nulled (if any). Form the

MN×MN interference matrix Rn using (4.45) and calculate the inverse. Select the number

of RUWO iterations K.

4. Form the desired spectral magnitude u(θp) for each of the PB beamlets via (4.30) and

calculate γu via (4.39). Zero values in u(θp) they contradict with a nulled region.

5. Set the number of optimization iterations to perform, Φ. Initialize vectorized waveform set

sv,0, loop index to i = 0, and the adaptive weights ς−1(θp) to unity.

6. Calculate gF,i(θp) for p ∈ {0, . . . ,PB−1} via (4.36).

7. Force desired spectral magnitude u(θp) to find bi(θp) for p ∈ {0, . . . ,PB−1} via (4.40).

8. Calculate γg,i via (4.38) and update adaptive weighting ςi(θp) via (4.43).

9. Form the unconstrained vectorized waveform set s̃v,i via (4.42).

10. If no nulling is being applied, set sv,i+1 = exp( j∠s̃v,i) and go to step 12.

11. Initiate RUWO nulling loop. Set loop index to k = 0.

a. Form initial vectorized solution r0,i = exp( j∠s̃V,i).
b. Update vectorized solution rk+1,i using (4.46).

c. Increment k = k+1. Stop if k =K. Otherwise, go to step 11b.

d. Set sv,i+1 = rK,i.

12. Increment i = i+1. If i =Φ, go to step 12. Otherwise, go to step 6.

13. Implement discretized waveform set sv,Φ as physically realizable FM waveforms as shown

in Sect. 4.2.6.
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Figure 4.16: Implementation of mth polyphase-coded frequency-modulated (PCFM) waveform

4.2.6 Implementation

The constant modulus, discrete-time, baseband representation of the vectorized set of waveforms in

sv,Φ can be translated into M continuous-time waveforms using the polyphase-coded FM (PCFM)

implementation [38] discussed in Section 2.1.2.4. Recall that the vectorized form sv is related to

the discretized waveform matrix S via (4.13) where the mth column is the discretized waveform

sm = [sm[0] sm[1] ⋯ sm[N −1]]T corresponding to the mth antenna element.

Given the length-N phase sequence of the mth discretized waveform ψ0,m, ψ1,m, . . . ψN−1,m,

for ψn,m =∠sm[n], a train of N −1 impulses with time separation Tp = 1/ fs are formed. The nth

impulse is weighted by αn,m, which is equal to the modulo phase change between the nth and

(n+1)th phase value as determined by

αn,m =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψn+1,m−ψn,m if ∣ψn+1,m−ψn,m∣ ≤ π

(ψn+1,m−ψn,m)−2πsgn(ψn+1,m−ψn,m) if ∣ψn+1,m−ψn,m∣ > π
, (4.48)

where sgn(●) is the sign operation that wrap the values of αn,m to (−π,π]. The values of (4.48)

can then be collected into the code vector xw,m = [α0,m α1,m ⋯ αN−2,m]T that parameterizes the mth

complex-baseband waveform. Thus, the PCFM phase function from (2.46) for the mth waveform

is thus

ψm(t;xw,m) = N−2∑
n=0

αn,mhn(t)+ψ0,m, (4.49)

and the PCFM implementation (for amplitude envelope u(t) = 1) is
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sm(t;xw,m) = exp( jψm(t;xw,m)). (4.50)

The continuous-time waveforms are related to the discrete waveforms as sm(nTp;xw,m) = sm[n] for

n ∈ {0,1, . . . ,N −1}.
Note that the inherent filtering (by shaping filter wp(t)) involved in the PCFM implementation

may slightly alter the spectrum in lower power areas of the frequency response. Thus the nulls that

have been enforced in the optimization may “fill in” to some degree. The loss in null sensitivity

can be mitigated by applying the design process at a higher sampling rate [141].

4.2.7 Emission Optimization Analysis

For the results in Section 4.2.7 it is assumed that Fa( f ,θ ,ϕ = 0○) = 1 over the band and within the

visible space thus ũ(θp) = u(θp) ∀p (from (4.30)). Note that this is not true in general though

provides a means to show illustrative examples of the wideband waveform design process without

specific wideband array knowledge. Thus, here it is assumed that the array is matched over the

visible space and completely mismatched in the reactive region. In practice, the vectors u(θp)∀p

would be predistorted using the approximate active antenna pattern as discussed in Section 4.2.4.2

and the user would want to avoid array excitations that would reflect/couple energy (which can be

analyzed via the frequency-dependent scattering matrix SSS( f )).
Consider the design of a wideband emission having 98% time-bandwidth product B98%T = 50

and fractional bandwidth [%BW]98% =40% for a uniform linear array comprised of M =30 antenna

elements. The antenna element spacing is set according to the highest frequency in bandwidth B98%

to reduce the effect of grating lobes [87]. The normalized frequency associated with this spacing

is
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fE

fc
= fc+B98%

fc

= 1+ [%BW]98%

2

= 1.2,

(4.51)

which sets the wideband factor Π from (4.12) at

Π = [%BW]98%
M−1

2 fE/ fc

= 0.4 ⋅ 30−1

2 ⋅1.2
≈ 4.83.

(4.52)

Recall that wideband factor must be Π << 1 to be considered narrowband therefore the described

emission is considerably wideband. The sampling frequency is set to κ̄ = 5 times the time-

bandwidth product of B98%T = 50 to closely approximate a continuous-time waveform (therefore

N = 5(50) = 250)). For the given array, the set of beamlets must be contained within the spatial

region established by (4.32) as

∣sinθp∣ ≤ 1− 2 fE/ fc

M (1− %BW
2
) = 0.9 (4.53)

for p ∈ {0,1, . . . ,P−1} to avoid placing appreciable energy in the reactive region. The number of

frequency bins is set to be twice the discrete length of the waveforms, QF = 2N = 500.

Using these parameters as a baseline, three different scenarios are simulated and analyzed to

highlight the customizable design capabilities that are possible. The first case is a wide beam

scenario that could be used for a ubiquitous MIMO mode like that discussed in [20, 28] where

the entirety of the spatial region is illuminated and multiple functions are performed on receive

in a ubiquitous radar mode [142]. For the second case, three focused beams are optimized

for a high directive array mode which may correspond to simultaneous multifunction mission

(e.g. multiple target tracking). The third case is a combination of the two where a wide beam

and a directive focused beam are optimized for simultaneous transmission. This scenario could
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correspond to a simultaneous search and track mode. These scenarios are only three examples of

the space-frequency beampatterns that could be achieved. The customizable ability of this design

area permits simultaneous multi-function array operation alleviating timing constraints that are

present in traditional multifunction arrays [142]. Below is a detailed description of the three cases

considered:

Case 1: Wide beam scenario A wide (nearly omnidirectional) beam is generated over the

angular interval sinΘ ∈[−0.9, 0.9], which is realized using PB = 60 evenly spaced beamlets over

the region. Power is distributed equally over this wide beam. Two nulled regions are collected

into the nulled set Rn. The first nulled region is defined as intersection of the interval in

frequency f / fc ∈ [0.8,0.9] and the interval in space sinθ ∈ [−0.5,−0.42]. The second nulled region

is defined as intersection of the interval in frequency f / fc ∈ [1.2,1.4] and the interval in space

sinθ ∈ [0.10,0.25]. The nulled regions are approximated by multiple finely placed points within

the region.

Case 2: Three-beam scenario A total of PB = 3 beamlets are chosen to point in the directions

sinΘ = {−0.71,0,0.17}. The sinθ = 0 beam is set to have 3 dB higher power than the other two

beams. The nulled set Rn is defined via intersection of the interval in frequency f / fc ∈ [1.2,1.4]
and the interval in space sinθ ∈ [0.10,0.25].

Case 3: Wide beam + secondary beam scenario A moderately wide beam and a narrow

secondary beam are jointly optimized over sinΘ ∈{[−0.5, 0.5],0.75}. The wide beam is generated

using 30 evenly spaced beamlets over the interval, thus making for a total of PB = 31 beamlets.

The secondary beam points in the direction sinθ = 0.75 and is set to be 2 dB higher than the peak

power of the wide beam. The wide beam is specified to have a Gaussian-tapered spatial power

distribution. The nulled regions are defined the same as in Case 1.
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Optimization settings All the beamlets are nominally (excluding nulls) designed to have a

Gaussian spectral shape in frequency for three reasons: 1) to establish the bandwidth of the

emission, 2) to incorporate the spectral roll-off and thus well approximate a continuous-time

emission, and 3) to leverage the desirable autocorrelation properties associated with a Gaussian

power spectral density [57]. Note that the 98% bandwidth definition becomes ambiguous when

considering nulled spectra. Thus, assuming that nulling is applied to a base spectral shape, we

shall define the bandwidth of the nulled spectrum according to B98% of this base spectral shape

prior to nulling.

Each case uses Φ = 100 design iterations along with K = 20 RUWO iterations. These values

were selected because it was observed that sufficient convergence was obtained, though more

sophisticated stopping criteria could alternatively be employed. Convergence plots are presented

for the emission design cost function JB(sv,i) from (4.37). The waveform matrix S for each of

the 3 cases is independently initialized with white, complex-Gaussian distributed data having unit

variance and zero mean so as to start with relatively low cross-correlation between the waveforms.

4.2.7.1 Wideband Radar Emission Analysis

Using the approximate form of Gpb( f ,θ) from (4.7), the time-varying array factor is assessed

by considering the aggregate beampattern A(θ) = 1
T ∥Gpb( f ,θ)∥2

2
from (3.21), the angle-delay

ambiguity function χs(τ,θ ,ϑ), and the fractional reactive power (FRP) defined in (4.26). The

angle-delay ambiguity function as defined in (3.55) implicitly adopts the narrowband assumption.

Generalizing (3.55) to a wideband ULA as a function of delay τ , spatial angle θ , and receive

beamformed spatial angle ϑ , yields

χs(τ,θ ,ϑ) = (M∥Gpb( f ,ϑ)∥2
2
∑
m
∥sm(t)∥22)

− 1
2
∞̂

0

G∗
pb
( f ,ϑ)Gpb( f ,θ)e j2π f τ [∑

m
e

jmπ f
fE
(sinθ−sinϑ)]d f .

(4.54)

Note that because the beamforming is frequency dependent (true-time delay), the form of the
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angle-delay ambiguity function cannot be separated into a beam factor χ̄b(θ ,ϑ) and diversity

factor χ̄s,d(τ,θ ,ϑ) like was done for the narrowband model in Section 3.1.3.2. Define the ϑ = θ

cut of the ambiguity diagram as the spatial autocorrelation χa(τ,θ) expressed as

χa(τ,θ) = χs(τ,θ ,ϑ = θ)
= (M∥Gpb( f ,θ)∥2

2
∑
m

∥sm(t)∥22)
− 1

2
∞̂

0

∣Gpb( f ,θ)∣2e j2π f τd f .
(4.55)

4.2.7.2 Case 1: Wide Beam Scenario Results

Figure 4.17 shows the spectrum ∣Gpb( f ,θ)∣2 (in dB) for Case 1 where a near-omnidirectional wide

beam has been designed to exist between sinθ = −0.9 and sinθ = 0.9, where the bound described in

(4.53) prevents the mainlobe of each beamlet from residing in the reactive region (bounded in red)

for all in-band frequencies. The wide beam is constructed using PB = 60 equal-spaced beamlets

and shaped to a Gaussian frequency spectrum. By constructing the waveforms via a summation

of weighted standard beamforming responses via (4.42), the energy of the aggregate emission is

guaranteed to not place substantial energy in directions other than the angles specified in Θ. Thus,

the energy in invisible space is limited to sidelobe energy which corresponds to an FRP = 0.0135

which is a substantial reduction from the FRP = 0.174 for the previous omnidirectional emission

presented in Section 4.2.3.

Figure 4.18 shows the same Case 1 spectrum ∣Gpb( f ,θ)∣2 as a function of sinθ . The

deformations of the array beampattern can be seen at low and high frequencies. At low frequencies

the beampattern is wider due to the array appearing smaller in wavelengths at these frequencies.

Conversely, at higher frequencies the beampattern takes on a narrower beamwidth thus the

spectral energy appears finer. The heuristic wideband emission design inherently accounts for

the beampattern deformation and places energy evenly over all space.

A detailed view of the two nulled regions in the space-frequency beampattern are shown

in Figure 4.19. Recall that the nulled regions are defined as the intersection of the interval in

frequency f / fc ∈ [0.8,0.9] and the interval in space sinθ ∈ [−0.5,−0.42], and the intersection of the
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Figure 4.17: Spectrum ∣Gpb( f ,θ)∣2 (in dB) from (4.7) of wideband ([%BW]98% =40% bandwidth)
wide beam MIMO emission versus electrical angle φ( f ,θ) for an M = 30 element ULA with

fE = fc+B98%/2. The reactive region is bounded inside the red triangles with FRP = 0.0135 from

(4.26). ©2017 IEEE

Figure 4.18: Spectrum ∣Gpb( f ,θ)∣2 (in dB) from (4.7) of wideband ([%BW]98% =40% bandwidth)
wide beam MIMO emission versus sinθ for an M = 30 element ULA with fE = fc+B98%/2.
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Figure 4.19: Detailed view of nulls for wideband ([%BW]98% = 40% bandwidth) wide beam

MIMO emission versus sinθ for an M = 30 element ULA with fE = fc+B98%/2.

interval in frequency f / fc ∈ [1.2,1.4] and the interval in space sinθ ∈ [0.10,0.25]. The null width

in frequency is the desired extent, however the spatial extent of both nulls are wider than specified.

This effect is due to the construction of the interference matrix Rn where the eigenspread of the

deterministic space-frequency steering vectors resulting in the increased null width. To prevent this

increase in null width, an orthogonalization of Rn can be performed to create a projection matrix

the explicitly nulls the desired region [140].

Figure 4.20 shows the aggregate A(θ) for this emission (P = 60 beamlets in blue) and, for

comparison, the same emission was generated using P = 30 beamlets (shown in red) spaced evenly

over the desired spatial region. By over-specifying the beamlets in space, the aggregate beampat-

tern maintains 0.74 dB of variation over the optimized spatial region of sinΘ ∈[−0.90, 0.90]. For

P = 30 beamlets, the beampattern has over 2 dB of variation over this optimized spatial region. The

adaptive weightings ς(θp)∀p are only altered to maintain the desired spatial energy contained in

u(θp), thus if the spacing between the beamlets in Θ are too wide the spatial power distribution is

allowed to deviate between adjacent beamlet angles (as shown in P = 30 trace in Figure 4.20). The
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Figure 4.20: Aggregate beampattern A(θ) (in dB) from (3.21) of wideband ([%BW]98% =

40% bandwidth) wide beam MIMO emission versus sinθ for with P = 60 beamlets (blue) and

P = 30 beamlets (red) for an M = 30 element ULA with fE = fc+B98%/2.

spatial extent of the two nulled regions is shown in gray. The energy compensation after zeroing

the desired spectral magnitudes in these directions is effective in maintaining a constant energy

level over the nulled regions even though energy is removed.

The spatial autocorrelation ∣χa(τ,θ)∣2 from (4.55) for normalized delays τ/T ∈ [−0.5, 0.5] is

shown in Figure 4.21. Note that the peaks of the autocorrelation are normalized to indicated

to losses associated with spreading energy over space (i.e. 0 dB corresponds to a standard

beamformed transmission). The mainlobe of the autocorrelation from spatial regions sinθ = −0.6

to sinθ = −0.3 is broadened slightly due the null placement between sinθ = −0.5 and sinθ = −0.42.

This null lies entirely within the bandwidth of the emission thus has a larger effect on the resulting

correlation response compared to the second null which lies in the spectral roll-off of the emission.

Figure 4.22 depicts the maximum angular cross-correlation max
τ
{∣χs(τ,θ ,ϑ)∣2} as a function

of θ and ϑ . A maximum was taken over τ instead of showing the τ = 0 to depict the largest cross-

correlation sidelobe response that could leak into the matched filtered and receive beamformed

response. Again, the loss due to spreading energy in space is incorporated in the maximum of
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Figure 4.21: Spatial autocorrelation function ∣χa(τ,θ)∣2 (in dB) from (4.55) for wideband([%BW]98% = 40% bandwidth) wide beam MIMO emission versus sinθ for normalized delay

τ/T ∈ [−0.5 0.5]. ©2017 IEEE

Figure 4.22: Maximum angular cross-correlation max
τ
{∣χs(τ,θ ,ϑ)∣2} for wideband ([%BW]98% =

40% bandwidth) wide beam MIMO emission as a function of sinθ and sinϑ for an M = 30 element

ULA with fE = fc+B98%/2. ©2017 IEEE
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Figure 4.23: Peak-normalized angle-delay ambiguity function at τ/T = 0 for wideband([%BW]98% = 40% bandwidth) wide beam MIMO emission versus sinϑ for the transmit angles

sinθ = −0.9 (blue), sinθ = 0 (red), and sinθ = 0.4 (yellow). ©2017 IEEE

the diagonal. Recall from Section 3.1.3.2 that for the narrowband array the nominal resolution

and spatial ambiguities (sidelobes) are dictated by the receive beamformer (beam factor) and are

improved upon when spatial diversity is introduced (diversity factor). For an M = 30 element

ULA, the first sidelobe of the nominal array pattern is approximately 13.2 dB down from the peak

response. In Figure 4.22, the first sidelobe is (on average) approximately 25 dB down from the

peak, thus illustrating the diversity improvement in spatial ambiguity. Recall from Section 3.1.3.2

that the expected level of the first spatial ambiguity for an orthogonal (in terms of inner product)

MIMO emission is “double” (in dB) that of the nominal phased array response for uniform array

tapering, thus would be 26.4 dB down from the peak for this case.

Figure 4.23 shows the peak-normalized angle-delay ambiguity function versus sinϑ for the

transmit directions sinθ ∈ {−0.9,0,0.4} at τ/T = 0. These are the expected spatial response for

theoretical scatterers in these direction in the absence of noise. The expected spatial resolution

improvement for an orthogonal MIMO narrowband emission is 1/√2 for a uniform linear array

with uniform array tapering. This resolution improvement is ambiguous for wideband arrays due to
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Table 4.2: Improvement/degradation ratio of 3 dB spatial resolution for Case 1 transmission

the beampattern deformation over the operating band. Table 4.2 shows the 3 dB spatial resolution

[∆ū]3dB for these scatterer locations as well as the nominal spatial resolutions for f = 0.8 fc, f = fc,

and f = 1.2 fc. The ratio of the spatial resolutions are also provided where a value < 1 indicates

an improvement of spatial resolution while > 1 indicated a resolution degradation. Intuitively, the

nominal wideband resolution should near the resolution of the center frequency f = fc which is

the assumption for narrowband transmissions. For all three beams, the spatial resolution improves

compared to the nominal resolution at the center frequency with the only comparative resolution

degradation occuring in the sinθ = −0.9 beam at the high in-band frequency f = 1.2 fc.

4.2.7.3 Case 2: Three-beam Scenario Results

Figure 4.24 shows the wideband spectrum ∣Gpb( f ,θ)∣2 (dB) of Case 2 where PB = 3 discrete beams

are optimized in the directions sinθ = −0.71, sinθ = 0, and sinθ = 0.17 (e.g. for simultaneous

tracking), each with a Gaussian spectral shape and the sinθ = 0 beam is designed to have 3 dB

higher power than the other two beams to illustrate a higher transmit priority level. The space-

frequency null bounded between f / fc = 1.2 and f / fc = 1.4 and between sinθ = 0.1 and sinθ = 0.25

can also be observed in this figure. This beam scenario has FRP = 0.0188 though is not at risk of

placing significant energy in the reactive region due to the beamlet locations.

Figure 4.25 shows the aggregate beampattern A(θ) after emission optimization. The peaks

of the sinθ = −0.71 and sinθ = 0.17 beams exhibit relative powers of −6.25 dB while that of

the sinθ = 0 beam is −3.23 dB which is within 0.02 dB of the 3 dB relative power constraint.

The null location (shown in gray) is shown to not effect the power level of the sinθ = 0.17

beamlet. Simultaneous transmission of multiple directive transmit beams does produce a single
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Figure 4.24: Spectrum ∣Gpb( f ,θ)∣2 (in dB) from (4.7) of wideband ([%BW]98% = 40% bandwidth)

multi-beam emission versus electrical angle φ( f ,θ) for an M = 30 element ULA with fE = fc +
B98%/2. The reactive region is bounded inside the red triangles with FRP = 0.0188 from (4.26).

©2017 IEEE

Figure 4.25: Aggregate beampattern A(θ) (in dB) from (3.21) of wideband ([%BW]98% = 40%

bandwidth) multi-beam emission versus sinθ for an M = 30 element ULA with fE = fc+B98%/2.
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Figure 4.26: Emission spectrum ∣Gpb( f ,θ)∣2 (in dB) from (4.7) for wideband ([%BW]98% = 40%

bandwidth) multi-beam emission versus normalized frequency f / fc of the PB = 3 beams in the

directions sinθ = −0.71 (blue), sinθ = 0 (red), and sinθ = 0.17 (yellow) and the spectral window

used for design (black). ©2017 IEEE

pulse loss in transmitted energy due to spreading energy in space. Though by transmitting the

beams simultaneously, the total energy emitted in these directions would be close to that of a

traditional phased array over a dwell period. Furthermore, the simultaneous beampattern in Figure

(4.25) has a continuously customizable relative power level between the beam directions which

would be difficult for a scenario where the resource time is split between the three locations.

Figure 4.26 shows the resulting power spectrum ∣Gpb( f ,θ)∣2 for the three beam directions

sinΘ ∈ {−0.71,0,0.17} along with the Gaussian spectral window used in the design (shown in

black). All three beams approximate the form of the Gaussian template (a true match cannot

be achieved due to the constant amplitude constraint and finite pulse duration). The sinθ = 0.17

beam conflicts with the nulled region thus the Gaussian template for that direction was altered

accordingly. The sinθ = 0 spectrum also has a dip in the nulled region due to the increase in width

of the null caused by the RUWO nulling stage (as discussed in Figure 4.19).

Figure 4.27 displays the resulting spatial autocorrelation ∣χa(τ,θ)∣2 from (4.55) for the three

beam directions. The peak sidelobe levels relative to their respective mainlobes are −26 dB for
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Figure 4.27: Spatial autocorrelation function ∣χa(τ,θ)∣2 (in dB) from (4.55) for wideband

([%BW]98% = 40% bandwidth) multi-beam emission of the PB = 3 beams in the directions

sinθ = −0.71 (blue), sinθ = 0 (red), and sinθ = 0.17 (yellow). ©2017 IEEE

sinθ = −0.71, −22.5 dB for sinθ = 0, and −19.45 dB for sinθ = 0.17. The slight sidelobe increase

for the sinθ = 0.17 beam is a result of the null in its spectrum. The resulting high sidelobe level

can be reduced by coherently processing multiple pulse agile waveforms [59], or by leveraging

adaptive/non-adaptive mismatch filter receive processing [81, 143].

Figure 4.28 depicts the maximum temporal cross-correlation of the angle-delay ambiguity

function max
τ
{∣χs(τ,θ ,ϑ)∣2}. The responses from the three beamlets are clearly shown on the

diagonal of the plot. The peak-normalized, τ/T = 0 cut of the angle-delay ambiguity function

versus sinϑ for the transmit angles sinθ = −0.71, sinθ = 0, and sinθ = 0.17 is shown in Figure

4.29. The desired beam locations are indicated by the black, vertical dashed lines. Unlike the Case

1 transmission which operated in a wide beam MIMO mode, the spatial resolution and spatial

sidelobe level for Case 2 are not improved. The difference in resultion lies in the correlation

levels of the emission around that beam. Because the beams are widely-separated, the spatial

ambiguity level and spatial resolution remain similar to that of a standard coherent beamformed

emission. Table 4.3 shows the 3 dB spatial resolutions of the three theoretical target locations and
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Figure 4.28: Maximum angular cross-correlation max
τ
{∣χs(τ,θ ,ϑ)∣2} for wideband ([%BW]98% =

40% bandwidth) multi-beam emission as a function of sinθ and sinϑ for an M = 30 element ULA

with fE = fc+B98%/2. ©2017 IEEE

Table 4.3: Improvement/degradation ratio of 3 dB spatial resolution for Case 2 transmission

the nominal response for the low, center, and high frequencies in the bandwidth. As expected, each

of the beams are near to the nominal spatial resolution of the center frequency due to the lack in

spatial diversity in the vicinity of each beam.

4.2.7.4 Case 3: Wide Beam + Secondary Beam Scenario Results

Finally, Figure 4.30 shows the wideband spectrum ∣Gpb( f ,θ)∣2 (dB) for Case 3 where a moderately

wide beam is designed to lie between sinθ = −0.5 and sinθ = 0.5 with a Gaussian spatial power
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Figure 4.29: Peak-normalized angle-delay ambiguity function at τ/T = 0 for wideband

([%BW]98% = 40% bandwidth) multi-beam emission versus sinϑ for the transmit angles

sinθ = −0.71 (blue), sinθ = 0 (red), and sinθ = 0.17 (yellow), corresponding to the PB = 3 beam

directions. ©2017 IEEE

distribution6 (e.g. for SAR or surveillance) as well as a narrow secondary beam at sinθ = 0.75 that

is designed to be 2 dB larger than the peak power of the wide beam (e.g. for tracking). The wide

beam was approximated using 30 equally spaced beamlets over the angular region makings a total

of PB = 31 beamlets including the secondary beam. All beams are designed to have a Gaussian

spectral shape and the same null constraints as in Case 1. The beamlet locations place the energy

away from the invisible space thus the FRP = 0.0174.

The aggregate beam pattern is shown in Figure 4.31. The discrete beam at sinθ = 0.75 is

effectively set 2 dB above the wide beam. The wide beam has the desired Gaussian spatial power

distribution, and the beamlet compensation is effective in accounting for the energy removed by

zeroing the desired spectrums within the nulled region.

The spatial autocorrelation for normalized delays τ/T ∈ [−0.5, 0.5] can be seen in Figure 4.32.

Again, it is observed that the mainlobe of the autocorrelation between sinθ = −0.6 and sinθ = −0.3

6The Gaussian spatial power distribution is only included to showcase the variability of the possible spatial

beampattern designs. Ideally a spatial priority metric would be used to determine the desired energy placement.
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Figure 4.30: Spectrum ∣Gpb( f ,θ)∣2 (in dB) from (4.7) of wideband ([%BW]98% =40% bandwidth)
wide beam + secondary beam emission versus electrical angle φ( f ,θ) for an M = 30 element ULA

with fE = fc+B98%/2. The reactive region is bounded inside the red triangles with FRP = 0.0174

from (4.26). ©2017 IEEE

Figure 4.31: Aggregate beampattern A(θ) (in dB) from (3.21) of wideband ([%BW]98% =

40% bandwidth) wide beam + secondary beam emission versus sinθ for an M = 30 element ULA

with fE = fc+B98%/2.
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Figure 4.32: Spatial autocorrelation function ∣χa(τ,θ)∣2 (in dB) from (4.55) for wideband([%BW]98% =40% bandwidth)wide beam + secondary beam emission versus sinθ for normalized

delay τ/T ∈ [−0.5 0.5]. ©2017 IEEE

is slightly broadened due to the presence of the null in the bandwidth of the emission. The

range sidelobes of the narrow secondary beam, on average, are lower than any angle within the

wide beam. This difference in sidelobe level arises because the wide beam design involves the

conflicting goals of spatial decorrelation and spectral shaping of adjacent beamlets thus cannot

achieve the spectral match of the isolated beam.

The maximum angular cross-correlation max
τ
{∣χs(τ,θ ,ϑ)∣2} is shown in Figure 4.33. The

peak cross-correlation response is clearly larger in the vicinity of the narrow secondary beam than

it is near the wide beam. Expanding on this result, Figure 4.34 shows the peak-normalized angle-

delay ambiguity function at τ/T = 0 versus sinϑ for the transmit angles sinθ = {0,0.4,0.75}. Note

the difference in ambiguity sidelobe level and shape of the mainlobe for the three directions. The

angles sinθ ∈ {0,0.4} reside within the wide beam and thus have an improved spatial resolution and

decreased spatial ambiguities compared to the secondary beam in sinθ = 0.75, whose resolution

and sidelobe level are comparable to a standard beamforming ambiguity function. Table 4.4 shows

the 3 dB spatial resolutions of the three theoretical target locations and the nominal response for
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Figure 4.33: Maximum angular cross-correlation max
τ
{∣χs(τ,θ ,ϑ)∣2} for wideband ([%BW]98% =

40% bandwidth) wide beam + secondary beam emission as a function of sinθ and sinϑ for an

M = 30 element ULA with fE = fc+B98%/2. ©2017 IEEE

Table 4.4: Improvement/degradation ratio of 3 dB spatial resolution for Case 3 transmission

the low, center, and high frequencies in the bandwidth. The sinθ = 0 and sinθ = 0.4 beam clearly

have an improved spatial resolution while the sinθ = 0.75 beam is near to the nominal response

of the center frequency. The use of multiple proximate beamlets in the design of the wide beam

results in enhanced spatial decorrelation and therefore an improvement in both spatial resolution

and ambiguity sidelobe level.

The emission design cost function JB(sv,i) from (4.37) is shown in Figure 4.35 versus iteration

index i for Case 1 (blue), Case 2 (red), and Case 3 (yellow). This curve indicates that the

algorithm improves upon the desired goal of space-frequency beampattern matching over time

and does not diverge during the optimization. All calculations throughout the optimization are

219



Figure 4.34: Peak-normalized angle-delay ambiguity function at τ/T = 0 for wideband([%BW]98% = 40% bandwidth) wide beam + secondary beam emission versus sinϑ for the

transmit angles sinθ = 0 (blue) and sinθ = 0.4 (red), directions within the wide beam, and

sinθ = 0.75 (yellow), the secondary beam direction. ©2017 IEEE

Figure 4.35: Emission design cost function JB(sv,i) from (4.37) versus iteration index i (Φ = 100

iterations; K = 20 nulling iterations) for Case 1 (blue), Case 2 (red), and Case 3 (yellow).
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either summations, phase retrievals, or matrix transformations, thus this heuristic design method is

robust to diverging.

4.2.8 Summary

An iterative, wideband spatially-diverse optimization scheme for far-field emission design has been

presented that optimizes the spectral content in certain predefined angles denoted as beamlets.

Space-frequency nulling is also implemented inside the iterative process via the reiterative

uniform-weight optimization (RUWO) method. The design process avoids placing energy in the

invisible space by maximizing power emitted into the visible space, thus avoiding reactive power

that could potentially damage the radar. The resulting waveforms are constrained to be constant-

modulus and can be implemented as continuous-time PCFM waveforms. Three different scenarios

have been examined to show the versatility of the design scheme to simultaneously perform

multiple different functions. The results demonstrate that for a randomized waveform initialization,

the subsequent wide beam emission design provides greater spatial decorrelation, and thus finer

spatial resolution and lower spatial ambiguity sidelobes than a narrow beam emission, though the

latter can achieve better waveform autocorrelation properties (lower range sidelobes).

4.3 Simultaneous Radar and Communications Emissions from a Common

Aperture

The ability to independently control the waveforms emitted from the elements comprising an

antenna array enables the design of fast-time emissions that are spatially dependent by virtue of

a significant increase in design degrees-of-freedom. This array structure, known as a fully digital

array radar (DAR), facilitates the execution of multiple functions concurrently by the same system.

A portion of the text in Section 4.3 is taken from “Simultaneous radar and communications emissions from a

common aperture, Part I: Theory” by McCormick et al. printed in 2017 IEEE Radar Conference Proceedings in May

2017. ©2011 IEEE
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An early example of this idea was the advanced multi-function RF concept (AMRFC) [136] that

introduced an adaptable sub-arrayed arrangements to achieve multiple functions simultaneously.

The capability of the fully digital array expands on this notion by allowing control over the

waveforms emitted by every antenna element so as to achieve a desired emission structure through

the coherent combination of the transmitted waveforms in the far-field of the antenna array.

Through careful design of these waveforms, the fully digital array can be utilized to

simultaneously transmit spatially-separated radar and communication signals that have the same

time and spectral support (see Figure 4.36). This type of dual-function emission is a particular form

of spatially-diverse beampattern design (e.g. [17,119,122,144,145]). In [24], an iterative waveform

optimization method denoted as far-field radiated emission design (FFRED) was introduced

that generates pulsed spatially-diverse waveforms, the far-field combination of which realizes

simultaneous radar and communications beams, along with the particular constraint that the

waveforms are physically realizable and amenable to a high-power amplifier (HPA); i.e. constant

amplitude and well contained spectrally (see [38, 59, 90] and Section 2.2.2). In [25], this method

was experimentally demonstrated on the Air Force Research Lab’s four-channel software-defined

radar testbed BEEMER (Baseband-digital at Every Element MIMO Experimental Radar) [110]

and are also presented here.

In [24], it was shown that to achieve simultaneous emission of two distinct signals in different

spatial directions through the use of constant amplitude spatially-diverse waveforms, one must also

consider the totality of signals in the orthogonal complement directions. In other words, a portion

of the overall energy must be emitted into the spatial regions that are not the desired radar or

communications directions (beyond the amount one would normally associate with sidelobes). An

interesting trade-off then emerges between the power efficiency gained by enforcing the constant

amplitude constraint (and associated use of efficient power amplifiers) and the efficiency lost

due to allocation of power in the orthogonal space. This trade space is explored in this section

by examining the percentage of power emitted into the orthogonal space as well as through the

definition of a average directed power (ADP) metric that quantifies the power efficiency of a set of
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...

Figure 4.36: Illustration of simultaneous radar and communication signals emitted towards

directions θr and θc, respectively.

waveforms given a simple amplifier model. Furthermore, how this orthogonal complement power

manifests itself in the spatial and spectral domains is also examined. As a result of this orthogonal

power, it was observed in [24] that a side effect of the design procedure is that the time domain

signals in the directions away from the communication direction are naturally uncorrelated with

the intended communication signal. This behavior is examined further by forming bit error rate

(BER) versus spatial angle plots for various relative radar/communications beam spacings and

power levels.

4.3.1 Assumptions and Restrictions

The FFRED approach generates a set of constant-amplitude FM waveforms that, when emitted

from a digital array, coherently combine in the far-field to realize the intended radar and

communications signals that are separated in space. In this section, both non-constant modulus

and constant-modulus waveforms are considered to compare the energy efficiency between the

results. A simple amplifier model is defined in Section 4.3 to model the “power back-off” needed

with non-constant amplitude waveforms to minimize signal distortion.
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The active antenna patterns Fm( f ,θ ,ϕ) are considered narrowband (not frequency dependent)

thus the antenna patterns are assumed constant over the band of the emission, Fm( f ,θ ,ϕ) =
Fm(θ ,ϕ). Also, because the signal structures of the radar and communications signals are

dependent on the coherent combination of the far-field contributions of each antenna, the derivation

of the proposed method does not adopt the large array model thus the approximate active antenna

pattern is not used. It is assumed the transmission is in the direction of maximum gain (i.e. ϕ = 0○),

thus for convenience the active element patterns are redefined as

Fm(θ) = Fm(θ ,ϕ = 0○). (4.56)

Also, the element index is redefined from m ∈ {−M−1
2 ,−M+1

2 , . . . , M−1
2 } to m ∈ {0,1, . . . ,M −1} for

cleaner notation.

It is assumed that a pulsed radar emission is the primary function and thus the communications

beam is transmitted at a lower power and must exist entirely within the pulse duration and spectral

content of the radar emission. The embedding of the communication function into the radar

emission represents a loss in transmit power (and therefore loss in received target SNR) for the

radar. However, this formulation allows for the data throughput of the communications link to

scale with the available bandwidth. It should be noted that this concept can easily revert to a radar-

only mission depending on the priority level of the radar transmit power and could be combined

with the spatially-diverse emission discussed in Sections 4.1 and 4.2.

4.3.2 Far-Field Radiated Emission Design (FFRED)

Consider an M element uniform linear array (ULA) with inter-element spacing d. Here

the narrowband assumption is invoked but not the large array assumption, thus the far-field

transmission g̃(t,θ ,ϕ) is modeled as in (3.37). Assuming the emission is sufficiently narrowband,

the far-field baseband radar and communication signals must respectively satisfy the constraints
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M−1∑
m=0

Fm(θr)sm(t) = g̃r(t) (4.57)

and

M−1∑
m=0

Fm(θc)sm(t) = g̃c(t), (4.58)

where g̃r(t) and g̃c(t) are the desired far-field radar and communication signals of pulse duration T

to be emitted in directions θr and θc, respectively. Recall that the active element pattern Fm(θ)∀m

inherently includes all phasing corresponding to each antenna element. Discretizing g̃r(t), g̃c(t),
and sm(t) into N ×1 vectors, where N = fsT , (4.57) and (4.58) can be rewritten as

ṽH(θr)S = g̃T
r (4.59)

and

ṽH(θc)S = g̃T
c , (4.60)

where g̃r and g̃c are the N ×1 vectors of the desired radar and communications signals, S is an M×N

comprised of the M discretized waveforms where the mth row corresponds to the 1×N discretized

waveform sT
m, and ṽ(θ) is the M×1 spatial steering vector for direction θ which is comprised of

the complex-conjugated antenna patterns defined as

ṽ(θ) = 1

M
[ F∗

0
(θ) F∗

1
(θ) ⋯ F∗

M−1
(θ) ]T . (4.61)
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The N × 1 vectors g̃r, g̃c, and sm∀m are each sufficiently “over-sampled" with respect to 3 dB

bandwidth (see [38, 59, 90]) to maintain sufficient fidelity for physical realization (if the desired

g̃r and g̃c possess good spectral containment then, by extension, so will the waveforms sm used to

construct them). The discretized constraints of (4.59) and (4.60) can be combined as

CHS =G, (4.62)

where the M×2 matrix

C = [ṽ(θr) ṽ(θc)] (4.63)

contains the spatial steering vectors and the N ×2 matrix

G = [g̃r g̃c]T (4.64)

contains the discretized far-field signals.

4.3.2.1 Optimality of Waveforms

The optimal waveform matrix (in a minimum-norm sense) can be found by solving the optimiza-

tion problem

minimize
S

∥S∥2F
subject to CHS =G,

(4.65)

where ∥●∥2F is the squared-Frobenius norm [146]. This problem is convex and has the closed-form
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solution [146]

S⋆ =C(CHC)−1
G. (4.66)

This formulation of the waveform matrix is optimal in the sense that all of the energy in S⋆ is

used to achieve the emission constraint in (4.62). However, the waveforms in S⋆ are typically not

constant amplitude and thus they preclude the use of an HPA operating in saturation (which is

associated with high power efficiency). From this perspective, it is instructive to reconsider the

definition of optimal within the context of a physical system.

Instead, optimality can be viewed in terms of power efficiency, which supports the maximiza-

tion of energy emitted in the directions θr and θc. To achieve the peak power requirement of

many high-power radar applications constant amplitude is a necessity [3]. Therefore, under this

new interpretation, the constraints of the optimization problem in (4.65) are modified to produce

constant amplitude FM waveforms that are amenable to a HPA in saturation. The modified

optimization problem is thus

minimize
S

∥S∥2F
subject to CHS =G

∣sm(n)∣ = ∣sp(q)∣ for n,q = 0, . . . ,N −1

m, p = 0, . . . ,M−1,

(4.67)

where sm(n) is the nth time sample of the mth waveform. An equivalent formulation of (4.67) is
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minimize
S,γ

γ2

subject to CHS =G

∣sm(n)∣ = γ for n = 0, . . . ,N −1

m = 0, . . . ,M−1,

(4.68)

where γ is the real, positive-valued amplitude of the elements in waveform matrix S thus ∥S∥2F ∝ γ2.

Therefore, the optimal waveform matrix (according to optimization problem (4.68)) is one that

minimizes amplitude γ while maintaining the constraint CHS =G. Note that the amplitude γ is

dependent on the relative amplitudes in C and G and thus can be scaled after the optimization

process without affecting the desired signal structure. Unlike (4.65), this problem does not have a

closed-form solution, so we shall consider an iterative approach.

4.3.2.2 Utilization of the Null Space and the Average Directed Power

To realize a waveform matrix that achieves the constraints in (4.68), the null space of the steering

vector matrix C must be leveraged to design a spatial orthogonal complement matrix S⊥ (where

SH
⋆ S⊥ = 0N×N) such that the summation

S = S⋆+S⊥ (4.69)

produces the constant amplitude waveform matrix S. Further, the columns of S⊥ are orthogonal to

v(θr) and v(θc), or simply

CHS⊥ = 02×N , (4.70)
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thus maintaining the constraint CHS =CH(S⋆+S⊥) =G. Due to the orthogonality between S⋆ and

S⊥, the average power in S is represented as

γ2 = ρ⋆+ρ⊥ (4.71)

or alternatively as

γ2 = 1

MN
∥S∥2F , (4.72)

where

ρ⋆ = 1

MN
∥S⋆∥2F (4.73)

and

ρ⊥ = 1

MN
∥S⊥∥2F (4.74)

are the average powers in S⋆ and S⊥, respectively. These average powers are found using the

identity ∥S∥2F = Tr{SSH}, then substituting in (4.69) and simplifying.

The average power of the minimum-norm solution ρ⋆ is fixed for a given C and G; hence

by minimizing amplitude γ (via optimization problem (4.68)), we are effectively minimizing

the orthogonal power ρ⊥ necessary to achieve the desired emission using constant amplitude

waveforms. The inclusion of the orthogonal emission requires some percentage of the average

power from (4.71). Therefore, there exists a trade-off between the power efficiency lost by placing
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Figure 4.37: Simple amplifier model defining linear and saturation regions.

power into the orthogonal space (via S⊥) and the efficiency gained by using constant amplitude

waveforms that are amenable to an efficient HPA. In Section 4.3.4 we show that, for a range of

parameterizations, the power efficiency always increases when forming the set of waveforms in

this manner.

To quantify the power efficiency of a given waveform matrix we must first establish an amplifier

model to ascertain the transmitter performance given waveforms of different peak-to-average

power ratios (PAPRs). A simple amplifier model is shown in Figure 4.37 where the maximum

output power is normalized to 0 dB and the power transfer curve has two distinct regions: a linear

region and a fully saturated region (in reality a transition region would exist between these but is

omitted here). The amplifier model is enforced by scaling the waveform matrix such that the peak

amplitude is unity (thus establishing a maximum instantaneous normalized output power of 0 dB).

As such, any amplitude values less than the peak represent a loss relative to constant amplitude

waveforms. This notion of “power back-off" is commonly used to prevent amplifier distortion

when linear operation is required [147].

Using the amplifier model in Figure 4.37, a normalized average directed power (ADP) metric

can be defined that calculates the average power contained in waveform matrix S that contributes
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to the desired emission. Using (4.66), the normalized ADP for S satisfying constraint (4.62) is thus

ADP(S) = 1

MN

XXXXXXXXXXXXX
P⋆S

max
m,n
{∣sm(n)∣}

XXXXXXXXXXXXX
2

F

=
ρ⋆

max
m,n
{∣sm(n)∣2} , (4.75)

where P⋆ = C(CHC)−1CH is a projection matrix that selects only the portion of the waveform

matrix that emits in the desired directions specified in C. Because the maximum amplitude of

the waveform matrix is normalized to unity, the the possible values of (4.75) are 0 ≤ADP ≤ 1, with

ADP = 1 representing maximum array power efficiency. For a constant amplitude waveform matrix

S, the ADP simplifies to
ρ⋆
γ2 . Thus the minimization of amplitude γ (via optimization problem

(4.68)) produces a constant modulus waveform matrix S that maximizes ADP. Equivalently, the

ADP for waveform matrix S can be expressed as
ρ⋆

ρ⋆+ρ⊥
, illustrating that when the orthogonal

power is minimized, the ADP is maximized. Maximum array power efficiency (ADP = 1) can only

occur when ρ⊥ = 0, implying that the minimum-norm solution S⋆ is constant amplitude, which can

only be achieved when C contains a single emission direction and G contains a single constant

amplitude waveform.

4.3.3 Realization of Emission Constraints using Error Reduction Algorithm

The optimization problem in (4.68) does not have a closed-form solution and is non-convex due

to the inclusion of the constant amplitude constraint. A fast and useful approach to perform

optimization involving two distinct constraints is to alternate between projecting onto the sets

satisfying each constraint. If these sets are convex, this procedure is known as projection onto

convex sets (POCS) [148, 149]. If one or more of the sets is non-convex, the procedure is known

as the error reduction algorithm (ERA) [124,127,128,150]. While the procedure remains the same

for these two general methods, the difference lies in the convergence claims. The convergence

to an intersection point (or minimum distance point) between the sets can be proven for POCS,

but cannot be proven for ERA. However, the error in ERA can be shown to be a non-increasing
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sequence [124, 127, 128, 150]. Since the constant amplitude constraint in (4.67) represents a non-

convex set, the convergence properties of ERA apply here.

4.3.3.1 FFRED Implementation

For a given constant amplitude initialization S0, this iterative design procedure alternates between

two stages until sufficient convergence is achieved. The first stage projects onto some set A that

satisfies a constraint using projection operator PA(●). Subsequently, the second stage projects onto

some set B satisfying the other constraint using projection operator PB(●). For this problem, set A

satisfies the constraint CHS =G from (4.62) and set B satisfies the constant amplitude constraint

from (4.68). Here set A is convex and set B is non-convex. This procedure is summarized in

Algorithm 4.1.

Algorithm 4.1 Alternating Projections

Initialize: S0, i = 0

repeat

S̃i = PA (Si)
Si+1 = PB (S̃i)
i = i+1

until sufficiently converged

return Si

The projections PA(●) and PB(●) can be defined as the minimum change one could impart to

Si or S̃i, respectively, such that the corresponding constraints are met. Thus the projections

themselves can be viewed as optimization problems. The first problem is formulated such that the

squared distance is minimized between the waveform matrix Si obtained in the previous iteration

and the projected waveform matrix S̃i while maintaining the form of constraint (4.62). The first

stage projection PA(Si) is therefore defined as

minimize
S̃i

∥S̃i−Si∥2F
subject to CH S̃i =G,

(4.76)
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which has the closed-form solution

S̃i = P⊥Si+S⋆ (4.77)

for projection matrix

P⊥ = IM −C(CHC)−1
CH . (4.78)

The proof that (4.77) is the solution to (4.76) is provided in Appendix A.8.

Likewise, the second stage projection PB(S̃i) can be expressed as

minimize
Si+1

∥Si+1− S̃i∥2F
subject to ∣sm,i+1(n)∣ = γ for n = 0, . . . ,N −1

m = 0, . . . ,M−1,

(4.79)

which has the closed-form solution

Si+1 = γ exp( j∠S̃i) . (4.80)

The proof that (4.80) is the solution to (4.79) is provided in Appendix A.9. After incorporating

the projections from (4.77) and (4.80), the FFRED procedure is stated in Algorithm 4.2 for given

spatial steering vectors in C and desired far-field signals G.

Instead of minimizing amplitude γ (as in problem (4.68)) it is incorporated as a predefined

parameter for the FFRED algorithm. We can find a value of γ close to the minimum through a

sequence of feasibility problems where, for a given amplitude γ , the intersection between sets A
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Algorithm 4.2 Far-field Radiated Emission Design

FAR-FIELD RADIATED EMISSION DESIGN

Initialize: S0, γ , i = 0

repeat

S̃i = P⊥Si+S⋆
Si+1 = γ exp( j∠S̃i)
i = i+1

until sufficiently converged

return Si

and B is tested (i.e. when both constraints are satisfied). If the intersection exists, the amplitude is

reduced, if not, the amplitude is increased. This process can be implemented via a simple bisection

procedure and iterated until γ is within some tolerance. As previously stated, the convergence

properties of ERA do not guarantee that, for a given initialization S0 and amplitude γ , a solution

that intersects the sets A and B will be found. Instead, ERA has the error reduction property

. . . ≥ ∥S̃i−Si∥2F ≥ ∥Si+1− S̃i∥2F ≥ ∥S̃i+1−Si+1∥2F ≥ . . . (4.81)

which shows that the squared-distance between the solutions of problems (4.76) and (4.79) form

a non-increasing sequence. However, in [24] it was shown that by increasing the amount of

orthogonal power ρ⊥ (through increase of amplitude γ) the convergence behavior improves by

enhancing the overall solution’s ability to satisfy the constraints of (4.68). The feasibility procedure

to find amplitude γ as described above is obviously not conducive for real-time application.

However, prior knowledge of a feasible γ for a given transmission scenario could be used to bypass

this process.

The computational complexity of one iteration of FFRED is 8M2N + 7MN floating point

operations or “flops”, with 8M2N operations arising from (4.77) and 7MN operations for (4.80).

However, a majority of these operations are readily parallelizable. The number of iterations

required to reach convergence depends on the parameter initializations and the convergence

criterion, though it has been found to average on the order of 10s to 100s of iterations. Clearly,
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more effort is needed to guarantee convergence (to a high certainty) given a requirement to operate

in real-time.

In regards to the initialization S0, it has been found thus far that randomly coded PCFM

waveforms (see [38] and Section 2.1.2.4) produce good, consistent results. However, depending

on the particular initialization, it is known that ERA-based algorithms may encounter a “tunnel”

or “trap” that can slow convergence or prevent the algorithm from finding a solution (see [124] for

more details on ERA). Because the foresight to predict these “traps” and “tunnels” does not exist,

it is impossible to guarantee that one will not be encountered for a given initialization. Further

investigation is necessary to understand how to intelligently choose the initialization of S0 so

as to best avoid these obstacles. While not elegant, a “brute force” option is simply to employ

multiple different initializations and select the best result after each has attained a sufficient degree

of convergence.

4.3.4 Simulated Characterization of FFRED Emissions

To evaluate the performance of the FFRED emission we examine how multiple factors behave

under different parameter initializations. The factors considered here include the ADP, the spatial

beampattern, the emission spectral content, and BER for the communications component. The

parameter initializations that dictate these factors are relative radar/communication powers, relative

radar/communication beam spacing, and the structure of the communication modulation. The

results that follow are not to be considered a comprehensive examination into the performance of

these emissions after FFRED optimization. Instead, the results provide insight into the benefits and

potential obstacles that can emerge from this waveform optimization technique, with particular

attention paid to power efficiency and how the orthogonal power manifests itself in space and

frequency.

For the results that follow consider an M = 16 element narrowband uniform linear array (ULA)

with inter-element spacing d = λc
2 . Here it is assumed that all elements are omni-directional in the

ϕ = 0○ plane. Thus, the beampatterns correspond to the electrical phasing difference between the
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elements as

Fm(θ) = e jmφ( fc,θ) (narrowband omnidirectional antenna patterns). (4.82)

Therefore, the far-field emission g̃(t,θ) is approximated as time varying array factor g(t,θ). This

assumption is beneficial from an analysis perspective and provides a sense of the general emission

behavior given certain parameters. Though in practice, the results presented in Section 4.3.4 may

vary depending on the individual active element pattern responses. In Section 4.3.5, the FFRED

emission design is experimentally demonstrated thus the active element patterns for a four element

patch array are determined prior to optimization.

The radar waveform g̃r(t) is designed to be an up-chirped LFM waveform of analytical time-

bandwidth BaT = 64. Three different communication modulations are considered for signal g̃c(t):
quadrature phase-shift keying (QPSK) signal with rectangular (RECT) and square-root-raised-

cosine (SRRC) shaping filters [47], and 4-ary CPM with a RECT shaping filter and modulation

index h = 1/2 [151]. The RECT shaping filter spans one symbol duration while the SRRC filter

spans 10 symbols. Both the RECT-filtered QPSK and CPM communication signals contain 128

information bits per pulse within the given time-bandwidth product of the radar emission while the

SRRC-filtered communication emission contains 108 bits per pulse (due to the temporal extent of

the shaping filter). The discretized versions gr and gc are both over-sampled in time with respect

to the LFM analytical bandwidth Ba such that the final optimized waveform matrix can be readily

converted into a set of FM waveforms much like in Section 4.2.6 [38]. The FFRED algorithm is

terminated when the result from (4.77) produces a waveform matrix that has a PAPR of 1.01 from

(2.116) (thus the subsequent enforcement of constant amplitude produces a negligible deviation

from this result).

Figures 4.38 through 4.40 show the ADP via (4.75) of the minimum-norm waveform matrices

and FFRED optimized waveform matrices for the RECT-filtered QPSK, SRRC-filtered QSPK,

and RECT-filtered CPM communications scenarios, respectively. Taking advantage of the spatial

invariance of the array factor of a ULA, only the relative spacing between the beams needs to
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Figure 4.38: ADP via (4.75) of (a) minimum-norm solution S⋆ and (b) FFRED optimized solution

S versus ∣sinθr− sinθc∣ and ∥g̃c∥2/∥g̃r∥22 using RECT-filtered QPSK.

Figure 4.39: ADP via (4.75) of (a) minimum-norm solution S⋆ and (b) FFRED optimized solution

S versus ∣sinθr− sinθc∣ and ∥g̃c∥2/∥g̃r∥22 using SRRC-filtered QPSK.
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Figure 4.40: ADP via (4.75) of (a) minimum-norm solution S⋆ and (b) FFRED optimized solution

S versus ∣sinθr− sinθc∣ and ∥g̃c∥2/∥g̃r∥22 using RECT-filtered 4-ary CPM with h = 1/2.

be considered. The relative spacing between the radar and communication beams was varied

from ∣sinθr− sinθc∣ = 1/8 (representing the first null of the 16 element ULA beampattern) to

∣sinθr− sinθc∣ = 1 in 1/160 increments. The relative power of the communication signal to the

radar signal, computed via ∥g̃c∥22/∥g̃r∥22, was varied from −30 dB to −3 dB in 1 dB increments.

Each evaluation was averaged over 50 Monte Carlo trials with independent, randomly generated

bit sequences and initialized with a set of M = 16 randomly coded PCFM-implemented waveforms.

For all three scenarios in Figures 4.38 through 4.40, the ADP for the FFRED optimized

waveforms in S is strictly greater than the ADP for the minimum-norm solution S⋆ for every

parameterization, confirming that the FFRED solution is in fact a more power efficient emission.

The difference in ADP between S and S⋆ for all three cases reaches a maximum of ∼35% and

occurs at beam spacing ∣sinθr − sinθc∣ ≈ 3/16. Note that the ADP for the RECT-filtered QPSK

and RECT-filtered CPM scenarios in Figures 4.38 and Figures 4.40 have similar outcomes while

a significant decrease in ADP is observed for the SRRC-filtered QPSK case. This result is likely

due to the amplitude variation of the communication signal gc for the latter scenario. Since both

the RECT-filtered QPSK and CPM signals have unity PAPR, their ADP efficiencies are likewise

similar. In contrast, the SRRC-filtered QPSK signal has an average PAPR of ∼2.2, and thus the

238



emission requires more power to be placed in the orthogonal complement region to attain a solution

satisfying the constraints in (4.68), thereby reducing the overall power efficiency of the emission.

Observe in Figures 4.38 through 4.40 that when the beam separation corresponds to the nulls

of the M = 16 ULA beampattern as

∣sinθr− sinθc∣ = u

8
for u = 1, . . . ,7, (4.83)

the ADP increases for both S and S⋆ (indicated by the lighter regions in the plots). At these angles,

the radar and communication beams are orthogonal, and therefore no extra power is needed to

achieve the spatial orthogonality, hence an increase in ADP.

Figure 4.41 shows the beam patterns of the converged solutions over the 50 Monte Carlo

trials for the beam separation case of ∣sinθr− sinθc∣ = 5/8 in each of the three scenarios. Here

the absolute directions are sinθr = 0 and sinθc = 5/8. The beampatterns are normalized such that

0 dB represents the maximum power that the array can emit in any direction. As the relative power

∥g̃c∥2/∥g̃r∥2 increases, the communication beam emerges from the location of the fifth null of the

radar beampattern. As before, the average beampatterns of the RECT-filtered QPSK and the CPM

scenarios are nearly identical. It should be noted that for these two scenarios an additional spurious

beam has emerged in the direction sinθ = −5/8. While symmetry may seem to imply that this

spurious beam and the communication beam possess a similar time-domain structure, there is in

fact no clear presence of the transmitted information in this direction (as will be shown in the BER

plots). In contrast, the average beampattern of the SRRC-filtered QPSK scenario has a much flatter

spatial response in the orthogonal complement directions, albeit with a noticeable peak power loss

compared to the other cases. The peak power loss of the radar beam (compared to maximum

transmit power) is 0.12 dB at a relative beam power of −30 dB for all three scenarios. However,

at a relative beam power of −3 dB, the losses of the RECT-filtered QPSK and CPM cases rise to

5.56 dB and 5.53 dB, respectively, and 8.82 dB for the SRRC-filtered QPSK scenario. Again, this
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Figure 4.41: Average beam patterns for S versus ∥g̃c∥2/∥g̃r∥2 using (a) RECT-filtered QPSK, (b)

SRRC-filtered QPSK, and (c) RECT-filtered 4-ary CPM for sinθr = 0 and sinθc = 5/8.
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Figure 4.42: Maximum spectral content for S versus ∥g̃c∥2/∥g̃r∥2 using (a) RECT-filtered QPSK,

(b) SRRC-filtered QPSK, and (c) RECT-filtered 4-ary CPM for sinθr = 0 and sinθc = 5/8.

loss in overall power efficiency for the SRRC-filtered QPSK case is a direct result of requiring a

larger amount of orthogonal power to satisfy the constraints of (4.68).

Figure 4.42 shows the maximum spectral response over sinθ of the converged emissions for

all three scenarios when the relative beam separation is 5/8 with sinθr = 0 and sinθc = 5/8 (same

as Figure 4.41 and likewise averaged over the 50 Monte Carlo trials). As there is no spectral

containment constraint applied during optimization, the orthogonal emission (dictated by S⊥)

is allowed to spread into the spectral roll-off region. For the RECT-filtered QPSK scenario,

the sinc structure of the communication spectrum starts to emerge at a relative beam power

∥g̃c∥2/∥g̃r∥2 (dB) = −3 dB. Interestingly, the SRRC-filtered QPSK scenario (which is implemented

for its spectral containment properties) also suffers from spectral regrowth in the FFRED optimized
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solution. The CPM scenario has the least amount of power increase because the communication

signal g̃c is both spectrally well-contained and constant modulus [151].

To evaluate the BER performance of the communication link, a maximum likelihood (ML)

symbol detector [47] is applied for the QPSK cases and the Viterbi algorithm [152] is applied for

CPM [151]. Specifically, these symbol decoders are applied to the associated fast-time emission

across all spatial angles. The decoding of a signal that is transmitted in a direction other than

the communications direction θc is expected to produce increased communication errors due to

the fast-time/spatial coupling of the emission. Quantifying the expected BER versus spatial angle

under different scenarios provides an effective “coherence beamwidth” of spatial angles around

the communication direction θc that are amenable for communications. To isolate the effects of

the spatial dependence of the emission, no additional noise is added to the simulation. The signals

received at a hypothetical receiver as a function of spatial angle were phase rotated before symbol

estimation so as to achieve the minimum BER possible for the given constellation.

In [24] it was shown that, increasing the relative amount of orthogonal power by increasing γ

above the minimum feasible amplitude (Section 4.3.3.1), the BER is increased in directions other

than θc. Here, the amplitude γ is not inflated beyond the minimum. Instead, consider three different

relative beam powers ∥g̃c∥22/∥g̃r∥22 (dB) = {−20,−13,−6} dB with the radar beam directed toward

sinθr = 0 and the communication beam varied from sinθc = 1/8 to sinθc = 1 in 1/80 increments.

Here the BER of the RECT-filtered QPSK and CPM communication scenarios are examined as

they have similar ADP responses (and thus similar orthogonal power) for the parameterizations

considered. The same emission configuration is used from the above examples (up-chirped LFM

for g̃r, BT = 64, 16 element ULA, etc.), though the number of Monte Carlo trials is increased to

200 to better estimate the BER. Recall that both the RECT-filtered QPSK and the CPM signals

could transmit 128 information bits per pulses with this parameterization and therefore the BER at

each relative power level and beam separation is based on a total of 25,600 bits.

Figures 4.43 through 4.45 show the BER versus spatial angle sinθ and communication

direction sinθc for relative beam powers of −20 dB, −13 dB, and −6 dB, respectively. Each figure
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Figure 4.43: Average BER versus sinθ and sinθc for ∥g̃c∥2/∥g̃r∥2 (dB) = −20 dB and sinθr = 0

using (a) RECT-filtered QPSK and (b) RECT-filtered 4-ary CPM.

Figure 4.44: Average BER versus sinθ and sinθc for ∥g̃c∥2/∥g̃r∥2 (dB) = −13 dB and sinθr = 0

using (a) RECT-filtered QPSK and (b) RECT-filtered 4-ary CPM.
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Figure 4.45: Average BER versus sinθ and sinθc for ∥g̃c∥2/∥g̃r∥2 (dB) = −6 dB and sinθr = 0 using

(a) RECT-filtered QPSK and (b) RECT-filtered 4-ary CPM.

displays the BER for the RECT-filtered QPSK and the RECT-filtered 4-ary CPM communications

scenarios. The communication direction is illustrated by the diagonal blue bar on each image. The

width of this bar signifies the “coherence beamwidth” within which communication symbols can

be detected successfully. Thus, by inspection, this coherence beamwidth becomes wider as the

relative beam power ∥g̃c∥2/∥g̃r∥2 increases, which may or may not be desirable. Recall in Figure

4.41 that an apparent symmetric beam appeared opposite to the communication direction. Here,

this beam can be clearly observed as a diagonal red stripe to the left of the radar emission direction.

The high BER of this stripe indicates that the beam does not transmit communication information

in the symmetric direction.

Another point of interest is the distinction in the BER performance between the RECT-filtered

QPSK and CPM communication scenarios. In Figures 4.43 through 4.45, the emission containing

CPM signal results in a higher BER in directions other than sinθc compared to the QPSK-based

emission. Thus, the modulation scheme also has an effect on the resulting BER performance in

unintended directions.
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Figure 4.46: Experimental setup: BEEMER and array in foreground, and receive horn antenna in

background [25].

4.3.5 Experimental Demonstration

The FFRED-derived multi-function waveforms were experimentally validated through open air

testing in an indoor facility at the AFRL Sensors Directorate. The BEEMER software-defined radar

(SDR) system [110] served as the RF and digital backend for the experiment. These experiments

require hardware that provides independent, element-level waveform generation, a requirement

met by the BEEMER SDR.

The aperture consisted of an 18 element linear patch array antenna with half-wavelength inter-

element spacing at 3.5 GHz. Four transmit channels were connected to the centermost elements

of the array to reduce edge effects on the element patterns. The emission was measured using

one receive channel of the BEEMER system captured at 40 MS/s baseband I/Q connected to a

quad-ridge horn with 18 dBi of gain. Figure 4.46 shows the transmit array, BEEMER system, and

horn antenna inside the chamber used to capture the signals, with the transmit and receive antennas

A portion of the text and figures in Section 4.3.5 are taken from “Simultaneous radar and communications

emissions from a common aperture, Part II: Experimentation” by McCormick et al. printed in 2017 IEEE Radar

Conference Proceedings in May 2017. ©2011 IEEE
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separated by 3 meters. Boresight calibration was initially performed to calibrate the amplitude and

phase offsets across the four transmit channels of the SDR. Frequency-dependent calibration of the

SDR was not performed as this would alter the constant amplitude structure of the waveforms.

The radar waveform is an up-chirped LFM with an analytical bandwidth of Ba = 10 MHz

and pulse duration of T = 10 µs for a analytical time-bandwidth product of BaT = 100. The

communications beam is set to have 13 dB less power than the radar beam as the communication

link is assumed to be secondary to the radar mission and would only have to contend with one-

way path losses in practice. For these tests, the communication beam was pointed at θc = 30°.

Two different radar beam directions were considered at θr = −15° and θr = 0°, such that the

communication emission corresponds to the first sidelobe and first null of the radar emission,

respectively.

The narrowband active element patterns Fm(θ)∀m were estimated in the emission directions

θr = {−15○,0○} and θc = 30○ prior to testing for use in the M×1 spatial steering vector ṽ(θ) used

during waveform optimization. A tone at a frequency of f = 3.501 GHz was generated on each

of the four antenna element channels. The tone was offset from the center frequency by 1 MHz

to avoid interference with the leakage of the LO which appears as a DC term in the baseband

data. The patch array was oriented such that the horn receive antenna captures the tonal open-air

data in the directions θr ∈ {−15○,0○} and θc = 30○. The beampatterns Fm(θ)∀m for the radar and

communication transmission directions were determined via a fast-Fourier transform (FFT) of the

complex-baseband data to observe the phase and amplitude of the f = 1 MHz FFT bin for each

antenna element.

Again, the communication signals are modulated using a QPSK constellation with either a

RECT filter, yielding 200 bits per pulse, or a SRRC filter that yields 180 bits per pulse. The latter

provides better spectral containment but introduces a high amount of amplitude modulation that

increases the average power in S⊥ needed for convergence. Figure 4.47 shows the baseband spectra

of the radar waveform (blue) and the envelopes of the communication signals with RECT (red) and

SRRC (yellow) shaping filters.
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Figure 4.47: Spectral content of radar waveform (blue) and QPSK modulated communications

using a RECT filter (red) and SRRC filter (yellow). ©2017 IEEE

Table 4.5: TEST CASE PARAMETERS

Radar direction θr Shaping filter

Case 1 −15° RECT

Case 2 0° RECT

Case 3 −15° SRRC

Case 4 0° SRRC
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Table 4.6: SUMMARY OF FIXED PARAMETERS

Parameter Value

Center frequency 3.5 GHz

Bandwidth 10 MHz

Pulse duration 10 µs

Active antenna elements 4

Antenna element spacing
4.28 cm

(half-wavelength)

Receiver sampling rate 40 MS/s

Communication direction θc 30°

Relative comm power (dB) −13 dB

Communications modulation QPSK (gray-coded)

Radar modulation Up-chirped LFM

Transmitted pulses 20

Bits transmitted per pulse
200 (RECT)

180 (SRRC)

248



Figure 4.48: Average emitted power versus spatial angle θ and fast-time for case 1 (θr = −15° and

RECT shaping filter). ©2017 IEEE

Table 4.5 summarizes the four test cases arising from the combination of two different modes

of communication modulation and two different radar emission directions. Twenty pulses were

transmitted for each test case resulting in a total of 4000 bits for cases 1 and 2, and 3600

bits for cases 3 and 4. While sample size is clearly not large enough to accurately predict the

true bit error rate, it is sufficient to demonstrate the validity of this manner of dual-function

radar/communication.

The goals of these tests are to characterize how accurately the far-field signals could be

produced in their corresponding desired directions and to assess the impact of the minimum

orthogonal power for optimization. A summary of all other parameters is provided in Table

4.6. These parameters and the steering vector estimates were then used inside the optimization

procedure to generate the multi-function waveforms according to Algorithm 4.2.

Table 4.7 shows the average ADP from (4.75) for all four transmission cases both before

optimization (minimum-norm solution) and after optimization (FFRED optimization solution).

The ADP for the minimum norm solution is lowest where the radar beam is pointed toward
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Figure 4.49: Average emitted power versus spatial angle θ and fast-time for case 2 (θr = 0° and

RECT shaping filter). ©2017 IEEE

Table 4.7: ADP from (4.75) of Minimum-norm solutions S⋆ and FFRED optimized Solutions S

θr = −15○ and for an SRRC-filtered communications solution; likely a combination of a non-

unity PAPR for the SRRC signal and the placement of the communications in the first sidelobe

of the radar beam. The FFRED optimized solution increase the ADP with respect to all the

corresponding minimum-norm solutions. The amplitude modulation induced by the SRRC shaping

filter necessitates an increase in the amount of orthogonal power needed to converge thus lowering

the ADP. The different spatial separations between the radar and communication beams had a

negligible impact on the ADP for the FFRED optimized solutions.

The four sets of MIMO emissions were captured from −60° to 60° at 2° increments using

the quad-ridge horn antenna. The average emitted power versus angle θ and fast-time are shown

in Figures 4.48 and 4.49 for cases 1 and 2, respectively. Note how additional transmit power is
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Figure 4.50: Average emitted power versus spatial angle θ and fast-time for case 3 (θr = −15° and

SRRC shaping filter). ©2017 IEEE

Figure 4.51: Average emitted power versus spatial angle θ and fast-time for case 4 (θr = 0° and

SRRC shaping filter). ©2017 IEEE
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Figure 4.52: Range-Doppler response for radar beam directions for the four cases. ©2017 IEEE

apparent in directions other than the radar and communication directions. This power corresponds

to the additional orthogonal power needed to realize a set of constant amplitude waveforms.

Also note that the placement of the energy is dependent on the orientation of the radar and

communication beams, and for case 2 is symmetric to the actual communication direction.

The average emitted power versus θ and fast-time for cases 3 and 4 are shown in Figures 4.50

and 4.51, respectively. The almost two-fold increase in percent orthogonal power for these cases is

apparent as the additional power in other directions is noticeably higher than in the previous cases.

For the cases involving the SRRC shaping filter, the amplitude modulation induced by the filters

requires more power in the orthogonal complement directions (compared to the RECT cases) to

realize a set of constant amplitude waveforms.

Now consider the cross-correlation of the signal captured in the direction of each radar beam

with the intended up-chirped LFM radar waveform. The SNR of the radar beam prior to filtering

was determined to be 33.16 dB. For each case, the 20 pulses are captured in the direction of the

radar beam and then Doppler processed (see Figure 4.52). Each response resembles the typical

range-Doppler point spread function of an LFM. For all four cases, the range sidelobes cohere at
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Figure 4.53: Zero-Doppler cut for radar beam directions for case 1 (blue), case 2 (red), case 3

(yellow), and case 4 (purple). ©2017 IEEE

zero Doppler indicating that the sidelobe structures are consistent over the 20 pulses. The zero

Doppler cut of each case is likewise shown in Figure 4.53, where the sidelobe structure is nearly

identical over the four cases and is very close to what is expected for the autocorrelation of an LFM

waveform.

The signal emitted in the communication direction θc = 30° was captured and determined to

have an average SNR of 21.13 dB (12.03 dB less than the radar signal, 0.97 dB different from the

design specification of 13 dB). For each case the communication signal was demodulated using

a Maximum-Likelihood estimator [47] and compared against the known bit sequence that was

transmitted. Recall that cases 1 and 2 involved a total of 4000 bits while cases 3 and 4 involved

3600 bits. For cases 1, 2, and 4, zero bit errors were found, while 2 bit errors occurred for case 3.

A communication scatter plot for each case is shown in Figure 4.54. Note that case 2 (RECT

shaping filter; θr = 0°) produced the tightest grouping while case 3 produced the broadest grouping.

A tighter grouping is associated with a better estimate of the true symbol value. For such a

high SNR (21.13 dB), the inconsistent area covered by the bit groupings among the 4 cases
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Figure 4.54: Constellation scatter plot for case 1 (blue), case 2 (red), case 3 (yellow), and case 4

(purple). ©2017 IEEE

indicates that interference in the communications direction is causing a wider spread among the

bits compared to a case with only noise present. This interference is likely caused by errors in the

transmit model used during optimization [24].

The convex hull of the demodulated symbols with the associated true constellation value for

each is depicted in Figure 4.55. Note that the two bit errors for case 3 (yellow) are discernible in

the ‘01’ and ‘11’ quadrants. It is also observed that the groupings for the RECT cases (1-blue and

2-red) are more consistent than the SRRC cases (3-yellow and 4-purple). This result is likely due

to the communication signal in cases 3 and 4 being more sensitive to transmit model errors due to

the resulting amplitude modulation from the SRRC shaping filter. Also, the groupings for the cases

having radar direction θr = −15° (1-blue and 3-yellow) cover a larger area than the cases having

radar direction θr = 0° (2-red and 4-purple). The disparity between these results indicates that the

transmit model (steering vector) used for the radar direction θr = 0° better approximates the actual

transmitter effects.
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Figure 4.55: Convex hull of demodulated symbols with associated constellation symbol for case 1

(blue), case 2 (red), case 3 (yellow), and case 4 (purple). ©2017 IEEE
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Figure 4.56: Bit error rate versus spatial angle for case 1 (blue), case 2 (red), case 3 (yellow), and

case 4 (purple). ©2017 IEEE

It is also interesting to examine the structure of the fast-time signal in other spatial directions.

Specifically, consider the impact of applying the communication ML estimator [47] to the signal

captured from different directions. Comparing the results to the known bit sequences (and phase

rotating as needed to assess the minimum possible bit error) as a function of angle produces the

angle-dependent measured bit error rates (BER) shown in Figure 4.56 for the four test cases. In the

intended communication direction of θc = 30° the previous good results are observed: for cases 1, 2

and 4 have no bit errors (BER = 0)while case 3 yields BER = 5.5×10−4 (2 errors out of 3600 bits).
However, for other spatial angles, the BER increases significantly because the fast-time signals in

those directions does not possess the expected communication signal structure. Note that the worst

possible BER is 0.5 which is the expected value of BER for truly random bit estimates. The BER

plots are shown in a linear scale instead of the traditional logarithmic scale as the curve shows

more detail in angles away from the communications direction and to prevent the plots at θ = 30°

from decreasing to minus infinity. Note cases possessing the same radar/communication spatial
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separation (cases 1 and 3 for θr = −15° and cases 2 and 4 for θr = 0°) also realize similar BER

responses. The “dips" at θ = −50° (cases 1 and 3) and θ = −25° (cases 2 and 4) could be a result of

multipath as the tests were not administered in an anechoic chamber.

4.3.6 Summary

The iterative optimization method of generating constant amplitude physically realizable wave-

forms that emit simultaneous radar and communications beams introduced in [24] and experimen-

tally validated in [25] was further explored in this section. Particular attention is paid to power

efficiency, through consideration of the average directed power (ADP) derived from a simple

amplifier model, and how the orthogonal energy manifests itself in both space and frequency. It

was found that the converged constant amplitude solutions generated using the FFRED algorithm

produce waveforms can have as high as a 50% increase in ADP compared to the minimum-

norm solution. It was also discovered that a constant amplitude communications signal resulted

in a higher power efficiency as compared to a communications signal that requires amplitude

modulation (e.g. SRRC-filtered QPSK). How the orthogonal power manifests itself under different

scenarios was illustrated by observing the average spatial beampatterns and maximum spectral

content. The communications performance was evaluated via a bit error rate evaluation simulated

under different communications directions and power levels. It was found that the relative power

level of the communications controls the “coherence beamwidth” at which the communications

link can be achieved and that the method of symbol estimation can control the BER of signals

emitted in directions away from the desired communications direction. The FFRED optimized

emissions were experimentally tested using the AFRL four-channel BEEMER testbed and were

found to provide satisfactory results even in this dimensionality constrained scenario.
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4.4 Conclusions

The combination of waveform diversity and spatial diversity is realized in the the fully digital

array radar (DAR) [20], which utilizes independent waveform generation at the element level to

achieve multiple simultaneous functions. With the emergence of new digital array technology [22],

the DAR is a future trend in array research which brings with it high-dimensional emission

design capabilities to achieve multiple functions simultaneous and/or a MIMO/ubiquitous radar

capability [20, 142]. In this chapter, three different examples spatially-diverse waveform design

capabilities were presented with particular attention paid to attributes that are robust to deleterious

effects within the radar. All waveforms in this section are designed/optimized to be constant

amplitude and spectral contained, common characteristics of FM waveforms that are known to

limit the performance degradation caused by high power amplifiers. Also, in Section 4.2 the

invisible space was considered in the formation of wideband spatially-diverse emissions where

the size of the reactive region in dependent on frequency.

258



Chapter 5

Descent Optimization Methods for Continuous-time,

Frequency-Modulated Waveforms

Frequency modulated (FM) radar waveforms have been in use for more than 50 years [153]

and come in many different forms [38, 50, 51, 57–59, 130, 154, 154–160] (see [3, 5] for further

details). Such waveforms are particularly attractive because they are inherently constant amplitude

(though additional tapering may be applied) and are well-contained spectrally, thus making them

amenable to implementation in high-power radar transmitters (as discussed in Chapter 2). A

considerable portion of traditional FM waveform design relies on the principle of stationary phase

(POSP) [5, 50, 51, 57] where, given a prescribed amplitude envelope, the phase function of an

FM waveform that approximates a desired spectral shape can be determined. This approximation

becomes more accurate as the time-bandwidth product increases. By leveraging the power

spectrum / autocorrelation Fourier pair, the power spectrum shape is thus chosen to correspond

to an autocorrelation with low sidelobes. Here, the notion of FM waveform design is explored

from an optimization perspective.

In Section 5.1 a continuous-time frequency-modulated waveform framework denoted as the

Coded Frequency Modulated (CFM) waveform is defined. The phase function of the CFM

waveform is defined using a weighted finite sum of predetermined basis functions. Therefore,

A portion of the text and figures in Chapter 5 are taken from “Nonlinear conjugate gradient optimization of

polyphase-coded FM radar waveforms” by McCormick et al. printed in 2017 IEEE Radar Conference Proceedings

in May 2017, ©2011 IEEE. Another portion of the text and figures in Chapter 5 are taken from “Gradient-based

Coded-FM Waveform Design using Legendre Polynomials” by McCormick et al. printed in 2017 IET International

Conference on Radar Systems Proceedings in October 2017, ©2017 IET.

259



the CFM waveform is parameterized using a discrete set of parameters thus lending itself to

gradient-based optimization methods [161, 162]. Gradient descent optimization has previously

been examined (e.g. [128, 163–167] to address various attributes of radar code design). Such

methods have likewise been applied to design the ambiguity function adaptively for target matched

illumination [168]. However, to the author’s knowledge, the work presented in this chapter, along

with the corresponding publications [161,162], are the first instances of continuous-time waveform

optimization using gradient-based methods.

Generally speaking, the determination of a radar waveform’s “goodness” is primarily de-

termined via some measure of the properties of the waveform’s autocorrelation (matched filter

response) [3]. Specifically, we generally wish to minimize the sidelobes for a given mainlobe

width. Typical metrics associated with the quality of a waveform autocorrelation function are

the integrated-sidelobe level (ISL) which is the ratio of sidelobe to mainlobe energy, and peak-

sidelobe level (PSL) which is the ratio of peak sidelobe level to maximum overall correlation

level. Here, a generalized integrated sidelobe (GISL) metric for FM waveforms is introduced

to encapsulates both the ISL and PSL metrics into one metric by taking the q-norm ratio of

the autocorrelation sidelobes to the autocorrelation mainlobe, where q = 2 corresponds to ISL

and q →∞ corresponds to PSL. In this chapter is it shown that by leveraging the relationship

between the pulse compression ratio and time-bandwidth product from (2.69), the time-bandwidth

product of the optimized waveform can be effectively set without explicit shaping of the waveform

spectrum through determination of the corresponding normalized peak-to-null mainlobe width

∆τ/T of the autocorrelation and application within the GISL metric.

In Section 5.2, the optimization of a specific type of CFM waveform denoted as polyphase-

coded FM (PCFM) is demonstrated using nonlinear conjugate gradient descent [38, 79, 161]. The

notion of waveform design degrees of freedom is addressed within the context of both sampled

bandwidth (via the receiver sampling rate) and 3 dB resolution bandwidth. When the sampled

bandwidth is larger than the resolution bandwidth, additional degrees of freedom corresponding to

the spectral roll-off region become available for use in waveform optimization. Utilizing this extra
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dimensionality we show that the possible optimized autocorrelation is largely independent of the

waveform time-bandwidth product, which is itself defined using resolution bandwidth.

In Section 5.3, a novel waveform optimization function is proposed for use in the GISL metric

that encapsulates both the continuous-time nature of the CFM waveform and the discrete-time

nature of the pulse compression receive filter in an attempt to incorporate real-world effects into

the optimization. The sidelobes of the modified correlation function are lowered using a Quasi-

Newton method to minimize the GISL metric for a CFM waveform defined using the Legendre

polynomial basis. This basis is shown to require a fraction of the basis functions needed to

represent a waveform with low sidelobe level as compared to the PCFM basis. A experimental

loopback1 capture of the optimized waveforms reveal a slight distortion in very low power sidelobe

levels (∼−80 dB) which is found to be caused by transmitter and receiver distortions that are ignored

within the modified correlation function.

In Section 5.4, system specific waveform optimization is explored through estimation of

the transmitter and receiver distortion via a linear model for three different loopback hardware

configurations: 1) single RF cable, 2) a single amplifier (not in saturation), and 3) two cascaded

amplifiers with one in saturation. The linear model is incorporated into the modified correlation

function from Section 5.3 to compensate for the distortion and achieve a better prediction of the

correlation response. The optimized waveforms are shown to match the expected responses (via

the estimated linear model) to a high degree and achieve a lower overall sidelobe level response

than what was previously shown in Section 5.3 using the Legendre polynomial basis set and the

same waveform parameters.

5.1 Evaluation of Coded FM Waveforms

The coded frequency modulated (CFM) waveform model is a continuous-time waveform definition

that is parameterized using a discrete, finite sequence of values. By defining the ambiguity function

1A loopback capture is performed by directly connecting the waveform generator to the radar receiver. The RF

chain can include different layers of reality into the testing (e.g. all RF components in chain, a direct connection

between the generator and ADC) to observe the behavior of the RF distortion of the components.
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and discrete-time autocorrelation of these waveforms we can construct a waveform metric denoted

Generalized Integrated Sidelobe Level (GISL) that encompasses both the peak sidelobe level (PSL)

and the integrated sidelobe level (ISL) which are common waveform evaluation metrics. In doing

so, a peak-to-null mainlobe width must be defined to partition the correlation mainlobe from that

of the sidelobes.

5.1.1 Coded Frequency Modulated Waveforms

Recall from Section 2.1.1 that the complex-baseband FM waveform can be represented as

s(t) = u(t)e jψ(t), (5.1)

where u(t) is the positive, real-valued, amplitude envelope and ψ(t) is the continuous phase

function. For pulsewidth T , define u(t) over the interval t ∈ [0,T ] (zero outside these limits),

therefore ψ(t) must also be defined over this interval. In general, the coded FM (CFM) phase

function ψ(t) can be represented as a weighted sum of Np continuous-time basis functions as

ψ(t;xw) = Np−1∑
n=0

αnhn(t), (5.2)

where hn(t) is the nth basis function, αn is its corresponding real-valued weighting, and

xw = [α0 α1 ⋯ αNp−1]T is an Np×1 vector containing the parameters. The collection of Np basis

functions hn(t) for n ∈ {0,1, . . . ,Np−1} can be expressed as the basis function set B defined as

B = {h0(t),h1(t), . . . ,hNp−1(t)}. (5.3)

For a given amplitude envelope u(t) and set of basis functions B, the FM waveform is completely

parameterized by the Np parameters contained in xw. The parameterization is akin to the polyphase-

coded FM (PCFM) definition discussed in Section 2.1.2.4. In fact, the CFM definition is a

generalized waveform model for which PCFM is a particular basis.
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5.1.2 Generalized Integrated Sidelobe Level

A generalized integrated sidelobe level (GISL) metric is defined that encompasses both the

PSL metric from (2.64) and ISL metric from (2.65) into one by taking the q-norm ratio of the

autocorrelation sidelobes to the autocorrelation mainlobe as

Jc(xw;q) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∆τ
ˆ

−T

∣χa(τ)∣qdt +
T̂

∆τ

∣χa(τ)∣qdt

∆τ
ˆ

−∆τ

∣χa(τ)∣qdt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

(5.4)

where q is a positive integer. The exponent q dictates the particular sidelobe metric used, with

q = 2 corresponding to ISL and q→∞ to PSL. A similar metric to (5.25) has also recently been

proposed for the design of phase codes [165, 166].

Observe that, for q ∈ {2,3,4, . . .}, the metric in (5.4) is a continuous function of the length-

Np parameter vector xw. As such, gradient-based optimization methods (e.g. nonlinear conjugate

gradient [161], quasi-Newton method, etc.) can be implemented to minimize this metric [79].

The variability of the cost function in (5.4) with norm q can drastically change the autocorrelation

properties of a resulting (iteratively) optimized waveform given the same waveform initialization.

Of course, it should be noted that the gradient of Ja(xw;ξ ,q →∞) is discontinuous, and thus

gradient-based PSL optimization can only be approximated for q large. A q-norm of q ∈ {5,6,7}
has been found to retain both ISL and PSL properties.

The discretized version of (5.4) uses the discrete-time autocorrelation from (2.204) and is

likewise

Jd(xw;q) =
⎛⎜⎜⎜⎜⎜⎝

2
N−1∑
ℓ=Λ
∣r[ℓ]∣q

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q
⎞⎟⎟⎟⎟⎟⎠

1/q

, (5.5)

where Λ = ⌈ fs∆τ⌉ = ⌈κ⌉ is the discrete peak-to-null mainlobe sample width for ⌈●⌉ the ceiling

operation. Note that the outer exponent (●)1/q in (5.4) and (5.5) is the reason why the general
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metric becomes PSL when q→∞. However, from a numerical standpoint very large values of

q can be problematic. When more modest values are employed (e.g. 5 ≤ q ≤ 7 has been found

to work well) the (●)1/q operation can be omitted since is does not affect the minimums in the

cost function, though it is kept here for completeness. Similar metrics have also recently been

used for optimization of phase codes [165, 166]. The discrete sequence parameterization of the

CFM waveform coupled with the GISL metric to measure the quality of the waveform provide a

foundation for continuous-time waveform optimization via gradient-based methods.

In Section 2.1.4 it was shown that the peak-to-null mainlobe width ∆τ is related to the 3 dB

bandwidth as ∆τ ≈ 1/B3dB via (2.67) which can be used to find an approximate relationship

between the time-bandwidth product and the pulse compression ratio, T /∆τ ≈ BT from (2.69).

Therefore, within the optimization process the relative peak-to-null mainlobe width ∆τ/T is

set to the inverse of the desired time-bandwidth product ∆τ/T = 1/[BT ]desired which effectively

sets the time-bandwidth of the waveform without explicitly shaping the spectral content. For

the discretized cost function Jd(xw;q), the same relationship can be implemented however in

a discrete form. The normalized discrete peak-to-null width for r[ℓ] is Λ/N. Because Λ is an

integer, the achievable time-bandwidth products using (5.5) are limited to integer divisions of N

(i.e. BT ∈ {N,N/2,N/3, . . .}).

5.2 Optimization of CFM waveforms with Polyphase-Coded FM Basis via

Nonlinear Conjugate Gradient Descent

The polyphase-coded FM (PCFM) basis for CFM is well established in the literature [38, 44, 62,

157, 169, 170] denoted simply as the PCFM waveform. The coded-FM framework is the result of

a generalization of PCFM which was previously developed using continuous phase modulation

(CPM) framework used in communications to produce constant modulus signals (see Section

2.1.2.4 for more information). The optimization of PCFM waveforms has been considered in the

past using a greedy-search algorithm to minimize a combination PSL, ISL, and frequency template
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Figure 5.1: Comparison of resolution bandwidth B3dB and sampled bandwidth Bsamp for Gaussian

power spectrum with over-sampling κ = 3. ©2017 IEEE

error (FTE) metrics [44]. A main drawback of the greedy search algorithm used in [44] is only a

single parameter αn can be updated each iteration which restricts the amount that the cost function

can reduce per iteration. Here, a nonlinear conjugate gradient method (NLCG) is implemented to

minimize the GISL metric by updating the entirety of the parameter vector xw each iteration.

As discussed in Section 2.1.3, it is known that a pulsed waveform such as in (5.1), having

finite time support on [0,T ], corresponds to a theoretically infinite bandwidth. As such, it is not

theoretically possible to achieve Nyquist sampling. However, because FM waveforms possess

good spectral containment (i.e. acceptable roll-off), the amount of energy outside the sampled

frequency content can be made small by over-sampling the digital matched filter with respect to

the 3 dB resolution bandwidth. Denote B3dB as the 3 dB resolution bandwidth associated with the

time-bandwidth product, BT , and Bsamp = fs = κB3dB as the sampled bandwidth for over-sampling

factor κ ≥ 1. Figure 5.1 illustrates the sampled bandwidth versus the resolution bandwidth for a

Gaussian power spectrum with over-sampling κ = 3.

For B3dB and T the pulse duration, the time-bandwidth product BT is generally viewed as a

determining factor in how low the autocorrelation sidelobes can be driven. For example, length-

N Barker codes, along with their polyphase counterpart, possess the property that the PSL does

not exceed 1/N [5], where N also closely approximates BT . Likewise, in [58] it is stated that
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for hyperbolic FM (HFM) waveforms the bound on PSL is −20log10(BaT)−3 dB albeit for the

analytical bandwidth Ba in place of the 3 dB bandwidth. In this section, it is shown that it is actually

the receiver sampled bandwidth that determines the general sidelobe floor for the autocorrelation of

a waveform. For FM waveforms, the sampled bandwidth provides additional degrees-of-freedom

for waveform design (as long as an appropriate spectral roll-off is also maintained). While such

over-sampling incurs a higher computational cost for pulse compression, it is known to remediate

some of the degradation that may occur from range straddling effects [81]. Further, by designing

the waveform with knowledge of the degree of over-sampling, and thus the discrete length of the

digital pulse compression filter, the minimum PSL from (2.205) (Section 2.4.3) for that given filter

length can be achieved.

5.2.1 Polyphase-coded FM basis definition

PCFM waveforms as discussed in Section 2.1.2.4 are defined via the continuous phase modulation

implementation [151] via Figure 2.10. Here the PCFM waveform is discussed in terms of a basis

used in the CFM framework defined in (5.1) and (5.2). The basis set B from (5.3) for PCFM is

comprised of basis functions defined by the expression

hn(t) =
t
ˆ

0

wp(ζ −nTp)dζ (5.6)

for n ∈ {0, . . . ,Np − 1} and defined over t ∈ [0,T ]. Recall from Section 2.1.2.4 that wp(t) is a

rectangular function which is defined to be nonzero over the interval t ∈ (0,Tp] with an amplitude

of 1/Tp where Tp = T /Np. Therefore the set B for the PCFM basis is defined as

BPCFM =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t
ˆ

0

wp(ζ)dζ ,

t
ˆ

0

wp(ζ −Tp)dζ , . . . ,

t
ˆ

0

wp(ζ −(Np−1)Tp)dζ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (5.7)

An illustration of the nth PCFM basis function is shown in Figure 2.11.

A summation of scaled PCFM basis functions results in a piecewise linear phase function ψ(t).
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As the the number of basis functions/parameters Np increases (thus increasing the dimensionality

of code vector xw) the ramp transition time Tp decreases which results in finer control over the

continuous transition of phase within the waveform. It is generally thought that the time-bandwidth

product BT of a waveform corresponds to the available design degrees of freedom for a waveform.

However, such as was demonstrated using the notion of “over-coding” in [157], the spectral roll-off

region can be used as a source of additional degrees of freedom without changing the resolution

bandwidth or significantly altering the spectral containment. In that situation, the number of code

values Np can be made to exceed BT significantly to give further lowering of the autocorrelation

sidelobe level. In fact, the maximum degrees of freedom correspond to BsampT which is the length

N of the matched filter used on receive.

5.2.2 Waveform optimization via nonlinear conjugate gradient descent

The cost function used for optimization of CFM waveforms using the PCFM basis is the discrete

version of the GISL metric from (5.5) which considers only the discrete-time autocorrelation

(2.204). Thus, the optimization problem can be stated as:

minimize
xw

Jd(xw;q), (5.8)

which can be readily minimized using the gradient of Jd(xw;q). Here, the nonlinear conjugate

gradient method is used which is an iterative scheme that descends onto a stationary point of a given

objective function. The conjugate gradient method (both linear and nonlinear versions) converge

faster than steepest descent and do not require the calculation/estimation of the Hessian as would

be necessary for quadratic model techniques such as Newton’s method [79]. Here, the modified

Hestenes-Stiefel NLCG method using a line search satisfying the strong Wolfe conditions [79]

for step-size determination is implemented to optimize the vector xw that parameterizes the CFM

waveform.
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5.2.2.1 Gradient Calculation

The gradient with respect to the real-valued parameter vector xw is composed of the partial

derivatives

∇ = [ ∂

∂α0

∂

∂α1

⋯ ∂

∂αNp−1
]

T

. (5.9)

Application of the nth partial derivative from (5.9) (for n ∈ {0, . . . ,Np−1}) to the GISL cost function

in (5.5) yields

∂Jd(xw;q)
∂αn

=

⎛⎜⎜⎜⎜⎝
2

N−1∑
ℓ=Λ
∣r[ℓ]∣q

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q
⎞⎟⎟⎟⎟⎠

1/q⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N−1∑
ℓ=Λ
∣r[ℓ]∣qR{an[ℓ]+a∗n[−ℓ]

r[ℓ] }
N−1∑
ℓ=Λ
∣r[ℓ]∣q

−
Λ−1∑

ℓ=−Λ+1
∣r[ℓ]∣qR{an[ℓ]+a∗n[−ℓ]

r[ℓ] }
Λ−1∑

ℓ=−Λ+1
∣r[ℓ]∣q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.10)

where R{●} extracts the real value and

an[ℓ] = − j

N

N−1∑
i=0

hn(iTs+ξ)s∗ (iTs+ξ)s((i+ℓ)Ts+ξ). (5.11)

A derivation of (5.10) is provided in Appendix A.10. Recall from Section 2.4.2 that ξ ∈ [0,Ts] is a

subsample offset chosen during discretization of the waveform s(t) for matched filtering. For the

results in Section 5.2, the subsample shift is chosen as ξ = Ts. The Np partial derivatives in (5.10)

are collected into the Np×1 gradient vector ∇Jd(xw;q) that is used in the NLCG formulation.

5.2.2.2 Nonlinear Conjugate Gradient Descent

The nonlinear variant of the conjugate gradient is a generalization of the linear conjugate gradient

method that is known to converge faster than steepest descent while only requiring the memory

storage of a few vectors. The general form of the update of vector xw at iteration i is

xw,i+1 = xw,i+µipi (5.12)
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for direction pi and step-size µi. For NLCG, the direction pi is initialized to the gradient descent

direction p0 = −∇Jd(xw,0;q) and is updated as

pi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∇Jd,0 when i = 0

−∇Jd,i+βipi−1 otherwise

(5.13)

where ∇Jd,i =∇Jd(xw,i;q) and βi is a scalar chosen such that a conjugacy condition holds [171]

(assuming exact line search). There are various adaptations to NLCG that have been proposed

involving adaptation of the parameter βi. Here we choose the modified Hestenes-Stiefel method

[79] of

βi = β HS+
i =max{β HS

i ,0} (5.14)

where

β HS
i = −∇J T

d,i
(∇Jd,i−∇Jd,i−1)

(∇Jd,i−∇Jd,i−1)T pi−1

(5.15)

which has a built in reset stage where the direction pi reverts back to the negative of the gradient

when β HS
i < 0.

The Hestenes-Stiefel method has been proven to be robust and ensure local convergence for

general nonlinear cost functions that are continuously differentiable if the step sizes µi satisfy

the strong Wolfe conditions [79, 171]. Specifically, the strong Wolfe conditions are the sufficient

decrease condition

Jd (xw,i+µipi;q) ≤Jd (xw,i;q)+c1µi∇Jd(xw,i;q)T pi (5.16)

and the curvature condition

∣∇Jd(xw,i+µipi;q)T pi∣ ≤ c2 ∣∇Jd(xw,i;q)T pi∣ (5.17)
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for 0 < c1 < c2 < 1. Here the values c1 = 10−3 and c2 = 0.1 are used. The step size µi is determined

using a Bisection method with a Wolfe condition check between each step [79].

The algorithm is terminated when the 2-norm of the step direction is approximately zero ∥pi∥2
indicating xw,i is located at a stationary point of J (xw,i;q). Therefore, the vector xw,⋆ = xw,i is

returned as the locally optimal solution. The NLCG procedure for optimizing CFM waveform

using the PCFM basis is shown in Algorithm 5.1.

Algorithm 5.1 Nonlinear conjugate gradient descent using modified Hestenes-Stiefel method

1: Initialize: BT , κ , Np, q, xw,0, B = BPCFM, p0 = −∇Jd,0, c1 = 10−3, c2 = 0.1, and i = 0

2: repeat

3: Choose µi that satisfies (5.16) and (5.17)

4: xw,i+1 = xw,i+µipi

5: i = i+1

6: Calculate ∇Jd,i via (5.10)

7: Calculate β HS
i via (5.15)

8: βi =max{β HS
i ,0}

9: pi = −∇Jd,i+βipi−1

10: until ∥pi∥2 ≈ 0

11: xw,⋆ = xw,i

12: return xw,⋆

5.2.3 Optimized CFM waveforms using the PCFM basis

To understand how the exponent parameter q in (5.5) affects the optimization, a rectangular

envelope (for u(t)) CFM waveform of time-bandwidth product BT = 128 with over-sampling κ = 4

is optimized for each of the integer exponent values q ∈ {2,4,7}. The length of the discretized

waveform is N = 4BT = 512. The number of PCFM basis functions is also set to Np = BT = 128.

The NLCG method was initialized with an approximation of the linear-frequency modulated

(LFM) waveform2 of the same time-bandwidth, BT .

Figure 5.2 shows the converged CFM waveform autocorrelations for q ∈ {2,4,7}. The q = 2

(ISL) case does not prioritize minimizing the energy close to the mainlobe and falls into a local

2Because the phase function using the PCFM basis is piecewise linear, the quadratic phase function of an LFM is

approximated.

270



Figure 5.2: Optimized discrete autocorrelation responses ∣r[ℓ]∣2 from (2.204) versus normalized

sample delay (ℓ/N) for CFM waveforms with PCFM basis of BT =Np = 128 and κ = 4 using q = 2

(blue), q = 4 (red), and q = 7 (yellow) cost function norms with LFM initialization in gray. ©2017

IEEE

minimum with relatively high PSL. Both the q = 4 and q = 7 cases improve on this characteristic.

It was observed (though not included here) that autocorrelation responses for q > 7 change only

marginally from the q = 7 case. For this particular initialization and set of parameters the q = 7 case

produced the best autocorrelation response and thus is used for the remainder of Section 5.2.

Figure 5.3 shows the autocorrelation of two optimized CFM waveforms with BT = 128

over-sampled by κ = 4 (N = 512) both having a rectangular envelope u(t) of duration T . To

demonstrate how the optimization performance improves with increased degrees of freedom, the

CFM parameter vector xw is optimized for lengths Np = BT = 128 and Np = 2BT = 256, where the

latter represents over-coding by 2 [157]. The Np = 256 case has converged to a sidelobe level that is

approximately 4 dB lower than the Np = 128 case. The doubling of the degrees of freedom has also

allowed the PSL of the Np = 256 case, which is −52 dB (near mainlobe), to get within 2.19 dB of the

theoretical PSLRECT-bound limit of −54.19 dB (from (2.205)). Figure 5.4 shows the power spectra

of these two cases along with the LFM initialization for the entire sampled bandwidth. Note that
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Figure 5.3: Optimized discrete autocorrelation responses ∣r[ℓ]∣2 from (2.204) versus normalized

sample delay (ℓ/N) for CFM waveforms with a PCFM basis of BT = 128 and N = 4BT = 512 using

Np = 128 (blue) and Np = 256 (red) parameters with LFM initialization in gray. ©2017 IEEE

by approximating BT ≈N/Λ = 512/4 = 128 we have successfully set the desired bandwidth B3dB at

the half-power point of the spectrum.

Now consider the case of a fixed code dimensionality of Np = 256 for use with a dis-

cretized matched filter length of N = 512 while the time-bandwidth product is varied over

BT ∈ {32,64,128,256}3. These cases correspond to respective over-coding factors of {8,4,2,1}
[157]. Likewise, the associated over-sampling factors are κ ∈ {16,8,4,2}. It is assumed that these

waveforms have a rectangular envelope u(t) of pulse duration T , such that a fixed N corresponds

to a fixed sampled bandwidth Bsamp. Thus the different BT values correspond to a change in the

waveform resolution bandwidth B3dB. This comparison therefore demonstrates how much of an

effect BT has on the autocorrelation of an optimized waveform.

For each case, the optimization is initialized with an PCFM-approximated LFM waveform of

the same BT , Figure 5.5 shows the resulting power spectra after the algorithm has converged. It is

interesting to note that, despite there being no explicit spectral shaping performed, each frequency

3Recall that for Jd(xw;q), the time-bandwidth product can only be set to integer divisions of N (Section 5.1.2).
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Figure 5.4: Optimized power spectra ∣S( f )∣2 from (2.10) versus normalized frequency ( f /B3dB)
for CFM waveforms with a PCFM basis of BT = 128 and N = 4BT = 512 using Np = 128 (blue) and

Np = 256 (red) parameters with LFM initialization in gray. ©2017 IEEE

response resembles a Gaussian shape which is known to correspond to low range sidelobes [44,57,

59, 130]. Since each case has the same Bsamp, the observed spectral content for each is dependent

of the associated BT .

Figure 5.6 shows the autocorrelations after convergence for the different BT cases. Notice

that as BT decreases (and thus the amount of over-coding increases), the sidelobe level also

decreases. The associated increase in mainlobe width and sidelobe reduction is similar to the

response obtained by frequency tapering, albeit without the associated SNR loss. Figure 5.7

provides a close-up of the outer autocorrelation values, along with the sampled PSL bound for

rectangular envelope u(t) (from (2.205)) which for these cases is (−20log10(512) = −54.19 dB).
The BT = 128 and BT = 256 cases realize PSL values of −52 dB (near mainlobe) and −52.74 dB,

respectively (2.19 dB and 1.45 dB above the bound). The PSL values for the BT = 64 and BT = 32

cases actually equals the bound at the autocorrelation edge and have much lower sidelobes at

every other delay within the sidelobe region. These examples demonstrate that it is the sampled

bandwidth Bsamp of the matched filter that determines the lower bound on PSL and not the 3 dB

bandwidth of the waveform B3dB. Put another way, the combination of over-coding the waveform
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Figure 5.5: Optimized power spectra ∣S( f )∣2 from (2.10) versus normalized frequency ( f /Bsamp)
for CFM waveforms with a PCFM basis of Np = 256 and N = 512 with BT = 32 (blue), BT = 64

(red), BT = 128 (green), and BT = 256 (yellow). ©2017 IEEE

(Np > BT) and over-sampling the matched filter can facilitate substantial reductions in sidelobe

levels through finer control of the spectral roll-off.

Finally, Figure 5.8 shows the instantaneous time-frequency relationships for these four wave-

forms with different time-bandwidths. Generally speaking, each realizes the familiar “sideways-S”

curve that is associated with low autocorrelation sidelobes [50, 51, 57]. The additional small per-

turbations observed in Figure 5.8 are not random but arise from the optimization process (similar

behavior has been observed for other FM waveform optimization approaches [38, 157, 158]). The

analytical time-bandwidths BaT for BT ∈ {32,64,128,256} are BaT ∈ {226.2,243.9,297.1,424.1}.
The flaring of the instantaneous frequencies at the beginning and ends of the waveform result in an

inflated analytical time-bandwidth BaT compared to BT .

5.3 Optimization of CFM waveforms with Legendre Basis

The phase function model via (5.2) is now constructed using an alternate basis B from (5.3) which

is comprised of different orders of Legendre polynomials. As an example, it is demonstrated that
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Figure 5.6: Optimized discrete autocorrelation responses ∣r[ℓ]∣2 from (2.204) versus normalized

sample delay (ℓ/N) for CFM waveforms with a PCFM basis using Np = 256 and N = 512 with

BT = 32 (blue), BT = 64 (red), BT = 128 (green), and BT = 256 (yellow). ©2017 IEEE

Figure 5.7: Close-up optimized discrete autocorrelation responses ∣r[ℓ]∣2 from (2.204) versus

normalized sample delay (ℓ/N) for CFM waveforms with a PCFM basis using Np = 256 and

N = 512 with BT = 32 (blue), BT = 64 (red), BT = 128 (green), and BT = 256 (yellow). ©2017

IEEE
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Figure 5.8: Normalized instantaneous frequency ( f (t)/Bsamp) from (2.20) versus normalized time(t/T) for CFM waveforms with a PCFM basis using Np = 256 and N = 512 with BT = 32 (blue),

BT = 64 (red), BT = 128 (green), and BT = 256 (yellow). ©2017 IEEE

for waveforms of time-bandwidth less than 1024, only a small number of these polynomials (less

than 12) are needed to produce a waveform with low autocorrelation sidelobes (with diminishing

returns thereafter).

As further examples, two waveforms are optimized for experimental loopback testing using

the CFM Legendre polynomial model: one with a rectangular amplitude envelope and the other

with a Tukey envelope. The loopback correlation response agrees with the theoretical response

in the rectangular case but deviates in Tukey case due to hardware distortion. The distortion was

estimated and applied to the waveform model to produce a correlation response resembling that of

the loopback test.

5.3.1 Legendre Polynomial Basis

Another natural basis for the phase function defined in (5.2) is a polynomial basis. Furthermore,

it is advantageous to select functions that are orthogonal over a certain interval to avoid highly

276



Figure 5.9: Sampling of Legendre polynomial functions ρv(t̄) for v ∈ {1,4,7,12}. ©2017 IET

correlated basis functions. Thus we consider Legendre polynomial functions which are orthogonal

over t̄ ∈ [−1,1], where the kth polynomial is defined as [172]

ρk(t̄) = 1

2k

k∑
i=0
(k

i
)2(t̄ −1)k−i(t̄ +1)i (5.18)

For example, Figure 5.9 depicts the Legendre polynomial functions for k ∈ {1,4,7,12}. Since the

Legendre polynomial functions are orthogonal over t̄ ∈ [−1,1] each parameter αn corresponds to a

unique basis function hn(t).
Note that even values of k produce even (symmetric) functions, while odd values produce

odd (antisymmetric) functions. Thus we shall limit attention to the even symmetric functions

k ∈ {2,4,6, . . .} as they yield symmetric frequency responses (given that u(t) is also symmetric).

Therefore the CFM basis functions are set as

hn(t) = ρ2(n+1)(2t

T
−1) (5.19)

for n ∈ {0,1, . . . ,Np−1}. Thus the set B for this Legendre basis is defined as
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BLeg = {ρ2(2t

T
−1) ,ρ4(2t

T
−1) , . . . ,ρ2Np (2t

T
−1)} . (5.20)

Note that the k = 0 Legendre polynomial is excluded as it only contributes a phase shift to the phase

function ψ(t).

5.3.2 Continuous Correlation of Digital Filter

Although the continuous autocorrelation response from (2.62) is widely used in practice, the

expression does not capture the interaction of the continuous-time waveform that is physically

emitted by the transmitter with the digital (and thus discrete-time) pulse compression filter on

receive, though the ideal response can be well approximated if the receiver sampling rate is much

higher than the waveform 3 dB bandwidth [38, 81]. With rapid advances in diverse waveform

design and generation [3], this interaction is becoming increasingly more common.

To address this limitation, we propose the alternative correlation function

r̃(τ;ξ) = 1∥s(ξ)∥2
2

T̂

0

s̃∗(t −τ;ξ)s(t)dt, (5.21)

where

s̃(t;ξ) = N−1∑
n=0

s(nTs+ξ)δ(t −(nTs+ξ)) (5.22)

is a train of N weighted impulses at time instants nTs +ξ for n ∈ {0,1, . . . ,N −1}. The impulses

represent the length-N discretized waveform s from (2.172) used to create the matched filter which

is a function of the subsample shift ξ ∈ [0,Ts] where the nth sample of s is defined as s[n] =
s(nTs+ξ) (Section 2.4.2). Here, the dependence on ξ is made explicit in the discretized waveform

as s(ξ) = [s(ξ) s(Ts+ξ)⋯s((N −1)Ts+ξ)]T .

An illustration of the amplitudes of s(t) and s̃(t;ξ) is shown in Figure 5.10. Correlating the

waveform s(t) with the weighted impulse train s̃(t;ξ) naturally accounts for the continuous nature
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Figure 5.10: Signal amplitude structures for continuous waveform ∣s(t)∣ and discrete filter ∣s̃(t;ξ)∣.
of the physical radar emissions and the subsequent digital filtering in the radar receiver. The

particular delay values τ = ℓTs for discrete index ℓ ∈ {0,±1, . . . ,±(N−1)} of the correlation function

r̃(τ) are equivalent to the discrete-time autocorrelation of s(ξ) from (2.204) as

r̃(ℓTs;ξ) = r[ℓ] = 1∥s(ξ)∥2
2

N−1∑
n=0

s∗((n−ℓ)Ts+ξ)s(nTs+ξ) . (5.23)

All other delays τ ∉ {0,±Ts, . . . ,±(N − 1)Ts} for −T < τ < T correspond to range straddling

conditions that can elicit mismatch loss [56] and possibly sidelobe degradation [38, 81] (Section

2.4.3). Thus, for range straddled subsample shift ̺ ∈ [−Ts
2 ,

Ts
2
] and straddled cross-correlation

response r[ℓ;̺] from (2.206), the relationship in (5.23) becomes

r̃(ℓTs+̺;ξ) = r[ℓ;̺] = 1∥s(ξ)∥2
2

N−1∑
n=0

s∗((n−ℓ)Ts+ξ)s(nTs+ξ +̺) . (5.24)

By defining the waveform/filter correlation using (5.21) so that these range straddling effects are

included in the optimization process, subsequent evaluation of the range sidelobes via metrics such

as peak sidelobe level (PSL) or integrated sidelobe level (ISL) inherently address the finite degrees

of freedom of the receive filter.

5.3.3 Waveform Optimization via Quasi-Newton Method

As long as the function s̃(t;ξ) is discretized at a rate sufficiently greater than the 3 dB bandwidth,

the mainlobe of the modified correlation function r̃(τ;ξ) remains similar to that of the continuous

autocorrelation function χa(τ). Therefore, the relationship ∆τ/T ≈ 1/[BT ]desired (discussed in
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Section 5.1.2) can still be leveraged to approximate a desired time-bandwidth product. Thus, the

continuous GISL metric from (5.4) can be redefined using the modified correlation function (5.21)

as

Ja(xw;ξ ,q) =
⎛⎜⎜⎜⎜⎝

ˆ T

∆τ
∣r̃(τ;ξ)∣q dτ +ˆ −∆τ

−T

∣r̃(τ;ξ)∣q dτ

ˆ ∆τ

−∆τ
∣r̃(τ;ξ)∣q dτ

⎞⎟⎟⎟⎟⎠

1
q

. (5.25)

Thus the optimization problem is stated as

minimize
xw

Ja(xw;ξ ,q). (5.26)

A quasi-Newton gradient descent method with a Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Hessian approximation update is used to minimize (5.25) [79]. The Hessian (denoted as

∇2Ja(xw;ξ ,q)) and gradient of the cost function ∇Ja(xw;ξ ,q) provides a quadratic model of

the cost function around a point defined by parameter vector xw. The second-order model provides

faster convergence (as compared to NLCG from Section 5.2) at the expense of higher per iteration

computational cost [79]. The method follows the same line-search based update from (5.12) where

the step direction on iteration i is defined as

pi = −B−1
i ∇Ja(xw,i;ξ ,q) (5.27)

where Bi is the BFGS approximation to the Np ×Np Hessian of the cost function ∇2Ja(xw;ξ ,q)
where

∇2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ 2

∂α1∂α1
⋯ ∂ 2

∂α1∂αNp⋮ ⋱ ⋮
∂ 2

∂αNp∂α1
⋯ ∂ 2

∂αNp∂αNp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.28)
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is the Hessian matrix. The BFGS update to B−1
i at iteration i+1 is

B−1
i+1 = (INp − 1

pT
i hi

pih
T
i )B−1

i (INp − 1

pT
i hi

hip
T
i )+ µi

pT
i hi

pip
T
i (5.29)

where

hi =∇Ja(xw,i+1;ξ ,q)−∇Ja(xw,i;ξ ,q) (5.30)

is the difference between successive cost function gradients. The gradient of (5.25) is found via a

finite-difference approximation where the derivative with respect to αn can be approximated as

∂Ja(xw,i;ξ ,q)
∂αn

≈
Ja(xw+ǫen;ξ ,q)−Ja(xw;ξ ,q)

ǫ
(5.31)

where ǫ is a very small positive number and en is the nth coordinate vector which is defined as a

vector of zeros except for a one in the nth entry. The step size µi is chosen to satisfy the Wolfe

conditions from (5.16) and (5.17) which guarantees convergence for BFGS quasi-Newton [79]. An

overview of the quasi-Newton optimization of CFM waveforms using a Legendre basis is detailed

in Algorithm 5.2.

Algorithm 5.2 Quasi-Newton method using BFGS Hessian approximation

1: Initialize: BT , κ , q, Np, xw,0, B = BLeg, p0 = −∇Ja(xw,0;q), B−1
0
= INp , c1 = 10−3, c2 = 0.1, and

i = 0

2: repeat

3: Choose µi that satisfies (5.16) and (5.17)

4: xw,i+1 = xw,i+µipi

5: Calculate ∇Ja(xw,i+1;q) via (5.31)

6: hi =∇Ja(xw,i+1;q)−∇Ja(xw,i;q)
7: Calculate B−1

i+1
via (5.29)

8: i = i+1

9: pi = −B−1
i ∇Ja(xw,i;q)

10: until ∥pi∥2 ≈ 0

11: xw,⋆ = xw,i

12: return xw,⋆

As for all gradient-based methods, the algorithm descends onto a locally optimal solution which

is not guaranteed to be globally optimal. Therefore the locally optimal solution is highly dependent
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on the initialization. As such, an order-recursive nested approach is implemented to ensure

the quasi-Newton method is initialized with a waveform that already has good autocorrelation

properties.

Define xw,k as the k×1 vector stored on the kth iteration of the order-recursive process4. These

parameters corresponds to the first k basis functions contained in B. The BFGS optimization

procedure is initialized with k×1 vector x̃w,0∣k×1
= xw,k. After optimization, the converged k×1

vector x̃w,⋆ is used to define the (k+1)×1 stored vector xw,k+1 = [x̃T
w,⋆ 0]T which corresponds to

the first k+ 1 basis functions in B. This process is repeated until the optimized vector reaches

the desired dimensionality, k = Np. This procedure allows the optimization to gradually increase

the order of the phase function while achieving an “optimal” lower order initialization for each

step. This implementation prevents xw from falling into an undesirable local minimum and has

been shown to provide better results compared to a full dimensional initialization. The nested

order-recursive procedure using BFGS quasi-Newton is detailed in Algorithm 5.3. Figure 5.11

provides an illustration of the order-recursive process where ‘optimize’ represents the quasi-

Newton implementation.

5.3.4 Simulations and Loopback Measurements

It is first useful to determine the optimal offset delay ξ for the receive filter and the sufficient

number of basis functions Np as a function of time-bandwidth product, BT . Using this knowledge,

two waveforms are then optimized: one with a rectangular amplitude envelope and one with a 10%

Tukey tapered envelope. These waveforms are evaluated on hardware in a loopback configuration

and their filter responses are compared to the theoretical autocorrelation responses.

5.3.4.1 Sample Offset and Number of Basis Functions

The Algorithm 5.3 is implemented to determine the optimal sample offset ξ , for s̃(t;ξ) the digital

receive filter. The normalized offset is varied from ξ /Ts = 0 to ξ /Ts = 1, with the remaining

4The variable k in this sense pertains to an iteration index and not the polynomial order from (5.18).
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Algorithm 5.3 Order recursive optimization of Legendre basis using Quasi-Newton method

1: Initialize: BT , κ , q, Np, xw,1 = 0, B = BLeg, c1 = 10−3, and c2 = 0.1

2: for k = 1,2, . . . ,Np do

3: x̃w,0∣k×1
= xw,k

4: B̃ = B{1 ∶ k} ▷ Choose only first k basis functions

5: Calculate ∇Ja(x̃w,0;q) via (5.31) using B̃
6: p0 = −∇Ja(x̃w,0;q)
7: B0 = Ik

8: i = 0

9: repeat

10: Choose µi that satisfies (5.16) and (5.17)

11: x̃w,i+1 = x̃w,i+µipi

12: Calculate ∇Ja(x̃w,i+1;q) via (5.31) using B̃
13: hi =∇Ja(x̃w,i+1;q)−∇Ja(x̃w,i;q)
14: Calculate Bi+1 via (5.29)

15: i = i+1

16: pi = −Bi∇Ja(x̃w,i;q)
17: until ∥pi∥2 ≈ 0

18: x̃w,⋆ = x̃w,i

19: if k <Np then

20: xw,k+1 = [ x̃w,⋆
0
]

21: end if

22: end for

23: xw,⋆ = x̃w,⋆
24: return xw,⋆
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Figure 5.11: Order-recursive optimization process.

quantities set to BT = 128, κ = 2, Np = 32 basis functions, a rectangular amplitude envelope u(t),
and q = 5.

Figure 5.12 shows the converged values of Ja(xw,⋆;ξ ,q = 5) versus normalized sample delay

ξ /Ts, where we find that ξ /Ts = 0.5 provides the minimum value. Unsurprisingly, this condition

arises because delay ξ /Ts = 0.5 is equidistant (in time) from the extremes of range-straddling that

may occur. The subsample offset of ξ /Ts = 0.5 is used for the remainder of Section 5.3 and the cost

function dependence on ξ is removed for brevity (i.e. Ja(xw;q)).
To determine a sufficient number of basis functions to characterize the phase function ψ(t),

Figure 5.13 plots the cost function Ja(xw,⋆;q = 5) as a function of Np for the values BT ∈
{64,128,256,512,1024}. As before, κ = 2 and u(t) has a rectangular envelope. It is observed

that for each time-bandwidth product BT there are two regimes: one in which Ja(xw,⋆;q = 5)
decreases rapidly with increasing Np and then a ‘diminishing return’ region where Ja(xw,⋆;q = 5)
decreases much more slowly with increasing number of parameters. The transition between these

regions depends on BT but is found to be between Np = 6 and Np = 12 for the cases considered. For

the remainder of the optimization scenarios in this section, Np = 32 basis functions shall be used
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Figure 5.12: Converged values of Ja(xw,⋆;ξ ,q = 5) versus normalized offset ξ /Ts for CFM

waveforms using Legendre basis and rectangular amplitude envelope u(t) with BT = 128, κ = 2,

and Np = 32. ©2017 IET

which resides well within the second region.

5.3.4.2 Optimized CFM waveforms using Legendre Basis

Two waveforms of BT = 200 are optimized for an over-sampling of κ = 2 (which is practically

achievable for most systems) using Np = 32 Legendre polynomials as basis functions (polynomial

order of 64). The first waveform has a rectangular amplitude envelope (labeled OPT-R) and its

optimization uses q= 5 in (5.25). The second waveform has a 10% Tukey tapered envelope (labeled

OPT-T) and its optimization uses q = 2 in (5.25), which has been found to produce a lower overall

sidelobe level than q = 5 for this amplitude taper. Figure 5.14 displays the envelopes u(t) for

OPT-R and OPT-T. The Tukey amplitude taper results in a minimum SNR loss of 0.56 dB due to

the requirement of operating in the linear region of an amplifier.

Figure 5.15 shows the power spectra of OPT-R (blue) and OPT-T (red) waveforms after

convergence with the receiver sampled bandwidth ( fs = κB3dB = 2B3dB) indicated by the vertical

dashed lines. Note that by setting the relative peak-to-null width T /∆τ in the optimization, we

have effectively established the desired 3 dB bandwidth of both the rectangular and Tukey envelope
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Figure 5.13: Converged values of Ja(xw,⋆;q = 5) versus Np for CFM waveforms using Legendre

basis and rectangular amplitude envelope u(t) with BT = 64 (blue), BT = 128 (red), BT = 256

(yellow), BT = 512 (purple), and BT = 1024 (green). ©2017 IET

Figure 5.14: Amplitude envelopes u(t) versus normalized time (t/T) for OPT-R (blue) and OPT-T

(red).
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Figure 5.15: Power spectra ∣S( f )∣2 versus normalized frequency ( f /B3dB) of LFM-R (gray), LFM-

T (black), optimized rectangular envelope waveform OPT-R (blue), and optimized Tukey envelope

waveform OPT-T (red) for BT = 200, κ = 2, and Np = 32. Receiver sampled bandwidth indicated

by vertical dashed lines. ©2017 IET

waveforms. While the in-band spectral content of the two optimized waveforms is nearly identical,

the Tukey envelope case has a much sharper roll-off. This result is not unexpected since the abrupt

on/off transition of the rectangular envelope will exhibit a sin(x)/x spectral skirt. For comparison, a

rectangular-windowed linear FM (LFM-R) and Tukey-windowed linear FM (LFM-T) with similar

time-bandwidth products are included. While all the waveforms have similar 3 dB bandwidths, the

optimized waveform spectra clearly exhibit some spectral broadening.

Figure 5.16 displays the normalized instantaneous frequencies f (t)/B3dB for the four wave-

forms. Both of the optimized waveforms OPT-R and OPT-T take on a “sideways-S” curve

(much like Figure 5.8 from Section 5.2) whose general shape is known to produce low sidelobes

[50, 51, 57]. However, the flaring of f (t) at the beginning and ends of the optimized waveform

pulses is directly linked to the spectral broadening seen in Figure 5.15. The wide span of energy

in the frequency domain may not be a desirable effect for some radar applications, but it is found

to be necessary to lower sidelobe levels while maintaining a set range resolution.

While the optimization via (5.25) uses the hybrid continuous/discrete autocorrelation of
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Figure 5.16: Normalized instantaneous frequency ( f (t)/B3dB) versus normalized time (t/T) of

optimized rectangular envelope waveform OPT-R (blue), optimized Tukey envelope waveform

OPT-T (red), and LFM-R/LFM-T (gray) for BT = 200, κ = 2, and Np = 32.

Figure 5.17: Autocorrelation ∣r[ℓ]∣2 (in dB) via (5.23) versus normalized sample delay (ℓ/N) of

LFM-R (red) and the optimized rectangular envelope waveform OPT-R (blue) for BT = 200, κ = 2,

and Np = 32. Maximum straddled responses in dark blue and dark red, respectively. ©2017 IET
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Figure 5.18: Autocorrelation ∣r[ℓ]∣2 (in dB) via (5.23) versus normalized sample delay (ℓ/N) of

LFM-T (red) and optimized Tukey envelope waveform OPT-T (blue) for BT = 200, κ = 2, and

Np = 32. Maximum straddled responses in dark blue and dark red, respectively. ©2017 IET

(5.21) to account for straddling effects, it is easier to depict the final result using the discrete

autocorrelation of (5.23). The autocorrelation responses r[ℓ] (using (5.23)) are shown in Figure

5.17 for the optimized rectangular envelope waveform OPT-R (blue) and the rectangular-windowed

LFM-R (red). The maximum straddled responses from (5.21) are also shown in dark blue and dark

red, respectively, which represent the worst-case responses for these waveforms. The maximum

straddled case for OPT-R shows that the correlation response isn’t sensitive to subsample shifts

in the waveform. The maximum PSL of the optimized waveform is −44.75 dB, as compared to

−13.36 dB for the LFM-R case.

Figure 5.18 shows the autocorrelation responses r[ℓ] (using (5.23)) for the Tukey envelope

optimized waveform OPT-T (blue) and the Tukey-windowed LFM-T (red). The maximum

straddled responses from (5.21) are likewise shown in dark blue and dark red, respectively. The

waveform OPT-T achieves much lower sidelobes compared to the rectangular envelope OPT-R

from Figure 5.17 while only incurring 0.56 dB in SNR loss due to the tapering. As compared to

the LFM-T response, the energy close to the mainlobe is reduced for OPT-T, though sidelobes of

approximately −57 dB are observed at the autocorrelation edges. These peaks have been found to
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Figure 5.19: Ambiguity function ∣χD(τ, fD)∣2 (in dB) via (2.74) versus normalized delay (τ/T)
and normalized Doppler ( fD/B3dB) of the optimized rectangular envelope waveform (OPT-R) with

BT = 200 and Np = 32. ©2017 IET

appear when the 3 dB bandwidth B3dB is near to the sampling rate fs (κ ≤ 2) such that a majority

of the sampled bandwidth has significant spectral power.

Figures 5.19 through 5.22 depict the ambiguity functions (via (2.74)) for the OPT-R, LFM-

R, OPT-T, and LFM-T waveforms, respectively. Both optimized waveforms, OPT-R and OPT-T,

exhibit a delay-Doppler ridge similar to that of the LFM waveforms indicating these waveforms are

relatively Doppler tolerant. However, off of zero Doppler, the sidelobes in delay for the optimized

waveforms increase while the sidelobes for the LFM waveforms remain at a fairly consistent level

over all Doppler space. This change in performance is no surprise since the optimization is only

minimizing the zero-Doppler sidelobes thus does not penalize the increase in sidelobe level. Future

work will investigate a modification to the GISL cost function to include a range of fast-time

Doppler frequencies to limit this sidelobe degradation. A further investigation of the effects of

fast-time Doppler on nonlinear FM waveforms can be found in [57].
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Figure 5.20: Ambiguity function ∣χD(τ, fD)∣2 (in dB) via (2.74) versus normalized delay (τ/T) and

normalized Doppler ( fD/B3dB) of the LFM with rectangular envelope (LFM-R) with BT = 200.

Figure 5.21: Ambiguity function ∣χD(τ, fD)∣2 (in dB) via (2.74) versus normalized delay (τ/T) and

normalized Doppler ( fD/B3dB) of the optimized Tukey envelope waveform (OPT-T) with BT = 200

and Np = 32. ©2017 IET
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Figure 5.22: Ambiguity function ∣χD(τ, fD)∣2 (in dB) via (2.74) versus normalized delay (τ/T)
and normalized Doppler ( fD/B3dB) of the LFM with Tukey envelope (LFM-T) with BT = 200.

5.3.4.3 Hardware Loopback Measurements

The two optimized waveforms were tested in a loopback configuration using a Tektronix

AWG70002A arbitrary waveform generator (10-bit) and a Rohde & Schwarz FSW 26 real-time

spectrum analyzer (18-bit) to evaluate the degradation of the waveforms when filtered, sampled,

and represented with finite bit-depth. The bandwidth of the waveforms was set at B3dB = 50 MHz

with a pulse duration of T = 4 µs and transmitted at a center frequency of fc = 2 GHz. For κ = 2

over-sampling the receiver sampling rate was set to fs = 100 MHz.

Figure 5.23 shows the loopback response (red) and the theoretical discrete autocorrelation via

(5.23) (blue) for the rectangular envelope waveform OPT-R. The loopback measurement results in

0.0110 dB in mismatch loss due to either straddling or filtering, while the sidelobe responses are

nearly identical. Figure 5.24 likewise shows the loopback and theoretical autocorrelation responses

for the Tukey-tapered optimized waveform. A mismatch loss of only 0.0076 dB is observed,

however the sidelobe response of the loopback data is noticeably different from the lower sidelobes

of theoretical response which is due to RF distortion in the loopback configuration. The sidelobe
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Figure 5.23: Theoretical autocorrelation ∣r[ℓ]∣2 (blue) via (5.23) and hardware loopback correlation

(red) for the optimized rectangular envelope waveform OPT-R with B3dB = 50 MHz, T = 4 µs,

fs = 100 MHz (κ = 2), and Np = 32. ©2017 IET

degradation is not theorized by any straddling effects as shown in Figure 5.18 and thus must be

due to a mismatch in the model used to predict the correlation response. Note that a mismatch of

0.0076 dB indicates that the captured signal is nearly identical to that of the matched filter, though

the small difference is enough to alter the theorized correlation response.

To confirm that the discrepancies between the correlation plots in Figure 5.24 are in fact due

to the RF distortion, the distortion of the waveform due to up-conversion, down-conversion, linear

filtering, and finite bit-depths of the loopback setup is approximated and applied to the continuous-

time waveform model in (5.1) for the Tukey envelope optimized waveform OPT-T. The complex

baseband waveform s(t) is first up-converted to the passband representation spb(t) via (2.1)5. The

passband signal is then quantized using a 10-bit model to capture the DAC quantization error. A

btx-bit DAC can generate 2btx unique voltage levels, thus, assuming that the voltage range of spb(t)
fully fills the dynamic range of the DAC, the quantized passband signal is represented as

5An AWG transmit sampling rate of 8 GHz is used to represent the continuous-time signal which, for a center

frequency of fc = 2 GHz, is high enough to ignore the distortion effects of the transmit Nyquist zones and sinc-shaped

frequency roll-off due to the zero-order hold of the AWG. Therefore, the transmitted continuous-time waveform spb(t)
(before quantization) can be approximated as an up-converted version of the ‘ideal’ baseband signal s(t).
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Figure 5.24: Theoretical autocorrelation ∣r[ℓ]∣2 (blue) via (5.23) and hardware loopback correlation

(red) for the Tukey envelope optimized waveform OPT-T with B3dB = 50 MHz, T = 4 µs, fs = 100

MHz (κ = 2), and Np = 32. ©2017 IET

s′pb(t) =
⎢⎢⎢⎢⎢⎣

spb(t)
max

t
{spb(t)}−min

t
{spb(t)}(2btx −1)⎤⎥⎥⎥⎥⎥

max
t
{spb(t)}−min

t
{spb(t)}

2btx −1
, (5.32)

where ⌊●⌉ rounds to the nearest integer and btx = 10 bits. The signal from (5.32) is then

down-converted into its in-phase and quadrature components via (2.137) and (2.138), low-passed

filtered6, and sampled at 100 MHz which is denoted as the complex baseband sequence, s′[n].
Finally, assuming that the sampled voltage range in s′[n] fully fills the brx-bit ADC dynamic range,

the signal is quantized as

s′′[n] = ⎢⎢⎢⎢⎢⎣
s′[n]

max
n
{s′[n]}−min

n
{s′[n]}(2brx −1)⎤⎥⎥⎥⎥⎥

max
n
{s′[n]}−min

n
{s′[n]}

2brx −1
, (5.33)

where brx = 18 bits. The estimated RF distortion process of the ideal signal s(t) using this

approximate model is summarized in Figure 5.25.

6The down-converted baseband signal is resampled from 8 GHz to 100 MHz using a 100 point, linear-phase, FIR

anti-aliasing filter. This filter is generic and is not derived from the true anti-aliasing filter used in the RSA.
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Figure 5.25: Estimated RF distortion model of idealized signal s(t).

Figure 5.26: Correlation response with estimated loopback distortion (blue) and hardware

loopback correlation (red) for the Tukey envelope optimized waveform OPT-T with B3dB = 50

MHz, T = 4 µs, fs = 100 MHz (κ = 2), and Np = 32. ©2017 IET

Figure 5.26 shows the correlation response of the loopback test (red) (same as in Figure 5.24)

and the estimated distorted response when correlating the sequence s′′[n] with the matched filter

s(ξ =0.5) (blue). The correlation responses now resemble one another much more closely than was

observed in Figure 5.24. In the same manner as the ultra-low sidelobes achieved in [130], this result

indicates that more knowledge of the distortion imposed by the RF transmit/receive chain needs to

be incorporated into the waveform model to realize the fidelity necessary to achieve the promised

performance gains of advanced waveform design and, by extension, waveform diversity [3].

Figure 5.27(a) shows the estimated distorted response as shown in Figure 5.26 with both the
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linear filtering and quantization effects. Figure 5.27(b) shows the estimated response when only

the linear filtering is applied to the model in Figure 5.25 (no quantization). The fact that both

responses maintain a similar sidelobe degradation (as compared to the ideal response in Figure

5.24) shows that the main source of sidelobe distortion is caused by the anti-aliasing filter used

prior to sampling on receive. The lack of this filter model in the optimization process limits the

fidelity needed to achieve the predicted correlation response. To improve on these results, system

specific optimization is needed to capture the particular distortion characteristics of the RF chain.

5.4 Incorporation of Hardware Distortion Model into CFM Waveform

Optimization

Up to this point the GISL metric is defined using an ideal correlation function derived from the

CFM waveform model, (5.1) – (5.3). The properties of the CFM waveform model (with appropriate

choice of basis B and amplitude envelope u(t)) allow for the assumption of minimal distortion to

the signal structure when passed through the RF chain thus is a system considerate waveform

design framework. The minimization of these “ideal” metric definitions provides a means to

optimize CFM waveforms absent of any knowledge of specific hardware that onto which they

would be implemented while still achieving good loopback correlation performance (Section 5.3).

However, if the distortion caused by a given RF chain can be characterized, any deleterious effects

to the correlation response can be mitigated (if not improved upon) through optimization, thus

presenting a method for system specific emission/waveform development.

The optimization of radar waveforms with knowledge of transmit hardware effects has been

considered in the past in [62,63,173,174] using a greedy-search waveform optimization scheme to

minimize either the waveform PSL or ISL. Here, the GISL metric is redefined using a correlation

function which incorporates a distortion model derived from three different RF loopback chain

configurations with varying degrees of nonlinearity. The updated “model-in-the-loop” GISL metric

is then minimized using the BFGS quasi-Newton approach which has the benefit of updating the
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Figure 5.27: Estimated distortion of correlation response using: (a) Both linear filtering and

quantization errors and (b) only linear filtering.
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entirety of the code vector xw per iteration as opposed to the greedy approach from [62,63,173,174]

which is limited to an update of a small number of values in xw due to massive computation

requirements of combinatorial evaluations of the cost function.

In Section 2.2.2 different distortion models were introduced including: the ideal model, which

models the forward voltage on the transmit chain as a scalar of the analytical waveform Spb( f );
the linear-only model, which models the distortion caused by the transmit chain as a linear filter

that alters the signal structure; and nonlinear distortion modeling techniques, such as Weiner-

Hammerstein [68]. Here, the linear model of three different loopback configurations of increasing

nonlinearity are estimated and included in the GISL metric so that the distortion is accounted

for in the waveform optimization process. Note that this technique is reminiscent of waveform

predistortion, where an inverse model of the RF distortion is applied to the waveform such that

the desired response is seen after the distortion occurs. However, predistortion typically alters the

modulus of the waveform thus may not be admissible in some systems. Here the waveform is

designed with the distortion model “in-the-loop” thus inherently accounting for the RF distortion

without requiring predistortion.

The hardware distortion model for the three loopback configurations is estimated using time-

shifted impulse transmit excitations that effectively increase the sampling rate of the transmit

model beyond that of the receiver sampling rate (more details in Section 5.4.2). The distortion

model allows for the prediction of the waveform structure at the receiver which is then used to

generate the modified correlation function from (5.21). The bandlimiting caused by the model

produces a loss in waveform energy outside the bandwidth of the receiver anti-aliasing filter.

Typically a constraint would be needed (thus requiring a constrained optimization algorithm)

to limit this loss, however by using the Legendre basis and order-recursive structure discussed

in Section 5.3, this constraint is not needed as the waveforms remain spectrally-contained thus

limiting the loss due to filtering.

Once optimized, the CFM waveforms are captured in a loopback setting using the same RF

chains that were modeled to compare the theoretical responses to the captured signal. It is found
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that the linear distortion models are an effective means to predict the signal structure at the

receiver even when significant transmitter nonlinearities are present (multiple amplifiers, one in

saturation)7. Furthermore, the idealized OPT-R and OPT-T correlation responses (Figures 5.17

and 5.18) are improved upon using the same waveform framework (BT = 100, κ = 2, Np = 32) by

leveraging the inherent pulse-shaping caused by the RF bandlimiting.

5.4.1 Model-in-the-loop Cost Function Formulation

The configuration that is considered here is a loopback mode where the transmit chain is directly

connected to the receive chain. Therefore, the only hardware components not characterized in this

setup are the transmit/receive antennas. In this configuration, the distortion and filter for both the

transmit and receive chains are characterized using a single complex-baseband filter model WL( f ),
which can be defined as the combination of the transmit linear distortion response Wtx( f ) from

(2.112), and the receive distortion response Wrx( f ) from (2.140) as

WL( f ) =Wtx( f + fc)Wrx( f ). (5.34)

Recall that the transmit filter Wtx( f ) is defined at passband while the receive filter Wrx( f ) is defined

at baseband. Assume that the filter WL( f ) is peak normalized (in frequency) such that no frequency

component is amplified, thus the distorted received complex-baseband response can be ideally

modeled as the noiseless signal

SL( f ) =√2Spb( f + fc)WL( f ). (5.35)

The
√

2 ensures that SL( f ) and S( f ) have similar scaling thus can be directly compared. By

estimating WL( f ), the expected distortion caused by the RF components can be included in the

GISL metric. In the time domain SL( f ) is represented as

7Both amplifiers that are used are class A, solid-state amps designed to run in the linear region of gain curve. To

avoid damage the saturated amplifier was amplified only 1 dB past its 1 dB compression point, but was still found to

produce significant nonlinearities
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sL(t) =√2

∞̂

−∞
spb(ζ)e− j2π fcζ wL(t −ζ)dζ , (5.36)

where WL( f ) =F{wL( f )}. The loss associated with filtering out-of-band spectral content in s(t)
can be defined as

LL (dB) = 10log10{∥s(t)∥22}−10log10{∥sL(t)∥22}. (5.37)

Note that (5.37) is a coarse estimate of the absolute loss caused by the filtering process as

the peak-normalization of WL( f ) is an ad-hoc method for comparing sL(t) and s(t). Though

(5.37) is sufficient in characterizing the relative losses due changing the waveform throughout the

optimization process.

In the Sections 5.2 and 5.3, the ideal waveform s(t) was sampled to construct the match filter.

However, because is ideal response s(t) is altered as it traverses through the RF chain, the filter

defined using this method would no longer be matched to the expected response. Therefore, the

expected receive signal sL(t) is sampled (as in (5.22)) for the matched filter. Assuming the filter

wL(t) has an impulse response duration of TL over the interval t ∈ [0,TL], the signal sL(t) is of

duration T +TL and the number of samples kept for the matched filter is NL = ⌊ fs ⋅(T +TL)⌋. Thus

define the complex-weighted impulse train corresponding to the matched filter as

s̃L(t;ξ) = NL−1∑
n=0

sL(nTs+ξ)δ(t −(nTs+ξ)), (5.38)

for ξ ∈ [0,Ts], the subsample shift. Thus modified correlation response (similar to (5.21)) for use

in the GISL metric is

r̃L(τ;ξ) = 1∥sL(ξ)∥22
∞̂

0

s̃∗L(t −τ;ξ)sL(t)dt, (5.39)

where sL(ξ) = [sL(ξ) sL(Ts +ξ) ⋯ sL((NL −1)Ts +ξ)]T is the discretized form of the matched

filter. The updated GISL metric containing the linear model of the of the combined transmit and
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receive chains from (5.34) is

JL(xw;ξ ,q) =
⎛⎜⎜⎜⎜⎝

ˆ T

∆τ
∣r̃L(τ;ξ)∣q dτ +ˆ −∆τ

−T

∣r̃L(τ;ξ)∣q dτ

ˆ ∆τ

−∆τ
∣r̃L(τ;ξ)∣q dτ

⎞⎟⎟⎟⎟⎠

1
q

. (5.40)

Note that due to the inclusion of the distortion model, the cost function (5.40) contains a lossy

model of the waveform. It is possible that the optimization problem would need to be reformulated

to account for this loss by incorporating an inequality constraint into the design to limit the loss LL

from (5.37), thus necessitating the use of constrained optimization algorithms such as sequential

quadratic programming or nonlinear interior point methods [79]. However, the results presented

in this section did not require a constraint as the loss never exceeds 0.23 dB after optimization

relative to the loss of the corresponding LFM benchmark case.

5.4.2 Hardware Distortion Model Estimation

The waveforms are generated using a Tektronix AWG70002A arbitrary waveform generator

(AWG) and received using the IQ mode of a Rohde and Schwarz FSW 26 real-time spectrum

analyzer (RSA) which down-converts the passband signal to complex baseband. The approximate

linear model was estimated for three different hardware configurations (with increasing nonlinear-

ity): case 1) the AWG and RSA are directly connected, case 2) an amplifier is placed in the RF

chain, and case 3) two amplifiers are placed in loop with one driven into saturation. Figure 5.28

displays the three hardware configurations and Table 5.1 has a detailed list of every component

used in the hardware loopback tests. Attenuators were used to control the power level of the signal

throughout the chain to ensure that no damage was caused to any component.

The linear frequency response of any systems can be estimated via multiple difference methods

including an impulse, swept spectrum, or least-squares (LS) or minimum mean-square error

(MMSE) techniques. Here, the impulse response is estimated via an impulse generated via the

AWG and captured at the RSA. This method gives the most direct estimate of the filter wL(t) as
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Figure 5.28: Three hardware configurations with varying nonlinearity. The response distortion of

which is estimated for model-in-the-loop CFM waveform optimization.

Table 5.1: Component list used in loopback testing.

Tag Description

AWG Tektronix AWG70002A arbitrary waveform generator

RSA Rohde & Schwarz FSW 26 real-time spectrum analyzer

CAB1 Pasternack PE300-36 cable (3 ft.)

CAB2 Minicircuits 086-12SM+ cable (12 in.)

CAB3 Pasternack PE300-72 cable (6 ft.)

AMP1 Mini-circuits TVA-82-213 wideband amp

AMP2 Mini-circuits ZHL-42W+ medium-HPA

ATT1 Minicircuits 20 dB attenuator

ATT2 JFW 50BR-008 variable attenuator (set to 22 dB)
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the order of the filter does not need to be chosen.

For an ideal impulse response, the complex baseband, continuous-time signal incident on the

in-phase and quadrature chains of the RSA (ignoring propagation delays) is approximately equal

to the filter wL(t),

y(t) ≈
∞̂

−∞
δ(ζ)e− j2π fcζ wL(t −ζ)dζ

≈wL(t).
(5.41)

For a sampling period of Ts, assume the RSA samples at the time instants {0,Ts,2Ts, . . .} thus the

distortion filter is estimated at the time instants, {wL(0),wL(Ts),wL(2Ts), . . .}. By shifting8 the

generated impulse by some amount td where 0 ≤ td < Ts, complex baseband, continuous-time signal

incident on the in-phase and quadrature chains of the RSA is now approximated as

y(t) ≈
∞̂

−∞
δ(ζ + td)e− j2π fcζ wL(t −ζ)dζ

≈wL(t + td)e j2π fctd .

(5.42)

Thus by sampling at time instants {0,Ts,2Ts, . . .}, the distortion filter is sampled at the points

{wL(td),wL(Ts + td),wL(2Ts + td), . . .}. Note that the additional phase shift e j2π fctd must be

accounted for when forming the estimate of the distortion filter. We would like to achieve the

highest fidelity linear distortion model to incorporate as much reality into the optimization process.

Therefore this method of shifting the transmit signal to sample different points within wL(t) is

leveraged to achieve a highly sampled version of the distortion model wL(t).
The finest duration the transmit signal can be shifted in the AWG is 40 ps = 1

25 GS/s , where 25

GS/s is the maximum transmit sampling rate of the AWG thus is the granularity of the filter estimate

for this experiment. Here, the system parameters are the same as loopback specifications discussed

8Note that this shift may not be possible for some transmit scenarios (e.g. many software-defined radios (SDRs)

operate at transmit sample rates equal to the receiver sampling rate and utilize DAC filtering and analog up-conversion).

However the Tektronix AWG70002A has a transmit sampling rate up to 25 GHz thus is high enough to approximate

“continuous time” for the operating frequencies that are considered.
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in Section 5.3: center frequency fc = 2 GHz and receiver sampling rate of fs = 100 MHz. Thus, a

distortion filter model estimated at a sampling rate of 25 GHz is essentially “continuous” for all

intents and purposes. Note that it is possible that the distortion filter model could be estimated

at a much lower sampling rate, though here it was maximized to provide that highest degree of

sensitivity to the filter model.

Define ML = fs,tx

fs
as the ratio of the transmit sampling rate fs,tx and the receiver sampling rate fs.

Therefore ML shifted impulses are needed to represent the distortion model at the higher sampling

rate. An impulse train containing the shifted impulses can be constructed as

simp(t) = ML−1∑
m=0

δ(t −m ⋅ (Tsep−Ts,tx)) (5.43)

where Ts,tx is the transmitter sampling period and Tsep > TL is the separation between the delta

functions (without the Ts,tx shift). Note that Tsep is chosen such that fsTsep is an integer so

that the received signal y(t) is sampled at the points pertaining to the distortion filter model

{wL(0),wL(Ts,tx),wL(2Ts,tx), . . .}.
The complex-baseband, signal incident on the receiver is then approximated as the summation

y(t) ≈
∞̂

−∞
simp(ζ)e− j2π fcζ wL(t −ζ)dζ

≈ ML−1∑
m=0

wL(t −m(Tsep−Ts,tx))e− j2π fcm(Tsep−Ts,tx)

(5.44)

where the interval

y(mTsep ≤ t ≤ (m+1)Tsep) ≈wL(t −m(Tsep−Ts,tx))e− j2π fcm(Tsep−Ts,tx) (5.45)

corresponds to the mth time and phase shifted distortion model for m ∈ {0,1, . . . ,ML−1}. Sampling

y(t) at the points {0,Ts,2Ts, . . .}, the filter estimate ŵ(t) sampled at fs,tx = 25 GHz can be

constructed as
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ŵL(mTs,tx+nTs) = y(nTs+mTsep)e j2π fcm(Tsep−Ts,tx) (5.46)

for m ∈ {0,1, . . . ,ML−1} and n ∈ {0,1, . . . ,NL−1}. Thus the estimate of the discretized distortion

filter samples are collected as {ŵL(0),ŵL(Ts,tx), . . . ,ŵL(Ts),ŵL(Ts + Ts,tx), . . . ,ŵL(TL − Ts,tx)}
which is used to approximate continuous time in the cost function (5.40).

Note that the “impulse” used to estimate the filter wL(t) is a rectangular pulse of a 40 ps

duration which places a slight sinc-shape on top of the estimated filter spectrum. However, over

the receive band that is considered ( fc = 2 GHz and fs = 100 MHz), the response varies only 0.0086

dB due to the additional sinc envelope thus is considered negligible and ignored. For each loopback

scenario, the impulse response was coherently integrated using 2000 trials due to the low amount

of energy present for this estimation method. Figure 5.29 shows the baseband frequency response

WL( f ) for each of the three configurations introduced in Figure 5.28.

5.4.3 Model-in-the-loop Waveform Optimization via Quasi-Newton Method

The minimization of cost function JL(xw;ξ ,q) from (5.40) is different than that of Sections 5.2 and

5.3 as the distortion filter model is included in the formation of the correlation function r̃L(τ;ξ).
Thus, depending on the algorithm and initialization, the parameters xw could enter regions of

the cost function surface that correspond to undesirable losses (LL in (5.37)) due to the filtering

process. In other words, the waveform could have significant out of band energy that gets filtered

out in loopback. There are two methods of avoiding these regions of the cost function surface:

1) by constraining the optimization problem such that these regions are not possible to converge

on, or 2) by optimizing the waveform in an unconstrained manner but choose an initialization,

waveform model, and optimization method that naturally do not not place significant energy out

of band. It has been found that if the Legendre basis used for the CFM model and JL(xw;ξ ,q) is

minimized via BFGS quasi-Newton descent in an unconstrained formulation then the converged

solutions do not exhibit significant losses.
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Figure 5.29: Estimated hardware frequency response of configuration 1 (blue), configuration 2

(red), and configuration 3 (yellow) for (a) full-band with detailed inset and (b) view of filter roll-

off.
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Just as in Section 5.3, two waveforms are optimized for each loopback configuration: one

with a rectangular envelope (OPT-R) and one with a Tukey envelope (OPT-T) (see Figure 5.14).

The waveforms are optimized for a time-bandwidth of BT = 100 and receiver over-sampling factor

κ = 2. Thus for a receiver sampling rate of fs = 100 MHz, the 3 dB bandwidth of the waveforms

is B3dB = 50 MHz and the pulse duration is T = 2µs. The order-recursive optimization process

illustrated in Figure 5.11 with BFGS quasi-Newton method (Algorithm 5.3) was implemented

using the Legendre polynomial basis and terminated after the coefficients for Np = 32 polynomials

are optimized (order 64 polynomial). The gradients of the cost function JL(xw;ξ ,q) were

calculated using the finite-difference method from (5.31). The cost function norm q was set to

be the ISL of the modified correlation function (q = 2) as it was found to produce to best results

for this scenario, and the subsample shift ξ is again chosen to be 0.5Ts. These parameters are

deliberately chosen such that they are similar to those of Section 5.3 such that the results can be

compared to illustrate the improvement in performance when incorporating a system model into

the design9

Figure 5.30 shows the value of the cost function JL(xw;ξ = 0.5Ts,q = 2) per iteration for (a)

OPT-R and (b) OPT-T and RF configuration #1 (top row), configuration #2 (middle row), and

configuration #3 (bottom row). The black dots represent an increase of the polynomial order

within the order-recursive process. The cost function value for the OPT-T waveform decreases

very little after Np = 10 Legendre polynomials. This effect is likely due to the Tukey envelope

not requiring the higher order polynomials to achieve a low sidelobe level whereas the OPT-R

waveform utilizes these polynomials to achieve a higher fidelity phase function at the beginning at

ends of the waveform. Also of note is that configurations #2 and #3 achieve a lower cost function

value for both the OPT-R and OPT-T waveforms mostly likely caused by the differences in the

frequency responses (see Figure 5.29).

The loss LL (dB) from (5.37) was calculated for all three hardware configurations and both

OPT-R and OPT-T waveforms. However, because the loss is a coarse estimate of the actual, the

9The difference between the waveforms optimized in Section 5.3 and the waveforms optimization in Section 5.4 is

the reduction in pulse duration from 4 µs to 2 µs thus halving the time-bandwidth product to BT = 100.
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Figure 5.30: Cost JL(xw;ξ = 0.5Ts,q = 2) (in dB) for OPT-R (blue) and OPT-T (red) and

RF configuration #1 (top row), configuration #2 (middle row), and configuration #3 (bottom

row). Black dots indicate an increase in Legendre polynomial order using the order-recursive

optimization structure.
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Table 5.2: Table of loss ratio between LFM-R and OPT-R and loss ratio between LFM-T and

OPT-T

losses for the OPT-R and OPT-T cases are calculated relative to the losses for LFM waveforms

with the corresponding amplitude envelope. The LFM cases represent one of the more spectrally

contained and ubiquitous waveform cases thus the loss relative to the loss of the LFM waveform is

a meaningful quantity. The losses of the OPT-R and OPT-T cases relative to their respective LFM

cases is shown in Table 5.2. While all of the optimized waveforms do increase in loss compared

to their LFM counterparts, the maximum loss is 0.2232 dB for OPT-T in configuration #3 which

is only a 5% energy loss compared to the LFM-T case. Note that if the loss is ever of concern, a

constraint can be implemented which would require the use of constrained nonlinear optimization

techniques [79].

The normalized instantaneous frequency versus time for both the OPT-R (blue) and OPT-T

(red) waveforms and configuration #1 (top), configuration #2 (middle), and configuration #3

(bottom) are shown in Figure 5.31. The OPT-R waveform has a familiar “sideways-S” curve

shape for that has been noted in previous sections for all three configurations. However, the OPT-

T waveform has an interesting response where the frequency content at the edges of the pulse

traverse rapidly throughout the band of the waveform. Recall that at these points the envelope of

the waveform is in the rise/fall regions of the Tukey shape thus these regions may not have much

of an effect on the correlation response.

Figure 5.32 shows the spectral content of the OPT-R (blue) and OPT-T (red) waveforms for all

three RF configurations using the swept mode of the RSA. A majority of the spurious signals and

harmonics are labeled. In configuration #1, the harmonics of the fundamental are subdued with the

second harmonic at −50 dB down from the fundamental. A spurious tone occurs in the AWG at

fs,tx/2 that causes images to occur at 10.5 and 14.5 GHz. The nonlinear behavior in configurations
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Figure 5.31: Normalized instantaneous frequency ( f (t)/B3dB) vs. time (in µs) of optimized

waveforms OPT-R (blue) and OPT-T (red) for RF chain in configuration #1 (top), configuration #2

(middle), and configuration #3 (bottom).
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Figure 5.32: Spectral content (before down-conversion and anti-aliasing filter) of OPT-R trans-

mission (blue) and OPT-T transmission for RF chain in configuration #1 (top), configuration #2

(middle), and configuration #3 (bottom) captured using swept mode of RSA.
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#2 and #3 is apparent in the increase in harmonic power level. The TVA-82-213 wideband amp

has a frequency response up to 27 GHz thus retains a majority of the nonlinear artifacts at the RSA

for configuration #2. The ZHL-42W+ amplifier has a specified operating frequency up to 4 GHz

thus filters out a majority of the higher frequency nonlinear responses for configuration #3. Note

that the OPT-T waveform does have a non-uniform time envelope though spectral response does

not exhibit spectral regrowth when put through multiple amplifier stages. This result is due to the

Tukey envelope structure which is inherently robust to spectral regrowth effects. Thus, it can be

assumed that the signal structure of the in-band content does not change significantly due to the

saturated amplifier (see Section 2.2.2.2).

Figures 5.33 through 5.35 show the theoretical envelope responses of the (a) OPT-R and (c)

OPT-T waveforms using the estimated linear model wL(t), and the actual loopback captures of the

of the (b) OPT-R and (d) OPT-T waveforms for all three configurations, respectively. Recall that

the OPT-R waveform is generated as a constant amplitude waveform and the OPT-T waveform is

generated with only a Tukey taper, therefore the envelope distortion seen in Figures 5.33 – 5.35 is

solely caused by RF components. For all three configurations, the linear model well approximates

the captured loopback response of the three configurations.

Table 5.3: Angle ∣cos θ̄ ∣2 between sL(t) and y(t) and also s(t) and y(t)

The squared-cosine angle is defined as a scaled inner product between two signals that measure

the signal correlation/similarity. The inner product takes into account the analytical energies

contained in both signals to normalized the result such that it lies between 0 (orthognal) and 1

(maximum) (only occurs if the signals are scaled replicas of the same signal). Define the squared-

cosine angle (denoted ∣cos θ̄ ∣2) between two arbitrary, finite energy signals a(t) and b(t) as
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OPT-R (theoretical) OPT-R (loopback)

OPT-T (theoretical) OPT-T (loopback)

Figure 5.33: Amplitude envelopes for RF chain in configuration #1: (a) the theoretical OPT-R

response using distortion model, (b) the loopback captured OPT-R response, (c) the theoretical

OPT-T response using distortion model, and (d) the loopback captured OPT-T response.
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OPT-R (theoretical) OPT-R (loopback)

OPT-T (theoretical) OPT-T (loopback)

Figure 5.34: Amplitude envelopes for RF chain in configuration #2: (a) the theoretical OPT-R

response using distortion model, (b) the loopback captured OPT-R response, (c) the theoretical

OPT-T response using distortion model, and (d) the loopback captured OPT-T response.

314



OPT-R (theoretical) OPT-R (loopback)

OPT-T (theoretical) OPT-T (loopback)

Figure 5.35: Amplitude envelopes for RF chain in configuration #3: (a) the theoretical OPT-R

response using distortion model, (b) the loopback captured OPT-R response, (c) the theoretical

OPT-T response using distortion model, and (d) the loopback captured OPT-T response.
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∣cos θ̄ ∣2 = 1∥a(t)∥2
2
∥b(t)∥2

2

RRRRRRRRRRRRR
∞̂

−∞
a∗(t)b(t)dt

RRRRRRRRRRRRR
2

. (5.47)

This expression can be used to quantify the quality of the model estimation sL(t) relative to the

loopback capture y(t) for both OPT-R and OPT-T and all configurations. Modifying the expression

in (5.47) to find the maximum correlation between sL(t) and y(t) yields the expression

∣cos θ̄ ∣2 = 1∥sL(t)∥22∥y(t)∥22 max
τ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
RRRRRRRRRRRRR
∞̂

−∞
s∗L(t −τ)y(t)dt

RRRRRRRRRRRRR

2⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (5.48)

Note it is assumed that the receive signal y(t) is cropped to exclude any noise outside of the

duration sL(t). Table 5.3 shows that squared-cosine angle between the estimated response sL(t)
and the receive data y(t). Also included in the results is the squared-cosine angle between the

waveform model s(t) (i.e. what is loaded on the AWG) and the receive signal y(t). Recall that

the square-cosine angle has a maximum of unity only when both signals are scaled copies of one

another. The match to y(t) for sL(t) is within 0.06% of a perfect match for all tested configurations

while the waveform s(t) matches approximately 97.5% on average. A match of 97.5% does not

result in a significant mismatch loss, however differences between the two signals can affect the

expected sidelobe response of the correlation function. In Section 5.3.4.3, the loopback correlation

sidelobes deviated from the expected sidelobe response for the OPT-T waveform (Figure 5.24).

The small mismatch in square-cosine angle is precisely the reason for the difference in sidelobe

response between the theoretical and loopback correlation functions. However by incorporating

a model of the distortion a higher fidelity model of the expected signal can be evaluated during

optimization.

Figures 5.36 through 5.38 show the power spectrums of the optimized waveform for OPT-R, (a)

∣S( f )∣2 (before application of model) and (b) ∣SL( f )∣2 (after application of model), and for OPT-T,

(c) ∣S( f )∣2 (before application of model) and (d) ∣SL( f )∣2 (after application of model) for all three

hardware configurations. The vertical lines indicate the sampling window of the RSA. The OPT-R

waveforms for all three configurations provided a similar smooth “Gaussian-like” spectral shape.
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Figure 5.36: Spectral content of OPT-R waveform (a) ∣S( f )∣2 (model not applied) and (b) ∣SL( f )∣2
(model applied) and spectral content of OPT-T waveform (c) ∣S( f )∣2 (model not applied) and (d)∣SL( f )∣2 (model applied) in loopback configuration #1. Sampled window indicated by the vertical

dashed lines.
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Figure 5.37: Spectral content of OPT-R waveform (a) ∣S( f )∣2 (model not applied) and (b) ∣SL( f )∣2
(model applied) and spectral content of OPT-T waveform (c) ∣S( f )∣2 (model not applied) and (d)∣SL( f )∣2 (model applied) in loopback configuration #2. Sampled window indicated by the vertical

dashed lines.
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Figure 5.38: Spectral content of OPT-R waveform (a) ∣S( f )∣2 (model not applied) and (b) ∣SL( f )∣2
(model applied) and spectral content of OPT-T waveform (c) ∣S( f )∣2 (model not applied) and (d)∣SL( f )∣2 (model applied) in loopback configuration #3. Sampled window indicated by the vertical

dashed lines.
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OPT-R (theoretical) OPT-R (loopback)

OPT-T (theoretical) OPT-T (loopback)

Figure 5.39: Correlation responses in configuration #1 of (a) the theoretical OPT-R autocor-

relation using distortion model, (b) the OPT-R loopback correlation, (c) the theoretical OPT-T

autocorrelation using distortion model, and (d) the OPT-T loopback correlation.

The OPT-T waveforms seem to have more control over the spectrum near the f = ± fs
2 boundary

thus place energy near the edges of the band to achieve a lower cost function value (and thus lower

correlation sidelobes) by accounting for the filter roll-off. Note that while this is technically energy

that is being filtered out, recall that from Table 5.2 the loss never exceeded 0.2232 dB compared to

the corresponding LFM benchmark cases.

The expected autocorrelation and loopback cross-correlation responses for both the OPT-R

and OPT-T waveform for the three hardware configurations are shown in Figures 5.39 through

5.41, respectively. Recall that the waveform parameters chosen in this section are similar
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OPT-R (theoretical) OPT-R (loopback)

OPT-T (theoretical) OPT-T (loopback)

Figure 5.40: Correlation responses in configuration #2 of (a) the theoretical OPT-R autocor-

relation using distortion model, (b) the OPT-R loopback correlation, (c) the theoretical OPT-T

autocorrelation using distortion model, and (d) the OPT-T loopback correlation.
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OPT-R (theoretical) OPT-R (loopback)

OPT-T (theoretical) OPT-T (loopback)

Figure 5.41: Correlation responses in configuration #3 of (a) the theoretical OPT-R autocor-

relation using distortion model, (b) the OPT-R loopback correlation, (c) the theoretical OPT-T

autocorrelation using distortion model, and (d) the OPT-T loopback correlation.
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as those chosen in Section 5.3 (half the time-bandwidth product). Comparing the theoretical

responses in Figures 5.39 through 5.41 ((a) for OPT-R and (c) for OPT-T) to the theoretical

responses in Figures 5.17 and 5.18 from Section 5.3, the overall sidelobe levels are lower for

the waveforms optimized incorporating the hardware knowledge into the optimization with half

the waveform dimensionality. The OPT-R waveforms have a lower over all sidelobe floor and

the OPT-T waveforms no longer have the large lobes at the edges of the autocorrelation function.

Therefore, for these three hardware configurations, the system knowledge incorporated into the

cost function is leveraged during the optimization to produce better performing waveform (in terms

of autocorrelation). The loopback captures of the OPT-R and OPT-T waveforms (respectively

shown in (b) and (d)) closely match that of the expect correlations at points close to −100 dB

below the peak of the response for all three configurations. The estimated linear model, which

provided a > 99% match between the expected and actual loopback captures, exhibits extreme

levels of sensitivity in waveform design to achieve predictable sidelobe responses at these low

power levels.

The same method used to emulate a higher sampling rate at the receiver during the linear

distortion estimation was used to synthetically increase the sampling rate of the loopback capture

of both waveforms and all three loopback correlations. This increased sampling rate allows for

creation of the modified correlation function from (5.39) using the loopback captured results

to compare against the predicted modified correlation function used during the optimization.

Figures (5.42) through (5.44) show the (a) expected (using wL(t)) and (b) loopback OPT-R

modified correlation function as well as the (c) expected and (d) loopback OPT-T modified

correlation function for the three different hardware configurations, respectively. Recall that this

modified correlation function includes all straddled responses of the waveforms including the

autocorrelation response. The base of the mainlobe for both theoretical correlation functions in

Figure 5.42 bubbles outward at approximately −35 dB. This effect is not seen in the same responses

for configurations #2 and #3 which might be the reason for the lower converged cost function

value from (5.30) in these two scenarios . This difference is likely tied to the disparity in the
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distortion filter frequency responses in Figure 5.29 where configuration #1 has a slightly different

response over the passband of the filter. The modified correlation responses using the captured

loopback signal match well to the expected responses for configurations #1 and #2 (Figures 5.42

and 5.43), however a slight degradation between the expected and actual correlation responses can

be seen for configuration #3 (Figure 5.44). This result is likely due to nonlinear distortion effects

caused by the saturated amplifier that cannot be modeled using the linear distortion model. For

larger nonlinear distortions caused by highly nonlinear but more efficient class B or class C HPAs,

a more sophisticated model must be used to fully characterize the effects of RF distortion (see

Section 2.2.2 for more information on nonlinear HPA distortion).

5.5 Summary and Conclusions

The coded frequency modulated (CFM) waveform model is a continuous-time waveform definition

whose phase function ψ(t) can be represented as a weighted sum of Np continuous-time basis

functions. Therefore, the CFM waveform is parameterized using a discrete set of parameters thus

lending itself to gradient-based optimization methods [161, 162]. To the author’s knowledge, the

work presented in this chapter, along with the corresponding publications [161, 162], are the first

instances of continuous-time waveform optimization using gradient-based methods.

A generalized integrated sidelobe (GISL) metric for FM waveforms is introduced that

encapsulates both the ISL and PSL metrics into one metric by taking the q-norm ratio of the

autocorrelation sidelobes to the autocorrelation mainlobe, where q = 2 corresponds to ISL and

q →∞ corresponds to PSL. It is shown that by leveraging the relationship between the pulse

compression ratio and time-bandwidth product from (2.69), the time-bandwidth product of the

optimized waveform can be effectively set without explicit shaping of the waveform spectrum

through determination of the corresponding normalized peak-to-null mainlobe width ∆τ/T of the

autocorrelation and application within the GISL metric.

In Section 5.2, nonlinear conjugate gradient descent was used to minmize the GISL metric

according to the PCFM basis described in Section 2.1.2.4 [38]. It was found that the autocorrelation
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OPT-R (theoretical) OPT-R (loopback)

OPT-T (theoretical) OPT-T (loopback)

Figure 5.42: Modified correlation responses (includes straddling) in configuration #1 of (a) the

theoretical OPT-R correlation using distortion model, (b) the OPT-R loopback correlation, (c) the

theoretical OPT-T correlation using distortion model, and (d) the OPT-T loopback correlation. The

dark areas are fine oscillations in the correlation response.
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OPT-R (theoretical) OPT-R (loopback)

OPT-T (theoretical) OPT-T (loopback)

Figure 5.43: Modified correlation responses (includes straddling) in configuration #2 of (a) the

theoretical OPT-R correlation using distortion model, (b) the OPT-R loopback correlation, (c) the

theoretical OPT-T correlation using distortion model, and (d) the OPT-T loopback correlation. The

dark areas are fine oscillations in the correlation response.
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OPT-R (theoretical) OPT-R (loopback)

OPT-T (theoretical) OPT-T (loopback)

Figure 5.44: Modified correlation responses (includes straddling) in configuration #3 of (a) the

theoretical OPT-R correlation using distortion model, (b) the OPT-R loopback correlation, (c) the

theoretical OPT-T correlation using distortion model, and (d) the OPT-T loopback correlation. The

dark areas are fine oscillations in the correlation response.
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of the optimized FM waveform is largely independent of the time-bandwidth product. Instead, the

sampled bandwidth of the receiver matched filter dictates the achievable PSL. Further, how close

one can get to this PSL bound appears to be related to the ratio of the sampled bandwidth (sampling

freuqency) to 3 dB bandwidth of the CFM waveform.

In Section 5.3, the design of Legendre-polynomial coded waveforms with rectangular (OPT-

R) and Tukey (OPT-T) tapers were demonstrated using quasi-Newton method optimization. A

correlation function was also defined that allows this optimization to account for range straddling

effects. It was found that the orthogonal nature of Legendre polynomials facilitates the design

of waveforms with quite low sidelobe levels with a small number of code values. Experimental

loopback measurements demonstrated the efficacy of this design procedure for both rectangular-

envelope and Tukey-envelope optimized waveforms. Below −80 dB it was observed that the

distortion of the RF test equipment limited the fidelity of the ideal CFM model.

In Section 5.4, a system specific design problem was considered by estimating three different

loopback configurations (with increase nonlinearity) using a linear model which was subsequently

introduced into the GISL cost function to account for the linear distortion effects of the RF chain

within the waveform design process. The optimized OPT-R and OPT-T waveforms leveraged the

hardware distortion of the three configurations to lower the overall sidelobe levels of the correlation

response compared to the optimized cases from Section 5.3. It was found that the linear model (for

these three hardware configurations) provided a high fidelity prediction of the distorted response.

The predicted loopback signal structure matches within 0.06% of the captured loopback signal

resulting in a match of the expected and actual correlation sidelobe level close to −100 dB down

from the peak correlation. The linear model matched worst with the hardware configuration that

included the saturated amplifier (though still provided a low sidelobe response). In the future, more

sophisticated modeling (i.e. nonlinear distortion estimation) will be used as an attempt to improve

the signal prediction capabilities for highly nonlinear systems.
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Chapter 6

Conclusions and Future Work

The technologies of the arbitrary waveform generator and digital array provide unprecedented

high-fidelity control over the waveform signal structure. This precise command of waveform and

emission design unlocks the capabilities to execute simultaneous multiple functions or improve

performance of existing radar modes thus demonstrating the need for new flexible and high-

performing waveforms and emission modes that can take advantage of these technologies. A

high-fidelity design of a waveform (or waveforms) can be distorted when implemented on a high

powered system with many linear and nonlinear distortions. These deleterious system effects (e.g.

bandlimiting, HPA distortions) limit the achievable performance that is possible with arbitrary

waveform technology thus must also be considered during the design. By constraining the

waveform model to be constant amplitude and spectrally contained (i.e. FM), the performance

degradation can be minimized as was shown in Chapter 2. Therefore, the designed/optimized

FM waveform can be implemented without implementation of a system model or resorting to

predistortion (which would affect the modulus of the signal).

The fully digital array radar (DAR) grants the ability to realize spatially-diverse emissions that

have the flexibility to operate in different modes relative to the traditional phased array. These

modes include but are not limited to: performing multiple simultaneous (spatially-separated)

functions that do not have the scheduling/timing constraints of traditional multifunction arrays,

ubiquitous radar modes that illuminate over a longer CPI (finer Doppler resolution), flexibility in

pulse-to-pulse transmit modes, and improved single pulse spatial coverage, spatial resolution, and

spatial ambiguity [20,28,142]. To analyze the improved spatial resolution and reduced ambiguities

for a spatially-diverse emission, the angle-delay ambiguity function is derived in Section 3.1.3.2.
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For narrowband transmission, the ambiguity function can be decomposed into two functions: the

beam factor and the diversity factor. The beam factor illustrates the spatial response of the isolated

receive array while the diversity factor illustrates the improvement to both resolution and ambiguity

afforded by the spatially-diverse emission.

In Chapter 3, a mutual coupling analysis of a dipole uniform linear array is provided for

both scanning and spatially-diverse transmissions. The mutual coupling effects for spatially-

diverse radar applications is not well researched thus the work presented in this chapter serves

as illustration of the reflected/coupled energy one could expect given different transmission

modes and dipole array configurations (i.e. half-wavelength spacing and quarter wavelength

spacing). It is also shown that the qualitative aspects of mutual coupling for scanning arrays

(e.g. reflection/coupling of energy at endfire and the invisible space) can also be applied to that

of a spatially-diverse transmission. Energy that is contained within the invisible space for ULAs

with d < λ
2 is shown to almost entirely reflect/coupling back into the array. This understanding

was derived using the analytical dipole mutual impedance model and, much like the constant

amplitude and spectral containment for waveforms, provides a qualitative metric for spatially

diverse emissions that is based on the geometry of the array and irrespective to the elemental

pattern. The qualitative conclusion was then used to derived a novel quantitative metric via the

Fractional Reactive Power (FRP) that characterizes the amount energy in the invisible space for

arrays with d < λ
2 . This metric can be used as a substitute for emission design/optimization when

the array scattering parameters are not known/provided.

Using the knowledge and background offered by Chapters 2 and 3, three novel spatially-diverse

emission design/optimization methods are introduced in Chapter 4 that are designed differently to

perform well in certain missions and achieve some (if not all) of the new potential modes offered

by the DAR described above. In Section 4.1, an FM framework was introduced called Spatial

Modulation that provides the waveform/emission designer with the capability to form highly

directive spatially-diverse transmission while achieving improved single pulse spatial coverage

and target spatial resolution/ambiguities. In a limiting case, the framework allows for the emission
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to revert back to a standard phased array beamforming mode if SNR needs to be maximized. In

Section 4.2, a wideband spatially-diverse optimization algorithm is derived to produce emission

with arbitrary space-frequency energy allocation1. The flexible framework allows for realization

of different emission modes including but not limited to: multiple highly focused beams (e.g.

for simultaneous target tracking), a single wide beam (e.g. for a ubiquitous or SAR mode), or

any combination thereof (e.g. a single focused beam along with a wide beam). The variability

of the spatial beampattern allows for a continuously varying power allocation of the different

functions as opposed to traditional multifunction arrays that have discrete power allocation (pulse-

by-pulse). This property gives a more straight forward power assignment based on priority level of

the radar functions. The limitation of the approach in Section 4.2 is that the emission structure

(in time) cannot be precisely controlled, but only approximated via a desired spectral shape.

However, in Section 4.3 an optimization method is derived to simultaneously emit radar and

communications beams with full control over the directionally emitted signals. The null space

of desired transmit directions is used to supplement the set of waveforms such that the results

are constant amplitude. A novel metric known as the Average Directed Power (ADP) metric is

introduced to evaluate the efficiency of the emission considering the null space energy. These

emission design/optimization frameworks are unique as they achieve spatially diverse transmission

while considering practical transmitter effects, though more work can be done into incorporating

more system specific distortions into the presented algorithms.

In Chapter 5, single FM waveform design is approached from an optimization perspective as

opposed to traditional methods such as the principle of stationary phase [50]. The CFM framework

provides a unique phase function structure that is comprised of a weighted sum of (finite) basis

functions. A cost function containing this waveform structure can be minimized via gradient

techniques by differentiating with respect to the basis function weights. To the author’s knowledge,

this is the first instance of FM waveform optimization using gradient-based methods. To further

incorporate knowledge of the sampling process, a novel modified correlation function is introduced

1This optimization framework can also be implemented for narrowband transmission
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that merges both the continuous nature of the waveform and the sampling of the ADC to inherently

include straddled waveform responses within the function. The metric used for optimization

is a generalization of the traditional ISL and PSL waveform metric defined as the Generalized

Integrated Sidelobe Level (GISL) that takes the q-norm ratio of the correlation sidelobes to the

correlation mainlobe. It is shown through optimization and experimental verification that there

are limitations to fidelity using the idealized CFM waveform model due to uncompensated system

effects. In Section 5.4, a system specific optimization method is considered by incorporating a

linear model of three different loopback hardware configurations into the GISL metric using the

modified correlation function. It is shown that by leveraging the “natural tapering” effects of the

RF hardware, the correlation function can be drastically improved compared to the ideal waveform

model. To the author’s knowledge, this work represents the first system specfic FM waveform

optimization method designed to leverage the distortion characteristics of the RF hardware to

improve correlation performance.

Future Work The drive into research for more universal radar system architectures that can

perform multiple simultaneous tasks with arbitrary waveform capability such as the digital array

radar (DAR) provides a rich landscape for waveform/emission design and optimization. The

question that this work asks is: “What can be done at the waveform level to achieve the best

performance for waveform and spatially-diverse transmission modes?” An answer to this question

that might appear cyclical is to optimize the waveform or emission to achieve the best performance

for the given situation. Thus we can reformulate the original question to be, “What factors prevent

the radar waveform or emission from achieving the best performance?” I would argue that the

answer to this question is incomplete knowledge of the factors that alter the modulation structure

of the radar waveform or emission such that the optimality condition of the waveform or emission

is degraded. These factors could range from RF system distortion to atmospheric attenuation over

a portion of the band.

The effects of an RF system is (in one shape or another) available to the designer of the
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waveform. Whether it be general characteristics of RF distortion “on average” or system specific

modeling, some amount of transmitter distortion knowledge can be incorporated into the design

of radar waveforms and emissions to improve radar performance. For example, the “on average”

modeling might include design constraints such as constant amplitude to spectral containment

when operating a transmit HPA in saturation, or constraining the emitted energy to be within

the visible space for a spatially-diverse transmission mode. More specific modeling might include

incorporating the frequency-dependent active element patterns into the design of a spatially diverse

emission, or forming a high fidelity model of the linear and nonlinear distortions caused by the RF

chains. These two schools of thought can be defined as system considerate and system specific

modeling, respectively. The only example of system specific modeling presented in this work was

in Section 5.4 where the effects of three different hardware configurations are estimated using a

linear model. In future work, the areas of nonlinear hardware distortion modeling will be explored

for the purpose of system specific waveform and emission optimization.

As an expansion to the presented work, another research area of interest is sensitivity of the

waveform model versus fidelity of the optimized result. How do we optimize the waveform to not

only have high fidelity and performance but also make it robust to errors within (or changes that

might occur to) the system model used for optimization. For example, a high PAPR waveform

applied to a nonlinear amplifier model operating in the knee of the amplifier gain curve would

experience significant compression, thus the optimality of the result is highly dependent on the

accuracy of the system model. Conversely, a constant amplitude waveform applied to a HPA

operating in saturation is much less effected by model errors and may not even need the amplifier

model (i.e. system considerate modeling). Thus there are two factors that are of consequence: the

accuracy of the RF systems model and the volatility of the waveform model. An example of a

highly volatile waveform is one that is optimized to have wide bandwidth and high PAPR. If the

waveform is to be operated near the compression region of the amplifier, the demand for model

accuracy becomes significant. This topic is related to sensitivity analysis from optimization theory

[79, 146], thus can be possibly applied to a characterization of sensitivity in radar performance
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in the presence of model errors or changing systems conditions. The radar performance analysis

could also include different “degrees of model reality” which could range from a simple hard

limiter single amplifier RF systems modeling to cascaded amplification stages modeled using

nested Volterra series models with amplifier memory effects.
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Appendix A

Derivations

A.1 Proof of total emitted energy relationship: (2.124)

Using (2.123) and (2.124), the total emitted energy can be written as

Etx =
1

4πZ0

∞̂

−∞

2π
ˆ

0

π/2
ˆ

−π/2

(F(t,θ ,ϕ)∗V+(t))2 cosθdθdϕdt. (A.1)

Expanding the convolution into integral form, (A.1) becomes

Etx =
1

4πZ0

∞̂

−∞

2π
ˆ

0

π/2
ˆ

−π/2

∞̂

−∞

∞̂

−∞
F(t′,θ ,ϕ)V+(t − t′)F(t′′,θ ,ϕ)V+(t − t′′)dt′dt′′ cosθdθdϕdt. (A.2)

The only variable now dependent on t are the voltages V+(t − t′) and V+(t − t′′), thus the integrals

can be reorganized as

Etx =
1

4πZ0

2π
ˆ

0

π/2
ˆ

−π/2

∞̂

−∞

∞̂

−∞

⎛⎜⎝
∞̂

−∞
V+(t − t′)V+(t − t′′)dt

⎞⎟⎠ F(t′,θ ,ϕ)F(t′′,θ ,ϕ)dt′dt′′ cosθdθdϕ.

(A.3)

The expression inside of the parenthesis can be expressed in the frequency domain as

∞̂

−∞
V+(t − t′)V+(t − t′′)dt =

∞̂

−∞
∣V+( f )∣2e j2π f t′e− j2π f t′′d f . (A.4)
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Plugging this expression into (A.3) and reordering the integrals yields

Etx =
1

4πZ0

∞̂

−∞

2π
ˆ

0

π/2
ˆ

−π/2

∣V+( f )∣2
∞̂

−∞
F(t′,θ ,ϕ)e j2π f t′dt′

∞̂

−∞
F(t′′,θ ,ϕ)e− j2π f t′′dt′′ cosθdθdϕd f .

(A.5)

Note that the integrals of the antenna pattern equal

F∗( f ,θ ,ϕ) =
∞̂

−∞
F(t′,θ ,ϕ)e j2π f t′dt′ (A.6)

and

F( f ,θ ,ϕ) =
∞̂

−∞
F(t′′,θ ,ϕ)e− j2π f t′′dt′′. (A.7)

Thus, (A.5) can be written as

Etx =
1

4πZ0

∞̂

−∞
∣V+( f )∣2

2π
ˆ

0

π/2
ˆ

−π/2

∣F( f ,θ ,ϕ)∣2 cosθdθdϕd f . (A.8)

A.2 Proof of down-conversion: (2.137) and (2.138)

Figure A.1: Simplified receiver model for analog down-conversion.

Figure A.1 shows the receiver down-conversion process. Assume no distortion of the passband

signal ypb(t) before mixing (wrx,pb(t) = δ(t)) and is equal to the transmitted passband waveform

spb(t) absent of any noise:
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ypb(t) = spb(t)
=
√

2sI(t)cos(2π fct)−√2sQ(t)sin(2π fct). (A.9)

Therefore, after down-conversion and low-pass filtering the continuous baseband signal y(t) =
yI(t)+ jyQ(t) should be equal to the baseband waveform s(t) = sI(t)+ jsQ(t), thus yI(t) = sI(t) and

yQ(t) = sQ(t).
Using the model in (A.9), the signal exiting the top mixer in Figure A.1 can be represented as

ypb(t)cos(2π fct) = (√2sI(t)cos(2π fct)−√2sQ(t)sin(2π fct))cos(2π fct)
=
√

2sI(t)cos2(2π fct)−√2sQ(t)sin(2π fct)cos(2π fct). (A.10)

Using the trigonometric identities

sinθ cosθ =
1

2
sin(2θ) (A.11)

and

cos2 θ =
1

2
(1+cos(2θ)) , (A.12)

the form in (A.10) can be rewritten as

ypb(t)cos(2π fct) = √2
2 sI(t)(1+cos(4π fct))− √2

2 sQ(t)sin(4π fct)
=
√

2
2
(sI(t)+ sI(t)cos(4π fct)− sQ(t)sin(4π fct)). (A.13)

This signal is then sent through the filter wI(t) which includes a low-pass filtering operation that

filters out the higher frequency terms. For analysis purposes, assume wI(t) is a perfect brickwall

low-pass filter with amplitude of
√

2 (for scaling purposes) thus the output of the convolution

leaves only the baseband component sI(t). Therefore, the in-phase component yI(t) is

355



yI(t) = ypb(t)cos(2π fct)∗wI(t)
=
√

2
2
(sI(t)+ sI(t)cos(4π fct)− sQ(t)sin(4π fct))∗wI(t)

= sI(t).
(A.14)

Likewise, the signal exiting the bottom mixer in Figure A.1 can be represented as

−ypb(t)sin(2π fct) = −(√2sI(t)cos(2π fct)−√2sQ(t)sin(2π fct))sin(2π fct)
= −√2sI(t)sin(2π fct)cos(2π fct)+√2sQ(t)sin2(2π fct). (A.15)

Using (A.11) and the trigonometric identity

sin2 θ =
1

2
(1−cos(2θ)) , (A.16)

the form in (A.15) can be expressed as

−ypb(t)sin(2π fct) = −√2
2 sI(t)sin(4π fct)+ √2

2 sQ(t)(1−cos(4π fct))
=
√

2
2
(sQ(t)− sQ(t)cos(4π fct)− sI(t)sin(4π fct)). (A.17)

Again, assume the filter wQ(t) is a perfect brick wall low-pass filter with amplitude
√

2 to remove

the higher frequency components leaving only the quadrature baseband signal component

yQ(t) = −√2ypb(t)sin(2π fct)∗wQ(t)
=
√

2
2
(sQ(t)− sQ(t)cos(4π fct)− sI(t)sin(4π fct))∗wQ(t)

= sQ(t).
(A.18)

A.3 Derivation of receiver distortion model: (2.140)

Applying the passband filter wpb,rx(t) to ypb(t) in the frequency domain yields the signal

temporarily defined as
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Apb( f ) =Ypb( f )Wpb,rx( f ). (A.19)

The spectrums of the LO tones are defined as impulses in the frequency domain as,

F{cos(2π fct)} = 1
2
(δ( f − fc)+δ( f + fc)) (A.20)

and

F{−sin(2π fct)} = j 1
2
(δ( f − fc)−δ( f + fc)). (A.21)

The output of the in-phase and quadrature mixer stages, denoted AI( f ) and AQ( f ), respectively,

are defined by the convolution of Apb( f ) with the respective LO spectrums resulting in

AI( f ) = 1
2
(Apb( f − fc)+Apb( f + fc)) (A.22)

and

AQ( f ) = j 1
2
(Apb( f − fc)−Apb( f + fc)). (A.23)

Thus, the spectral content of the in-phase and quadrature signal components (YI( f ) and YQ( f ))
are found by applying the filters WI( f ) and WQ( f ) to their respective signals AI( f ) and AQ( f ) as

YI( f ) = 1
2WI( f )(Apb( f − fc)+Apb( f + fc)) (A.24)

and

YQ( f ) = j 1
2WQ( f )(Apb( f − fc)−Apb( f + fc)). (A.25)

The frequency content of complex signal y(t) (denoted Y( f )) is found via the complex combina-

tion
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Y( f ) =YI( f )+ jYQ( f )
= 1

2WI( f )(Apb( f − fc)+Apb( f + fc))− 1
2WQ( f )(Apb( f − fc)−Apb( f + fc))

= 1
2Apb( f − fc)(WI( f )−WQ( f ))+ 1

2Apb( f + fc)(WI( f )+WQ( f )).
(A.26)

Inserting the form of (A.19) yields the expression

Y( f ) = 1
2Ypb( f − fc)Wpb,rx( f − fc)(WI( f )−WQ( f ))+ 1

2Ypb( f + fc)Wpb,rx( f + fc)(WI( f )+WQ( f )).
(A.27)

The filters WI( f ) and WQ( f ) are designed to be low-pass filters that are very similar in frequency

response (to prevent an imbalanced distortion effect), thus the difference WI( f )−WQ( f ) is assumed

to be very small. Furthermore, the passband filter Wpb,rx( f ) can be assumed to have bandpass

filtering to reduce out-of-band signal content. The shifted version of this filter Wpb,rx( f − fc) places

the center of the filter at 2 fc. Given these properties the product between Wpb,rx( f − fc) and WI( f )−
WQ( f ) is assumed negligible,

Wpb,rx( f − fc)(WI( f )−WQ( f )) ≈ 0. (A.28)

Therefore, (A.27) can be represented as

Y( f ) = 1
2Ypb( f + fc)Wpb,rx( f )(WI( f )+WQ( f ))
=Ypb( f + fc)Wrx( f ), (A.29)

where

Wrx( f ) = 1
2Wpb,rx( f + fc)(WI( f )+WQ( f )) (A.30)

is the comprehensive receive filter that encapsulates both intentional filtering effects (i.e. bandpass
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and low-pass filtering) and unintentional linear distortion. Note that the inverse Fourier transform

of Wrx( f ) is complex valued due to the frequency shift in Wpb,rx( f + fc).

A.4 Proof of relationship between (3.16) and (3.19)

The expression of gpb(t,θ) from (3.16) can be derived through up-conversion (see (2.1)) of the

signal g(t,θ),

gpb(t,θ) =√2R{g(t,θ)exp( j2π fct)}. (A.31)

Inserting the expression from (3.19) into (A.31) yields

gpb(t,θ) =√2R{∑
m

sm(t +m∆t(θ))exp( j2π fcm∆t(θ))exp( j2π fct)}
=∑

m

√
2R{sm(t +m∆t(θ))exp( j2π fc ⋅(t +m∆t(θ)))}.

(A.32)

Substituting ζm = t +m∆t(θ) for the time variable and using the up-conversion definition from

(2.1), (A.32) reduces to

gpb(ζm−m∆t(θ),θ) =∑
m

√
2R{sm(ζm)exp( jm2π fcζm)}

=∑
m

spb,m(ζm).
(A.33)

Inserting the definition of ζm back into the expression yields

gpb(t,θ) =∑
m

spb,m(t +m∆t(θ)), (A.34)

which is the definition of gpb(t,θ) from (3.16).
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A.5 Proof of equivalence between traditional MIMO processing and the

angle-dependent processing in Section 3.1.2

The traditional method of receive processing a MIMO transmission is by filtering each received

signal yk(t)∀k by each waveform sm(t)∀m prior to receive beamforming. If the matched filter

estimate from (3.52) can be rewritten in terms of the waveforms sm(t)∀m (where the waveforms

are correlated with each received signal yk(t)∀k prior to receive beamforming) the equivalence is

shown. For this proof, a ULA of M elements is assumed to both transmit and receive for m,k ∈
{−M−1

2 , . . . , M−1
2
}where the center of the array is at m=0 which may or may not contain an element.

Recall the angle-dependent matched filtering operation from (3.52) expressed as

x̂MF(τ,ϑ) = (M∥g(t,ϑ)∥22∑
m

∥sm(t)∥22)
− 1

2
∞̂

−∞
g∗(t −τ,ϑ)y(t,ϑ)dt. (A.35)

Realizing the scaling term (M∥g(t,ϑ)∥2
2
∑
m
∥sm(t)∥22)

− 1
2

is just a normalization of each angle-

dependent filter, it can be applied at anytime during the estimation process. Thus rewrite (A.35)

as

x̂MF(τ,ϑ) = γ(ϑ)
∞̂

−∞
g∗(t −τ,ϑ)y(t,ϑ)dt, (A.36)

where

γ(ϑ) = ( 1

M
∥g(t,ϑ)∥2

2
∑
m

∥sm(t)∥22)
− 1

2

. (A.37)

Inserting the relationships of the narrowband time-varying array factor g(t,θ) (from (3.32)) and

the narrowband beamformed receive signal y(t,ϑ) (from (3.40)) into (A.36) yields
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x̂MF(τ,ϑ) = γ(ϑ)
M2

∞̂

−∞
∑
m

s∗m(t −τ)e− jmφ(ϑ)∑
k

yk(t)e− jkφ(ϑ)dt

=
γ(ϑ)
M2 ∑

m
∑
k

e− j(k+m)φ(ϑ)

∞̂

−∞
s∗m(t −τ)yk(t)dt,

(A.38)

where

γ(ϑ) = ( 1

M
∥∑

m

sm(t)e jφ(ϑ)∥2
2
∑
m

∥sm(t)∥22)
− 1

2

. (A.39)

Note that (A.38) applies the cross-correlation prior to beamforming thus proving that the method

of processing spatially-diverse emissions discussed in Section 3.1.2 is equivalent to the traditional

MIMO processing without virtual array tapering.

A.6 Time-domain equivalents for (3.65) – (3.78)

Taking the inverse Fourier transform of the frequency dependent scattering parameters yields the

real-valued scattering filter,

Smk(t) = F−1{Smk( f )}. (A.40)

Thus the time-domain representation of the backward traveling wave on the mth element is found

via a summation of convolutions,

V−m (t) =∑
k

Smk(t)∗V+k (t), (A.41)

for k ∈ {−M−1
2 , . . . , M−1

2
}. The voltage and current at the terminals of the matching network for the

mth element are found via the summation of the forward voltage V+m (t) and the backward voltage

V−m (t) as
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V ′m(t) =V+m (t)+∑
k

Smk(t)∗V+k (t). (A.42)

and

I′m(t) = V+m (t)−V−m (t)
Z0

=
V+m (t)

Z0

− 1

Z0
∑
k

Smk(t)∗V+k (t),
(A.43)

respectively. Similar to the scattering matrix, the (m,k)th index of the impedance matrix ZZZ′( f )
from (3.63) can be expressed in the time domain via the inverse Fourier transform as

Z′mk(t) = F−1{Z′mk( f )}. (A.44)

Thus (A.42) can be expressed in terms of (A.43) and (A.44) as

V ′m(t) =∑
k

Z′mk(t)∗ I′k(t). (A.45)

From Parseval’s identity (and assuming finite energy) the net energy flow crossing the mth

antenna element for a single pulse is similar to that in Section 3.2.1,

Etx,m = E
+
tx,m−E−tx,m

=
∥V+m (t)∥22−∥V−m (t)∥22

Z0

,

(A.46)

where

E+tx,m =
∥V+m (t)∥22

Z0

(A.47)

and

E−tx,m =
∥V−m (t)∥22

Z0

(A.48)
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are the incident and reflected/coupled energies, respectively. Likewise, the integrated reflection

coefficient for the mth element from (3.77) can expressed as

Γ
a
m = ∥V−m (t)∥2∥V+m (t)∥2 , (A.49)

and the total integrated reflection coefficient from (3.78) can be expressed as

Γ
a = ⎛⎜⎝
∑
m
∥V−m (t)∥22
∑
m
∥V+m (t)∥22

⎞⎟⎠
1
2

. (A.50)

A.7 Beamlet constraint: (4.32)

We want to constrain the available beamlet directions in Θ such that the mainlobe of each

beamlet is contained entirely within the visible domain (for in-band frequencies). The peak-to-

null beamwidth [∆ū( f )]p-n in ū = sinθ space from (3.58) is generalized as a function of frequency

f as [87]

[∆ū( f )]p-n = c

M f d
. (A.51)

Inserting the representation of d from (4.9) into (A.51) yields

[∆ū( f )]p-n = 2 fE

M f
. (A.52)

The widest beamwidth for in-band frequencies according to the 98% bandwidth occurs at f =
fc−B98%/2. Therefore the maximum peak-to-null beamwidth for in-band frequencies is

[∆ūmax]p-n
= 2 fE

M ⋅( fc− B98%

2
)

= 2 fE/ fc

M ⋅(1− [%BW]98%

2 ) .
(A.53)

Bounding Θ such that each mainlobe within the set avoids the invisible domain for all in-band
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frequencies is thus

∣sinθp∣ ≤ 1− [∆ūmax]p-n = 1− 2 fE/ fc

M ⋅(1− [%BW]98%

2 ) . (A.54)

for p ∈ {0,1, . . . ,PB−1}.

A.8 Minimization of (4.76)

Ignoring the iteration dependence i, the minimization problem of (4.76) can be rewritten as the

cost function J using a 2×N Lagrange multiplier matrix Λ̃ as

J = ∥S̃i−Si∥2F +R{Tr{(CH S̃i−G)H Λ̃}} (A.55)

where Tr{●} is the trace operation. The cost function in (A.55) has the equivalent form

J = N−1∑
n=0
∥ãn−an∥22+R{(CHan−bn)H λλλ n} , (A.56)

where ãn, an, bn, and λλλ n are the nth columns of S̃, S, G, and Λ̃, respectively. The form in (A.56)

is minimized when each term in the summation is minimized. Thus (A.56) can be represented as a

summation of cost functions as J = N−1∑
n=0
Jn where the nth cost function is expressed as

Jn = ∥ãn−an∥22+R{(CHan−bn)H λλλ n} . (A.57)

The gradient of (A.57) with respect to ã∗n yields

∇ã∗nJn = ãn−an+Cλλλ n. (A.58)

Setting equal to zero and solving for ãn produces
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ãn = an−Cλλλ n. (A.59)

By multiplying each side by CH and substituting bn for CH ãn, the Lagrange multiplier vector λλλ n

can be solved as

λλλ n = (CHC)−1(CHan−bn). (A.60)

Plugging (A.60) into (A.59) yields the form

ãn = P⊥an+a⋆,n, (A.61)

where a⋆,n =C(CHC)−1bn is the nth column of S⋆ and P⊥ is defined in (4.78). Assembling the N

column vectors, the entire M×N waveform matrix S̃ is expressed as

S̃ = P⊥S+S⋆. (A.62)

A.9 Minimization of (4.79)

Ignoring the iteration index i, the minimization problem can be expressed in an equivalent

vectorized form as

minimize
a

∥a− ã∥22
subject to ∣ak∣ = γ for k = 0, . . . ,MN −1,

(A.63)

where a = vec{S} and ã = vec{S̃}. The constant amplitude constraint can be removed by enforcing

the waveform model

a = γ exp( jψψψ), (A.64)
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where ψψψ is an MN ×1 vector of phase values and γ is the positive real-valued amplitude. Thus

(A.63) can be rewritten as the minimization of cost function

J = ∥γ exp( jψψψ)− ã∥22 (A.65)

with respect to ψψψ . The gradient of (A.65) with respect to ψψψ is

∇ψψψJ = jγ(ã⊙exp(− jψψψ))− jγ(ã∗⊙exp( jψψψ)) = 0, (A.66)

where ⊙ is the Hadamard product. Solving for ψψψ yields

ψψψ =∠ã. (A.67)

Note that this expression for ψψψ is valid for all positive real-values of γ . Thus, the closed-form

solution to (4.79) is represented as

S = γ exp( j∠S̃). (A.68)

A.10 Derivation of gradient: (5.10)

Using the expression for the cost function from (5.5) we can apply the chain rule multiple times

with respect to parameter αn for n ∈ {0,1, . . . ,Np−1} to get the derivative in the form:
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∂Jd(xw;q)
∂αn

=
1

q

∂

∂αn

⎛⎜⎜⎜⎜⎜⎝
2

N−1∑
ℓ=Λ
∣r[ℓ]∣q

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q

⎞⎟⎟⎟⎟⎟⎠

1
q

=
1

q

⎛⎜⎜⎜⎜⎜⎝

2
N−1∑
ℓ=Λ
∣r[ℓ]∣q

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q

⎞⎟⎟⎟⎟⎟⎠

1
q
−1

∂

∂αn

⎛⎜⎜⎜⎜⎜⎝

2
N−1∑
ℓ=Λ
∣r[ℓ]∣q

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q

⎞⎟⎟⎟⎟⎟⎠

=
1

q

⎛⎜⎜⎜⎜⎜⎝

2
N−1∑
ℓ=Λ
∣r[ℓ]∣q

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q

⎞⎟⎟⎟⎟⎟⎠

1
q
−1⎛⎜⎜⎜⎜⎜⎜⎝

2
N−1∑
ℓ=Λ

∂

∂αn

∣r[ℓ]∣q
Λ−1∑

ℓ=−Λ+1

∣r[ℓ]∣q
− 2

N−1∑
ℓ=Λ
∣r[ℓ]∣q

( Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q)
2

Λ−1∑
ℓ=−Λ+1

∂

∂αn

∣r[ℓ]∣q
⎞⎟⎟⎟⎟⎟⎟⎠

=
1

q

⎛⎜⎜⎜⎜⎜⎝

2
N−1∑
ℓ=Λ
∣r[ℓ]∣q

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q

⎞⎟⎟⎟⎟⎟⎠

1
q ⎛⎜⎜⎜⎜⎜⎝

N−1∑
ℓ=Λ

∂

∂αn

∣r[ℓ]∣q
N−1∑
ℓ=Λ
∣r[ℓ]∣q

−
Λ−1∑

ℓ=−Λ+1

∂

∂αn

∣r[ℓ]∣q
Λ−1∑

ℓ=−Λ+1

∣r[ℓ]∣q

⎞⎟⎟⎟⎟⎟⎠
(A.69)

The derivative of ∣r[ℓ]∣q with respect to αn can now be found independently from the form above

as:

∂ ∣r[ℓ]∣q
∂αn

=
∂

∂αn

(r[ℓ]r∗[ℓ])q/2

=
q

2
∣r[ℓ]∣q−2(r[ℓ]∂ r∗[ℓ]

∂αn

+ ∂ r[ℓ]
∂αn

r∗[ℓ])
=

q

2
∣r[ℓ]∣q( 1

r∗[ℓ]
∂ r∗[ℓ]

∂αn

+ ∂ r[ℓ]
∂αn

1

r[ℓ])
= q∣r[ℓ]∣q R{ 1

r[ℓ]
∂ r[ℓ]
∂αn

}

(A.70)

The derivative of discrete autocorrelation r[ℓ] (from (2.204)) with respect to αn is:
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∂ r[ℓ]
∂αn

=
∂

∂αn

1

N

N−1∑
i=0

s∗ (iTs+ξ)s((i+ℓ)Ts+ξ)
=

1

N

N−1∑
i=0

∂ s∗ (iTs+ξ)
∂αn

s((i+ℓ)Ts+ξ)+ 1

N

N−1∑
i=0

s∗ (iTs+ξ) ∂ s((i+ℓ)Ts+ξ)
∂αn

=
1

N

N−1∑
i=0

∂ s∗ (iTs+ξ)
∂αn

s((i+ℓ)Ts+ξ)+ 1

N

N−1∑
i=0

∂ s(iTs+ξ)
∂αn

s∗((i−ℓ)Ts+ξ)
= an[ℓ]+a∗n[−ℓ]

(A.71)

where

an[ℓ] = 1

N

N−1∑
i=0

∂ s∗ (iTs+ξ)
∂αn

s((i+ℓ)Ts+ξ). (A.72)

Therefore, the derivative of Jd(xw;q) with respect to αn can be written as

∂Jd(xw;q)
∂αn

=

⎛⎜⎜⎜⎜⎝
2

N−1∑
ℓ=Λ
∣r[ℓ]∣q

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q
⎞⎟⎟⎟⎟⎠

1
q⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N−1∑
ℓ=Λ
∣r[ℓ]∣qR{an[ℓ]+a∗n[−ℓ]

r[ℓ] }
N−1∑
ℓ=Λ
∣r[ℓ]∣q −

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣qR{an[ℓ]+a∗n[−ℓ]
r[ℓ] }

Λ−1∑
ℓ=−Λ+1

∣r[ℓ]∣q
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.73)

where an[ℓ] is defined using the CFM definition from (5.1) as

an[ℓ] = 1

N

N−1∑
i=0

∂ s∗ (iTs+ξ)
∂αn

s((i+ℓ)Ts+ξ)
=
− j

N

N−1∑
i=0

hn(iTs+ξ)s∗ (iTs+ξ)s((i+ℓ)Ts+ξ). (A.74)
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Appendix B

List of Acronyms and Mathematical Notation

B.1 Acronyms

Acronym Description

ADC Analog-to-Digital Conversion

AFRL Air Force Research Lab

AM Amplitude Modulation

AWG Arbitrary Waveform Generator

AWGN Additive White Gaussian Noise

BEEMER Baseband-digital at Every Element MIMO Experimental Radar

BER Bit Error Rate

BFGS Broyden-Fletcher-Goldfarb-Shanno

BPF Band-Pass Filter

CFM Coded Frequency Modulation

CPI Coherent Processing Interval

CPM Continuous-Phase Modulation

CW Continuous-Wave

DAC Digital-to-Analog Conversion

DAR Digital Array Radar

DDS Direct Digital Synthesizer

DFT Discrete Fourier Transform
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Acronym Description

DTFT Discrete-time Fourier Transform

DSP Digital Signal Processing

EM Electromagnetic/Electromagnetism

FDA Frequency Diverse Array

FFT Fast-Fourier Transform

FIR Finite Impulse Response

FRP Fractional Reactive Power

FM Frequency Modulation

FMCW Frequency Modulated Continuous-Wave

GISL Generalized Integrated Sidelobe Level

HPA High-Powered Amplifier

IID Independent and Identically Distributed

ISL Integrated Sidelobe Level

IMD Intermodulation Distortion

LFM Linear Frequency Modulation

LNA Low-Noise Amplifier

LO Local Oscillator

LPF Low-Pass Filter

LSB Least Significant Bit

LTI Linear Time-Invariant

MDS Minimum Detectable Signal

MFAR Multifunction Array Radar

MTAE Multiple-Time-Around Echo

NLCG Nonlinear Conjugate Gradient

NLFM Nonlinear Frequency Modulation
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Acronym Description

OFDM Orthogonal Frequency Division Multiplexing

PAE Power Added Efficiency

PAPR Peak-to-Average Power Ratio

PCFM Polyphase-Coded Frequency Modulation

PM Phase Modulation

POSP Principle of Stationary Phase

PRF Pulse Repetition Frequency

PRI Pulse Repetition Interval

PRO-FM Pseudo-Random Optimized Frequency Modulation

PSL Peak Sidelobe Level

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

RCS Radar Cross Section

RSA Real-time Spectrum Analyzer

RSEC Radar Spectrum Engineering Criteria

RUWO Reiterative Uniform Weight Optimization

SAR Synthetic Aperture Radar

SDR Software-Defined Radar

SINR Signal-to-Interference plus Noise Ratio

SNR Signal-to-Noise Ratio

SRRC Square-Root Raised-Cosine

T/R Transmit/Receive

TWT Traveling Wave Tube

ULA Uniform Linear Array

UWB Ultra Wideband
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Acronym Description

VSWR Voltage Standing Wave Ratio

WAIM Wide-Angle Impedance Matching

WSS Wide-Sense Stationary
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B.2 Mathematical Notation

Notation Description

a(t) Continuous function a(t) dependent on variable t

a[ℓ] Discrete function a[ℓ] at sample ℓ

a ⋅b a multiplied by b; typically used to distinguish multiplication from function

when using parentheses/brackets/braces (e.g. f ⋅(t −τ) and f (t −τ))
a(t)∗b(t) a(t) convolved with b(t)
max

t
{a(t)} Maximum of a(t) over variable t

min
t
{a(t)} Minimum of a(t) over variable t

E{a} Expected value of a

F{a(t)} Fourier transform of continuous signal a(t)
F−1{A( f )} Inverse Fourier transform of continuous spectrum A( f )
⌊a⌉ Rounds a (real-valued) to nearest integer

⌊a⌋ Rounds to nearest integer less than a (real-valued)

⌈a⌉ Rounds to nearest integer greater than a (real-valued)

exp(a) exp(a) = ea;

a∗ Complex-conjugation

a (dB) a in decibels (i.e. a (dB) = 10log10{a})
a∝ b a is proportional to b

a ≈ b a is approximate to b

a = b a is equal to b

a ≜ b a is defined to be equal to b

∼a Similar to a

an∀n an for all n

a→ b a approaches b

a(t) F←→ A( f ) a(t) and A( f ) are a Fourier transform pair
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Notation Description

R{a} Extracts the real value of a

I{a} Extracts the imaginary value of a

∠a Extract phase of a

∣a∣ Magnitude of a

sgn{a} Sign of a; +1 for a > 0 and −1 for a < 0

d
da Derivative with respect to a

∂
∂a

Partial derivative with respect to a

aT Transposition of vector a

aH Hermitian transpose of vector a; equivalent to (a∗)T
{a,b} Set containing a and b

[a b]T 2×1 column vector containing a and b

Tr{A} Trace of square matrix A

a⊙b Hadamard product of vectors a and b
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