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INTRODUCTION

With advance in technology, the modern concept is to go for 
distributed sensor collection and processing as compared to a single 
sensor system 
In most cases where the sensors are not fixed mounted to their 
location, distribution of the sensors’ locations is not uniform
When using such a system, it also involves much more complex 
signal processing techniques to piece the data from different sensors 
into a complete picture
For example, when using a Non-Uniformly Distributed Space borne 
Multiple Satellite System to collect SAR images, conventional 
processing technique like the Matched Filter will not function properly.
Instead, a more complex technique is required in the form of the
Wiener or Minimum Mean Square Error (MMSE) Filter
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RADAR MODEL USED

Currently, as we do not have real data from a Non-Uniformly 
Distributed Aperture Radar System, a radar model is designed from 
Mathematical modeling and implemented using MATLAB
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WIENER VERSUS MATCHED FILTER

When using the radar model to 
simulate a image collected, the 
ambiguity function obtained for 
each pixel is as shown on the right
In such a situation, due to the 
various ambiguities present in the 
system, matched filter processing 
will yield degraded results even in 
the midst of no measurement noise
Based on work done by previous 
students, it is found that the MMSE 
filter will be able to provide a good 
answer even in low or moderate 
SNR situations
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EFFICIENT WIENER IMPLEMENTATION

As Wiener filter requires a computational expensive matrix inverse 
operation, thus it is possible to re-implement the filter in a recursive 
manner using the Kalman filter
Previous work by other students have proven the functionality of the 
Kalman filter and sample results are shown below
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MOTIVATION OF THESIS

Although Kalman filter is efficient, it can suffer from instability 
as a result of finite machine precision
Besides Kalman filter, there are other filters that are more 
efficient than the full rank Wiener filter when these filters are 
implemented in reduced rank echelon form
Thus, the 1st research motivation is to find alternative filters 
type that are more robust than Kalman filter in situations of 
finite machine precision
2nd research motivation is to implement these alternative filters 
in a manner such that they are more efficient than the Wiener 
filter
This give rise to the search for Reduced Rank Linear filtering 
Techniques in my thesis research
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SQUARE ROOT COVARIANCE FILTER

Potter introduced the concept of Square Root Covariance filter (SRCF) 
in 1964 when dynamic driving noise is absent in the system
The SRCF was developed for scalar measurement update 
implementation.
The basic concept is to replace the propagation of the Error 
Covariance Matrix        with its square root matrix      instead where the 
relationship between the 2 matrices are as follows:

γK S

H
γ =K SS

In this manner, the positive semi-definiteness of the Error Covariance 
Matrix will be maintained in all iterations
Hence, it will no longer suffer from instability problems
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POTTER’S SRCF MODEL

In Potter’s SRCF, the equations involved in each iteration step of the 
filter is shown below
Also, Potter’s SRCF is a full rank filter just like the Kalman filter

H H

H 2

12 2

H

( ) ( / 1) ( )

1( )
[ ( ) ( ) ( )]

1( )
[1 { ( ) ( )} ]

( ) ( ) ( / 1) ( )

ˆ ˆ ˆ( / ) ( 1/ 1) ( )[ ( ) ( ) ( 1/ 1)]

ˆ( 1/ 1) ( ) ( )

( / ) ( / 1) ( ) ( ) ( )

l l l l

b l
l l l

l
b l l

l b l l l l

l l l l l r l l l l

l l l v l

l l l l l l l

σ

η
σ

η

= −

=
+

=
+

= −

= − − + − − −

= − − +

= − −

n

n

a S p

a a

g S a

g p

g

S S g a

γ γ γ

γ



11

Vector Format of SRCF

As Potter’s SRCF is using scalar measurement update which is not as 
efficient as a vector measurement update implementation, thus 
Andrew came up with the vector version of SRCF that is more efficient 
and it is defined as follows:
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Both scalar and vector version of the SRCF are then executed in 
simulation runs so as to examine the results obtained
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RESULTS FROM SRCF

Using data from the radar model simulator, the results of both Potter 
and Andrew’s algorithm are plotted
Both SRCF filters are able to achieve identical performance in 
accuracy with Kalman filter but requires longer computational time
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REDUCED RANK SRCF (RRSQRT)

Since the full rank SRCF is not as efficient as Kalman filter, thus the 
reduced rank version of Andrew SRCF is implemented to tackle this 
issue
Rank reduction is achieved by discarding non dominant Eigen vectors
as the iteration proceeds along
However, we will need to determine the criterion to discard or keep the 
Eigen vectors
Two approaches are attempted, 1st approach using just guesswork and 
2nd approach based on the variation of the Eigen Spectrum of Error 
Covariance Matrix as the iteration proceeds
Results obtained from guesswork are bad, therefore requiring the 2nd

approach to determine the criterion
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2ND APPROACH FOR RRSQRT CRITERION

This approach requires the Eigen Spectrum of the SRCF at various
stages of iteration to be make known
The Eigen Spectrum for a sample measurement and target size are 
shown below
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EIGEN SPECTRUM OF SRCF - CONTINUED
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As seen below, the dominant Eigen vectors decreases as the iteration 
proceeds until all Eigen vectors become insignificant
This behavior is then used to develop the criterion for keeping the 
Eigen vectors in the iteration steps
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FINAL CRITERION FOR RRSQRT

Using the behavior of the SRCF Eigen Spectrum, the final criterion 
consists of 2 sub criterions shown below
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RESULTS FOR RRSQRT

The MSE and Timing results obtained for the RRSQRT using the 2 criterions are 
shown below for comparisons with the Kalman filter 

S/N Description of Filter Time Final MSE

1 Kalman filter 37.206 sec -42.216 dB

% of initial Eigen Value
used for Criteria 2

Step size in dB used for Criteria 1

4 8 12 16 20

0.001 -42.216 dB / 961 -42.216 dB / 961 -42.216 dB / 961 -42.216 dB / 961 -42.216 dB / 961

0.01 -39.906 dB / 230 -40.649 dB / 245 -40.818 dB / 285 -41.210 dB / 313 -41.144 dB / 257

0.05 -32.726 dB / 26 -35.422 dB / 35 -36.855 dB / 54 -38.222 dB / 89 -38.148 dB / 40

49.500 sec49.748 sec47.052 sec46.594 sec48.978 sec0.05

57.667 sec58.405 sec60.305 sec64.331 sec78.994 sec0.01

96.552 sec95.145 sec120.879 sec168.691 sec289.275 sec0.001

20161284

Step size in dB used for Criteria 1% of initial Eigen Value 
used for Criteria 2
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3D PLOT OF RRSQRT RESULTS
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TIMING RESULTS W/O EIGEN OPERATION

% of initial Eigen Value 
used for Criteria 2

Step size in dB used for Criteria 1

4 8 12 16 20

0.001 289.275 sec 168.691 sec 120.879 sec 95.145 sec 96.552 sec

0.01 78.994 sec 64.331 sec 60.305 sec 58.405 sec 57.667 sec

0.05 48.978 sec 46.594 sec 47.052 sec 49.748 sec 49.500 sec

From investigation, the Eigen decomposition operation of the RRSQRT 
takes up a significant portion of the total computational time
If this operation is ignored, the difference in the timing results are as 
shown below

28.562 sec28.857 sec26.521 sec25.734 sec24.203 sec0.05

34.432 sec35.264 sec34.945 sec34.894 sec35.367 sec0.01

53.348 sec52.691 sec58.097 sec63.785 sec80.454 sec0.001

20161284

Step size in dB used for Criteria 1% of initial Eigen Value
used for Criteria 2
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SUMMING UP RRSQRT

From the results obtained, it is shown that the RRSQRT is able to 
produce good estimation of the target pixels even when the rank is 
greatly reduced
If a faster method is available for performing the Eigen Decomposition 
operation, then this technique will be as computational efficient as the 
Kalman filter while not suffering from instability problems
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MULTI-STAGE WIENER FILTER

Besides the RRSQRT filter, there is also another filter that is also 
found to be much more efficient than the Wiener filter
This  filter was introduced in 1997 and is now gaining much popularity 
with the Communication and Radar community
It is known as the Multi-Stage Wiener Filter (MSWF for short) based on 
orthogonal projections
This filter can be also implemented in a full rank or reduced rank 
manner.  But it has been shown in various applications that it is able 
to achieve full rank performance even when implemented in reduced 
rank fashion
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MULTI-STAGE WIENER FILTER - CONT

The basic MSWF is used for estimating a scalar desired signal from a 
series of measurement data (called it scalar MSWF)
It makes use of the cross correlation between the measurement data 
vector and the desired signal to project an initial estimate of the 
desired signal after the so called 1st stage of decomposition
When there are correlations between the desired signal and the 
unwanted signals present in the measurement data, this 1st estimate 
will contain errors
Thus, using a blocking matrix orthogonal to the cross correlation 
vector, a new measurement data and a new cross correlation vector is 
formed again
This action is then repeated at the 2nd stage of decomposition and so 
forth until the error in the final estimate is diminished to an acceptable 
value
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GRAPHICAL VISUALIZATION OF MSWF
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EQUATIONS OF SCALAR MSWF

Note that the MSWF consists of 3 main steps, namely the forward 
iteration step, turn-around step and the backward iteration step
The equations for implementing the forward iteration step are shown

1 1 1 1

1 1

1

1

1

H

H
1

2 H

1

H

{ }

=

i i i i

i i

i i

i i

i i i

i x d x d

x d
i

i

i i i

d i x i

i i

i i i

x i x i

x d i x i

d

null

δ

δ

σ

− − − −

− −

−

−

−

−

−

=

=

=

=

=

=

=

r r
r

h

h x

h R h

B h

x B x

R B R B

r B R h



26

RESULTS FROM SCALAR MSWF

The scalar MSWF is then implemented and run sequentially to estimate 
all the target pixels in the SAR image using 40 stages of decomposition
The final errors of the estimates using the scalar MSWF is then 
compared with that from the Kalman filter
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SUMMING UP SCALAR MSWF

From results obtained, the scalar MSWF is able to estimate the target 
pixels with as much accuracy as the Kalman filter
Furthermore, the scalar MSWF only requires 40 stages of 
decomposition to achieve these results instead of full rank processing 
of 961 stages
The computational time needed per target pixel is much lesser than 
that of the Wiener filter
However, one undesirable feature is that it can only estimate 1 target 
pixel at a time, thus requires a long period to complete estimation of 
all target pixels if done in a serial manner, unless there are enough 
machines for parallel processing
Another weak point is that the processing of each target pixel also 
takes a longer time than the Kalman filter
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VECTOR MSWF

Therefore, these shortcomings necessitates the development of the 
vector version of the MSWF that can estimate more than 1 target pixel 
per target group at a time
Now, for the vector MSWF implementation, it can also be implemented 
by executing each group of targets in a serial manner for all targets or 
using parallel processing with 1 MSWF processor per target group
Therefore, both options are explored and results are presented for 
discussion
Note that the Mean Square Error (MSE) obtained for both methods are 
identical for the same combination of number of targets per group 
versus stages of decomposition
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RESULTS OF MSE FOR VECTOR MSWF
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RESULTS OF EXECUTION TIME (PARALLEL)
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RESULTS OF EXECUTION TIME (SERIAL)
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OVERALL COMBINATION OF RESULTS
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SUMMING UP VECTOR MSWF

The vector MSWF is able to provide pixel estimates with the same
accuracy as Wiener and Kalman filter using less than full rank 
processing
Some combinations of target group size and stages of decomposition 
will require lesser computational time than Wiener filter with an 
efficiency ratio of up to 1.65
For both parallel and serial method of implementation, putting all 
targets in one group and using 1 stage of decomposition currently 
provides the best deal in terms of computational time and accuracy of 
results
However, this best deal is still not as efficient as that of Kalman filter.  
Therefore, will need to check whether the trend holds true for larger 
data set
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LARGER DATA SET

Next, the target size and the measurement size are each increased by 
about 4 times
The results for the Wiener filter, Kalman filter and MSWF are shown 
below

0

2
εσ

Filter Type Total Time 
/sec

Average
/dB

Average 
Computed 
MSE /dB

Wiener 9349.3 -39.483 -39.439

Kalman 1192.1 -39.483 -39.439

MSWF 3432.5 -39.479 -39.439

We can see that the trend continues but MSWF’s edge over Wiener 
filter has increased significantly over the smaller data set from 1.65 to 
2.72
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INNOVATIVE MSWF IMPLEMENTATIONS

We have observed that the MSWF is able to outperform the Wiener 
filter in terms of speed but it is not as efficient as Kalman filter
Therefore, several variations are carried out to the standard 
implementation structure of the MSWF
It is hoped that some of these variations will be able to speed up the 
MSWF but at little or no cost to its accuracy obtained for the results
These approaches are termed as Innovative MSWF Implementations
A total of 3 approaches are attempted
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MODIFIED DATA INITIALIZATION

In this approach, instead of using the same initial conditions for all 
target groups, the results of the 1st target group is used to fine tune 
the initial conditions of the 2nd target group
Next, the results of the 1st and 2nd target group are used to modify the 
initial condition of the 3rd target group and so forth
This form of initialization bears some similarity to the way the Kalman 
filter is being operated
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STRUCTURE OF MODIFIED INITIALIZATION
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RESULTS FOR MODIFIED DATA APPROACH

Using the modified initialization approach, the results obtained for a 
few target group sizes are obtained and shown below
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SUMMING UP MODIFIED DATA APPROACH

From the results obtained, we can see that the average number of
decomposition stages required for any target group size decreases 
with the use of the modified data initialization approach
After performing some computation and taking into account the 
overheads associated with this approach, the net gain in the efficiency 
is about 28%
At the same time, there is no loss at all in the final results’ accuracy
Thus, this improvement is significant and this approach should be 
used whenever the serial MSWF implementation is chosen
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GROUPING TARGET BY CORRELATION

The 2nd approach is to group the targets together using their cross 
correlation to one other as a criteria
The criteria can be to group targets based on their least correlation to 
one other or their highest correlation to one another
This grouping mechanism is applied before the start of the MSWF 
processing and can be applied to either serial MSWF implementation 
or parallel MSWF implementation
Both groupings based on least correlation and highest correlation are 
attempted
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STRUCTURE FOR TARGET GROUPING 
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RESULTS FOR LEAST CORRELATION
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RESULTS FOR HIGHEST CORRELATION
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SUMMING UP TARGET GROUPING

From the 2 trends observed, we can conclude that grouping targets 
that are highly correlated to one another into the same group will help 
to decrease the number of stages of decomposition required
However, due to the imperfection of my grouping schemes, not all the 
targets are grouped based on this desired criteria and therefore no 
numerical figures are available to show the improvement
Nevertheless, with a robust grouping scheme, this approach should 
bear fruitful results
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RECURSIVE MSWF

Now, beside trying different approaches on the target space as in the 
last 2 approaches, we can also look into the measurement data space 
itself
Drawing inspiration from the Kalman filter which is a recursive Wiener 
filter, we can also implement the MSWF in a recursive fashion by
breaking up the total measurement data into smaller subsets and 
iteratively applying the MSWF on these data subsets.
In this manner, it is hoped that computations involving smaller matrix 
dimensions in the forward iteration step will help to speed up the 
MSWF execution
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STRUCTURE OF RECURSIVE MSWF
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SETUP FOR RECURSIVE MSWF

Now, to examine the performance of the recursive MSWF, various 
measurement subset and target group sizes are chosen so as to get a 
good picture of this approach
The combination used in the simulation is as shown

Measurements per 
subset

Number of 
subsets

Target Group 
size = 961

Target Group 
size = 480

Target Group 
size = 320

Target Group 
size = 160

2856 1 √ √ √ √

1428 2 √ √ √ √

714 4 Χ √ √ √

476 6 Χ Χ √ √

Note that some combinations are not achievable because of the vector 
MSWF constraints
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RESULTS FOR RECURSIVE MSWF

Results obtained for the recursive MSWF are encouraging and some
combination is able to achieve faster computational time with no loss of results’ 
accuracy
The results for the recursive parallel MSWF is shown here 
Measurements per
subset

Number of
subsets

Target Group 
size = 961

Target Group 
size = 480

Target Group 
size = 320

Target Group 
size = 160

2856 1 113.203 sec 241.112 sec 222.498 sec 215.547 sec

1428 2 103.735 sec 151.110 sec 130.548 sec 103.331 sec

714 4 Χ 78.728 sec 69.301 sec 54.669 sec

476 6 Χ Χ 43.549 sec 37.560 sec

Measurements 
per

subset

Number of
subsets

Target Group 
size = 
961

Target Group 
size = 
480

Target Group 
size = 320

Target Group 
size = 160

2856 1 -41.037 dB -41.037 dB -41.037 dB -41.037 dB

1428 2 -41.037 dB -39.880 dB -39.350 dB -38.959 dB

714 4 Χ -37.093 dB -34.392 dB -30.052 dB

476 6 Χ Χ -25.015 dB -21.524 dB
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SUMMING UP RECURSIVE MSWF

Implementing the MSWF as a recursive filter seems to be a good 
approach for both the parallel and serial MSWF implementation
With certain combinations of measurement data subset and target 
group size, we can get improvements in the computational speed by 
up to 100% with little loss in accuracy
This ability to process new data iteratively also makes the MSWF to be 
more attractive than the Wiener filter
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CONCLUSIONS

We are able to successfully implement Reduced Rank Filtering 
Techniques for the Non-Uniformly Distributed Aperture Radar System 
that are faster in execution than the Wiener filter while achieving the 
same accuracy in the final results
With a more efficient Eigen Decomposition engine, the RRSQRT filter 
will be able to match or exceed the computational speed of the Kalman 
filter while avoiding the Kalman filter’s pitfall of divergence or 
instability issue
It has been shown that the Multi-Stage Wiener filter is able to achieve 
the same accuracy as the Wiener filter but requiring lesser rank in the 
filter processing
Although the MSWF is not as fast as the Kalman filter, innovative 
implementations will help to narrow the gap between the two filters
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FUTURE WORK

For the RRSQRT filter, we can look into faster ways to compute the 
Eigen Decomposition as compared to the existing function in MATLAB
We can also design some target scenarios where it is possible to start 
the RRSQRT filter processing with a smaller rank that will speed up its 
subsequent iteration process
For the MSWF, we can also look into a more optimal grouping scheme 
for the targets such that the deficiencies in the current scheme can be 
corrected and then use the optimal scheme for implementation
We can also look into alternative model of the MSWF that is more
simple than the current MSWF model that is based on orthogonal 
projections.  For example, one alternative model will be the Conjugate 
Gradient MSWF model
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QUESTIONS

THANK YOU
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