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Introduction
• Debugging single-threaded programs

• Program is repeatedly traced - GDB
• Focus on specific parts of the program where the bug is
• Generally known as “cyclic debugging”
• Assumption – repeated executions are identical

• Debugging multi-threaded programs
• Available features more suitable for cyclic debugging
• Main problem – repeated executions not identical
• Affected by several non-deterministic factors
• Need faulty execution reproduction to identify bugs
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Introduction
• Objectives

• Identify execution path and reproduce faulty execution
• Make program execution deterministic

– cyclic debugging techniques can then be applied

• Focus on POSIX threads on uni-processor Linux 
systems

• Proposed Solution – Two phases
• Recording

– Log necessary data during experimental run
• Replay

– Reproduce execution within GDB 
– Use recorded data to set appropriate replay breakpoints
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Background
• POSIX thread Library

• 1:1 thread library model
– Each thread is mapped to a kernel process
– Kernel takes care of scheduling

• LinuxThreads – old implementation
• NPTL

– Latest implementation
– Requires 2.6 kernel series
– Faster Thread Creation/Destruction
– Futexes
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Background
• Pthreads

• Individual PID, user and kernel mode stacks
• Shared address space
• Scheduled by kernel scheduler

• Threads created using clone system call
• TGID – Thread Group ID

• TGID = Parent’s PID for Pthreads
• TGID = PID for “real” processes

• TGID List
• List of all threads created by a process
• Used for group stop and exit
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Background
• DataStreams Kernel Interface

• Framework to collect status and performance related data from kernel

• Instrumentation points
• Hierarchy

– Family
– Events, Counters and Histograms

• Device driver interface
• Select subset of events, counters or histograms to be logged
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Recording
• Execution path – set of all instructions executed
• Factors affecting execution path

• Scheduling decisions – non-deterministic
• Signals – non-deterministic
• Inputs (network, system and user) – variable
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Recording
• Sample multi-threaded program – two threads
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Recording
• Execution Path 1

• Output printed: 8

• Execution Path 2
• Output printed: 3



University of Kansas14

Recording
• Thread schedule

• (thread identifier, stop address) pair
• Example: (main thread, 14) 

– Main resumed execution and stopped after line 14 in a schedule

• Schedule Order (SO) – an ordered set of thread 
schedules
• Ordered by time
• Example: { (main thread, 18), (thread 1, exit), (main thread, exit) }

• SO uniquely identifies an execution path
• If inputs supplied to the program are the same
• If the effects due to signals are reproduced 

– Addressed by Ram’s project
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Recording
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Recording
• Transition due to interrupt

• Instruction at transition address was already executed
• Breakpoint should be set at resumption address

• Transition due to system call
• Instruction at transition address is a system call

– transition should not be allowed for most system calls (especially 
sys_futex) 

– breakpoint should be placed at transition address
• Exceptions: clone, exit

– effects should actually take place
– breakpoint should be placed at resumption address
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Recording
• Record both during context switch
• Sample SO

CS <Thread 1, T11, R11>
CS <Thread 2, T22, R22>
CS <Thread 1, T12, R12>

• Resumption address
• User-space return address - found in kernel stack

• Transition address
• Address of the previous instruction – but length can vary
• Manual lookup required

• Record only return addresses
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Recording
• Resumption point – not determined by return 

address alone
• (address, count) pair 

• Basic blocks – set of instructions with single point of 
entry and exit with no branches in between
• GCC’s block profiling feature can be used

• Final SO
• CS <thread 1, (R11, basic block count)>
• CS <thread 2, (R22, basic block count)>
• CS <thread 1, (R12, basic block count)>
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Recording
• Need to identify pthread processes in kernel

• Log context switch events of pthread processes alone

• New variable pthread_flag in task_struct
• Set pthread_flag during clone

• New clone flag in both GLIBC and kernel

• Set pthread_flag for main thread when it creates first 
thread
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Recording
• Maintaining basic block count

• Function __bb_trace_func called for every basic block entry
• New function __bb_new_trace_func increments basic block count
• Work done by Satya at ITTC

• Modifications
• New variable bb_count in pthread_struct
• New functions: pthread_incr_bb_count and pthread_get_bb_count
• __bb_new_trace_func now calls pthread_incr_bb_count

• Accessing basic block count during context switch
• New variable bb_count_addr in task_struct
• Update bb_count_addr during set_thread_area for main thread
• Update bb_count_addr during clone for other threads
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Recording
• Return address

• Stored in trap frame
• Trap frame stored in kernel stack

• Kernel stack
• THREAD_SIZE: stack size
• Stored from higher to lower addresses
• task_struct stored in bottom

• Trap frame can be obtained using
(THREAD_SIZE +

current thread_info) - 1
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Recording
• Virtual system calls

• Added to 2.6.x kernels for performance 
improvement

• Kernel page vsyscall mapped to all user 
processes

• Problem: return address in trap frame 
points to SYSENTER_RETURN in vsyscall
• Breakpoint cannot be set

• Solution: user stack
• Follow frame pointer address in trap frame
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Recording

Sample SO
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Replay
• Thread debugging support in GDB

• Builds thread list internally
• Thread create and death events: threadnum

• Thread debugging commands
• Thread specific breakpoints

– break address thread threadnum
– All threads are stopped when any thread hits breakpoint

• Switch context to desired thread
– thread threadnum

• Scheduler locking
– set schedlock on
– continue command resumes only current thread (thread that has 

context)
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Replay
• PIDs in SO are invalid – needs mapping

• Post-processing filter in DataStreams
• Map PIDs in thread creation order: similar to threadnum

• Transition addresses have to be found
• Only for some system calls
• Manual lookup in objdump output
• Can be input to GDB using syscall_address_file command

• Clever Insight
• Nested breakpoints
• Ability to attach TCL scripts to breakpoint
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Replay
• Run inferior in scheduler locked mode

• Only one thread runs at a time
• Context can be switched using “thread threadnum” command

• Use SO to insert replay breakpoints
• at return addresses: SO
• transition addresses: mapping file
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Replay
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Replay
• Sample command group executed when a replay 

breakpoint is hit
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Replay
• GDB features can still be used
• Experimental interleaving

• Automatic breakpoint insertion can be controlled
• Control returns to user after a replay breakpoint is hit
• New interleaving can be created
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Evaluation
• Recording framework

• Testing basic blocks
• Testing return addresses

• Replay framework
• Tested with programs that had data races: different results for 

different executions
• Save experimental execution result
• Replay in GDB produced experimental execution result
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Conclusion
• A framework to record execution path of NPTL 

based applications
• GCC and GLIBC sources modified to support basic block count
• GLIBC and kernel sources modified 

– to identify pthreads in kernel
– to retrieve basic block count during context switch

• A replay framework to reproduce user-mode 
execution path of a program
• Automatic breakpoint insertion feature in GDB
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Future Work
• Finding transition addresses automatically

• Transition address required only for some system calls - Wrap them to 
generate a SYSCALL event

• Using Progenitor to separate events of multiple 
NPTL applications executing at same time

• Modify basic block maintenance using edge profiler
• Newer versions of GCC use edge profiler
• Use new GIMPLE intermediate language of GCC 4.0 to do tree 

walking/modification
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Thank you
Questions?


