
University of Kansas

Reproducible concurrency for NPTL 
based applications

Praveen Srinivasan
May 13th 2005

Master’s Project defense

Committee
Dr. Jerry James, Chair

Dr. Douglas Niehaus, Member
Dr. David Andrews, Member



University of Kansas2

Presentation Outline
• Introduction
• Background
• Recording
• Replay
• Evaluation
• Conclusion
• Future work



University of Kansas3

Presentation Outline
• Introduction
• Background
• Recording
• Replay
• Evaluation
• Conclusion
• Future work



University of Kansas4

Introduction
• Debugging single-threaded programs

• Program is repeatedly traced - GDB
• Focus on specific parts of the program where the bug is
• Generally known as “cyclic debugging”
• Assumption – repeated executions are identical

• Debugging multi-threaded programs
• Available features more suitable for cyclic debugging
• Main problem – repeated executions not identical
• Affected by several non-deterministic factors
• Need faulty execution reproduction to identify bugs



University of Kansas5

Introduction
• Objectives

• Identify execution path and reproduce faulty execution
• Make program execution deterministic

– cyclic debugging techniques can then be applied

• Focus on POSIX threads on uni-processor Linux 
systems

• Proposed Solution – Two phases
• Recording

– Log necessary data during experimental run
• Replay

– Reproduce execution within GDB 
– Use recorded data to set appropriate replay breakpoints



University of Kansas6

Presentation Outline
• Introduction
• Background
• Recording
• Replay
• Evaluation
• Conclusion
• Future work



University of Kansas7

Background
• POSIX thread Library

• 1:1 thread library model
– Each thread is mapped to a kernel process
– Kernel takes care of scheduling

• LinuxThreads – old implementation
• NPTL

– Latest implementation
– Requires 2.6 kernel series
– Faster Thread Creation/Destruction
– Futexes



University of Kansas8

Background
• Pthreads

• Individual PID, user and kernel mode stacks
• Shared address space
• Scheduled by kernel scheduler

• Threads created using clone system call
• TGID – Thread Group ID

• TGID = Parent’s PID for Pthreads
• TGID = PID for “real” processes

• TGID List
• List of all threads created by a process
• Used for group stop and exit



University of Kansas9

Background
• DataStreams Kernel Interface

• Framework to collect status and performance related data from kernel

• Instrumentation points
• Hierarchy

– Family
– Events, Counters and Histograms

• Device driver interface
• Select subset of events, counters or histograms to be logged



University of Kansas10

Presentation Outline
• Introduction
• Background
• Recording
• Replay
• Evaluation
• Conclusion
• Future work



University of Kansas11

Recording
• Execution path – set of all instructions executed
• Factors affecting execution path

• Scheduling decisions – non-deterministic
• Signals – non-deterministic
• Inputs (network, system and user) – variable



University of Kansas12

Recording
• Sample multi-threaded program – two threads



University of Kansas13

Recording
• Execution Path 1

• Output printed: 8

• Execution Path 2
• Output printed: 3



University of Kansas14

Recording
• Thread schedule

• (thread identifier, stop address) pair
• Example: (main thread, 14) 

– Main resumed execution and stopped after line 14 in a schedule

• Schedule Order (SO) – an ordered set of thread 
schedules
• Ordered by time
• Example: { (main thread, 18), (thread 1, exit), (main thread, exit) }

• SO uniquely identifies an execution path
• If inputs supplied to the program are the same
• If the effects due to signals are reproduced 

– Addressed by Ram’s project



University of Kansas15

Recording



University of Kansas16

Recording
• Transition due to interrupt

• Instruction at transition address was already executed
• Breakpoint should be set at resumption address

• Transition due to system call
• Instruction at transition address is a system call

– transition should not be allowed for most system calls (especially 
sys_futex) 

– breakpoint should be placed at transition address
• Exceptions: clone, exit

– effects should actually take place
– breakpoint should be placed at resumption address



University of Kansas17

Recording
• Record both during context switch
• Sample SO

CS <Thread 1, T11, R11>
CS <Thread 2, T22, R22>
CS <Thread 1, T12, R12>

• Resumption address
• User-space return address - found in kernel stack

• Transition address
• Address of the previous instruction – but length can vary
• Manual lookup required

• Record only return addresses



University of Kansas18

Recording
• Resumption point – not determined by return 

address alone
• (address, count) pair 

• Basic blocks – set of instructions with single point of 
entry and exit with no branches in between
• GCC’s block profiling feature can be used

• Final SO
• CS <thread 1, (R11, basic block count)>
• CS <thread 2, (R22, basic block count)>
• CS <thread 1, (R12, basic block count)>



University of Kansas19

Recording
• Need to identify pthread processes in kernel

• Log context switch events of pthread processes alone

• New variable pthread_flag in task_struct
• Set pthread_flag during clone

• New clone flag in both GLIBC and kernel

• Set pthread_flag for main thread when it creates first 
thread



University of Kansas20

Recording
• Maintaining basic block count

• Function __bb_trace_func called for every basic block entry
• New function __bb_new_trace_func increments basic block count
• Work done by Satya at ITTC

• Modifications
• New variable bb_count in pthread_struct
• New functions: pthread_incr_bb_count and pthread_get_bb_count
• __bb_new_trace_func now calls pthread_incr_bb_count

• Accessing basic block count during context switch
• New variable bb_count_addr in task_struct
• Update bb_count_addr during set_thread_area for main thread
• Update bb_count_addr during clone for other threads



University of Kansas21

Recording
• Return address

• Stored in trap frame
• Trap frame stored in kernel stack

• Kernel stack
• THREAD_SIZE: stack size
• Stored from higher to lower addresses
• task_struct stored in bottom

• Trap frame can be obtained using
(THREAD_SIZE +

current thread_info) - 1



University of Kansas22

Recording
• Virtual system calls

• Added to 2.6.x kernels for performance 
improvement

• Kernel page vsyscall mapped to all user 
processes

• Problem: return address in trap frame 
points to SYSENTER_RETURN in vsyscall
• Breakpoint cannot be set

• Solution: user stack
• Follow frame pointer address in trap frame



University of Kansas23

Recording

Sample SO



University of Kansas24

Presentation Outline
• Introduction
• Background
• Recording
• Replay
• Evaluation
• Conclusion
• Future work



University of Kansas25

Replay
• Thread debugging support in GDB

• Builds thread list internally
• Thread create and death events: threadnum

• Thread debugging commands
• Thread specific breakpoints

– break address thread threadnum
– All threads are stopped when any thread hits breakpoint

• Switch context to desired thread
– thread threadnum

• Scheduler locking
– set schedlock on
– continue command resumes only current thread (thread that has 

context)



University of Kansas26

Replay
• PIDs in SO are invalid – needs mapping

• Post-processing filter in DataStreams
• Map PIDs in thread creation order: similar to threadnum

• Transition addresses have to be found
• Only for some system calls
• Manual lookup in objdump output
• Can be input to GDB using syscall_address_file command

• Clever Insight
• Nested breakpoints
• Ability to attach TCL scripts to breakpoint



University of Kansas27

Replay
• Run inferior in scheduler locked mode

• Only one thread runs at a time
• Context can be switched using “thread threadnum” command

• Use SO to insert replay breakpoints
• at return addresses: SO
• transition addresses: mapping file



University of Kansas28

Replay



University of Kansas29

Replay
• Sample command group executed when a replay 

breakpoint is hit



University of Kansas30

Replay
• GDB features can still be used
• Experimental interleaving

• Automatic breakpoint insertion can be controlled
• Control returns to user after a replay breakpoint is hit
• New interleaving can be created



University of Kansas31

Presentation Outline
• Introduction
• Background
• Recording
• Replay
• Evaluation
• Conclusion
• Future work



University of Kansas32

Evaluation
• Recording framework

• Testing basic blocks
• Testing return addresses

• Replay framework
• Tested with programs that had data races: different results for 

different executions
• Save experimental execution result
• Replay in GDB produced experimental execution result



University of Kansas33

Presentation Outline
• Introduction
• Background
• Recording
• Replay
• Evaluation
• Conclusion
• Future work



University of Kansas34

Conclusion
• A framework to record execution path of NPTL 

based applications
• GCC and GLIBC sources modified to support basic block count
• GLIBC and kernel sources modified 

– to identify pthreads in kernel
– to retrieve basic block count during context switch

• A replay framework to reproduce user-mode 
execution path of a program
• Automatic breakpoint insertion feature in GDB



University of Kansas35

Presentation Outline
• Introduction
• Background
• Recording
• Replay
• Evaluation
• Conclusion
• Future work



University of Kansas36

Future Work
• Finding transition addresses automatically

• Transition address required only for some system calls - Wrap them to 
generate a SYSCALL event

• Using Progenitor to separate events of multiple 
NPTL applications executing at same time

• Modify basic block maintenance using edge profiler
• Newer versions of GCC use edge profiler
• Use new GIMPLE intermediate language of GCC 4.0 to do tree 

walking/modification



University of Kansas37

Thank you
Questions?


