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Abstract

Single-threaded programs are conventionally debugged by tracing the program’s
execution repeatedly until the bug is found. The debugging process is based on the
assumption that the repeated executions of the program are identical. Multi-threaded
programs, however, cannot be traced in such a manner because the execution path that
the program takes is affected by several non-deterministic factors and, therefore, could
be different for each run. This project provides a framework to reproduce the execution
of Linux Pthread applications by controlling the non-determinism due to scheduling.

The framework has two phases: recording and replay. The context switch events of
the threads, occurring in the kernel, are logged with essential data to produce a sched-
ule order during the recording phase. The program’s execution is then reproduced in
GDB using the recorded schedule order during the replay phase.
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Chapter 1

Introduction

Some software applications require a threaded programming model by nature. For

example, a web server requires a manager thread to handle incoming connections and

several worker threads for servicing each successful connection. The correct behavior

of such multi-threaded (MT) programs is to produce the same result with same input

for repeated executions. However, the execution path taken to produce the result could

be different for each run. Concurrency control techniques offered by thread libraries

limit the number of such valid execution paths. But, improper use of concurrency

control techniques could lead to bugs that show up only for a certain set of execution

paths. The thread libraries, in general, do not provide information about the execution

trace which leaves the developers guessing about the interleaving order that resulted

in the bug.

Developers generally follow cyclic debugging techniques, which is nothing but

tracing a program’s execution repeatedly, to find out the cause for bugs. This process is

based on the underlying assumption that repeated executions of a program are always

identical. Though it is true for single-threaded programs (if inputs supplied are the

same), the case is not same for multi-threaded programs because a program’s execu-

tion cannot be replayed in a deterministic way. A program can deviate from the path

that it took during the previous run due to several non-deterministic events. These

non-deterministic events have to be recorded and should be used to replay an execu-

tion of a MT program in an identical fashion for repeated runs so that cyclic debugging
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techniques and hence the features available in current debuggers can be used.

The factors that affect an execution path of a MT program are scheduling decisions,

signals and I/O. The goal of this project is to reproduce an interleaving order for MT

programs by recording and replaying scheduler events. The interleaving order pro-

vides us information about the order in which the threads executed. This information

is necessary, though not sufficient, to reproduce an execution path. The execution path

itself can be reproduced only when signals and I/O, in addition to scheduling deci-

sions, are recorded and triggered at appropriate times. Furthermore, the scope of this

project is limited to MT programs using POSIX thread library on uni-processor systems

running Linux.

1.1 Thread Library Models

Thread library is an important component of a multi-threaded application. It provides

a programming interface that is used by developers. In general, thread libraries can be

classified as M:1, 1:1 or M:N.

In a M:1 thread library model, all user threads are mapped to a single kernel pro-

cess. The thread library should therefore provide a scheduler that determines the order

in which the threads are scheduled or mapped to the kernel process. In a 1:1 model

each thread is mapped to a process. In this case, the library can choose to be simple

and thin because the kernel already handles the scheduling job. In the last case several

threads are mapped to one or more processes which, therefore, requires a scheduler

component in the thread library. Bthreads [10], Pthreads and Next Generation POSIX

Threads (NGPT) [2] are examples for M:1, 1:1 and M:N models respectively.

1.2 Pthread (NPTL)

Linuxthreads is a popular thread library that offers POSIX thread implementation to

Linux developers. It is a 1:1 thread library where every thread created in user space is

mapped to a kernel process. Even though it is viewed as a process in kernel mode, a

thread does not have its own address space .Instead, it shares its address space with
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other threads created by a parent process. As expected of a 1:1 thread library, Linux-

threads takes advantage of the scheduling offered by the kernel and does not have a

scheduler of its own.

Native POSIX Thread Library (NPTL) [6] is the latest implementation of POSIX

threads on Linux which will eventually replace Linuxthreads. NPTL requires signifi-

cant support from the kernel. So it is advisable to run NPTL on kernel versions 2.6 and

higher. The new implementation addressed several issues like faster thread creation

and destruction, futexes etc which were considered to be shortcomings in the earlier

implementation.

1.3 Proposed Solution

The goal of this project can be accomplished in two steps.

• First, a log of time-stamped scheduler events have to be generated.

Just recording scheduler events when they occur is not enough. Additional infor-

mation about threads that are involved in the context switch and a valid address

in user mode have to be logged to precisely know when to interrupt an execution

of a thread during replay. DataStreams Kernel Interface (DSKI) [3] is a framework

that can be used to log such events and additional data (related to performance

and control-flow) from the kernel. This topic has been dealt extensively in Chap-

ter 3.

• Second, the program replay has to be guided using recorded information.

The recorded information can be used to set replay breakpoints at appropriate

addresses in thread execution path. When such breakpoints are hit, the context

has to be forced to the next thread in the recorded interleaving order. The GNU

debugger, GDB already has several key features to support deterministic replays

for NPTL. Chapter 4 provides more details about how GDB has been extended

to support deterministic replays.
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1.4 Document Organization

In the next chapter, we discuss some related work that has already been done in this

area. The design and implementation details for recording and replay are discussed

in chapters 3 and 4 respectively. We then discuss the evaluation procedures that have

been used to test the proposed solution in chapter 5 and conclude with possible exten-

sions to this project in chapter 6.

4



Chapter 2

Related Work

Ronsse, Bosschere and Kergommeaus[12] classify the approaches that address the exe-

cution replay problem into two main categories: content-based and data-based. Content-

based techniques record values of shared variables whenever they are modified and

force threads to read the recorded values during replay. Order-based approaches de-

pend on recording the order in which threads executed and forcing them to execute

in the same order during replay. Since our approach falls into the latter category,

we present some order-based approaches already available and compare and contrast

them against ours. We believe, to our knowledge, that this is the first project that is

directed towards developing a record/replay system for POSIX threads on Linux.

Ronsse, Bosschere and Kergommeaus[12] also provide an exhaustive list of refer-

ences for both content-based and order-based approaches that can be reviewed for

more information.

2.1 DejaVu

DejaVu [4] is a modified JVM that supports execution replay for multi-threaded Java

programs. The authors identify synchronization events that could affect the order in

which threads access shared variables and refer them collectively as critical events. The

JVM increments a global clock every time a critical event is executed (in an atomic fash-

ion). A logical thread interval is then defined as <a, b> where a and b are equal to
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the global clock value when a critical event was executed for the first time and last time

during that physical interval for that thread. An ordered set of such logical schedule

intervals form a logical thread schedule which uniquely determines the execution path

taken by a program. The recorded logical thread schedule is then used to achieve de-

terministic replays. In essence, the system records the order of synchronization events

and forces the same order during replay.

Though the approach is independent of underlying operating system, more tracing

information (than required) is generated and additional computation has to be per-

formed to identify logical thread schedules as opposed to physical thread schedules.

Moreover, the global clock has to be incremented for each shared memory access in an

atomic way which introduces additional overhead. The execution time could increase

considerably if the number of shared memory accesses for a MT application is high.

2.2 JaRec

JaRec [7] is also a framework which can be used to replay multi-threaded Java pro-

grams deterministically. JaRec, similar to DejaVu, records the order in which threads

executed synchronization sections and forces the same order during replay. However,

the authors have chosen not to modify the JVM (if it supports JVM Profiler Interface)

for portability concerns. Instead, they instrument the Java classes through a Profiler

Agent just before the Java classes are loaded into JVM. The synchronization instruc-

tions viz. monitorenter and monitorexit are wrapped to do actions related to

recording/replay.

During the recording phase, a logical clock value is updated every time a thread

performs a synchronization operation. This value is then written to a trace file for the

corresponding thread. During replay, a thread reads the logical clock values one by

one from its trace file and is forced to wait till all threads with lower clock values have

completed their synchronization operations. Though the thread order is maintained,

the additional delay caused due to the forced wait slows down the replay.
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2.3 Record/Replay for Bthreads

Ramanasankaran [11] has developed a record/replay framework for Bthreads. Bthreads

[10] is a user-level thread library based on Reactor, an event demultiplexing frame-

work. Both the thread library and the underlying Reactor framework are instrumented

to trigger events whenever a context switch occurs, a signal is delivered or an I/O sys-

tem call is made (the I/O system calls are wrapped for this purpose). The program’s

execution is then controlled and reproduced in GDB using the recorded information.

The framework provides a way to control all sources of non-determinism and can

reproduce the execution path of a MT program deterministically. However, since the

thread library is not yet popular among developers, applications should be ported to

Bthreads library to make use of this framework.

2.4 RecPlay

RecPlay [13] is a tool that allows developers to use cyclic debugging techniques to

debug multi-process applications under Sun multiprocessor systems. This tool also

records the order in which synchronization operations are carried out and forces the

same order during the replay. However, data races (data races occur when synchro-

nization mechanism is not used to protect access to shared variables), if present in the

program, could make a replay unreliable as the information about the order in which

the shared memory was accessed is lost. Hence this approach requires race detection

during replay which slows down the debugging process considerably.
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Chapter 3

Recording

The execution path of a MT program can be deterministically reproduced if

• the order in which the threads interleaved is recorded

• the inputs given to the program are recorded (this includes all network, file and

system input)

• the places at which the signals were delivered are recorded.

For better understanding, consider a simple program 3.1 where a main thread cre-

ates another thread and both of them perform a simple arithmetic on a shared variable.

The output of program 3.1 could be different for each execution based on the order

in which the threads accessed the shared variable. Consider the execution in figure 3.1,

where thread 1 executes till line 14∗. Thread 2 runs next, executes line 7 and exits from

the system. Thread 1 is scheduled again and it completes the rest of the instructions

(16, 18 and 20) and exits from the system. In this case the value of shared var printed

in line 18 is 8.

Consider another execution in figure 3.2, where thread 1 executes till line 18 fol-

lowed by thread 2 and thread 1 again. In this case the value of shared var is printed

as 3.

∗The line numbers are considered to be actual instruction addresses for the sake of simplicity
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Program 3.1 A simple program to illustrate the importance of recording interleaving
information.

1: #include <stdio.h>
2: #include <pthread.h>
3:
4: int shared_var = 0;
5:
6: int thread_func(void) {
7: shared_var += 5;
8: }
9:

10: int main() {
11:
12: pthread_t t1;
13:
14: pthread_create(t1, NULL, thread_func, null);
15:
16: shared_var += 3;
17:
18: printf("In main: shared_var is %d", shared_var);
19:
20: return 0;
21: }

In order to reproduce the program’s execution in a manner identical to its previ-

ous run, the order in which the threads were scheduled and the last instruction they

executed in each schedule should be recorded.

For the execution in figure 3a, this would be

<thread 1, 14>

<thread 2, exit>

<thread 1, exit>

Similarly, for the execution in figure 3b, the information that has to be recorded

looks something similar to

<thread 1, 18>

<thread 2, exit>

<thread 1, exit>

This interleaving information called schedule order (SO) hereafter, can be used to

uniquely identify and, therefore, reproduce the execution path during replay.
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Figure 3.1: Execution Sequence 1

Consider a small modification to program 1 above. An if construct in line 17 checks

if a command line argument is provided just before printing the value of shared var.

If so, the value of shared var is printed.

For program 3.2, a schedule order such as <thread 1, 18>, <thread 2, exit>,

<thread 1, exit> is necessary but not sufficient to reproduce the execution path.

Because there is no assurance that thread 1 will execute line 18 until the inputs are

recorded and fed at appropriate places during replay. Signals in addition to inputs,

can deviate an execution path and therefore have to be recorded whenever they are

delivered to a MT program.

Hence, a schedule order can be used to determine an execution path if and only

if inputs and signals are recorded and re-fed (or re-delivered) at appropriate times

during replay. However, the scope of this project is limited to recording the schedule

order and forcing the replay to follow the same order.
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Figure 3.2: Execution Sequence 2

Program 3.2 A simple program to illustrate the importance of recording inputs

1: #include <stdio.h>
2: #include <pthread.h>
3:
4: int shared_var = 0;
5:
6: int thread_func(void) {
7: shared_var += 5;
8: }
9:

10: int main(int argc, char **argv) {
11:
12: pthread_t t1;
13:
14: pthread_create(t1, NULL, thread_func, null);
15:
16: shared_var += 3;
17: if(argc > 1)
18: printf("In main: shared_var is %d", shared_var);
19:
20: return 0;
21: }
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3.1 Background

As discussed in chapter 1, the NPTL implementation (similar to LinuxThreads imple-

mentation) of POSIX threads follows a 1:1 model. Threads created using NPTL thread

library have individual PIDs, user and kernel mode stacks, but share the address space

with other threads. The following are some of the points that are relevant to the design

of recording framework.

• Threads are created using pthread createAPI which finally makes the clone

system call. The kernel then creates a new process, but keeps track of its parent

using a variable called TGID in the task struct(PCB). Normally, the TGID of

all ”real” processes is equal to their respective PIDs. But, for threads created

using clone system call, TGID is equal to PID of the parent process.

• Since each thread is a process by itself in the kernel, the kernel treats them as any

other process as far as scheduling is concerned. However, individual threads of a

MT application do not show up when one examines the processes in the system

using ps command.

• Threads (like any other process) enter the kernel mode either due to a system call

or when the system receives an interrupt. The threads could be context switched

when they are in the kernel mode.

3.2 Schedule Order

Figure 3.3 shows an execution sequence of a program that has two threads. The hori-

zontal axis denotes the timeline. As it can be seen in the figure, the threads can either

be in user or kernel mode at any point of time. The points where the threads transition

to the kernel mode are denoted by labels that start with T. This would be T11, T12, T13

etc. for thread 1 and T21, T22, T23 etc. for thread 2 and so forth. As mentioned above, a

context switch could occur during those transitions and the points where it happens is

denoted by labels that start with C. The points at which the threads resume execution

in user mode is denoted by labels that start with R.
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Figure 3.3: A detailed execution sequence
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3.2.1 Transition and Resumption points

A transition point is nothing but the address of last executed instruction in user mode.

Similarly a resumption point is the address of an instruction to be executed next when

a thread resumes execution in user mode. Program 3.3, a part of assembly code gen-

erated by an objdump of C library, shows the transition and resumption points for a

fork system call.

Program 3.3 An objdump of libc.so to illustrate transition and resumption addresses

79239: ba 01 00 00 00 mov $0x1,%edx
7923e: b9 01 00 00 00 mov $0x1,%ecx
79243: 89 f0 mov %esi,%eax
79245: 87 fb xchg %edi,%ebx
79247: cd 80 int $0x80
79249: 87 fb xchg %edi,%ebx
7924b: 90 nop
7924c: 8b 45 cc mov 0xffffffcc(%ebp),%eax

The instruction at 79243 moves the system call number to the accumulator and

the instruction at 79247 (int 0x80) generates a software interrupt to let the kernel

know that a system call is being made. So, in this case, address 79247 is the transition

address and address 79249 is the resumption address. It is also evident that transition

and resumption addresses always point to consecutive instructions.

There are some instances where a breakpoint has to be set at a transition address

and some instances where it should be set at a resumption address during replay. If a

context switch occurs after a thread transitions to the kernel mode due to an interrupt,

a breakpoint should be set at the resumption address. For most system calls it is rea-

sonable to set a breakpoint at the transition address, because we do not want a process

to enter the kernel mode. For system calls like futex, a thread may never return to user

mode (and the resumption address) if the lock is held by another thread. However, we

want some system calls like clone and exit to actually go through so that threads are

actually created and destroyed. In such cases, breakpoints have to be set at respective

resumption addresses.

It is, therefore, important that both transition and resumption addresses are recorded
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during a context switch. The schedule order for the execution sequence in figure 3.3

would now look like

<Thread 1, T11, R11>

<Thread 2, T22, R22>

<Thread 1, T12, R12>

Assuming that C1 in figure 3.3 happened after thread 1 made a transition (at T11)

due to a system call (other than clone and exit) and C2 occurred after thread 2 made a

transition due to an interrupt, the replay sequence would look like figure 3.4

When thread 1 reaches T11, it is stopped and GDB instructs the kernel to resume

thread 2. As it is evident from the figure, the actions that thread 1 would have done

in the kernel mode after T11 (K11) is delayed till GDB resumes thread 1 again. Due to

this the overall execution sequence is different from the original one. The effects that

this part of execution has on the overall application is therefore not reproducible and

this problem is beyond the scope of this project. But the execution sequence in the user

mode is reproduced exactly as shown in the figure 3.4.

3.2.2 System call wrappers

As discussed above, both transition and resumption addresses have to be recorded

at the time of a context switch. Resumption points are nothing but return addresses

stored in the kernel stack frame. So they can be easily obtained at the time of a con-

text switch. Though a transition point is just the address of previous instruction, the

length(in bytes) of the previous instruction cannot be determined automatically.

So we need another way to record a transition address (at the time of a context

switch). We can exploit the fact that transition addresses are required only for system

calls and wrap them to generate an event whenever the system call is being made.

Also, we now need a way to distinguish between context switch events and events

generated from system call wrappers (SYSCALL). The schedule order for the same

sequence in figure 3.3 would now be

SYSCALL <thread 1, S11>

15



Figure 3.4: A detailed replay sequence
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CS <thread 1, R11>

SYSCALL <thread 2, S21>

CS <thread 2, R22>

It should be noted that CS events no longer have transition address. It is generated

by the system call wrappers instead. The information recorded above is by no means

complete to replay the execution. Figure 3.3 indicates that there was no context switch

after T21. But a system call event is generated just before the transition (assuming

T21 is due to a system call). This SYSCALL event should be ignored during replay

as the context switch did not happen during that transition. So we need a way to

ignore system call events that did not result in context switch. This can be done by

recording additional information with a context switch event which indicates whether

the corresponding transition was due to an interrupt or a system call. The schedule

order would now be

SYSCALL <thread 1, S11>

CS <thread 1, R11, SC>

SYSCALL <thread 2, S21>

CS <thread 2, R22, INT>

Using this additional information, all system call events that did not result in con-

text switch can be ignored (in this case the second SYSCALL event is ignored as the

CS following it is due to an interrupt). However, a method to obtain this important

information (at the time of context switch) is currently unknown.

The current record/replay framework ignores system call events due to this rea-

son. The replay framework, instead, uses a mapping file which contains transition

addresses (previous instruction’s address of a resumption address) of system calls that

led to context switches. Chapter 4 discusses more about this issue. The rest of the

discussion in this chapter will focus on recording just return addresses.

3.2.3 Basic Blocks

It is possible for any instruction to be executed more than once due to loops present

in a program. Therefore, just knowing the address of an instruction is not enough to
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uniquely identify a transition or resumption address. It is actually determined by the

(address, count) pair where count indicates the number of times the instruction

at this address was executed before.

To determine the value of count, the concept of basic blocks can be used. A basic

block is a set of assembly instructions that has a single point of entry and exit with no

branches in between. The block profiling feature in GCC can be used to maintain a

per-thread basic block count which can then be logged together with the resumption

address when a context switch occurs. The modified schedule order would now look

like

CS <thread 1, R11, basic block count>

CS <thread 2, R22, basic block count>

Summarizing the discussion above, the following things have to be accomplished

to complete the recording framework.

• A per-thread basic block count has to be maintained.

• A context switch event has to be triggered every time the context is switched

from and to a ”pthread” process.

• A return address and a per-thread basic block count has to be recorded along

with a context switch event.

The next few sections discuss about how these were implemented.

3.3 Maintaining Basic Block count

GCC (GCC 2.95 to be specific) has an in-built block profiler which can be used with

a -ax option. It is normally used to find portions of code which can be optimized

based on execution statistics. GCC organizes the resulting executable into basic blocks

and assigns them a label and adds additional routines to do book-keeping. GCC adds

a new function called bb trace func in each basic block so that block profiling
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Program 3.4 A sample objdump showing basic block profiling

8048b2a: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)
8048b31: 9c pushf
8048b32: c7 05 b0 b2 04 08 01 movl $0x1,0x804b2b0
8048b39: 00 00 00
8048b3c: c7 05 b4 b2 04 08 80 movl $0x804b180,0x804b2b4
8048b43: b1 04 08
8048b46: e8 7d 17 00 00 call 804a2c8 <__bb_trace_func>
8048b4b: 9d popf
8048b4c: 8b 45 f0 mov 0xfffffff0(%ebp),%eax
8048b4f: 8b 55 fc mov 0xfffffffc(%ebp),%edx
8048b52: 3b 50 08 cmp 0x8(%eax),%edx
8048b55: 7c 20 jl 8048b77 <infloop+0x83>
8048b57: 9c pushf
8048b58: c7 05 b0 b2 04 08 02 movl $0x2,0x804b2b0
8048b5f: 00 00 00
8048b62: c7 05 b4 b2 04 08 80 movl $0x804b180,0x804b2b4
8048b69: b1 04 08
8048b6c: e8 57 17 00 00 call 804a2c8 <__bb_trace_func>
8048b71: 9d popf
8048b72: e9 99 01 00 00 jmp 8048d10 <infloop+0x21c>
8048b77: 9c pushf
8048b78: c7 05 b0 b2 04 08 03 movl $0x3,0x804b2b0
8048b7f: 00 00 00
8048b82: c7 05 b4 b2 04 08 80 movl $0x804b180,0x804b2b4
8048b89: b1 04 08
8048b8c: e8 37 17 00 00 call 804a2c8 <__bb_trace_func>
8048b91: 9d popf
8048b92: c7 45 f8 00 00 00 00 movl $0x0,0xfffffff8(%ebp)
8048b99: 8d b4 26 00 00 00 00 lea 0x0(%esi),%esi
8048ba0: 9c pushf
8048ba1: c7 05 b0 b2 04 08 04 movl $0x4,0x804b2b0
8048ba8: 00 00 00
8048bab: c7 05 b4 b2 04 08 80 movl $0x804b180,0x804b2b4
8048bb2: b1 04 08
8048bb5: e8 0e 17 00 00 call 804a2c8 <__bb_trace_func>
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related data structures can be updated just after entering a basic block. The following

piece of code shows bb trace func being called upon the entry of each basic block.

Malladi[9] made modifications to the basic block profiling feature by registering a

new function called bb new trace funcwhich, in addition to doing the usual book-

keeping work, updates a basic block count variable in the internal thread structure

maintained by the Bthread library. This feature can be used by compiling a Bthread

program with a ”-at” option.

A similar approach has been followed to maintain a per-thread basic block count.

A new variable called bb count has been added to the internal thread data struc-

ture maintained by the pthread library. Two functions pthread incr bb count and

pthread get bb count that increment and return the value of bb count respec-

tively have also been added to the pthread API. When a pthread program is compiled

using the ”-at” option, GCC inserts a call to bb new trace func upon entering a ba-

sic block. The bb new trace func in turn calls pthread incr bb count function

which increments the bb count in pthread structure.

3.4 Recording kernel events using DSKI

Datastreams Kernel Interface (DSKI)[3] is a framework to collect status and perfor-

mance related data from the kernel. Kernel components can be instrumented to trigger

an event when a thread of execution reaches that point. Each instrumentation point

can be uniquely identified by a Family and Event ID, where a family is a collection of

related events. It also has support for counters and histograms. DSKI also has a device

driver interface through which the user can choose to log certain subset of events for an

experiment. Data is collected through the same device driver interface and is logged

to a file in binary format which can then be post-processed.

The following DSKI macro has to be added at points where we want an event to be

triggered.

DSTRM EVENT(Family ID, Event ID, Tag, Extra Data length, Pointer to extra data)

As mentioned above Family and Event ID uniquely identify this instrumentation
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point. PID is usually passed as the third argument. The fourth and fifth arguments can

be used to log additional data at every instrumentation point. Events are automatically

time-stamped which can then be used to generate a chronological order.

DSKI already has several pre-defined families and events. But events like SWITCH FROM

and SWITCH TO under SCHEDULER family are very useful for the functionality of this

project. Event SWITCH FROM is triggered whenever the scheduler chooses to interrupt

the execution of a process and event SWITCH TO is triggered whenever the execution

of a process is resumed back. Section 3.5 discusses how these events (or a variation)

have been used to implement the recording framework.

3.5 Identifying Pthread processes in the kernel

Identifying pthread processes in the kernel is very important to the functionality of the

recording framework. Logging context switch events (SWITCH FROM and SWITCH TO)

of all processes is not of much use since it is difficult to separate out events of a multi-

threaded application during post-processing. Therefore, it is essential that pthread

processes are identified in the kernel so that context switch events of only those pro-

cesses can be logged. For this purpose, two new events called PTHREAD SWITCH FROM

and PTHREAD SWITCH TO have been added. These events are triggered only when ex-

ecution of a pthread process is stopped or resumed respectively.

A new clone flag called CLONE SET BBCOUNT has been added to both GLIBC

and kernel for this purpose. The clone system calls from GLIBC are now made with

this new flag turned on. The kernel, while processing the system call, checks for this

flag and turns on a new status flag called pthread flag in the task struct, which

serves for identifying pthread processes. But such an approach cannot be followed for

a main thread because it is not created from a clone system call. The status flag for a

main thread, therefore, has to be updated only when it creates a thread(using clone

system call).
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3.6 Accessing Basic block count in kernel mode

Return addresses have to be logged as (address, basic block count) pair dur-

ing a context switch event, which requires the kernel to know the address that it has

to fetch the basic block count from. A new variable that points to this address called

bb count address has been created in the task struct. The value of this variable

is set to the address of per-thread basic block count variable maintained by the pthread

library, during the clone system call (again, this is done only when CLONE SET BBCOUNT

flag is on) for threads created by a main thread. For a main thread, the bb count address

is set during the set thread area system call.

3.7 Fetching Return addresses

The next task is to fetch return addresses. It is important to note, at this point, that

every process has both user and kernel level stack. Each process is allocated a kernel

stack of certain size (which can be set during kernel configuration). The task struct

of a process itself is stored in this kernel stack and it occupies the lower addresses. The

remaining memory is used to store stack frames and the stack grows downwards from

higher to lower addresses.

When a process enters the kernel mode (either due to a system call or an interrupt),

the user space return address is stored in first stack frame, which is usually called a

trap frame. This frame can be accessed in the following manner.

t_regs = ((struct pt_regs *)

(

THREAD_SIZE +

(unsigned long)current->thread_info)

) - 1;

where,

• current points to the task struct of the process that is executing currently
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• ”current− > thread info” points to the lower most address of the kernel stack

of the process

• THREAD SIZE is equal to the size of the stack

• pt regs refers to the structure of a stack frame.

The (return address, basic block count) pair can then be recorded as extra data along

with PTHRED SWITCH FROM event. It is enough to record just PTHREAD SWITCH FROM

events to create a schedule order. PTHREAD SWITCH TO event was added just for test-

ing purposes.

3.7.1 Virtual System Calls

The newer versions of linux kernel (2.6 and above) have support for virtual system calls

[1]. They have been introduced to reduce the time it takes to switch from user to kernel

mode during a system call. Under this new approach, a kernel page is mapped to

every user process. This is evident by doing an ldd on any application. The following

example shows the libraries that are linked to ls on a system that supports virtual

system calls.

testbed62 [42] % ldd /bin/ls

linux-gate.so.1 => (0xffffe000)

librt.so.1 => /lib/tls/librt.so.1 (0x00535000)

libacl.so.1 => /lib/libacl.so.1 (0x4118a000)

libselinux.so.1 => /lib/libselinux.so.1 (0x4189c000)

libc.so.6 => /lib/tls/libc.so.6 (0x006fd000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0x00932000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x006e4000)

libattr.so.1 => /lib/libattr.so.1 (0x410da000)

The first library, linux-gate.so.1, does not exist and it refers to the vsyscall page

in the kernel memory. A process can now make a system call as though it makes a

normal function call and , in such cases, the return address in the stack always points
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to an address on this page referred by the macro SYSENTER RETURN. Logging this

address is not of much use because breakpoints cannot be set at SYSENTER RETURN

during replay(because it belongs to the kernel memory).

To get a return address where a breakpoint can be set, the user level stack of the

process has to be unwinded once, so that the return address of the function which

actually made the virtual system call can be obtained. The way the user-level stacks are

maintained is dependent on the underlying architecture and therefore, the rest of this

section is i386 specific. The changes should be simple to port for other architectures.

Figure 3.5 [5] shows how user level stack frames are organized. In i386, the ebp

register is used for storing frame pointers. Every stack frame has ebp, a pointer to

previous stack frame, at the top. It is followed by eip, which is the return address for

that stack frame.

Figure 3.5: User Stack Organization

Therefore, the return address of a function which made the virtual system call can

be obtained in the following way.
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get_user(

temp_eip,

(unsigned long __user *)

(t_regs->ebp + sizeof(unsigned long))

);

tregs points to the trap frame (see section3.7). ”tregs− > ebp” points to the

desired stack frame in the user stack and the address of the return address can be

found by adding the size of one unsigned long.

3.8 Sample Schedule Order

Consider a simple multi-threaded program in Program 3.5. The main thread creates

three threads and waits till all the threads exit after they count from 0 to 99. It then

prints ”Hello World!” and then exits.

The following is a part of the schedule order that was obtained while tracing a sam-

ple run of program 3.5 in XML format. The binary schedule order files can be converted

to XML format (and vice versa) using Python scripts in the Datastream package.

1 <?xml version = "1.0" encoding="iso-8859-1" standalone="no"?>

2 <!DOCTYPE COMPOSITE_STREAM SYSTEM>

3 <COMPOSITE_STREAM>

4 <ENTITY number="0" tag="0" ... time_std="0" type="ADMINISTRATIVE_EVENT">

5 <EVENT name="EVENT_CPU_TIME_INFO" family="DSTREAM_ADMIN" id="9">

6 <EXTRA_DATA format="base64">

7 IJBxQqCY2yFJvQK6Zd8D...

8 </EXTRA_DATA>

9 <EXTRA_DATA format="custom">

10 tv_sec=1114738720

11 tv_nsec=568039584

12 tsc=1090052935564617L

13 per_sec=0L

14 per_jiffy=0L

15 per_subjiffy=0L
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Program 3.5 A simple multi-threaded program to illustrate schedule order

#include <stdio.h>
#include <pthread.h>

#define NUM_THREADS 3

void *count() {
int i;

for (i=0; i < 100; i++);

return NULL;
}

int main() {

pthread_t pt[NUM_THREADS];

int i;

for(i=0; i<NUM_THREADS; i++) {
pthread_create(&pt[i], NULL, count, NULL);

}

// Wait for the threads to exit
for(i=0; i<NUM_THREADS; i++) {

pthread_join(pt[i], NULL);
}

printf("\nHello World\n");

return 1;
}
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16 </EXTRA_DATA></EVENT>

17 </ENTITY>

18 <ENTITY number="1" tag="2540" ... time_std="0" type="EVENT">

19 <EVENT name="PTHREAD_SWITCH_FROM" family="SCHEDULER" id="66">

20 <EXTRA_DATA format="base64">

21 TIALQNDq/7846/+/AwAAAA==

22 </EXTRA_DATA>

23 <EXTRA_DATA format="custom">

24 from_eip(hex)=400b804c

25 bb_count=3

26 </EXTRA_DATA></EVENT>

27 </ENTITY>

28 <ENTITY number="2" tag="2541" ... time_std="0" type="EVENT">

29 <EVENT name="PTHREAD_SWITCH_FROM" family="SCHEDULER" id="66">

30 <EXTRA_DATA format="base64">

31 GEcRQMQakkAcG5JAzQAAAA==

32 </EXTRA_DATA>

33 <EXTRA_DATA format="custom">

34 from_eip(hex)=40114718

35 bb_count=205

36 </EXTRA_DATA></EVENT>

37 </ENTITY>

38 <ENTITY number="3" tag="2540" ... time_std="0" type="EVENT">

39 <EVENT name="PTHREAD_SWITCH_FROM" family="SCHEDULER" id="66">

40 <EXTRA_DATA format="base64">

41 TIALQNDq/7846/+/BgAAAA==

42 </EXTRA_DATA>

43 <EXTRA_DATA format="custom">

44 from_eip(hex)=400b804c

45 bb_count=6

46 </EXTRA_DATA></EVENT>

47 </ENTITY>

Lines 1 to 17 represent the datastream header. It is then followed by ENTITY tag

which encapsulates events (counters, and histograms). Lines 18 to 27, 28 to 37 and
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38 to 47 show details about three PTHREAD SWITCH FROM events. The tag argument

in the ENTITY tag holds the PID (passed as third argument to DSTRM EVENT macro)

of the process for which the event was triggered. The extra data passed as the fifth

argument is encapsulated within the EXTRA DATA tag. The return address is displayed

in hexadecimal format and the basic block count is shown in decimal format. The

three events in the SO correspond to main thread (PID: 2540), first thread (PID: 2541)

and main thread again. The return addresses correspond to clone, exit and clone

system calls.

The next chapter discusses in detail about how the schedule order can be used to

reproduce the execution path.

28



Chapter 4

Replay

This chapter provides details about the replay framework and how a schedule order

can be used to reproduce an execution path in user mode. This can be done by execut-

ing the target program within the context of GDB and setting breakpoints at appropri-

ate addresses. Section 4.4 provides more detail about this. Section 4.2 provides back-

ground information about GDB and existing support for thread debugging. Section 4.2

describes the intermediate steps that have to be completed before replay. Section 4.3

describes the changes that have been made to Insight to support deterministic replays.

4.1 Background

In GDB terminology, the program to be debugged is called the inferior process.

GDB starts to trace the inferior process by first attaching to it using ptrace sys-

tem call (PTRACE ATTACH flag is passed along). GDB (or any process that traces) can

then control the inferior’s execution and examine its stack, local and global vari-

ables, registers and other data structures. A sample debugging session of a single-

threaded program, represented as a state machine is shown in figure 4.1. Though GDB

has rich set of features, only those that are relevant to the scope of this project are

discussed here.

GDB starts in state 1 where the inferior’s symbols have already been loaded and

initial breakpoints have been set. A run command starts the inferior and puts GDB
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Figure 4.1: GDB State diagram

in state 2 where it waits for any inferior’s event to be reported. This event is usually

a SIGTRAP (or SIGINT if a program performs something illegal) caused by hitting a

breakpoint. At this point the inferior process is stopped and control returns to GDB

which moves it to state 3 where the user can check the inferior’s stack, variables etc. A

continue command puts GDB back in state 2 (wait state) till a breakpoint is hit again.

This process is usually referred as cyclic debugging. An user can also choose to end

the debugging session which puts GDB in state 4 from state 3. A transition from state

2 to state 4 is also possible if the inferior exits. The basic system calls used are wait

(waitpid) and ptrace. More information about these system calls can be obtained

from their respective man pages.

4.1.1 Existing Thread debugging support

As stated in chapter 1, GDB simply follows the cyclic debugging process even for

multi-threaded programs (which cannot be replayed deterministically). However, GDB
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already has some support for multi-threaded debugging which can be used to achieve

deterministic replays.

GDB has a well structured framework through which support for any threading

library can be incorporated. In addition to adding the target thread library to the

GDB source tree, the thread library should also provide a debugger support library.

For NPTL, the target is called linux-nat and the debugger support library is called

libthread db.so.

GDB inserts breakpoints at thread creation and exit addresses (the debugger sup-

port library helps GDB to find the addresses) and hence gets notified when those events

occur. GDB also updates its internal thread list when such events occur. The threads

can be identified using a variable called threadnum that is specific to GDB (it is not

related to PID). It is usually assigned in the order in which threads are created. The

main thread is 1, first thread created is 2 and so on. Users can then use the following

thread specific commands by specifying the threadnum.

• break address thread threadnum:

A thread specific breakpoint can be set by specifying a threadnum. A SIGTRAP

is generated every time the breakpoint is hit, no matter which thread hits it, but

GDB returns control to the user only when the specified thread hits it. In other

cases GDB simply resumes execution of all threads. It is important to note, at this

point, that execution of all threads are stopped by the kernel when any thread

hits a breakpoint. As stated in chapter 3, the kernel maintains a TGID list which

keeps track of threads created by a process. The kernel supports group stop and

group exit feature through which the entire thread group can be stopped or killed

respectively.

• thread threadnum:

This changes the context from current thread that reported an event to a different

thread specified by threadnum.

• set schedlock on:
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This is one of the key features necessary to support deterministic replays. When

this feature is turned on, instead of resuming all threads when a continue com-

mand is issued, GDB resumes only the thread that has context. The context can

be changed to a desired thread using thread threadnum command mentioned

earlier.

Section 4.4 describes how deterministic replay can be achieved using the schedule

order (obtained during the recording phase) and a combination of commands men-

tioned above. But before moving to that section, it is important to understand the

schedule order cannot be used as such. Some post-recording/pre-replay processing

has to be done so that it can be used for replay. The next section describes the details.

4.2 Intermediate Steps

This section lists some intermediate actions that have to be done before replaying a

program’s execution.

4.2.1 Thread number mapping

Scheduler order is a binary file which contains all context switch events. But the PIDs

in those events cannot be used as such because threads will be assigned new PIDs

during replay. So a mapping procedure to identify threads becomes essential. For this

purpose, a new instrumentation point has been added in the copy thread function

(which gets called by sys clone eventually) of the kernel source tree. It triggers a

PTHREAD THREAD CREATE event every time a pthread is created (As stated in Chap-

ter 3 a pthread can be identified using the CLONE SET BBCOUNT flag that gets passed

along with the clone system call) and logs the newly created thread’s ID as extra data.

A post-processing filter (available with the datastreams package) then makes a pass

through the schedule order file and replaces the PIDs with number of thread create

events processed. Main thread always creates the first thread. So, when a thread create

event is processed for the first time, the PID of the main thread is assigned number

1 and the newly created thread is assigned number 2. Threads created thereafter are
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assigned numbers in increasing order. This intermediate phase essentially creates a

mapping through which desired threads can be identified because the numbers as-

signed in this phase are going to match the threadnum values that GDB will assign

during replay (see section 4.1.1). After post-processing, a new (binary) schedule order

file with revised thread numbers is created.

This file can be specified as input file using the replay schedsgnl file com-

mand which has been created for this purpose. Ramanasankaran [11] created this

command to achieve reproducible concurrency for BThreads. It has been modified

to fit the requirements of this project.

4.2.2 Transition Address mapping

As stated earlier in section 3.2.1, breakpoints have to be set at transition addresses for

most of the system calls. It also mentioned that a method to fetch it at the time of

context switch is currently unknown. However, it can be found by going through the

schedule order file (in XML format) and finding a corresponding transition address (if

required, transitions caused by interrupts and some system calls do not require tran-

sition address) by looking at objdump files manually. A list of such mappings (return

address, transition address) have to be saved as a file and specified as input to GDB so

that it can set a breakpoint at the transition address instead of a return address it reads

from the schedule order file.

A new command by name syscall address file has been added to GDB for

this purpose. This command takes a transition address mapping file (the transition

addresses are nothing but addresses where the system calls are being made from and

hence the name syscall address file) as an argument and then builds a mapping

array which can then be used during replay.

4.3 Clever Insight

Another feature that is required to support deterministic replays is the ability to attach

a group of commands (including setting next replay breakpoint) to be executed when
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a breakpoint is hit (as described in the next section). GDB lacked the feature of nested

breakpoints which was addressed by Ramanasankaran [11]. Furthermore, Clever In-

sight, which in turn is derived from SmartGDB [8], added the capability to attach TCL

scripts to be executed when breakpoints are hit. Support for deterministic replay has

been added in such a way that the feature can be used in both GDB and Insight.

4.4 Deterministic Replay Support

The schedule order can be used to achieve execution replays by setting replay break-

points at appropriate transition or resumption points and forcing the context to a de-

sired thread. Special conditions like thread exits have to be dealt specially. Program

4.1 describes the pseudo code for automatic (replay) breakpoint insertion process.

Program 4.1 Pseudo code for Automatic Breakpoint insertion

1: Set breakpoint at main and start the inferior
2: Wait for the inferior to report an event
3: If Event = Thread Exit
4: Add threadnum to exited thread list
5: Goto 10
6: Else If Event = Replay Breakpoint
7: Goto 10
8: EndIf
9: Continue Inferior

10: Read next schedule event from schedule order file
11: If threadnum is in exited thread list
12: Goto 10
13: EndIf
14: Switch to threadnum
15: If breakpoint return address has a corresponding transition address
16: Set Next Replay Breakpoint at Transition address
17: Else
18: Set Next Replay Breakpoint at Return address
19: EndIf
20: Goto 9

Before setting a breakpoint at main, the transition address mapping and schedule

order file have to specified as input. First a breakpoint is set at main and a group of

commands that have to be executed when the breakpoint is hit is specified. Next, the
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inferior is started. When the breakpoint at main is hit, the command group is executed

which contains command to set next replay breakpoint and this process continues till

the inferior exits. There is a possibility that the schedule order can contain schedule

events for exited threads. This is because GDB/Insight receives a thread exit event

slightly earlier before a thread actually exits. Therefore it is important to maintain an

exited thread list and update it when a thread exits so that schedule events for those

threadnum values can be ignored. A sample group of commands that have to be

executed when a replay breakpoint is hit is shown in Program 4.2

Program 4.2 A sample command group that is executed upon hitting a replay break-
point

1: info threads
2: thread 1
3: break *1074174393 thread 1 if pthread_get_bb_count() == 68
4: commands
5: disable_last_breakpoint_hit
6: set_next_replay_breakpoint
7: end
8: continue

The info threads command in line 1 is necessary because, a breakpoint has to

be set for a thread sometimes even before the thread creation event is reported in GDB.

By executing this command, threads events can be detected even though it is not re-

ported and not added to the internal thread list maintained by GDB. The command

in line 2 makes thread 1 to be in current context. A replay breakpoint is inserted for

thread 1 after reading the schedule order and transition mapping files. It is then fol-

lowed by the set of commands that have to be executed when this breakpoint is hit. It

starts with commands command in line 5 and is followed by a list of commands and

is ended by end command. The commands specified in line 5 and 6 disable last replay

breakpoint set and insert next replay breakpoint respectively. This file is then input

to GDB through the source command which executes commands in line 1 through 3

and schedules commands in line 5 and 6 to be executed when the breakpoint in line

3 is hit. The continue command in line 8 is specified only when the replay is set to

auto mode which is described in section 4.5.
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4.5 Experimental Interleaving

The execution replay procedure can be controlled. When run in a controlled mode,

control is returned to the user when a replay breakpoint is hit. The next replay break-

point is already set before yielding the control to the user. The user can just continue

an inferior at this point which will continue the execution replay process. Or the

user can choose to experiment and switch to another thread that he/she wishes and

achieve a new interleaving pattern. Thus the new feature also allows an user to exper-

iment with new interleaving pattern in addition to achieving execution replay.

The next chapter describes the how the record/replay framework has been evalu-

ated.
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Chapter 5

Evaluation

The recording framework produces a schedule order file, which can be checked to

see if return addresses and basic block counts that it recorded are valid. The replay

framework is more obvious to evaluate because a program’s execution has to match

the execution in the recorded run. The evaluation procedures that have been used to

test the framework are presented in the next few sections.

5.1 Evaluation of Recording framework

The recording framework has two major components that can be tested: basic blocks

and return addresses.

5.1.1 Testing basic blocks

A new function, pthread get bb count, has been added to the pthread library for

this purpose. A program with 4 threads, each executing a for loop for a different

number of times was written for this purpose. The difference between the basic block

counts before and after the loop was printed. This matched the number of times the

for loop executed in each of the threads.

37



5.1.2 Testing Return Addresses

The schedule order file can be converted into XML format using post-processing filters

that come with the Datastreams package. The XML file can then be opened in an editor

and the return addresses can be checked to see if they are valid. A quick method to do

that is to open the executable in GDB and set a breakpoint at that particular address

and see if GDB can actually insert a breakpoint at that location.

A simple program was written for this purpose and its execution was recorded.

The return addresses were checked manually using the objdump tool. As expected, all

context switches that occurred due to system calls were due to blocking system calls

which proves the credibility of the recording process.

Finally, because of the nature of the problem being addressed, a successful exe-

cution replay indicates the success of the recording framework. The next section de-

scribes how the entire framework has been tested.

5.2 Evaluation of Replay framework

The credibility of the execution replay system can be tested by checking it against pro-

grams that have data races. Such programs produce different results for different ex-

ecutions. When an execution of such a program is recorded, the framework should

produce the same result obtained during the recorded execution (for any number of

times) if it is valid.

The framework was tested using simple multi-threaded programs that had data

races. The output of the program under test was saved while recording the schedule

order. When replayed using the framework it produced an output that was identical

to the saved output.

As stated earlier, the framework requires a transition address mapping file that

cannot be produced automatically. The user has to go through a tedious process of

manually identifying the transition addresses as explained in section 4.2.2. For this rea-

son, the framework has not been tested using test-suites and complex multi-threaded

programs.
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Chapter 6

Conclusions and Future Work

A record/replay framework has been implemented to achieve deterministic execution

replays for NPTL based multi-threaded applications. Using this feature, developers

can resort to cyclic debugging techniques and use wealth of features already available

in GDB/Insight to debug multi-threaded programs. The following features/changes

have been made to open source code-bases to achieve this.

• GCC and GLIBC code-bases have been modified to support per-thread basic

block count.

• Small changes to GLIBC and the kernel have been made to identify pthread pro-

cesses and to inform the kernel about the address where it can fetch basic block

count from.

• New instrumentation points that trigger and record context switch events of

pthread processes have been added to the kernel.

• The kernel source has been modified to record user-mode return addresses (from

the kernel/user stack of a process) during the context switch events.

• Automatic breakpoint insertion feature and several new commands have been

added to GDB to achieve deterministic execution replays.

The following are some pointers to additional work that are required to make this

tool complete.
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• As stated earlier, the transition addresses for some system calls have to be found

manually. An alternative approach through which this can be automated was

mentioned in section 3.2.2. This approach, however, requires the ability to dis-

tinguish context switch events that occur due to system calls or interrupts. Such

an approach would completely eliminate the manual lookup that is required cur-

rently.

• Though pthread processes have been identified in the kernel, events of multiple

applications could be recorded if they are running at the same time. A method to

distinguish processes/threads of a particular application is therefore required to

separate events. Progenitor feature, which is available with the KUSP source can

be used this purpose with slight modifications. However, it has not been ported

and tested to work with 2.6 kernels at the time of this writing.

• As stated in Chapter 3, system calls and signals have to recorded and re-fed at

appropriate points during replay to deterministically replay the execution path.

• GCC’s (2.95 version) block profiler feature has been used to maintain a per-thread

basic block count for this project. Unfortunately, this feature has been removed

and replaced with an edge profiler in higher versions of GCC. Methods to im-

plement the basic block feature using an edge profiler must be designed and

implemented for higher versions(3.0 and above) of GCC.
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