
University of Kansas

Design of the New and
Improved NetSpec Controller

Radhakrishnan R. Mukkai
Masters Thesis Defense

Date: 8 Jan 2004

Committee:
Dr. Jerry James (Chair)
Dr. Douglas Niehaus
Dr. David Andrews

2
University of Kansas

Presentation Outline
Introduction
Why a new NetSpec controller?
Goals
Background Information
NetSpec 6.0
Implementation
Testing
Related Work
Conclusions and Future Work

3
University of Kansas

Introduction
What is NetSpec?

Software tool designed by researchers at KU.
Provides a framework to centrally control
daemons running on other machines.
Provides a simple, block structured language
for specifying experimental parameters.

4
University of Kansas

Features of NetSpec

Centralized control and command
system
Scalability
Reproducibility
Extensibility

5
University of Kansas

Why a new NetSpec controller
The older NetSpec controller (version 5.0) was

Complex
Non-modular

Reasons
Parsing & control operations performed
simultaneously.
No data structures in the controller to store
parsed values.

6
University of Kansas

NetSpec sample script
netTraffic testbed61 {

type = full (blocksize=32768,
duration=10);
protocol = tcp; # daemon data

…
}

Controller looks at the daemon data as
parameter = value pairs

7
University of Kansas

NetSpec 5.0 Architecture
NetSpec
script

NetSpec user
interface

Report

Service Multiplexer

Control
daemon

Report

Service Multiplexer

Leaf
daemon

Service Multiplexer

Leaf
daemon

Host A Host B

Control

Report

Control

Report

Control

8
University of Kansas

Goals – NetSpec 6.0
NetSpec user interface not needed. User
script should be given as input to the
controller.
Controller now responsible for performing the
various control operations previously initiated
by the NetSpec user interface.
Separate parsing and control operations.
Data structures are used as the “glue” to tie
them together.

9
University of Kansas

Background Information
Daemons accomplish their tasks in phases.
Two mechanisms to schedule the phases of
daemons:

Classic 8 Phase
Variable Phase

Daemons and controller communicate using a
text-based protocol, called Remote Control
and Information Protocol (RCIP)

10
University of Kansas

Background Information
Classic 8 Phase Scheduling Mechanism

All the daemons are executed in 8 phases.
Controller sends a text command to the
daemon, thus initiating a phase.
Daemons reply with an Acknowledgement
indicating completion of the phase.

11
University of Kansas

NetSpec Classic 8 Phase
Command Action

Setup Allocate Resources

Open Establish necessary socket connections

Run Execute the desired function

Close Close all the socket connections

Finish Finish the execution

Report Prepare and send the report

Teardown Release all the acquired resources

Kill Terminate the execution

12
University of Kansas

Background Information
Daemon functions can be executed either in serial or parallel
fashion using the following execution constructs – Serial, Parallel or
Cluster.

Example script:
serial { # Can be either serial, parallel or cluster

netTraffic testbed61 {
daemon data
}

netTraffic testbed61 {
daemon data
}

}

13
University of Kansas

Execution Construct
Let us consider two daemons A and B

Serial: The open, run and close phases with
respect to a daemon (say, daemon A) are
finished before daemon B is executed.
Parallel: The run phases of daemons A and B
are executed concurrently.
Cluster: The open, run and close phases are
executed concurrently.

14
University of Kansas

Serial/Cluster Construct
Controller

OPEN

ACK

RUN

ACK

CLOSE

ACK

OPEN

ACK

RUN

ACK

CLOSE

ACK

Daemon A Daemon B

T
I
M
E

OPEN

ACK

RUN

ACK

CLOSE

ACK

OPEN

ACK

RUN

ACK
CLOSE

ACK

Controller Daemon A Daemon B

15
University of Kansas

NetSpec 6.0 Architecture

NetSpec
script

NetSpec 6.0
controller

Report

Service Multiplexer

Leaf
daemon

Service Multiplexer

Leaf
daemon

Host A Host B

Control

Report

Control

Report

16
University of Kansas

Implementation

Parsing

Data
Structures

Control
Logic

Report

NetSpec Script

NetSpec
Controller
Design

17
University of Kansas

Implementation
Parsing

Lex/YACC used to parse the NetSpec script.
Control Logic

Connect to the peer (TCP sockets).
Invoke the daemon.
Pass parameter-value pairs.
Executing the phases.

18
University of Kansas

Features of NetSpec 6.0
Architecture
Simpler

NetSpec user interface has been removed.
NetSpec 5.0 supported a multi-level control
hierarchy. Majority of the experiments utilized
the single-level control hierarchy.

Modular
Parsing and control functionalities are not tied
together.
Data structures used to store parsed values.

19
University of Kansas

NetSpec Variable Phase
Addresses the following shortcoming with the
Classic 8 phase mechanism:

Daemons were limited to eight phases.
All daemons had to go through their
execution in eight phases. This resulted in
daemons doing nothing in certain phases.
Only the open, run and close phases were
subject to various execution modes.

20
University of Kansas

NetSpec Variable Phase
Variable Phase Features

NetSpec user can choose the number of execution
phases for each daemon.
Slot-based mechanism for scheduling the phases of
various daemons.

Slot-based Mechanism
NetSpec experiment is divided into various slots.
Each slot contains phases of daemons which are to
be executed concurrently.
Slots themselves are executed serially.

21
University of Kansas

NetSpec 5.0 Variable Phase
Features

Execution constructs controlled how
phases of daemons in a slot would be
executed.
Schedule information was passed in a
separate file.
Two different parsers were used to
parse the schedule and daemon
information.

22
University of Kansas

NetSpec 6.0 Variable Phase
Features

Two-level schedule information specifies -
how individual daemons and phases of
daemons will be scheduled.
Execution constructs serial and parallel are
supported.
Schedule file made part of the NetSpec
script.
Single parser for both schedule and daemon
information

23
University of Kansas

NetSpec 6.0 Sample Script
#SCHEDULING INFORMATION
map defmap {

daemon = new_daemon (daemon_name = template;
phaseA = 1;
phaseB = 2;
phaseC = 3;);

}
#DAEMON INFORMATION
serial {

template testbed13 {
parameter-value pairs

}

template testbed14 {
parameter-value pairs

}
}

24
University of Kansas

NetSpec Variable Phase
NetSpec controller parses the schedule
information and constructs command strings.
These command strings are passed to the
daemon when a particular phase needs to be
initiated.
Command strings have the format:
Daemon-name:phase to initiate
Ex: template:phaseA

25
University of Kansas

Scheduling Daemons
map defmap {

daemon = new_daemon (daemon_name = daemonA;
setupCommand=1;
runCommand=3;
finishCommand=4;); }

map defmap {
daemon = new_daemon (daemon_name = daemonB;

setupCommand=1;
runCommand=3;
finishCommand=5;); }

map defmap {
daemon = new_daemon (daemon_name = daemonC;

setupCommand=2;
openCommand=3;
runCommand=4;
finishCommand=6;); }

26
University of Kansas

Scheduling Daemons
SLOT 1: daemonA:setupCommand and

daemonB:setupCommand
SLOT 2: daemonC:setupCommand
SLOT 3: daemonA:runCommand,

daemonB:runCommand and
daemonC:openCommand

SLOT 4: daemonA:finishCommand and
daemonC:runCommand

SLOT 5: daemonB:finishCommand
SLOT 6: daemonC:finishCommand

27
University of Kansas

NetSpec Script - Daemon
Information
serial { # can be either serial or parallel
daemonA testbed1 {

specify parameter value pairs associated with daemonA
}
daemonA testbed2 {

specify parameter value pairs associated with daemonA
}
daemonB testbed3 {

specify parameter value pairs associated with daemonB
}
daemonB testbed4 {

specify parameter value pairs associated with daemonB
}
daemonC testbed5 {

specify parameter value pairs associated with daemonC
}
daemonC testbed6 {

specify parameter value pairs associated with daemonC
}

}

28
University of Kansas

Serial Construct
daemonA
on testbed1

daemonA
on testbed2

daemonB
on testbed3

daemonB
on testbed4

daemonC
on testbed5

daemonC
on testbed6

finish

setup

run

finish

setup

run

finish

setup

run

T
I
M
E

29
University of Kansas

Parallel Construct

daemonA
on
testbed1

daemonA
on
testbed2

daemonB
on
testbed3

daemonB
on
testbed4

daemonC
on
testbed5

daemonC
on
testbed6

setup setup

setup setup setup setup

run run run run open open

finish finish run run

finish finish

finish finish

T
I
M
E

30
University of Kansas

New NetSpec Script Language
Features
Schedule Information

NetSpec script becomes the one and only source for
all information.

Transferring Files to/from Daemons
Capabilities were added to send/receive multiple files
to/from the daemons.
Each daemon uses file as input for its processing
tasks.
Daemon can send back results of processing through
file(s) to controller.
Both text/binary files can be handled.

31
University of Kansas

Transfer Files to/from daemons
Daemon options section added to specify files to be sent and
received.

Example script file:
parallel {

nssyscmd NodeB (to_file="echo.txt":"/tmp/echo.txt'',
from_file=''test.txt'':''/tmp/test.txt'') {

parameter-value pairs
….

}
to_file parameter specifies files to be transferred to the
daemon.
from_file parameter specifies files to be transferred from the
daemon.

32
University of Kansas

New NetSpec Script Language
Features
Daemon/host identifier

Provision for uniquely identifying a daemon/host pair has been
provided.

Example script:
netTraffic testbed61 daemon_instance1 {

...
}

netTraffic testbed61 daemon_instance2 {
...

}

Comments
Comments start with a # and continue to the end of a line

33
University of Kansas

Testing
Testing Correctness

Parsing – Pretty Printer option
Control Logic

Testing Robustness
Tested framework by executing scripts
involving 40 daemons on 8 hosts.
Report data generated was around 18
MB.

34
University of Kansas

Related Work

TTCP
Iperf
Netperf

35
University of Kansas

Conclusions
Three goals that we set out to achieve were
reached:

Simplicity
Modularity
Robustness

Capabilities for downloading files to/from
the daemon were provided.
Options like Pretty Printer provided to test
controller code better.

36
University of Kansas

Future Work

Semantic Group which represents
schedule and daemon information.
Script could have various Groups and
information about scheduling the
various Groups.

37
University of Kansas

Questions or Comments

?? or !!

38
University of Kansas

Thank you!!

