
Design of the new and improved NetSpec controller

by

Radhakrishnan R. Mukkai

B.E. (Computer Science and Engineering)

College of Engineering, Osmania University, Hyderabad, India

April 2001

Submitted to the Department of Electrical Engineering and Computer Science and the

Faculty of the Graduate School of the University of Kansas in partial fulfillment of the

requirements for the degree of Master of Science

Dr. Jerry James, Chair

Dr. Douglas Niehaus, Member

Dr. David Andrews, Member

Date Thesis Accepted

c
�

Copyright 2003 by Radhakrishnan R. Mukkai

All Rights Reserved

Dedicated to my parents

Ramakrishnan and Devika for their infinite love

Acknowledgements

I would like to thank Dr. Jerry James and Dr. Douglas Niehaus for guiding me

throughout the course of my thesis. My association with Dr. James and Dr. Niehaus

has helped me become a better Software Engineer. I have thoroughly enjoyed working

with them. I would like to thank Dr. David Andrews for serving as a member of my

thesis committee.

I would like to thank Leon Searl for helping me during the course of my thesis. I

have learned a great deal about programming and project management from Leon.

I am forever indebted to my parents, Ramakrishnan and Devika, and my sister,

Ammu for their infinite encouragement, support and love. I owe all my success to

them.

I am grateful to Jennifer Holvoet, Dr. Prasad Gogineni and Dr. David Braaten who

gave me an opportunity to work as a Graduate Research Assistant and funded me

during the course of my thesis.

I would like to mention my roommates Pavan, Visu and Rajesh who have made

my stay in Lawrence memorable. I would also like to thank all my friends who have

directly or indirectly helped me with my thesis work.

Abstract

NetSpec is a tool designed for network experimentation and testing. NetSpec provides
a framework which enables a user to centrally control daemons running on other ma-
chines. The power of NetSpec comes from the centralized controller.

However, the design of the older NetSpec controller was very complex and not
modular. One of the major problems with the older design was that both parsing of
the NetSpec user script and control operations (like connecting to the appropriate ma-
chines and invoking the daemons) were performed simultaneously. There were no
data structures present in the controller to store the parsed values. The input to the Net-
Spec controller was present in two separate files - one file, called the schedule file, had
information required to schedule the daemons participating in the experiment and the
second file, called the NetSpec script file, had information about the daemons which
the user planned to invoke.

The NetSpec controller was hence redesigned with the goal of making it simple,
elegant and modular. In the present NetSpec controller, parsing and control function-
alities have been separated. First, we parse the NetSpec script storing the parsed val-
ues in well-defined data structures. These data structures are then used to perform
the necessary control operations. The schdedule file and the NetSpec script file were
combined to ensure that information about scheduling and daemons are present in one
place.

Other major changes include having many error handling routines and increased
modularity of the NetSpec code. The major functions performed by the controller have
been delineated by having them in separate source files. These major functions have
been further modularized, so that each function performs a single task.

Contents

1 Introduction 1

1.1 What is NetSpec? . 1

1.2 Why NetSpec? . 1

1.3 Features of NetSpec . 2

1.4 Why the New and Improved NetSpec Controller? 3

2 Related Work 6

2.1 Network Testing Tools . 6

3 Background Information 8

3.1 NetSpec Classic 8 Phase Behavior . 8

4 NetSpec 6.0 12

4.1 NetSpec 6.0 Architecture . 12

4.2 NetSpec Variable Phase . 14

4.2.1 Scheduling Daemons . 19

4.2.1.1 Serial Execution Construct 23

4.2.1.2 Parallel Execution Construct 23

4.3 New NetSpec Script Language Features 24

4.4 Miscellaneous Features . 27

5 Implementation 28

5.1 Parser . 30

5.1.1 Schedule Information . 31

i

5.1.2 Daemon Information . 32

5.2 Control Logic . 33

5.2.1 Connecting to the Peer . 33

5.2.2 Execute the Phases . 34

5.2.2.1 Classic 8 Phase NetSpec 35

5.2.2.2 Variable Phase NetSpec 35

6 Testing 39

6.1 Testing Correctness Feature . 39

6.1.1 Pretty Printer Option . 39

6.1.2 Testing Control Logic . 40

6.2 Testing Robustness Features . 41

7 Conclusions And Future Work 43

Bibliography 45

ii

List of Tables

3.1 The 8 Phase Classic Execution Model . 9

4.1 Variable Phase: Serial Construct . 23

4.2 Variable Phase: Parallel Construct . 24

iii

List of Figures

1.1 NetSpec 5.0 Architecture . 5

3.1 Execution Construct . 11

4.1 NetSpec 6.0 Architecture . 13

5.1 NetSpec 6.0 Controller Design . 30

5.2 NetSpec Sample Script . 33

5.3 NetSpec Data Structure . 34

iv

List of Programs

4.1 Pseudocode for the phaseControlCommand () function 20

5.1 NetSpec controller main() function . 29

5.2 Classic 8-Phase: Serial construct . 35

5.3 Classic 8-Phase: Parallel construct . 36

5.4 Classic 8-Phase: Cluster construct . 37

5.5 Variable Phase: Serial construct . 38

5.6 Variable Phase: Parallel construct . 38

v

List of Scripts

1.1 Sample NetSpec Script . 3

4.1 NetSpec Script Showing Slot-phase Association 17

4.2 NetSpec Script Schedule Information . 21

4.3 NetSpec Script Daemon Information . 22

4.4 Script Options for Transferring Files to/from Daemons 26

4.5 Script Options for Identifying Daemon/Host Pair 27

5.1 NetSpec Script Schedule Block . 31

6.1 NetSpec Dummy Daemon . 40

6.2 NetSpec System Command Daemon . 41

6.3 NetSpec Traffic Daemon . 42

vi

Chapter 1

Introduction

1.1 What is NetSpec?

NetSpec is a software tool developed by researchers at the University of Kansas for the

ACTS ATM Internetwork (AAI) project. NetSpec was originally intended to be a traf-

fic generation tool for large-scale data communication network tests with a variety of

traffic source types and modes. NetSpec provides a simple block structured language

for specifying experimental parameters and support for controlling experiments con-

taining an arbitrary number of connections across a LAN or WAN. However, NetSpec

can be used for purposes other than traffic generation and this will become clear when

we explain the workings of NetSpec in more detail.

1.2 Why NetSpec?

”Quality assurance is an important phase in the networking software development

cycle. To date this phase is marked by the presence of various non-interacting compo-

nents, each designed for certain networking functionality. Some of them are described

below:

� Components involved in setting up an entire test network, e.g., ping and tracer-

oute.

� Utilities that measure network performance at the application or protocol level

1

and therefore are helpful in both troubleshooting and tuning.

� Utilities that measure each network element’s performance in terms of percent-

age CPU utilization and memory utilization, e.g., KU’s Data Stream Kernel Inter-

face (DSKI).

� Network monitoring components such as tcpdump which play a passive role in

helping the security and integrity of the developed network.

Absence of a network performance tool that can integrate the above-mentioned

components severely limits the two most important characteristics associated with test-

ing: scalability and reproducibility. NetSpec is designed to overcome these limitations

by integrating these components and controlling them via a centralized command and

control system.” [6]

1.3 Features of NetSpec

� Scalability

The framework that is provided is scalable to carry out multiple tests. By multi-

ple tests, we mean the ability to invoke various daemons from a single script file.

This is very desirable since networks generally carry hundreds of flows simulta-

neously.

� Flexibility

The framework is flexible, incorporating both passive (probes, measurements)

and active nodes (traffic generators).

� Reproducibility

One of the benefits of NetSpec is that it automates the experiment, which empha-

sizes reproducibility. NetSpec provides the ability to run an experiment many

times and each time we are assured that the experiment has run the same way.

� Integration

Measurements and tests are integrated in a seamless manner.

2

� Extensibility

The design has been done with a provision to add new components. New dae-

mons can be incorporated in the existing framework with ease.

1.4 Why the New and Improved NetSpec Controller?

Before proceeding to discuss the reasons for redesigning the NetSpec controller, let us

take a look at the older NetSpec architecture (henceforth, referred to as NetSpec version

5.0). By examining this architecture, one can get a clear picture of what NetSpec is.

We will then discuss the limitations this architecture posed and how these limitations

are overcome with the newer architecture (henceforth, referred to as NetSpec version

6.0). Figure 1.1 [6] shows the NetSpec version 5.0 architecture. An entire experiment

is controlled by a centralized controller. The controller is invoked by the NetSpec user

program. The NetSpec user program accepts a script file from the user and passes it

to the controller (also referred to as the control daemon). The script contains the name

of the daemons that the controller needs to invoke in specified hosts and contains user

data in the form of parameter = value pairs to be passed to the daemons. Let us take a

look at a portion of a NetSpec script shown in Script 1.1

Script 1.1 Sample NetSpec Script

netTraffic testbed61 {
type = full (blocksize=32768, duration=10);
protocol = tcp;
own = testbed61:8002;
peer = waldorf:8002;

}

In the above script, netTraffic refers to the NetSpec traffic daemon and we would

like to invoke this daemon on host testbed61. The controller looks at the user data as

just parameter and value pairs. This data make sense to the daemons to which the

data is passed and these daemons parse this data and accomplish the task for which

they were designed. This means that any NetSpec user could design a daemon, which

performs a specific task, and then use the NetSpec script and the controller to invoke

3

these daemons on the specified hosts. An experiment might involve participation of

different daemons, each designed for unique network functionality.

The netspecd daemon in Figure 1.1 acts as a service multiplexer by ensuring that

several daemons of the same or different type can be invoked on a particular host.

This daemon is basically a server and the control daemon usually contacts the netspecd

daemon when it needs to invoke a daemon on a particular host. The controller and

the netspecd daemon exchange messages, based on which the netspecd daemon spawns

the required daemon and then waits for requests from the controller. The (connection-

oriented, TCP) socket thus set up is then used by the spawned daemon and the con-

troller to communicate.

Some of the limitations in this design are:

� The controller performs the parsing and control operations simultaneously. This

causes the controller to become unnecessarily complex and non-modular. In the

new design, the parsing and control operations are performed separately and

data structures act as the glue that ties them together. The controller first parses

the NetSpec script and fills the appropriate data structures. These data struc-

tures are subsequently used by the controller to perform the appropriate control

logic (like connecting to the appropriate host, invoking the daemons, passing the

parameter-value pairs, etc.). By separating these two operations, we have made

it more modular and simple.

� The NetSpec user script is given as input to the NetSpec user interface which

then passes it to the controller for parsing and performing the various control

operations. The user interface was responsible for initiating the various phases

in which the daemon execution takes place (explained in detail in later Chapters).

The controller was designed more as a daemon, but is more powerful as it could

invoke daemons specified in the script. It also had the ability to invoke itself,

just like other daemons. This results in a multi-level control hierarchy. However,

a vast majority of the experiments which were run using NetSpec utilized the

single-level control hierarchy. Hence, we decided to continue with the single-

level control hierarchy only due to its simplicity and widespread use. This also

4

ensures that the entire control functionality is present in the controller and not

distributed to the NetSpec user interface as it was in NetSpec version 5.0.

Figure 1.1: NetSpec 5.0 Architecture

5

Chapter 2

Related Work

2.1 Network Testing Tools

There are various testing tools which are freely available. Some of the notable tools are

described below:

� TTCP [7]: Test TCP (TTCP) is a command-line sockets-based benchmarking tool

for measuring TCP and UDP performance between two systems. It can also be

used as a network pipe to transfer data between two systems. It was originally

developed for the BSD [1] operating system in 1984. The original TTCP sources

are in the public domain, and copies are available from many anonymous FTP

sites.

� Iperf [9]: Iperf is a tool to measure maximum TCP bandwidth, allowing the tun-

ing of various parameters and UDP characteristics. Iperf reports bandwidth, de-

lay jitter and datagram loss. Though there are many network tools that measure

network performance, such as ttcp, most are old and have confusing options.

Iperf can be considered to be a modern alternative for measuring TCP and UDP

bandwidth performance.

� Netperf [2]: Netperf is a benchmark that can be used to measure the performance

of many different types of networking. It provides tests for both unidirectional

throughput and end-to-end latency.

6

”TTCP provides a means to measure TCP throughput through an IP path. Testing

involves starting the receiver on one end and the transmitter on the other end. The

transmitter sends a user-specified number of TCP packets to the receiving side. At the

end of the test, the two sides display the number of bytes transmitted and the time

elasped for the packets to pass from one end to the other.” [8]

NetSpec provides a scripting language to specify daemons and daemon data. It

is more flexible than TTCP in that we could run more complex experiments by hav-

ing scripts as input rather than command-line options. If we wanted to measure the

throughput between 4 pairs of hosts using TTCP, it would involve opening 8 xterms

and starting TTCP on each of those hosts by specifying the appropriate command line

options.

The NetSpec centralized controller ensures that we do not have to open xterms on

various hosts if we need to conduct an experiment involving daemons on those hosts.

NetSpec helps the user set up a network from a central location using the informa-

tion provided in the script and run the experiment as specified in the script. TTCP is

designed specifically for measuring TCP/UDP throughput, determining the actual bit

rate of a particular WAN or modem connection and also testing the connection speed

between any two devices with IP connectivity between them. NetSpec is not limited to

any specific testing methodology. It need not be used for network testing and experi-

mentation alone. By designing daemons, we can use the NetSpec centralized controller

to spawn daemons across various machines. Thus, NetSpec provides capabilities to

setup a network and perform computations which require setting up processes across

various hosts.

7

Chapter 3

Background Information

In this section, we explain NetSpec phases and how the script writer can schedule

the various phases of daemons specified in the NetSpec script and invoked using the

controller.

There are two mechanisms currently provided by NetSpec to schedule the phases

of daemons participating in an experiment.

� NetSpec Classic eight phase

� NetSpec Variable phase

We discuss NetSpec Classic 8 phase mechanism in this section. NetSpec Variable

phase mechanism is described in Chapter 4 (NetSpec 6.0 Architecture).

3.1 NetSpec Classic 8 Phase Behavior

”Daemons accomplish their tasks in phases. Their execution is controlled by the con-

trol daemon using a command-control interface. The daemons and the controller use

a text-based protocol, called Remote Control and Information Protocol (RCIP), to commu-

nicate.

All the daemons participating in the experiment are executed in eight phases, irrespec-

tive of the daemon types. The controller passes the commands shown in Table 3.1 to

the slave daemons starting with the setup command. A phase’s successful execution

8

Command Action
Setup Allocate Resources
Open Establish necessary socket sonnections
Run Execute the desired functions

Finish Finish the execution
Close Close all the socket connections

TearDown Release all the acquired resources
Report Prepare and send the report

Kill Terminate the execution

Table 3.1: The 8 Phase Classic Execution Model

is notified through an acknowledgement process, called rcipacknowledge, to the control

daemon. After receiving a successful acknowledgement for a phase from all partici-

pating daemons, the control daemon moves to the next command in Table 3.1 [6]. An

experiment can be marked by the presence of many slave daemons. In an execution

phase, it may be desirable to accomplish all participating daemon functions either in

serial or in parallel. This can be achieved by specifying proper execution constructs in

the user scripts.” [6]

Execution Constructs
The control daemon accepts the following three types of execution constructs:

1. Serial

2. Parallel

3. Cluster

These execution constructs apply only to the open, run and close phases of the dae-

mons participating in the experiment. All the other phases, like setup and kill, take

place in serial. For two daemons A and B, the setup phase for daemon A (or B) is com-

pleted before the setup phase for daemon B (or A) is started.

When two daemons, Daemon A and Daemon B, are inside a serial, parallel, or

cluster construct the following behavior is observed:

9

� Serial: The open, run and close phases with respect to one daemon (say daemon

A) are finished before daemon B is executed. So, daemons A and B are executed

serially.

� Parallel: The run phases of both daemons are executed in parallel. A phase rep-

resents sending the command (in this case the run command) to the daemon and

waiting for an acknowledgement from the daemon. In this construct, the run

command is sent to all the daemons and this initiates the run phase in all the

daemons simultaneously.

� Cluster: In this construct, the open, run and close phases of both the daemons

are done in parallel. The open phase is first executed in parallel by sending the

open phase command to all the daemons. After receiving the acknowledgements

from the respective daemons, the run and close phases are executed in a similar

manner.

Figure 3.1 [6] shows the various messages passed between the controller and dae-

mons for each of the three execution constructs and illustrates the working of each of

these constructs. The labeled arrows show the messages which are passed between the

controller and the daemons. Consider the serial construct in figure 3.1, the controller

passes the message OPEN to daemon A causing it to initiate its OPEN phase. After an

acknowledgement for the phase, indicated by ACK, is obtained from the daemon we

initiate the RUN phase for daemon A by sending the RUN command to the daemon.

After the OPEN, RUN and CLOSE phases for daemon A are completed, the controller

initiates the similar phases for daemon B. Thus, daemons A and B are executed serially

or one after the other.

10

Figure 3.1: Execution Construct

11

Chapter 4

NetSpec 6.0

In this chapter, we discuss the NetSpec 6.0 architecture. We also describe Variable

Phase NetSpec, which is another mechanism (along with the Classic 8-phase mecha-

nism explained in the Background section) provided by NetSpec to schedule the phases

of daemons specified in the NetSpec script. Newer features incorporated into the Net-

Spec script are also mentioned.

4.1 NetSpec 6.0 Architecture

Figure 4.1 shows the new NetSpec architecture. The user interface is no longer present

in the new architecture. The user script is now given directly to the controller, which

parses the script and fills data structures, and is also responsible for showing the results

of the experiment to the user. This functionality was provided by the user interface in

NetSpec 5.0.

The input to the NetSpec 6.0 controller is the script file. The script file is parsed

and appropriate data structures are then filled. These data structures are used by the

controller to connect to the daemons specified in the script, pass the parameter-value

pairs to them, and display the results of the experiment to the user.

Features of the NetSpec 6.0 Architecture

� The user interface portion in NetSpec 5.0 has been removed. This has simplified

12

Figure 4.1: NetSpec 6.0 Architecture

the NetSpec architecture.

� Separating the parsing and control functionalities have made the control design

simple and modular.

� In NetSpec 5.0, we could have a multi-level control hierarchy. The NetSpec con-

troller was designed more as a daemon than a controller, and it had the ability

to spawn itself. It was found that majority of the experiments run using NetSpec

used the single-level control hierarchy. Hence, the multi-level control hierarchy

is not supported in the present controller. A multi-level control hierarchy would

13

have been a nice feature but, as we could not find suitable scenarios where it

could be utilized, it was felt that it was not necessary to introduce the feature and

make the architecture more complex.

4.2 NetSpec Variable Phase

The variable phase feature was introduced in version 5.0 of NetSpec and it addressed

the following shortcomings present in version 4.0

� Each daemon participating in an experiment was limited to eight phases.

� Only the open, run and close phases of a daemon could be run in serial, parallel or

cluster mode as discussed in Chapter 3.

� All the daemons had to go through their execution in eight phases. This resulted

in daemons doing nothing in certain phases, e.g., the NetSpec system command

daemon. The system command daemon provides the ability to construct a desired

command line on the target system and then invoke it using the system system

call, thus resulting in the command to be executed on the target system. The

open and the close phases do not have any meaning for the system daemon. Only

the run phase is important, where the system system call is invoked. Thus, the

open phase was implemented for the system daemon with it doing nothing in that

phase except for sending an acknowledgement to the controller indicating that

the phase was over.

These limitations have been removed with the introduction of the NetSpec variable

phase feature. This feature allows a NetSpec user to choose the number of execution

phases for each daemon. It also provides a mechanism to specify how phases of var-

ious daemons has to be scheduled. Using schedule information provided in the Net-

Spec script, a NetSpec experiment involving multiple daemons can be divided into dif-

ferent slots. Each slot contains phases of different daemons which will be executed con-

currently. The slots themselves are executed in serial. Hence, phases of daemons which

should be executed serially will be placed in different slots. The slot-based scheduling

14

mechanism is explained in further sections.

Several changes have been made to the Variable phase feature in NetSpec 6.0. We

will discuss features of the Variable phase mechanism as implemented in NetSpec 5.0,

followed by the modifications made in NetSpec 6.0.

NetSpec 5.0 Variable phase features

� Execution constructs passed from the command line were used to tell the con-

troller how to schedule phases of daemons in a particular slot. For example,

serial would mean that the phases of daemons in a particular slot have to be exe-

cuted one after the other and parallel would mean that the phases in a slot should

be executed concurrently.

� Schedule information was passed to the controller through a separate file, apart

from the NetSpec input script file.

� Two different parsers were used to parse the schedule information (in the sched-

ule file) and daemon information (present in the input script file). The schedule

parser was invoked using the system system call.

Improvements to Variable phase features in NetSpec 6.0

� In NetSpec 6.0, two-levels of schedule information was provided. In the first

level, we have the execution constructs serial and parallel. These tell us how the

daemons need to be scheduled. Consider a NetSpec script specifying 4 daemons.

The serial construct would mean that the 4 daemons have to be executed one after

the other. The parallel construct would mean that the 4 daemons have to be exe-

cuted concurrently. The constructs serial and parallel do not tell us how the phases

of the daemons will be scheduled. On the second level, we have the slot-based

scheduling mechanism, which provides us with such information. The two-level

approach to expressing schedule information has greatly increased the simplicity

and power of NetSpec. Information for scheduling individual daemons and the

15

phases of various daemons that were tied together previously have been sepa-

rated.

� The schedule file and the script file have been combined to form a single input

script file. The scheduling details and the daemon details can now be found from

a single source.

� A single parser is now used to parse the schedule and the daemon information.

Advantages of Variable phase feature

� Daemons are no longer restricted to execute in eight phases. Daemon designers

can now design daemons, that execute in one or more phases, as deemed fit by

the designer.

� NetSpec users can now schedule the phases of daemons in any order as speci-

fied in the schedule information. Using the classic 8-phase model, we could not

schedule the run phase of a daemon before the open phase of another. Only after

the open phase of all daemons is complete, we move onto the run phase. The

variable phase feature would allow us to do such scheduling. Thi concept is ex-

plained further in the following sections.

� Only the open, run and close phases are subject to the various execution con-

structs. When you used the parallel execution construct, only the open, run and

close phases were executed in parallel, whereas the remaining five phases were

executed in serial.

A sample NetSpec script with the slot-phase association (schedule information) and

the daemon information is shown in Script 4.1.

The first block in Script 4.1 represents the schedule information. We now describe,

the meaning of the schedule portion of the script. The daemon name = dummy con-

struct tells us that the scheduling information of the dummy daemon is being specified.

Note that the scheduling information is for a daemon type rather than for a daemon on

a specific host. In the above script, we have provided schedule information for the

16

Script 4.1 NetSpec Script Showing Slot-phase Association

map defmap {
daemon = new_daemon (daemon_name = dummy;

setupCommand = 1;
runCommand = 2;
finishCommand = 3;);

}

serial {
dummy testbed13 {

varA = 3;
varB = 4;
varC = 5;
varD = 6;

}

dummy testbed14 {
varA = 1;
varB = 2;
varC = 3;
varD = 4;

}
}

dummy daemon and we have specified two dummy daemons in the daemon portion

of the script. The scheduling information applies to both these daemons. Also, look

at how the serial execution construct block encompasses the specification of the two

dummy daemons. While the schedule information provided in the first block would

tell us how we would schedule the phases of various daemons, the serail construct tells

us that the dummy daemon invoked on testbed13 will be scheduled first followed by

the dummy daemon on testbed14.

The setupCommand = 1 line tells us that the setup command/phase for the dummy

daemon should be executed in slot #1. The NetSpec controller parses the schedule in-

formation and constructs commands which are then passed to the daemons. When

the controller wants to initiate the setup phase for the daemon, it passes the command

string constructed to the daemon. The rcips parser on the daemon side is responsible

for handling the commands from the controller and initiates the appropriate phase de-

sired by the controller. The command string passed to the daemon is of the following

17

format:

daemon type:Command/phase which the daemon needs to execute

Example: dummy:setupCommand

� dummy: Refers to the daemon name

� setupCommand: Indicates the setup phase for the dummy daemon.

The schedule portion of the script in NetSpec 5.0 is shown below:

map defmap {

daemon = new_daemon (daemon_name = dummy;

phaseACommand = 1;

phaseBCommand = 2;

phaseCCommand = 3;);

}

Hence, in NetSpec 5.0 the command string passed to the daemon had the following

format:

daemon type:phase (phase number in alphabet)Command

Example: dummy:phaseACommand

� dummy: Refers to the daemon name

� phaseACommand: phase# in alphabet = A. Indicates the command corresponding

to phaseA. On the daemon side, the command corresponding to the alphabet

parsed (”A” in this case) is invoked. It could be the setup, open or any other

command as decided by the daemon designer.

We felt that the string phaseACommand does not give a clear idea about the exact

phase in which we expect the daemon to execute. Such a term is extremely ambiguous

18

and we decided to mention the exact phase/command that we plan to execute in a

particular slot. This makes it easier to understand the schedule information. However,

future daemon designers can use the following format for the command string:

daemon type:string representing the phase which needs to be executed

The NetSpec controller calls the phaseControlCommand () function of the daemon

which takes the command string defined above as an argument. The phaseControlCom-

mand () for each daemon decides whether the command is intended for that particu-

lar daemon or not. Based on this decision it either ignores the command by simply

acknowledging the command, or else it performs the function corresponding to that

command.

A typical implementation (in pseudocode) of the phaseControlCommand () is shown

in Program 4.1. The variable phaseStr in the example refers to the command string of

the format: dummy:setupCommand.

4.2.1 Scheduling Daemons

In this section, we will explain in detail the slot-based execution construct provided by

NetSpec Variable phase feature to schedule daemons participating in an experiment.

There are two execution constructs supported by NetSpec Variable phase feature.

� Serial: All daemons specified in the daemon portion of the script will be executed

one after the other.

� Parallel: All daemons specified in the script will be executed concurrently.

In both the cases, scheduling information provided in the script would tell us how

the phases of different daemons will be executed.

Let us take a sample NetSpec variable phase script involving three daemons (dae-

monA, daemonB and daemonC for simplicity’s sake). Each daemon is run on 2 ma-

chines. Using the following scenario, we explain how scheduling is performed. The

schedule portion of the script is shown in Script 4.2.

19

Program 4.1 Pseudocode for the phaseControlCommand () function

void phaseControlCommand (char *phaseStr) {
....
....

check to see if the command string is meant for this
particular daemon type

extract the command to be executed

if phaseString is ‘‘setupCommand’’ then
setupCommand ();

else if phaseString is ‘‘openCommand’’ then
openCommand ();

else if phaseString is ‘‘runCommand’’ then
runCommand ();

else if phaseString is ‘‘closeCommand’’ then
closeCommand ();

else if phaseString is ‘‘finishCommand’’ then
finishCommand ();

else
send an ACK to the controller;

} /* end of phaseControlCommand function */
}

20

Script 4.2 NetSpec Script Schedule Information

map defmap {
daemon = new_daemon (daemon_name = daemonA;

setupCommand=1;
runCommand=3;
finishCommand=4;);

}

map defmap {
daemon = new_daemon (daemon_name = daemonB;

setupCommand=1;
runCommand=3;
finishCommand=4;);

}

map defmap {
daemon = new_daemon (daemon_name = daemonC;

setupCommand=2;
openCommand=3;
runCommand=4;
finishCommand=6;);

}

Each block in Script 4.2 represents scheduling information for the respective dae-

mon type mentioned in the daemon name=daemon portion in the block.

From the schedule portion of the script, it is evident that we would like to schedule

the setup phase of daemonA in Slot 1, the run phase in Slot 3 and the finish phase in Slot

4. For daemonB, we would like to schedule the setup phase in Slot 1, the run phase in

Slot 3 and the finish phase in Slot 4.

Consolidating the information obtained from the script would give us the follow-

ing phase table or schedule:

SLOT 1: daemonA:setupCommand and daemonB:setupCommand

SLOT 2: daemonC:setupCommand

SLOT 3: daemonA:runCommand, daemonB:runCommand and daemonC:openCommand

SLOT 4: daemonA:finishCommand and daemonC:runCommand

SLOT 5: daemonB:finishCommand

SLOT 6: daemonC:finishCommand

21

This clearly shows the phases of daemons that execute in a particular slot. In Slot 1,

the setup phases of daemonA and daemonB are executed concurrently. In Slot 2, only

the setup phase of daemonC are executed. Thus, the scheduling information tells us

that we would like the setup phases of daemonA and daemonB to happen in parallel,

whereas the setup phase of daemonC would happen in the next slot and hence will be

executed after the setup phases of daemonA and daemonB are completed. In a partic-

ular slot, phases of different daemons are executed concurrently. Individual slots are

executed one after the other. Only after all the phases delegated to Slot 1 are complete,

we will move to Slot 2 and so on.

Let us now look at the daemon portion of the NetSpec script shown in Script 4.3

Script 4.3 NetSpec Script Daemon Information

serial { # can be either serial or parallel
daemonA testbed1 {
parameter = value; # specify parameter value pairs

associated with daemonA
}
daemonA testbed2 {
parameter = value; # specify parameter value pairs

associated with daemonA
}
daemonB testbed3 {
parameter = value; # specify parameter value pairs

associated with daemonB
}
daemonB testbed4 {
parameter = value; # specify parameter value pairs

associated with daemonB
}
daemonC testbed5 {
parameter = value; # specify parameter value pairs

associated with daemonC
}
daemonC testbed6 {
parameter = value; # specify parameter value pairs

associated with daemonC
}

}

22

4.2.1.1 Serial Execution Construct

The execution behavior that results from using the serial construct is clearly illustrated

in Table 4.1. It is evident from Table 4.1 that daemons are executed one after the other

using the serial construct. Daemon phase execution follows the slot-based schedule

information provided in the script. The table only shows the execution of the first 4

daemons.

daemonA on daemonA on daemonB on daemonB on daemonC on daemonC on
testbed1 testbed2 testbed3 testbed4 testbed5 testbed6

setup
run

finish
setup
run

finish
setup
run

finish
setup
run

finish

Table 4.1: Variable Phase: Serial Construct

4.2.1.2 Parallel Execution Construct

The execution behavior that results from using the parallel construct, is clearly illus-

trated in Table 4.2. It is evident from Table 4.2 that phases of all daemons are executed

in parallel in a given slot. It should be remembered that all slots execute in serial.

The columns in a particular row represent execution that would take place in par-

allel and individual rows are executed serially. Each element in the table represents the

phase that will be executed on the daemon-machine pair mentioned in the correspond-

ing column. An empty cell means that no phase is being executed on the daemon-

machine pair.

23

daemonA on daemonA on daemonB on daemonB on daemonC on daemonC on
testbed1 testbed2 testbed3 testbed4 testbed5 testbed6

setup setup setup setup setup setup
finish finish run run

finish finish
finish finish

Table 4.2: Variable Phase: Parallel Construct

4.3 New NetSpec Script Language Features

Besides changes to the NetSpec controller design, several changes were made to the

NetSpec scripting language. However, we ensured that any changes to the script-

ing language do not cause any backward compatibility problems with older NetSpec

scripts. These features are enumerated below:

� Schedule Information

Daemons invoked by the controller execute in phases (explained in detail in

the Background section). NetSpec provides a means by which we can sched-

ule the various phases of daemons participating in an experiment using the slot-

based execution construct. In NetSpec version 5.0 this scheduling information is

present in a separate file and was passed to the NetSpec user interface through a

command line argument. This information was then parsed by the user interface

and then appropriate commands were passed by the interface to the controller

daemon to initiate the various phases as described in the schedule file.

In NetSpec 6.0, the schedule information can now be specified along with the

script file having the daemon information (which specifies the peers, daemons,

and parameter-value pairs). By tying these two pieces of information together,

we have now made the NetSpec script the one and the only source for all informa-

tion regarding the schedule and daemons. If the script writer does not specify the

schedule information, the daemons are scheduled in eight phases (also known as

Classic NetSpec Behavior and explained in detail in the Background section). It

also makes sense to specify both the schedule and daemon information in a sin-

gle file, as they are interdependent. The schedule information parser was also

24

integrated with the NetSpec control parser, so, a single parser parses the entire

script.

� Transferring Files to/from Daemons

In certain cases, we wanted to download one or more files specified in the script

file to the daemon. The daemon uses the files as input for its processing tasks.

Capabilities for getting files back from the daemon were also needed. This capa-

bility was necessary, as the daemon could send back the results of its processing

through a file to the controller. A daemon options section has now been added

where we can specify the file we want to send to or receive from the daemon

along with the peer name in which we want to have the daemon spawned. This

feature increases the power and functionality that NetSpec provides.

In the daemon definition of the script after the address/name but before the dae-

mon’s specific parameter values section
���

, there is an optional general daemon

parameterValues section delimited by (). General daemon parameterValues are

parsed and processed by the rcipsparse parser immediately before the daemon

specific parameterValues are parsed and processed by the daemon’s own parser.

As the name suggests, the rcipsparse parser is responsible for handling control

requests that originate from the controller. The controller communicates with the

individual daemons using the RCIP text protocol and this parser is responsible

for parsing the text messages and initiates the appropriate phases. This parser is

shared by all the daemons and each daemon has its own parser, which it uses to

parse daemon specific parameter value pairs.

The daemon specific code never sees the general daemon parameter values.

Currently the valid parameterValue of the general daemon parameter values is

the to file and the from file parameter. The value of the to file parameter is two

filenames in strings separated by a colon(:). The first file name is the name of a file

on the controller host. The second file name where the file should be put on the

remote host. The file is transferred from the controller host to the daemon host

as part of the daemon initialization. The from file also follows a similar format,

25

except that the file name before the colon represents a file on the daemon/remote

host and the one after the colon represents where the file should be put on the

controller host. The file is transferred from the daemon host to the controller host

after the controller is done executing the phases of daemons as specified in the

schedule portion of the script.

The to file and the from file parameter value can appear any number of times and

hence we can send/receive many files to/from the daemon as shown in Script

4.4

Script 4.4 Script Options for Transferring Files to/from Daemons

parallel {
nssyscmd NodeB (to_file="echo.txt":"/tmp/echo.txt",

from_file="test.txt":"/tmp/scriptTest.txt") {
cmd="rm -f /tmp/return.txt";
cmd="cat /proc/stat > /tmp/return.txt";
cmd="cat /tmp/echo.txt >> /tmp/return.txt";
cmd="sleep 10";
cmd="cat /proc/stat >> /tmp/return.txt";
cmd="rm -f /tmp/echo.txt";
filename="/tmp/return.txt";

}
}

In Script 4.4 the echo.txt file in the current directory (the current directory when

netspec was run) is transfered to the filename /tmp/echo.txt on the daemon host

during daemon initialization. This happens before any of the cmd or filename

daemon specific parameterValues are processed by the daemon.

� Daemon and Host Identifier

Provision for uniquely identifying a daemon/host pair has been provided. A

script may specify a number of daemons of the same type (ex. NetSpec traffic

daemons) running on the same machine. However, the controller does not have

any means to distinguish between the different daemons. Therefore, an optional

daemon identifier can now be provided which enables the controller to make

such distinctions.

26

Script 4.5 Script Options for Identifying Daemon/Host Pair

netTraffic testbed61 daemon_instance1 {
...

}

netTraffic testbed61 daemon_instance2 {
...

}

� Comments

Comments can now be added to NetSpec scripts. Comments start with # and

extend to the end of the line.

4.4 Miscellaneous Features

While redesigning the NetSpec controller, several error-handling and debugging fea-

tures were added to the source code. Some such features have been enumerated below:

� Line and column number information are printed when the controller encounters

errors while parsing the NetSpec script. This leads the user to the location where

the error was detected and results in faster error resolution. The parser has been

redesigned so that it parses the values in a bottom-up manner. This means that

values which are parsed (representing the tokens or the leaves) are passed up

successively across various levels and then combined in data structures until the

entire script is parsed.

� The source code has been made modular with the addition of functions which

perform a single/unique task.

27

Chapter 5

Implementation

Figure 5.1 shows the design of the NetSpec controller. We will use this figure to de-

scribe the implementation details of the various components of the controller.

As can be seen from the NetSpec controller block in Figure 5.1, the three major com-

ponents are — (a) the parser, which is responsible for parsing both the schedule and

daemon information present in the script, (b) the data structures which act as a glue

between the parser and the control logic. Parsed values are stored in data structures

which are subsequently used by the control logic and (c) the control logic, which is

responsible for using the data structures to contact the appropriate peers, invoke the

necessary daemons and pass the parameter-value pairs to it. The daemons and the con-

troller use a text-based protocol called Remote Control and Information Protocol (RCIP) to

communicate among them. The controller connects to the daemons using TCP-based

sockets. The report generated by the daemons is then passed over to the controller,

which displays it to the user running the experiment.

The main () function of the NetSpec controller has been provided below to illustrate

the various components involved.

Note that the main () function has not been reproduced exactly. The comments in

the original program are lengthy. Only the essence of the function has been shown.

We will now discuss the working of the parser (along with the data structures

which the parser fills up) and the control logic.

28

Program 5.1 NetSpec controller main() function

int main (int argc, char *argv[])
{

/* Process the command line arguments */
processCommandLineArguments (argc, argv);

/* Parse the script file */
daemonParserparse ();

/* Set up OS signals */
setupOSSignals ();

/* Print input NetSpec script. Only used for debugging purpose. */
/* Control logic will not be executed if option is set*/
if (prettyPrintingOption == TRUE) {

...
prettyPrinterSchedule (); /* Print schedule portion of script */
prettyPrintingDaemons (); /* Print daemon portion of script */

}
else {
/* Invoke NetSpec controller */
netspecCentralizedController ();

}
return 0;

}

29

Figure 5.1: NetSpec 6.0 Controller Design

5.1 Parser

The control parser has been designed using standardized tools present on the Linux

platform Lex [4] and Yacc [5]. Lex is a tool for generating scanners: programs with

recognized lexical patterns in text. YACC is a tool for generating parsers. More infor-

mation on these two tools can be found in the man pages.

The NetSpec script has two major pieces of information — schedule information,

which tells the controller how it should execute the various phases of the daemons;

and daemon information, which tells the controller the various daemons it needs to

30

invoke on the specified hosts. However, the schedule information is optional. If the

schedule information is not present, the controller executes the daemons in 8-phases

as discussed previously in the NetSpec 8 phase classic behavior.

5.1.1 Schedule Information

Schedule information is composed of one or more schedule blocks, wherein each blocks

represents the schedule for a particular daemon type. A schedule block is shown in

Script 5.1.

Script 5.1 NetSpec Script Schedule Block

map defmap {
daemon = new_daemon(daemon_name=daemonA;

setupCommand = 1;
openCommand = 2;
runCommand = 3;
finishCommand = 4;);

}

The above block represents the scheduling information for a daemon of type dae-

monA.

Our schedule block will be represented in the parser as follows:

scheduleBlock:

MAP IDENTIFIER ’{’ newDaemonInfo ’}’

;

Words in caps refer to tokens (MAP refers to the word map in the schedule block

shown above. IDENTIFIER refers to defmap above). newDaemonInfo is the nonterminal

(as it can be parsed further, unlike tokens which indicate the end of parsing a particular

term). It represents the information present in between the braces
�
,
�

in the schedule

block shown above.

This information is then stored in the following schedule data structures,

struct daemon_phase_list {

31

char *daemon;

char *phaseCommand;

struct daemon_phase_list *next;

};

The structure daemon phase list stores the names of the daemon type and the phases

will need to be executed in a particular slot.

struct slot_info {

int slotId;

struct daemon_phase_list *assoc;

struct slot_info *next;

struct slot_info *prev;

};

The structure slot info maintains a doubly-linked list of all the slots through which

a daemon execution proceeds. From the schedule block shown above, when we say,

setupCommand = 1, we mean that the setup command needs to be executed in slot 1.

Therefore, there are in total 4 slots and in each slot, we could schedule phases of various

daemon types. As can be seen, the structure slot info has a pointer to the list which has

information about daemons and phases which need to be run in that particular slot.

5.1.2 Daemon Information

Daemon information consists of two major components — specifying the execution

construct (cluster/parallel/serial for Classic 8 phase NetSpec behavior (or) parallel/serial

for Variable Phase NetSpec) and specifying the daemons which have to be invoked

on the specified hosts along with the data in the form of parameter-value pairs which

needs to be passed to the daemon.

Figure 5.2 shows a sample script and explains what each portion of the script

means.

Figure 5.3 shows the data structure used to store the parsed daemon values and

explains each element in the structure.

32

Figure 5.2: NetSpec Sample Script

5.2 Control Logic

The various control operations undertaken by the controller are enumerated below:

5.2.1 Connecting to the Peer

The linked list containing the list of daemons obtained from the daemon portion of the

script is taken as input and we begin the control actions by connecting to each one of

the specified peers (or hosts) and if the connection is successful, we pass the parameter-

value pairs to the respective peers. The connections are made using TCP-based sockets

(so we have a reliable connection which takes care of any errors which might occur

during transmission). While sending the parameter-value pairs to the peer, we per-

form proper error checking to ensure that the peer has not crashed once the connection

has been established. If the peer crashes after the connection has been established,

33

Figure 5.3: NetSpec Data Structure

proper error-checking measures have been built-in to ensure that further parameter-

value pairs are not sent to it, by setting the status flag for the peer appropriately.

5.2.2 Execute the Phases

Based on whether the schedule information is present or not, we either execute Net-

Spec Variable Phase or the Classic 8 Phase. We present pseudocode for each of these

cases. Both mechanisms have been explained in Chapters 3 and 4.

34

5.2.2.1 Classic 8 Phase NetSpec

Classic eight phase NetSpec provides three execution constructs — serial, parallel and

cluster. Only the open, run and close phases are subject to the execution constructs.

The remaining 5 phases are executed serially. The pseudocode for each of the execution

constructs serial, parallel and cluster is presented below:

Program 5.2 Classic 8-Phase: Serial construct

for (all the daemons specified in the script)
{

check the status of the peer on which the
daemon has to be invoked;

if the peer is ok {
send the string ’openCommand’ to the peer using the
socket connection established before;
/* This prompts the daemon to execute it’s open phase */

}

wait for reply from this peer;
/* Getting a reply would mean that the open

phase finished successfully */

check the status of the peer;
if the peer is ok {
send the string ’runCommand’ to the peer

}

wait for reply from this peer;

check the status of the peer;
if the peer is ok {
send the string ’closeCommand’ to the peer;

}
wait for reply from this peer;

} /* end of for loop */

5.2.2.2 Variable Phase NetSpec

Variable phase NetSpec was explained in previous sections. Here, we present the pseu-

docode for the execution constructs Serial and Parallel supported by Variable Phase

35

Program 5.3 Classic 8-Phase: Parallel construct

for (all the daemons specified in the script) {
check the status of the peer on which
the daemon has to be invoked;

if the peer is ok {
send the string ’openCommand’ to the peer
using the socket connection initially established;
/* The string ’openCommand’ is a directive to the daemon to

start it’s open phase*/
}

wait for reply from this peer about the
result of the open phase;

re-check the status of this peer;
if the peer is ok {
send the string ’runCommand’ to the peer;

}
} /*end of for loop */

for (all the daemons specified in the script) {
wait for the reply from the peer about
the result of the open phase;

re-check the status of this peer;
if the peer is ok {
send the string ’closeComand’ to the peer;

}
wait for the reply from the peer about the
result of the close phase;

}

NetSpec. Note that schedule information is provided in two-levels. On the first level

we have the serial and parallel execution constructs tell us how individual daemons will

be scheduled and on the second level we use the slot-based mechanism to specify how

phases of daemons participating in the experiment will be scheduled.

Program 5.5 shows the pseudo-code for the serial construct and example 5.6 is the

pseudo-code for the parallel construct.

36

Program 5.4 Classic 8-Phase: Cluster construct

for (all the daemons specified in the script) {
check the status of the peer on which
the daemon has to be invoked;

if this peer is ok {
send the string ’openCommand’ to this peer;
/* The string ’openCommand’ is a directive

to the daemon to start it’s open phase*/
}

} /*end of for loop*/

for (all the daemons specified in the script) {
wait for reply for ’openCommand’ from peer;

}

for (all the daemons specified in the script) {
check the status of the peer on which
the daemon has to be invoked;

if this peer is ok {
send the string ’runCommand’ to this peer;

}
} /*end of for loop*/

for (all the daemons specified in the script) {
wait for reply for ’runCommand’ from peer;

}

for (all the daemons specified in the script) {
check the status of the peer on which the
daemon has to be invoked;

if this peer is ok {
send the string ’closeCommand’ to this peer;

}
} /*end of for loop*/

for (all the daemons specified in the script) {
wait for reply for ’closeCommand’ from peer;

}

37

Program 5.5 Variable Phase: Serial construct

for (all the daemons which need to be invoked) {
for (all the slots present in the phase table) {
for (all the phases of daemons present in the particular slot) {

/* sending the command to the peer indicates initiating
* a particular phase
*/

send the command string to the appropriate peer;
wait for reply;

}
}

}

Program 5.6 Variable Phase: Parallel construct

for (all the slots present in the phase table) {
for (all the phases of daemons present in a particular slot) {
for (all the daemons which need to be invoked) {

/* sending the command to the peer indicates initiating
* a particular phase
*/

send the command string to the appropriate peer;
}
wait for reply from all the peers to which the command was sent;

}
}

38

Chapter 6

Testing

The new NetSpec controller was tested for correctness as well as robustness. The newer

design should not only work correctly, but should also be able to run scripts which

invoke many daemons. In this chapter, we discuss testing measures which were em-

ployed to test the features discussed in the previous sections.

6.1 Testing Correctness Feature

6.1.1 Pretty Printer Option

This option was employed to ensure that data structures are filled correctly by the

parser. Before the data structures can be used by the NetSpec controller to perform the

necessary control operations, the pretty printer options use the data structures filled

by the parser to reconstruct the NetSpec input script. The output script from the pretty

printer can then be compared with the input NetSpec script given to the parser using

the GNU [3] diff tool. If there are any differences between these two files, then the data

structures were not filled correctly by the parser. This test enables us to find any errors

in parsing before testing the correctness of the control logic. One of the advantages

of this option is that if we have a script which is formatted badly, we can turn on the

pretty printer option and the output script so obtained is formatted neatly with proper

indentation, etc., hence the name pretty printer.

39

6.1.2 Testing Control Logic

Even though the NetSpec controller design and architecture underwent a major over-

haul, its interface to the daemons did not change. This made it easier to test the correct-

ness of the control logic. The Remote Control and Information Protocol (RCIP) was used to

communicate between the controller and the daemons in the newer and older designs

of NetSpec. Thus there was not a great deal of change on the daemon’s side due to the

changes in the controller design. The daemons still execute in a phase-based manner

with the controller being responsible for initiating the various phases. The dummy and

the system command daemons come in very handy here, as both daemons are simple

and the results from these daemons are known in advance.

The dummy daemon was developed to illustrate the working of variable phase Net-

Spec. A sample dummy daemon is shown in Script 6.1. The dummy daemon takes the

four variables and values as part of the parameter-value pairs. It adds two variables in

each phase and their results in a subsequent phase. The dummy daemon adds the four

variables passed to it and the result is then sent back to the controller.

Script 6.1 NetSpec Dummy Daemon

map defmap {
daemon = new_daemon(daemon_name=dummy;

phase1Command=1;
phase2Command=2;
emptyphaseCommand=3;
phase3Command=4;);

}

serial {
dummy testbed61:9001 {
varA = 1;
varB = 3;
varC = 5;
varD = 7;

}
}

The system command daemon provides the ability to construct a desired command

40

line on the target system and then invoke it using the system system call, which invokes

it from within a program as if it had been typed on the command line. For example, if a

user wants to run a set of commands in x different systems, it would be rather tedious

to log into each system and run these commands. Instead the user can pass those com-

mands, through the scripts to the system daemon. The system command daemon will

then execute them from a centralized controller system. As the results of the command

we would like to execute are known in advance, the system command daemon proves

to be very useful. A system command daemon is shown in Script 6.2.

Script 6.2 NetSpec System Command Daemon

map defmap {
daemon = new_daemon(daemon_name=nssyscmd;

setupCommand=1;
openCommand=2;
runCommand=3;
closeCommand=4;
finishCommand=5;);

}

parallel {
nssyscmd waldorf:8001 {
cmd="rm -rf /tmp/route.txt";
cmd="ls > /tmp/route.txt";
filename="/tmp/route.txt";

}

nssyscmd testbed61:8001 {
cmd="rm -rf /tmp/route.txt";
cmd="ls > /tmp/route.txt";
filename="/tmp/route.txt";

}
}

6.2 Testing Robustness Features

The NetSpec framework was tested for robustness by executing scripts which involve

many daemons invoked across various hosts. The controller was also tested for its

ability to handle large amounts of report data sent to it from individual daemons. Tests

involving 40 NetSpec traffic daemons on eight hosts were performed and report data

41

generated exceeded 16 MB. Conducting these tests and obtaining the results showed

us that the new controller design was indeed robust and could handle very high loads.

”NetSpec traffic daemon is the most commonly used daemon, among the family

of NetSpec daemons. It is mainly used for traffic generation and throughput mea-

surement. The traffic daemon can generate and sink a variety of TCP and UDP traffic

types. After the experiment is complete traffic daemon generates report from the local

statistics (socket properties and resource usage statistics) gathered from the kernel.”

[6]. A portion of a script used in testing the NetSpec framework is shown in Script 6.3.

The NetSpec service multiplexer, netspecd, can be started either in standalone or inetd

mode on the hosts on which the daemons are to be invoked. The NetSpec controller

then contacts the appropriate service multiplexer to invoke the various daemons in the

experiment.

Script 6.3 NetSpec Traffic Daemon

netTraffic testbed28 daemon3 {
type = burst (blocksize=9140, stamps=9000,

period=14000, duration=120);
protocol = udp (xmtbuf = 65536);
own = testbed28:8001;
peer = testbed33:8001:daemon4;

}

netTraffic testbed33 daemon4 {
type = sink (blocksize=9140, stamps=9000,

durationCorrection=60000, lingerCycles=2000,
duration=120);

protocol = udp (rcvbuf=65536);
own = testbed33:8001;
peer = testbed28:8001;

}

42

Chapter 7

Conclusions And Future Work

When we began redesigning the NetSpec controller, there were three goals that we set

out to achive — simplicity, modularity and robustness. Separating the parsing and

control logic functionalities was an important first step, which resulted in the design

being simpler. It also helped in making the code modular. We also had to ensure that

the new design be able to handle many daemons invoked across various hosts.

Redesigning the NetSpec controller not only helped us achieve the above-mentioned

goals, but has also resulted in adding new capabilities to the controller like provid-

ing a mechanism for downloading files to the daemons, which would be used by the

daemon for its processing needs. Options like Pretty printer (explained in Chapter 6)

have been provided, which help in testing controller code better. Ability to provide

comments in the script and print out line and column number information when the

controller encounters errors while parsing the NetSpec script are some of the many

changes which have been made to the controller.

Future Work
The NetSpec script consists of the scheduling information in which we specify how

we wish to schedule the phases of various daemons along with the set of daemons

which we plan to invoke. Let us define a semantic termed Group which represents a

block having schedule and daemon information. We could have a script containing

various Groups and we could specify how we plan to schedule the various groups. We

43

could schedule Groups in parallel, serial or a combination of both. The Group semantic

is powerful, as it will help us to group together daemons (scheduling them according

to the schedule information provided) and also schedule the various groups, based on

additional information provided.

44

Bibliography

[1] Inc. Berkeley Software Design. http://www.bsd.org.

[2] Hewlett-Packard Company. Netperf manual.

http://www.netperf.org/netperf/NetperfPage.html.

[3] Free Software Foundation. http://www.gnu.org.

[4] Bell Laboratories. http://plan9.bell-labs.com/magic/man2html/1/lex.

[5] Bell Laboratories. http://plan9.bell-labs.com/magic/man2html/1/yacc.

[6] Karthikeyan Nathillvar, Dr. Douglas Niehaus, and Anupama Sundaresan.

Netspec technical report. Technical report, ITTC, 2002.

[7] Inc. Netcordia. Test tcp whitepaper.

http://www.netcordia.com/tools/tools/TTCP/ttcp.html.

[8] Cisco Systems. Using test tcp (ttcp) to test throughput.

http://www.cisco.com/warp/public/471/ttcp.html.

[9] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. Iperf

version 1.7.0. http://dast.nlanr.net/Projects/Iperf/.

45

