
An Architecture for Logging and Searching Chat Messages

By

Rajan Vijayaraghavan

Bachelor of Engineering

Electrical and Electronics Engineering

University of Madras, India, 1999

Submitted to the Department of Electrical Engineering and Computer Science and

the Faculty of the Graduate School of the University of Kansas in partial fulfillment of

the requirements for the degree of Master of Science.

 Professor in charge

 Committee Members

 Date thesis accepted

Acknowledgements

First of all, I would like to thank my academic advisor and committee chair, Dr.

Susan Gauch, for guiding me through the Thesis work. I thank Dr. Arvin Agah and Dr.

Joseph Evans for being in my Thesis committee.

I would also like to thank my friends and especially Solomon, Subhash for their

help. I extend thanks to my other friends for making this study of mine quite an

interesting experience.

Abstract

Instant Messaging has become an important means of communication between

people around the globe, providing an alternative to telephone and email conversations.

The number of users using Instant Messenger products has been increasing over recent

years. Messenger services provide a perfect environment for private and personal chat.

People of all ages log into messenger service or chat rooms to spend time chatting with

known and unknown persons. As a form of entertainment for children, there may be

danger lurking from adults chatting with teens, camouflaged as teens. This has created a

desire to monitor chat activity on a system.

 The goals of this thesis are to provide an archival system for a chat client, an

incremental indexing system and a retrieval system that supports a variety of queries.

The archival system is designed to be independent of the messaging software so it can be

adopted more widely. The indexing and retrieval systems are portable to both Windows

and Linux with minimal changes and the system is to be scalable to continuous operation.

Chat sessions can be archived on either the server side (chat rooms) or client side

(Instant Messengers). This thesis has focused on client applications, but the development

has been coordinated with a related server side project. One of the popular chat clients,

Microsoft MSN Messenger, has been chosen to provide the text streams for archiving.

The text is indexed and a search capability is incorporated. The retrieval system can

support queries based on keyword, username, date, and other criteria.

 ii

Contents

List of Figures.. v

1. Introduction... 1

1.1. Motivation.. 1

1.2. Parental Controls.. 3

1.3. Need for message archiving... 4

1.4. Search for keywords .. 4

1.5. Scalability of the system.. 5

2. Related Work and Existing Systems ... 6

2.1. Commercial Systems: .. 6

2.1.1. Iambigbrother.. 6

2.1.2. Net Nanny ... 6

2.1.3. Cyber-Snoop ... 7

2.1.4. Desktop Snooper ... 7

2.1.5. I-Spy Now .. 7

2.1.6. Pearl Echo Internet Monitoring Software ... 7

2.1.7. Yahoo Messenger.. 8

2.1.8. Spector Pro.. 8

2.1.9. SpyBuddy 1.9 ... 8

2.1.10. Keyboard Monitor Keylogger 3.0 .. 9

2.2. Information Retrieval... 10

2.3. ChatTrack project .. 11

3. System Architecture... 13

 iii

3.1. Archival system ... 13

3.2. Indexing System .. 20

3.2.1. Document Preprocessing .. 21

3.2.2. Indexing process ... 22

3.2.3. Incremental Indexing .. 22

3.2.4. Batch Indexing .. 25

3.3. Retrieval System.. 26

3.3.1. Queries Supported... 27

3.4. Summary.. 41

4. Scalability Issues .. 42

5. Conclusions .. 48

6.1. XML.. 49

6.2. User Profiles .. 49

6.3. Thread Identification.. 49

6.4. Text Summarization... 50

6.5 Server Side Chat ... 50

Bibliography. ... 51

Appendix A. ... 55

 iv

List of Figures

Figure 3.1: MSN messenger conversation window screen shot 17

Figure 3.2: Archival System ... 20

Figure 3.3: Incremental Indexing System... 23

Figure 3.4: Search Flowchart.. 26

Figure 3.5: Screen Shot of the Retrieve User Interface. ... 27

Figure 3.6: Screen Shot of sample results specifying only keyword as query parameter. 29

Figure 3.7: Screen Shot of the results screen with keyword and speaker email id as query

parameters. .. 30

Figure 3.8: Screen Shot of the results screen with keyword uttered after some date

(‘from’ date option)... 31

Figure 3.9: Screen Shot of the results screen with keyword uttered after some date (‘to’

date option). .. 32

Figure 3.10: Screen Shot of the results screen with keyword said between some dates. . 33

Figure 3.11: Screen Shot of the results screen with keyword and sorted by time. 34

Figure 3.12: Screen Shot of the results screen with keyword and sorted by speaker email

id. .. 35

Figure 3.13: Screen Shot of the results screen with keyword and speaker email id and

sorted by time.. 36

Figure 3.14: Screen Shot of the results screen with keyword and date option sorted by

speaker email id. ... 37

 v

Figure 3.15: Screen Shot of the results screen with keyword and showing four lines

before and after match... 38

Figure 3.16: Screen Shot of the results screen with keyword and displaying two results

per page. .. 39

Figure 3.17: Screen Shot of the results screen with keyword and showing who heard the

conversation. ... 40

 vi

1. Introduction

1.1. Motivation

One of the developments in Web technology is instant messaging, the process of

instant communication between people. More and more people, of all ages, have started

using instant messaging software and the numbers are continuing to grow. Prominent

Web sites have chat rooms that host groups that exchange messages and billions of

messages are being sent through the chat rooms every month [1].

Chat rooms provide server-based instant messaging in which people log in to one

of the chat rooms to spend time. Yahoo and Microsoft provide two prominent web sites

that have many chat rooms each grouping users by culture, location, etc. Many people

log into the chat rooms and converse for hours, staying in a single chat room or migrating

from one room to another or chatting simultaneously in many chat rooms. One of the

advantages of chat rooms is that it is possible to chat with many people at the same time.

This capability can also be viewed as a disadvantage because the conversation is open to

all the people in that chat room. Messages with personal content are visible to all the

persons involved in a chat room. To overcome this disadvantage, client-based instant

messaging applications have arisen. People who want privacy in a conversation, or who

want to talk with known users only, use instant messengers.

 There are a number of instant messaging (IM) products in the market. Some of

the prominent ones are Microsoft® MSN Messenger, Yahoo’s Yahoo Messenger and

America Online’s AOL Instant Messenger. Although designed to provide one-on-one

chat, a messaging conference between multiple users is also possible. MSN Messenger

[2] allows up to 10 individual conversations simultaneously and also supports

 1

conferences with a maximum of 4 people in the same conversation window.

 Use of instant messaging has extended its reach into areas other than recreation.

Corporate environments are turning to instant messaging to communicate co-workers

more quickly and important internal office details or technical plans are discussed using

chat sessions. Slowly, the corporate world has started reaping the benefit of using instant

messaging software.

It is projected that by the year 2008, there will be an approximately US $8 billion

market for instant messaging products. Currently, the number of users in corporate

environment has surpassed 40 million [3]. In excess of 250 million users are predicted to

use instant messaging by the year 2005. By 2006, instant messaging is expected to be the

preferred medium of communication, overtaking email.

 Chat rooms are also used to disseminate and share knowledge. At the University

of Florida, one section of a course has the students use chat rooms for their weekly

discussions, replacing the traditional physical discussion section. At the Mozilla

development center, the programmers use IRC clients to keep others informed of code

sharing, coordinating the checking in and out the source code in the source code control

software. US Marines [4] have started using instant messaging software to keep in touch

with their colleagues over around the world.

 In general, chat rooms have become a place where nearly all-possible topics are

discussed [5]. People share news and views of events and it is also used a mechanism for

disseminating important information to a small group or the public at large. However,

the usability and versatility of the instant messengers has lead to several important issues,

as described below.

 2

1.2. Parental Controls

Most of the instant messengers except Yahoo Messenger Enterprise Edition are

free of charge. This has allowed people of different ages to converse in messengers and

chat rooms, and the popularity of messenger services is growing. However, there are

concerns whenever young people chat with unknown people. They might not know

anything about the individual with whom they are chatting. There can be danger lurking

from unscrupulous people chatting with teens, camouflaging as a teen, and extracting

personal information from the teen. There had been situations when young people had

been lured to reveal personal information about them and get into situations that are

dangerous [6][7][8][9].

These possibilities have led to constant worry for parents whose children frequent

the web to chat with people. Parents need way to monitor their children’s activity when

they are logged on to the computer. Currently, parents are able to list the sites visited by

their children and to log all the conversations involving the child without their notice.

These methods are referred to as chat monitoring or website monitoring. In some cases,

products provide message filtering to prevent the children getting exposed to foul

language.

On the server side, sites enable centralized text filtering. In MSN Chat rooms, for

example, a user is removed from a room if he violates the rules that regulate

conversations in the room. However, if a user is dropped from a room, they are allowed

back immediately by merely logging into the same chat room again. So, safe chat

features are not really effective in MSN chat rooms.

Yahoo chat rooms, in contrast, do not provide any safe chat procedures. In Yahoo

 3

Messenger there is an option to filter text based on the words uttered by the chatting

people. There are three options for word filtering in Yahoo: none; weak; and strong.

Yahoo maintains a file (C:\Program Files\Yahoo!\Messenger\filter1.txt), which contains

approximately 60 comma separated words that are removed when encountered in the

conversation text.

1.3. Need for message archiving

With the projected increase in the number of chat users and the variety of uses for

instant messaging, there arises a need for archives accessible to end users, a capability not

provided by existing software. The conversation is lost after the conversation window is

closed either deliberately or accidentally. Any important discussion or issue resolved

during the chat session vanishes without a trace.

Some of the messenger services have a rudimentary chat-logging feature, but

many do not. Microsoft® MSN Messenger, for example, has no message archiving

ability. Yahoo Messenger, however, has message archiving ability, but it is not readable.

The messages are stored in format that only Yahoo software can read. To provide parents

a way to review their children’s online chats or to allow messages to be reviewed to allow

corporations to review important decisions, we plan to provide an archiving system for

instant messages.

1.4. Search for keywords

 The goals of my research are to provide a functional archiving and search feature

for Microsoft MSN Messenger. The system must also be designed to be independent of

the messaging software so it could be adopted more widely.

 4

The existing problem with messenger services is that the conversation text is lost

when the window is closed. So, any important information that was conveyed or

received over the conversation is lost. In the corporate environment, many messages pass

through the messengers. Some messages may be courtesy messages, some of them may

be important decisions, and some may be important financial details. The messages

logged are not searchable in most of the systems. This is due to the fact the messages are

not archived and lost for good when the window is closed. So, the need for archiving

arises to keep track of all conversations involving a particular user.

Searching un-indexed text is very slow task. All the files have to be opened to

find out whether or not it contains the words of interest. If the user is a frequent user of

messenger service, his/her task of locating particular messages will be in no way different

from searching for a needle in the haystack. This brings into scene the need for providing

search functionality along with the archiving ability.

1.5. Scalability of the system

Since, we store each message as a unique file, message archiving, causes many

files to be created. If a user chats 5 hours a day and is sending 20 distinct messages per

minute while receiving the same number of messages per minute, the archive will create

12,000 files per day on the user machine. If a user chats with more than one person at a

time, the number of files does not increase since there is a natural limit to how much text

one individual can see or produce. If the outdated files are cleaned up periodically, the

disk space is not an issue. The files tend to be very short, so even 12,000 files at

approximately 100 bytes each would only require 1,200,000 bytes or 1.2 MB.

 5

2. Related Work and Existing Systems

2.1. Commercial Systems:

There are a quite number of commercial systems that monitor the sites visited and

also store the chat sessions on a personal computer. They provide a variety of

functionalities such as grabbing text from messenger service(s) and getting window titles

of all web pages open on a system. Most of the systems provide a similar set of

capabilities. Some commercial products are discussed below.

2.1.1. Iambigbrother

Iambigbrother [10] is a popular archiving system that is one of the most

comprehensive monitoring products on the market. It logs the titles of all web pages

visited on a personal computer system. It also captures all the text typed on the system

and keeps track of the times at which conversations happen. The software has the ability

to play back chat conversations based on user name chatted with and it allows the user to

search keywords in the archived conversations. The search functionality is very basic,

essentially a linear scan through the archived text, similar to Microsoft Windows search

feature.

2.1.2. Net Nanny

Net Nanny [11] is a less complete monitoring system, that does provide any

search feature at all. It contains a database of web pages that are categorized by the ages

of users for whom the content is appropriate. This database is used to filter the context

that a user can view based on their age. The company has a research team that

continually visits websites and updates the database. Net Nanny can log the URLs of

 6

web pages visited and chat transcripts. The software is able to playback the text of the

logged conversations. It displays the user name and time of the conversation as the

heading.

2.1.3. Cyber-Snoop

Cyber-Snoop [12] is a product that can capture text from various messenger

systems, e.g., Microsoft® MSN messenger, Yahoo Messenger and AOL Messenger. It

can display the text captured, but lacks any ability to search the archive. It merely

captures all window context, ignoring the content portion of email and logging only the

header.

2.1.4. Desktop Snooper

Desktop Snooper [13] is very similar to Cyber-Snoop in that it too logs chat room

activity, but provides no search feature. It will also store web page addresses visited.

2.1.5. I-Spy Now [14]

This is a chat conversations logging product that does the monitoring of chat

conversations. It logs both sides of all chat conversations for AOL/ICQ/MSN/AIM

Instant Messengers, and views them in real time, as they are happening.

2.1.6. Pearl Echo Internet Monitoring Software

 Pearl Echo Internet Monitoring Software [15] differs from the previously

discussed systems in that the logged files are stored on the server rather than on the

individual client machines. Thus, this product is suitable for corporate purposes that

require a centralized archive for reliability and/or to monitor a wide variety of users or

 7

chat rooms. The system logs all chat conversations, the websites visited, and also keeps

track of the system usage by personnel in an office environment.

2.1.7. Yahoo Messenger

Yahoo Messenger is one of the most prominent instant messaging programs that

provides instant messaging. It has a built in message archiving ability based on the user

sign-in name and the conference. It stores the transcripts for the number of days

specified by the user. The logged chat transcripts are stored on the users local machine.

Since the messages are encoded, the text logged is only readable by Yahoo Messenger

itself. Although Yahoo creates an archive of chat conversation text, these are not

searchable. They can only be replayed. The files say about who talked with whom, time

of the chat.

Yahoo Messenger can provide safe chat procedures by maintaining variants of

inappropriate language in a file (C:\Program Files\Yahoo!\Messenger\filter1.txt). Yahoo

messenger provides three levels for filtering the text: 1) low, 2) medium and 3) high.

Low means no filtering of language and high means strict language filtering.

2.1.8. Spector Pro

Spector Pro [16] records AOL chat rooms, AOL Instant Messenger, MSN

Messenger, and Yahoo Messenger. It has a chronological listing of the archived files.

Printable transcripts can be made with this software.

2.1.9. SpyBuddy 1.9 [17]

Spy Buddy is one of the spy software products that is very similar to I-Spy now.

It can capture conversations from AOL/MSN/IRC/AIM messengers. It stores screen

 8

shots of the desktop at preset intervals. There is no search feature available with the

software. It also captures websites activity.

2.1.10. Keyboard Monitor Keylogger 3.0 [18]

 This is another software product that captures text and encrypts it. Only the

native software can decrypt the recorded files. The program provides the ability to

capture all keyboard activity and has no search feature at all.

 9

System

Archival Search By

keyword

Search By

user name

Search by

date

Keyword +

user name

(who said)

Keyword

(who said)

IamBigBrother Yes Yes No No No No

Yahoo Messenger Yes No No No No No

Net Nanny Yes No No No No No

Cyber-Snoop Yes No No No No No

Desktop-Snooper Yes No No No No No

I-Spy Now Yes No No No No No

Pearl Echo Internet

Monitoring

Software

Yes No No No No No

Spector Pro Yes No No No No No

SpyBuddy 1.9 Yes No No No No No

Keyboard Monitor

Keylogger 3.0
Yes No No No No No

Mozilla Yes (S) No No No No No

University of

Florida
Yes (S) No No No No No

Table 1: Comparison chart for different existing products.

(S) – Server side archival.

2.2. Information Retrieval

 A typical traditional Information Retrieval (IR) [19][20] system consists of a

collection of information items, indexing algorithm, and a retrieval function. There are

 10

three models of traditional IR systems: Boolean model, probabilistic model and vector

space model. In any IR system, the collection of information items are indexed and

weights are stored in an inverted file.

 In the Boolean model, queries are represented by terms that are joined together by

logical connectives and search is based on exact match. That is, the documents that

contain the terms that satisfy the logical function defined by the query will be retrieved.

The probabilistic model is based on the idea that given a document and a query, it

should be possible to calculate that the document is relevant to the query.

 In the vector space model, both queries and documents are represented by vectors.

The relevance between the query and a document is determined by the similarity measure

between them, such as cosine of the angle of the two vectors. It is based on the formulae

 wtij = tfij * idfi

where

wtij is the weight of term i in document j.

tfij is the term frequency of term i in document j.

idfi is calculated as log2(N/ni), where N is the total number of documents in the

collection and ni is the number of documents containing the term i. The retieval model

used in our search system is based on the vector space model.

2.3. ChatTrack project

 Chat Track is an ITTC KU project undertaken by Dr. Susan Gauch to provide

security features to chat systems. The goals of the system are: 1) monitor the chat

activity when a user chats in a chat room, 2) index and provide a detailed search

 11

capability, e.g., search by keyword, search by speaker id, date based filtering of results,

3) implement safe chat procedures like tagging users who violate rules set forth by the

chat system etc. The system is being produced for IRC chat systems. The security

system that is being developed for a chat room system is extended to IM software. In this

thesis, the IM software under investigation is Microsoft MSN Messenger.

 12

3. System Architecture

 This chapter discusses the system architecture. We begin by discussing the chat

client, Microsoft® MSN Messenger, then describe the chat archiving client we have

developed, focusing on the archival, indexing and retrieval process.

Microsoft® MSN Messenger is one of the popular instant messengers available in

the market. Because there is no cost involved in using it and the user interface is easy to

learn, more than 40 million users [2] around the globe use it. One of the reasons for its

wide adoption is that it is incorporated with integrated with the Microsoft® Internet

Explorer browser software, Microsoft Outlook® Express 5, and MSN services such as

MSN Hotmail and MSN Mobile.

Microsoft® MSN messenger supports one-to-one chat or multi-person chat within

a single window. There can be up to 10 instant messaging windows open at any time and

conferences can a allow maximum of 4 unique users chatting in the same conversation

window at the same time. Each message must be less than 400 characters long.

 The important components of our system are the: the archival system, the

indexing system, and the retrieval system. We will now discuss the three main modules

of our ChatTrack project in the following sections.

3.1. Archival system

Archiving, or logging, is the process of the storing the conversation text into files.

The system consists of a program that watches over the user’s shoulder, constantly

monitoring for any messenger activity on the system. Some of the features that the

system supports are: 1) identifying when a new conversation window opens up; 2)

 13

logging both incoming and outgoing messages; 3) checking for administrative messages

generated by MSN messenger; 4) keeping track of users joining in a conference; 5) taking

appropriate actions to active users and to detect when a user leaves the conversation or

any of the users leaving a conference window; and 6) detecting window closing during

conference sessions or one-on-one conversations. Microsoft requires that people users of

its MSN messenger service have msn.com or hotmail.com email addresses.

 The archival program checks for all currently running programs on the system.

The presence of any MSN messenger conversation activity is detected if there is any

window with title “<username/nickname>– Instant Message” in MSN messenger

versions before 5.0 and “<username/nickname>– Conversation” in MSN Messenger 5.0.

Here “<username/nickname>” is the user sign in name or the nickname which the user

has chosen for the chat session.

 If a messenger window is present, the program gets the window handle of the

conversation window. The program then uses the window handle to generate a session id

by converting it to an unsigned long integer. Since window handles are unique to each

currently open window in the Windows operating system, this created unique identifiers

for each session. If a window closes, the same handle may be used later. However, no

two currently open windows will have the same window handle.

Using the conversation window handle, the program gets the window handle for

the associated text area. In MSN Messenger, the handle for the text area can be obtained

by requesting the window handle for “RichEdit2.0” class and then calling Windows API

GetWindowText. Due to the flexibility offered by MSN messenger regarding nicknames,

the program can also access the email id of the user in conversation with the local user.

 14

This information allows us to identify the person.

 The same APIs does not work for Yahoo Messenger because Yahoo Messenger

has some built-in security features that prevent other applications grabbing messages

using the above APIs.

New message(s) are gathered from, from the conversation window, in an

incremental process. At any time, grabbing the text results is getting the entire text in the

text area. Each time a message is grabbed, its length, including the current message, is

compared with the length of the message grabbed previously. If there is a change in the

message length it means there is a new message in the conversation window.

The initial message length is set to 94 characters. This value is the string length

of the welcome message that MSN Messenger displays in the conversation window. If

the current message length exceeds the previous message length, the next text is captured

and broken into messages. The system is able to grab text but is not able to grab emotion

icons, called emoticons, or any graphical images. Emoticons and/or images are treated as

white spaces. Then, each message is parsed to separate the user name from the actual

text. The archival program also captures the email sign in names. The window class

“Edit2.0” gives access to user email id or nickname. Since the users may use either their

email name or a nickname, we create a mapping between the user sign in name and any

nicknames they use. When writing the messages into our archive, we write the

corresponding user sign in name rather than the nickname so that all conversation from a

particular user will be associated with each other. If the user has multiple email

addresses, we will not be able to the user.

Messages captured from the conversation window may contain both user sent

 15

messages and administrative messages. The administrative messages can be easily

identified because they will not contain any user name. Administrative messages sent by

MSN Messenger are also grabbed and those of interest are stored as though said by user

“None”.

The messages from each session are stored in a separate directory. The directory

is names using a combination of the window handle and the date. For example, a chat

conversation with sign in name say “subhashiv@hotmail.com” with the window handle

as 912423, would be stored in directory “session000000912423/yy/mm/dd”.

 16

Figure 3.1: MSN messenger conversation window screen shot

where “yyyy” is the current year in four digit representation,

“mm” is the current month in 2 digit representation, and

“dd” is the current date in 2 digit representation.

Each message grabbed results in three files being created: 1) a message file; 2) a

user information (speaker id) file that stores the email id of the user who said the

message; and 3) a receiver file that contains user email ids of the users who would have

heard the message.

 17

These files share a common prefix of the form: “hhmmssmsmsms” where “hh” is

the hour in 2 digits, “mm” is the minute in 2 digits, “ss” is the seconds in 2 digits,

“msmsms” is the milliseconds in 3 digits. We append “.uid” to the file that stores the

user sign in name and “.mesg” for the text as said by the user. Finally, the file

“hhmmssmsmsms.receiver” is created to store information about all the users who

actually heard the message.

The archival program also creates a file called “FilesfromMessenger” and that

lists the new files that were archived by the archiver. This file is used to tell the indexer

which new files have been captured and thus to be indexed. The fields in this file are, in

order, sessionid, year, month, date, and timestamp. The archival program periodically

renames the file “FilesfromMessenger” to “toIndex” and calls the indexing program.

Currently, the archival program can monitor up to 100 different MSN Messenger

windows at one time. Since a user cannot actually chat with more than 10 people at the

same time with our current chat client, this limit is larger than is practically necessary.

The number of files created by the logging is an issue to concern. Assuming a

user chats 5 hours a day, sending 20 unique conversation texts and receiving 20

conversation texts per window in a minute, then for a day the number of files created

would be 72,000 on the local file system. In a year, the number of files would be

26,280,000. This may be a problem because of the number of files may exceed the total

number of files to be created on a local system. The advantage with Windows is that it

allows existence of large number of files. If the local file system is NTFS, Windows

allows up to 4,294,967,295 files. Cleaning up the file every few months periodically will

help in keeping the number of files with in limits. If the user converses with more than

 18

one person at a time, the increase in number of files will not be linear.

 There are two approaches in storing the captured files. One is to store all the files

in the local system. Another approach would be to store the messages on a remote

machine. The second idea is nearly identical to a server side chat logging. The main

advantage of storing the files in the local machine is that the privacy and security of the

messages is retained. In the remote machine archiving concept, if the remote machine is

hacked into, then the all the messages are out in the open. This is potentially possible

because intelligent hackers always trying to hack into some machine all the time. In the

corporate environment, if the remote machine is hacked into then there is a chance that

the corporate plans may go out and eventually the company may end up having a

business risk.

In the logging program, messages include the administrative messages generated

by the Messenger service. The administrative messages sometime contain the user(s)

joining or leaving the conversation. In that case, the session id, user sign in name, the

event (join or leave), date, and timestamp are logged. There are other messages that

appear quite frequently on a conversation window. Some of them are messages that

indicate file transfer, or file transfer started, file transfer completed, message could not

reach the recipient, etc. Some of the common administrative messages are in the

appendix section. The sample appearance of file organization is shown in the figure 3.2.

 19

Archival Program

Microsoft MSN
Messenger
Conversation
Window

Files to index
list

Speaker Id File
(.uid)

 (who said)

Listener Id
File

(.receiver)
(who heard)

Message File

Figure 3.2: Archival System

3.2. Indexing System

 Indexing is the process of creating an inverted file or index from the raw text files.

An inverted file is a word-oriented mechanism for indexing a text collection in order to

speed up searching. An inverted file is usually a collection of a dictionary file and a

postings file. A typical Dictionary file contains one entry for each unique word in the

document collection. Each record consists of the word itself, the total number of

documents in which the word is present, total frequency of the word in the whole

collection, inverse document frequency of the word and a pointer to the postings record

for the word. The postings file contains information about a word in each of the

documents in which it is present. Information in a posting record is: 1) frequency of the

word in a document, 2) weight of the word in the document, 3) the document id for the

 20

document, 4) a pointer to the next posting for the word.

 For example, if the word ‘heart’ is present in 100 documents of the a collection

of 200. It will have one record in the dictionary file. The inverse document frequency for

the word is calculated as

Inverse document frequency (idf) = log Total Number Of Documents in the collection

 Number of documents containing the word

Each of the posting records contains the frequency of the word ‘heart’ in that document

and term weight of word in that document. The term weight of the word in a document j

is calculated by

Term weight in document j (wj) = idf ij * frequency of the word in document j ;

 While retrieving for the word ‘heart’, the word is searched in the dictionary file

first. If it is present, the postings list is accessed and the corresponding document ids are

returned in decreasing order, sorted by weight.

3.2.1. Document Preprocessing

The inverted file is created from the words in the raw text files. Not all the tokens

from the text files are added to the inverted file. Words that appear in almost all

documents, or the most commonly used words (called stop list words), are omitted.

Since they do not form a good query term, they are removed before a document is

indexed. Single character tokens and numeric tokens are also not added to the inverted

file. In our case, the raw files are tokenized into tokens and printed in a file. The file

containing the tokens, devoid of the stop list words and other types of words mentioned

above, is added to the inverted file.

 21

3.2.2. Indexing process

 The base indexing code for this thesis was written by Peter Whiting and later

modified by Milan Gada. The code allows both incremental additions of documents to

the inverted file and batch indexing (indexing all the documents in a single run). Most

systems allow only batch indexing. Because the chat messages arrive all the time when a

user chats, this thesis mainly uses the incremental indexing feature.

The indexing code produces a slightly modified inverted file. It produces a

dictionary file, a posting file, and a documents file. The dictionary file consists of the

word, number of documents that contains the word (number of postings record for this

words), the inverse document frequency for the word, and a pointer to the postings file.

The postings file consists of the document id for the document containing the word and

two lists, a word list and a document list. The word list is the list of all postings to the

same word and the document list is the list of all postings for the same document. One

more file, called the documents file is created by this indexing system. This file consists

of the normalization factor for a document and link to the first posting record for the

document. All the above files use the concept of memory mapping the files. Memory

mapping makes a file appear as a long array of records, so accessing the records is very

fast

To provide more search functionality, the code has been modified to produce two

sets of inverted files, one for keywords and the other one for the speaker email names.

3.2.3. Incremental Indexing

Incremental indexing is the process of building the inverted file in incremental

process. It comes into picture only when there is an active conversation window. The

 22

archival system, along with logging all the conversation, makes a list of files that have

arrived newly in the Files-To-Index file. The list gives the files that need to be indexed.

The indexing program takes this file and updates the inverted index. The indexer, after

indexing, deletes the Files-To-Index file. The document-id file is also updated with the

last document id allotted to the last file indexed. The creation/updating of the inverted

index done upon demand as text arrives.

Document-Id File Indexer

Files-to-Index File
Message File

Speaker Id File
(.uid)

 (who said)

 Keyword
Inverted File
(dict, post, docs)

Mappings File User Id Inverted
File
(u_dict, u_post,
u_docs)

Figure 3.3: Incremental Indexing System

The above figure shows the incremental indexing program logic. The Files-To-

Index list contains all the files that need to be added to the system. The Speaker-Id file

 23

contains the user email name of the speaker of the text. The message file contains the

conversation text. The information from the speaker id file go to speaker (User) Id

Inverted File and the message file go to the keyword Inverted File. The mappings file

contains information about the file location and the document id associated with a file.

The mappings file is used by the retrieval program to display the text. It is

created/updated by the indexing program as and when new files are indexed.

 The Mappings file contains the document id for a file, session id, year, month,

date (these are directory names) and timestamp (this is the filename). The retrieve

program retrieves the document ids of the documents and this is used to get the

information about the location of the file in coordination with the data from the Mappings

File. The Document-Id is the unique identifier for each document. The Document-Id is

used to solve this problem. At the start of indexing, it contains the value “0”. The

indexing program takes this as the initial document id. It allots document ids sequentially

as new files arrive for indexing. The Mappings and the Document id files are updated

from time to time due to the incremental indexing.

Currently, indexing has been set to occur approximately every 30 seconds. This

enables searching the archive as early as 1 minute from the time the text was sent to the

MSN Messenger window. The call to indexing program depends upon the availability of

new files for indexing. The archival program calls the indexing program only when there

are new files to be indexed.

The archival program is a background process with no user interaction as is the

indexing program. The speed of indexing is very fast due to the use of memory-mapped

files. Since the system is being developed along with the ChatTrack project, the indexing

 24

and retrieve systems are shared by both the Windows (client) and Linux (server)

platforms.

3.2.4. Batch Indexing

 Batch indexing is the process of building the inverted index by indexing all the

files at the same time. This type of indexing is used in this system to test the working of

the system.

 Batch indexing is a two-step process in this case. In the first step, it runs through

the directories and gathers the file names and the locations. The names are added to files

to index list file. The second step is the actual indexing of the gathered files. Before

indexing, the Document Id file is set to zero.

 25

3.3. Retrieval System

The retrieval engine is a dialog based Windows application. A screen shot of the

retrieve dialog application is shown in the Figure 3.4. The system is able to search based

on keyword, keyword and user name, keyword with date constraints, and keyword with

date and user name.

The architecture for the retrieval system is shown in the following figure.

Keyword Dict
File

Keyword Post
File

Keyword
Docs File

User Docs File

User Post File

User Dict File

User Interface
Screen

Query, Parameters

Results as HTML
Page

Retrieve program

Figure 3.4: Search Flowchart

The figure does not show the various types of queries the system supports. The screen

shots in the later pages show the different methods of querying and displaying results

based on user preferences.

 26

3.3.1. Queries Supported

Figure 3.5: Screen Shot of the Retrieve User Interface.

Figure 3.5 shows a screen shot of the query window. Results appear in the right

side of the screen.

As shown in figure 3.5, the user is able to query the archive on a variety of criteria

and they are also able to control certain aspects of the results presentation. The user is

able to query on keywords contained in messages. They are able to have these results

 27

filtered by date and/or by the speakers MSN email id.

The types of date filtering available are

1. Show results after some date (context: the user mentioned “from” date

parameter).

2. Show results after before date (context: the user mentioned “to” date

parameter).

3. Show results between “from” and “to” dates (context: the user mentioned both

“from” and “to” date parameters).

In the third case, the system checks that the user gives the ‘from’ date is earlier

than the ‘to’ date. If they are reversed, the system re-orders them again and filters the

results approximately.

Some of the presentation features incorporated to the system are: displaying

results sorted by MSN email id (ascending order), displaying results sorted by time (most

recent message on the top). The user can change the number of results he/she wishes to

view on a single page of results, the number of conversation text he/she wants to see

around the exact match. The system also highlights the message containing exact match

so that it is easily identifiable and the system can also show the email ids of all users who

listened to the conversation text. The last option is redundant for one-on-one

conversations, but or multi user conferences, it is useful to know who all listened to the

conversation.

 28

Figure 3.6: Screen Shot of sample results specifying only keyword as query parameter.

Figure 3.6 shows a screen shot of the results page for query “heart” on a

collection of 62,040 messages collected. The results page shows some of the

conversation text. It shows the keyword searched (‘cricket’), the number of conversation

messages searched (62,040 in this case), the number of relevant conversation texts

retrieved (20 for this keyword), the number of results being displayed (3 results per page)

and the number of the page displayed (page 1of 7). Arrows indicate the location of the

exact match.

 29

Figure 3.7: Screen Shot of the results screen with keyword and speaker email id as query

parameters.

The next screen shot, Figure 3.7, shows the search capability by keyword and user

name. The query requests for results containing the keyword “cricket” with email of the

speaker “rajan_77”. The results page shows results that contain only text containing the

keyword “cricket” said by speaker “rajan_77”, the top three of the 15 messages meeting

this criteria are displayed.

 30

Users can specify date options as one of the query parameters.

Figure 3.8: Screen Shot of the results screen with keyword uttered after some date

(‘from’ date option)

If the user specifies only ‘from’ date with the keyword, the system displays results

that appear after the specified date, see Figure 3.8. Results that are after March 24, 2003

are displayed. The number of lines before and after text is kept to one.

 31

Figure 3.9: Screen Shot of the results screen with keyword uttered after some date (‘to’

date option).

If the user specifies only the ‘to’ date option with the keyword, the system displays

results that appear before the specified date. From the results screen, see Figure 3.9,

results that are before March 27, 2003 are displayed. The number of lines before and

after text is kept to one.

 32

Figure 3.10: Screen Shot of the results screen with keyword said between some dates.

Finally by specifying the keyword and both the ‘from’ and ‘to’ date options, the

system displays results that come between those date options. Results that are between

March 24, 2003 and March 27, 2003 are displayed. The resolution can be extended to

minute-based cut offs.

 33

Figure 3.11 shows a screen shot with results sorted by date. The latest results, by

date, are at the top of the results page.

Figure 3.11: Screen Shot of the results screen with keyword and sorted by time.

 34

Figure 3.12 shows results sorted by user email id. The results are displayed in

ascending order of user email ids.

Figure 3.12: Screen Shot of the results screen with keyword and sorted by speaker email

id.

 35

Figure 3.13: Screen Shot of the results screen with keyword and speaker email id and

sorted by time.

Figure 3.13 shows results for the query ‘cricket’ uttered by the speaker with email

id ‘rajan_77’ and the results are sorted by date. The most recent messages appear at the

top of the results page.

 36

Figure 3.14 contains a screen shot showing results filtered by date and sorted by

user email id. The results displayed in ascending order of user email ids.

Figure 3.14: Screen Shot of the results screen with keyword and date option sorted by

speaker email id.

Specifying the ‘from’ and ‘to’ date options and results sorted by user name is

possible though the screen shots are not shown. The above result is for keyword ‘cricket’

between dates January 01, 2003 and April 01, 2003 sorted by speaker email ids.

 37

Figure 3.15: Screen Shot of the results screen with keyword and showing four lines

before and after match.

 The system allows the user to control the text displayed surrounding the exact

keyword match. The number of lines of text before and after the exact match is provided

as a query parameter. The above screen shot displays results with 4-messages around the

exact match for the keyword ‘cricket’.

 38

Figure 3.16: Screen Shot of the results screen with keyword and displaying two results

per page.

 Users can also specify the number of results that should be displayed in a single

page. The results screen, Figure 3.16, displays two results per page for the keyword

‘cricket’.

 39

Figure 3.17: Screen Shot of the results screen with keyword and showing who heard the

conversation.

 The show user option can be used to view all who listened to a conversation text.

As the logging system logs listener email ids, it is easy to view all who would have

received the message. Although this option is unnecessary for one-on-one conversations,

it is helpful in multi user conferences.

 40

3.4. Summary

 We have demonstrated the correct operation of our system on a variety of queries.

The user interface provides the ability to search by keyword and to filter the results based

on dates and speaker email ids. It tracks who heard each conversation and allows users

control of how results are displayed. User may change the number of results per pages

and change the number of messages that should appear before and after the exact match.

 41

4. Scalability Issues

Since we are anticipating aggressive growth in the amount of chat data produced,

we must discuss scalability issues. Some of the issues in this case are the growth of the

size of the inverted index files, the number of files that get created by the archival system,

and the indexing and retrieval times. In most cases, using MSN Messenger, the system is

not going to be used for long durations on any day. This makes the growth of the files on

the local system a slow process. Realistically, most users are not going to chat with more

than 5 unique users at the same time and they are not going to chat more than 6 hours a

day.

 Since the system archives client side chat, we only need to archive the data

received and sent by a single user. The growth of the word dictionary file is not going to

be a steep one. Most of the informal conversation text will contain many stop list words

and the stop list words are not going to be part of the word dictionary. We will need to

extend a traditional stop list to contain words frequently used in informal chat, e.g., gtg,

gg, etc. We do not expect the number of distinct tokens to grow quickly once a basic

vocabulary of approximately 100,000 words is achieved.

 To evaluate the scalability of our system, we generate sample chat messages by

selecting words from a document. The message length for a conversation text is kept

constant at 150 bytes although MSN Messenger allows messages up to 400 bytes long.

If we assume that the user is has 5 chat windows open, each generating 1 message

every 10 seconds, that would equate to 5,400 files per hour, at 5 hours per day, 27,000

files per day would be created. A month would be 810,000 files and a year would be

295,650,000 files. These are high estimates and more typical would create 10% of this

 42

data, or 2,956,500 files per year.

In practical terms, 90% of the times, no user has the patience to type more than

100 characters at a time. So, 150 characters is a pessimistic average length.

Based on real data, the system archived 504 message files in 128 minutes in one

session and in another session captured 132 message files in 35 minutes. In both the

cases, the number of files created per minute is approximately 15. This number is well

below the estimated volume of 20 message files per minute. When we count the total

number of files created, ewe estimated around 60 files per minute, yet the actual was just

15 files per minute.

The following table shows the rate if growth of the inverted file as a function of

the number of chat files. For indexing 50,000 files, the system uses 22MB. Thus, we

need to periodically clean up the files.

Number of

Files

Dict

(Size in KB)

Post

(Size in KB)

Docs

(Size in KB)

User Dict

(Size in KB)

User Post

(Size in KB)

User Docs

(Size in KB)

10 16 79 4 8 79 4

100 32 79 8 8 79 8

1000 127 157 64 8 79 64

5000 253 1250 253 8 157 253

10000 506 2500 506 8 313 506

25000 1024 5000 2024 8 625 2024

50000 2024 10000 4048 8 1250 4048

Table 2: Showing the files size growth with the change in number of files.

 43

Keyword Inverted Index File Growth

0

2000

4000

6000

8000

10000

12000

10 100 1000 5000 10000 25000 50000

Number of Files

Fi
le

 S
iz

e
(in

 K
B

)

Keyword Dictionary
Keyword Postings
Keyword Documents

Graph 1: Shows the growth of keyword Inverted Index growth with respect to number of

files.

Speaker Id Inverted Index File Growth

0

500

1000

1500

2000

2500

10 100 1000 5000 10000 25000 50000

Number of Files

Fi
le

 S
iz

e
(in

 K
B

)

User Dictionary
User Postings
User Documents

Graph 2: Shows the growth of speaker email id or User id Inverted Index growth with

respect to number of files

 44

We also evaluate the effect of the archive size on the indexing and retrieval times. Table

3 shows the time taken to index a varying number of files. The retrieval time is shown on

the third column.

Number of Files
Time for Indexing

(in seconds)

Time for Retrieve

 (in seconds)

10 1 0.11

100 4 0.12

1000 16 0.13

5000 74 0.19

10000 142 0.42

25000 446 1.703

50000 769 2.143

Table 3: Indexing and Retrieval time with respect to number of files.

Number of Files Vs Indexing Time

0

100

200

300

400

500

600

700

800

900

10 100 1000 5000 10000 25000 50000

Number of Files

Ti
m

e
(in

 S
ec

on
ds

)

Indexing time (in
Seconds)

Graph 3: Shows the indexing time with respect to number of files.

 45

Number of Files Vs Retrieve Time

0

0.5

1

1.5

2

2.5

10 100 1000 5000 10000 25000 50000

Number of Files

Ti
m

e
(in

 S
ec

on
ds

)

Retrieve Time (in
Seconds)

Graph 4: Shows the retrieval time with respect to number of files.

Currently the archival system gives a call to indexing every approximately 30

seconds. From the data collected, in 30 seconds the indexing system can index 2000 files

each having 150 bytes of data. The Messenger service can only produce maximum 30

text messages (one message per second) in 30 seconds. So, calling the indexing system

every 30 seconds is really reasonable and it can guaranteed that the system will index the

messages without falling behind. Also, since the indexing is incremental, adding 100

files to an existing index can be done in 4 seconds no matter how large the archive grows.

Based on the number of files created by real chat conversation, it is easily seen

that this system can provide a scalable architecture. The system plays back the sequence

 46

of chat conversation, as it happened, accurately. It provides a capability to search based

on a number of query preferences. Currently, it supports queries based on keywords,

search ability to filter results by date, speaker name which many of the existing products

in the market does not provide. One of the key points of the system is its ability to

display the email ids of the users who listened the conversation. This feature will be

helpful when it is a multi user conference.

 47

5. Conclusions

This system provides an effective tool for archiving and retrieving chat messages

from MSN Messenger. The system was tested on Windows NT 4.0 and Windows 2000

Professional edition and with some minor code changes it can be made to work for other

versions of Windows. The current system logs messages from MSN Messenger versions

5.0 and earlier.

 48

6. Scope for future work

6.1. XML

 XML can be used to store the files that are getting created by the archival system.

By representing the logged message of a whole session in a single XML file, the system

can drastically reduce the number of files. During indexing the XML file can be parsed

to create individual files. The files can be deleted after indexing them because the data is

already present in the XML file. Also, using XML allows the archiving system to work

with other logging products that agree to produce output in XML format.

6.2. User Profiles

 User profiles [33][34] based on the text messages received can be seen a useful

extension to this work. Generation of user profile will help in giving a general idea of the

nature of the person on the other side. Language, used by the users, can be an indication

of the nature or character. If a person assuming an age of young person, language usage

can help in identifying the age range of the other user. By indexing all messages by

email ids, we can easily group together all messages from a single user for further

analysis.

6.3. Thread Identification

 Chat conversations involve discussions about many topics during a session.

Segmenting the chat messages based on the topics conversed would be an interesting

research problem. Text segmentation [22][24][26][27] is arranging the message text

based on the subject of the conversation. The process of thread identification starts with

detecting the topic of the conversation [32]. Messages that belong to the same topic, or

 49

resemble a topic, can be grouped together. Research on Topic Detection and Tracking to

newswire and broadcast news [21][23][25][30] is being conducted the same for chat

conversation messages could be done. Then messages, on same subject could also be

arranged or segmented as threads similar to message threads in newsgroups.

6.4. Text Summarization

 Text Summarization [28][29][31] is the process of summarizing the conversation

on a topic and displaying only important messages or displaying high points of a

conversation. Summarization is a three-step process: content identification, conceptual

organization and realization. Text summarization has been studied in many areas, but

summarizing informal chat messages poses unique set of problems.

6.5 Server Side Chat

This thesis mainly dealt with client side archiving and providing features that are

absent in the existing systems. The system has been coordinated with Chat Track project

and current work is integrating the search capabilities described here with an IRC chat

server. We are also developing a browser-based search client.

 50

Bibliography.

[1] Yahoo Messenger Enterprise Edition. 2003. http://enterprise.yahoo.com/messenger/.,

“Yahoo! Messenger Enterprise Edition”, April 2003.

[2] MSN Messenger Service. 2003. http://advantage.msn.co.in/flattened/EBC0BB22-

A87B-4BC2-A321-FCACA47F54BB.asp., “MSN Messenger Service”, April 2003

[3] Instant Messengers. 2001.

 http://www.instant-messengers.com/site/news/im_more_popular_than_ever.htm.,

“Instant Messaging More Popular Than Ever at Work”, April 2003

[4] IM Means Business. IEEE Spectrum Communications November 2002. pp 28-32.

[5] University Daily Kansan 2003. Article: “Bohl rumors abound”, February 14,2003

[6] The Guardian Angel. 2001.

http://www.theguardianangel.com/internet_safety_adults_chat.htm., “Internet Safety

Awareness”, March 2001.

[7] Milwaukee Journal Sentinel. 2000.

http://www.jsonline.com/news/metro/sep00/net12091100a.asp., “Judge aims sentence at

Internet chat rooms”, September 2000.

[8] About.Com. 1999. http://crime.about.com/library/weekly/aa101299.htm., “The War

Against Pedophiles”, December 1999.

[9] Naples/Collier News. 1998. http://www.naplesnews.com/today/local/a130833f.htm.,

“Computer abuse: Naples woman a victim of 'virtual murder' ”, September 1998.

[10] Iambigbrother. 2003. http://www.iambigbrother.com., “Who is your family chatting

with? Find out”, April 2003.

 51

[11] NetNanny. 2003. http://www.netnanny.com/products/netnanny4/description.html.,

“Net Nanny Product Description”, April 2003.

[12] Cyber-Snoop. 2003. http://www.cyber-snoop.com/., “Cyber Snoop Version 4.0

Internet Monitoring Software”, April 2003.

[13] Desktopsnooper.2003. http://www.desktopsnooper.com/productinfo.html., “Product

Information”, April 2003.

[14] I-Spy. 2003. http://www.i-spy-software.com/., “What iSpyNOW can do for you”,

April 2003.

[15] Pearl Echo Internet Monitoring Software. 2003. http://www.pearlsw.com/., “Internet

Monitoring Software Solutions for the Way You Work, Study and Play”, April 2003.

[16] Spector Pro. 2003.

http://www.spectorsoft.com/products/SpectorPro_Windows/index.html., “Home >>>

Products >>> Spector Pro for Windows >>> Product Description”, April 2003.

[17] Spy Buddy 1.9. 2003. http://www.spy-gadgets.com/spybuddy/., “Award-Winning

Internet / Computer Monitoring and Surveillance Spy Software”, April 2003.

[18] Keyboard Monitor Keylogger 3.0 2003.

http://www.spy-software-directory.com/keyboard_monitor.asp., “Keyboard Monitor 3.0

Features”, April 2003.

[19] Ricardo Baeza-Yates, Berthier Ribeiro-Neto. “Modern Information Retrieval”,

 Addison-Wesley, 1999.

[20] Ian H. Witten, Alistair Moffat, Timothy C.Bell. “Managing Gigabytes.

Compressing and Indexing Documents and Images”. Morgan Kaufmann II edition 1999.

 52

[21] Charles L Wayne. “Topic Detection and Tracking using idf-Weighted Cosine

Coefficient”, Proceedings of the DARPA Broadcast News Workshop, San Francisco, CA,

1999, pp 189-192.

[22] Doug Beeferman, Adam Berger, John Lefferty. “Statistical Models for Text

Segmentation” Machine Learning 34(1999), 1999, pp 177-210.

[23] Charles L Wayne. “Topic Detection and Tracking Overview and Perspective”,

DARPA Broadcast News Transcription and Understanding Workshop, Lansdowne, V.,

February, 1998.

[24] Jay M.Ponte, W.Bruce Croft. “Text Segmentation By Topic”. Proceedings of the

First European Conference on Research and Advanced Technology for Digitial

Libraries, 1997, pp 120-129.

[25] J.P. Yamron, L. Gillick, S. Knecht, S. Lowe, P. van Mulbregt “Statistical Models for

Tracking and Detection”. Working notes of the DARPA TDT-3 Workshop. 2000.

[26] Doug Beeferman, Adam Berger, John Lafferty “Text Segmentation Using

Exponential Models”. In Proc. Empirical Methods in Natural Language Processing 2

(AAAI) '97, Providence, RI, 1997.

[27] Hideki Kozima. “Text Segmentation Based On Similarity Between Words”.

In Proceedings of the 31th Annual Meeting of the Association for Computational

Linguistics , Columbus, OH. 1993, pp 286-288.

[28] Regina Barzilay, Michael Elhadad. “Using Lexical Chains for Text Summarization”.

In Proceedings of the ACL Workshop on Intelligent Scalable Text Summarization,

Madrid, Spain, July 1997, pp 10-17.

 53

[29] Julian Kupiec, Jan Pedersen, Francine Chen. “A Trainable Document Summarizer”.

In Proceedings, 18th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval”, Seattle, Washington, July 1995, pp 68-73.

[30] Jon Fiscus, George Doddington, John Garofolo, Alvin Martin

 “NIST’S 1998 Topic Detection And Tracking Evaluation (TDT2)”. Proceedings of the

DARPA Broadcast News Workshop, Virginia, USA. 1998

[31] James Allan, Rahul Gupta, Vikas Khandelwal. “Temporal Summaries of News

Topics”. Proceedings of SIGIR 2001, New Orleans, LA, September 2001, pp 10-18.

[32] Ron Papka, James Allan, Victor Lavrenko. “UMASS Approaches to Detection

and Tracking at TDT2”. In Proceedings of the 1999 DARPA Broadcast News Workshop,

Herndon, Virginia, February-March 1999, pp 111-116.

[33] Michael Pazzani, Daniel Billsus. “Learning and Revising User Profiles:

The Identification of Interesting Web Sites”. Machine Learning 27, 1997, pp 313-331.

 [34] Susan Gauch, Jason Chaffee, Alexander Pretschner; “Ontology-Based User Profiles

for Search and Browsing”. Submitted to User Modeling and User-Adapted Interaction

(UMUAI) journal. June 2002.

 54

Appendix A.

Administrative messages from Microsoft MSN messenger

1. Never give out your password or credit card number in an instant message

conversation.

2. <nickname/email id> has left the conversation.

3. <nick name/email id> has been added to the conversation.

4. <nick name/email id> would like to send you the file <filename> (46 Kb). Transfer

time is less than 1 minute with a 28.8 modem. Do you want to Accept (Alt+T) or

Decline (Alt+D) the invitation?

5. Transfer of file <filename> from <nick name/email id> has been accepted. Starting

transfer...

6. You have successfully received <filename> from <nick name/sign-in name>. Before

opening this file, you may want to scan it with a virus-scanning program.

7. The following message could not be delivered to all recipients:

 55

