
Implementation of a Single Threaded User Level Asynchronous
I/O Library using the Reactor Pattern

By

RAMAKRISHNAN KALICUT

B.Tech., Computer Science and Engineering
Jawaharlal Nehru Technological University,

Kakinada, India - 2000

Submitted to the Department of Electrical Engineering and Computer Science and the

Faculty of the Graduate School of the University of Kansas in partial fulfillment of

the requirements for the degree of Master of Science

 Dr. Jerry James (Chair)

 Dr. Gary J. Minden (Committee Member)

 Dr. Arvin Agah (Committee Member)

 Date thesis accepted

i

To
My Parents & Chinna

ii

Acknowledgements

I would like to express my sincere thanks to Dr. Jerry James, my committee chair, for

his guidance throughout this thesis and for his suggestions and support during my

graduate studies here at University of Kansas. Thank you! Dr. James, for all the help

and advice you offered me. I would like to thank Dr. Gary Minden and Dr. Arvin

Agah for giving me a chance to work in the ACE Project.

I would like to thank Raj and Sunil, with whom I worked as part of the BERT project.

I thank all my friends here at KU who made the past 2 and half years of my stay in

Lawrence a memorable one.

My heartfelt thanks to my parents and my brother for the love and support they

offered. To them, I owe all the good things in my life.

iii

Abstract

Asynchronous I/O is one of the methods used in systems, which are high on I/O load.

Asynchronous I/O overlaps application processing with I/O operations for improved

utilization of CPU and devices, and improved application performance, in a

dynamic/adaptive manner. This finds its applications in database systems, web server

systems etc. Many existing asynchronous I/O implementations employ multi-

threading to do non-blocking I/O operations. Such implementations, due to the

overhead of thread maintenance and context switching among them, do not scale well

for high loads. A single-threaded asynchronous library can be used to overcome this

problem. Such a library must be built on top of an event-driven framework that acts

as a controlling point for I/O request processing. This thesis describes UAIO, a User-

level Asynchronous I/O interface implemented in a single threaded model using a

time triggered Reactor, an object-oriented event de-multiplexing framework as the

underlying architecture. By eliminating threads, this implementation tries to deliver

better performance of the system that is otherwise loaded with thread maintenance

and thread context switches. Also, as the implementation is at the user-level, it can be

ported to any operating system with minor modifications.

iv

Table of Contents

1 INTRODUCTION... 1

2 RELATED WORK ... 7

3 DESIGN.. 13

3.1 REQUEST STATES & QUEUES ... 14

3.2 REACTOR.. 15

3.3 UAIO ASYNCHRONOUS I/O MECHANISM... 16

4 IMPLEMENTATION... 19

4.1 DATA STRUCTURES USED IN UAIO LIBRARY .. 19

4.1.1 Data Structures visible to the user .. 19

4.1.2 Data Structures for queue/list ... 22

4.1.3 Data Structures for Event Handler ... 24

4.2 IMPLEMENTATION OF THE UAIO LIBRARY INTERFACE................................. 25

4.3 IMPLEMENTATION OF THE REACTOR HANDLER FUNCTIONS 37

4.4 UAIO LIBRARY INITIALIZATION/FINALIZATION .. 41

4.5 IMPLEMENTATION LEVEL FLOW CONTROL IN THE UAIO LIBRARY 42

4.6 LIMITATIONS .. 45

5 TESTING... 46

5.1 CORRECTNESS TESTING ... 46

5.2 PERFORMANCE TESTING .. 48

5.2.1 One single write call with varied buffer size....................................... 48

5.2.2 Varied number of I/O calls for constant write buffer size................... 50

5.2.3 Varied number of I/O read calls ... 51

5.2.4 Combination of CPU and I/O intensive tasks 53

6 CONCLUSIONS AND FUTURE WORK .. 54

REFERENCES.. 55

1

1 Introduction

As use of the Internet increases, high performance web servers are the need of the

day. Most of the transfers involve data storage or retrieval. Due to limitations on

cache size, most requests end up retrieving data from the disks. Conventional I/O is

blocking in nature; the process making the I/O request waits until the request is

satisfied. If the server waits for each I/O request to complete, it cannot service other

clients during that time. This may lead to poor performance of the system, dissatisfied

customers and thus more importantly loss of revenue for the companies. Many

scientific applications involve massive amounts of I/O. Even if they employ high-

performance supercomputers, the speed of the underlying devices is 2-3 orders of

magnitude less. In real-time systems, the program cannot generally halt its execution

while waiting for a particular I/O request to complete. Deadlines are critical in a real-

time system. If it does wait for I/O completion, it may miss some deadlines and

endanger the whole system. Hence disk latencies are fast becoming a performance

bottleneck. This calls for somehow overlapping the I/O latencies with application

processing, thereby attaining improved utilization of CPU and devices, and improved

application performance.

In conventional blocked I/O, the kernel puts the application to sleep while the device

is processing the I/O request. The kernel then switches to serve another process.

When the kernel receives an interrupt from the I/O device signaling the completion of

2

the original I/O command, it wakes the sleeping process and makes it eligible to run

again. This is a simplified view of how a kernel performs I/O. In reality, kernel and

file systems also implement other facilities to improve performance, including read-

ahead and buffered writes. This mechanism is good enough in a heavily multi-

programmed environment where the overall throughput of the system is more

important rather than that of individual applications. But for performance-sensitive

applications, such as dedicated systems like web servers and database systems, the

impact is very significant. Hence, the need for non-blocking I/O. There are many

alternatives to implement non-blocking I/O so as to mask the disk latency with

processing, thus ensuring better performance.

v Using threads (multi-threading)

The user/programmer has to implement a threading model such that a thread is

created to handle each I/O request. Whenever an I/O request is made, a thread

is spawned to service the request and control returns to the main thread. The

child thread does a blocking I/O on the request, but another thread can be

processed at the same time. The main thread can check for I/O completion or

ask to be notified of request completion. In this method, the programmer has

to deal with issues related to concurrency, locks, thread maintenance and the

possibility of deadlocks. The resources needed to maintain each thread and

the context switching among the threads make this approach less scalable.

3

v Using poll() or /dev/poll

Non-blocking calls (e.g. write() on a socket set to O_NONBLOCK) are made to

start I/O, and readiness notification (e.g. poll() or /dev/poll) is used to know when

it’s OK to start the next I/O on that channel. This scheme has level triggered

readiness notification, as the kernel tells whether a file descriptor is ready,

whether or not anything is done with that file descriptor since the last time the

kernel told about it. This standard O_NONBLOCK doesn’t help, as the API

doesn’t take the buffer away from the user. As a result the kernel can avoid a copy

only if the Memory Management Unit write protects the buffer and relies on

COW (copy-on-write) to avoid overwrites while the buffer is in use. This is rather

expensive due to the TLB (translation lookaside buffer) flushing requirements,

especially as it involves Inter Processor Interrupts on SMP (shared memory

multiprocessor) machines. This method requires a specialized device node based

interface for registration and notifications of events. This poll() or /dev/poll

method is suitable for readiness notification on sockets (network I/O) but not for

disk I/O.

v Using Real-time signals

Another alternative is using real-time signals. This is just a notification

mechanism and does not itself provide asynchronous I/O support. But in

combination with non-blocking calls, it provides a non-blocking I/O with edge

triggered readiness notification mechanism. In this method (edge triggered), the

4

kernel tells the readiness of a file descriptor only when an event occurs that might

cause it to become ready. Some options need to be set on the file descriptor (like

fcntl F_SETSIG) to enable edge triggered readiness notification. To use this,

write a normal poll() outer loop, and inside it, after you’ve handled all the fd’s

noticed by poll(), you loop calling sigwaitinfo(). Signals could be lost due to

signal queue overflows, especially with functions that tend to generate more

signals. To overcome this problem, the signal queue can be flushed when the

queue is full and control is given to the outer poll(). Tuning the queue length is a

bit complicated (via a sysctl call which is used to configure kernel parameters at

runtime). As the number of events increases, there is the complication of using the

same signals and their signal handlers in user space. Event triggered programming

(using signals) like this is difficult to implement and understand, as the flow of

control is quite unpredictable.

v Using Asynchronous I/O libraries

An interface to do asynchronous I/O operations is provided to the user. A user

intending to do non-blocking I/O can use this interface. Control is immediately

returned to the user after the I/O request is submitted. The user process can ask to

be notified upon request completion or can itself check a request’s status using the

interface. The implementation of the interface is abstracted from the

user/programmer. The implementations vary from multi-threading with little

utilization of the asynchronous nature of the underlying devices to a true

5

asynchronous finite state machine taking full advantage of the device nature. The

multi-threaded approach is similar to the user-level threads discussed above,

except that the thread creation and management is invisible to the user (handled

by the library). This and other methods of asynchronous implementation are

discussed in detail in the next chapter.

This thesis aims at building an asynchronous I/O library using a single-threaded event

driven approach with the view of overcoming the drawbacks of the above-mentioned

alternatives. A performance comparison is also made with some of the existing

implementations. The current implementation of the UAIO (User-level Asynchronous

I/O) library is a single threaded model for doing non-blocking I/O. It is built on top of

Reactor, an event driven framework [1]. The library interface is in compliance with

the POSIX standard [2]. By employing only one thread of execution (the process

main thread), the overhead attached with thread maintenance and context switching is

eliminated. In addition UAIO does not perform any copies on user buffers.

Chapter 2 discusses various implementation methods and relevant work in the area of

asynchronous I/O libraries. Chapter 3 discusses design of the user-level asynchronous

I/O library. The higher-level modules of the library and the higher-level interaction of

these modules with the Reactor are discussed here. Chapter 4 discusses

implementation specific issues of the UAIO library. Chapter 5 discusses testing of the

library, verifying its POSIX compliance and comparing its performance with some

6

existing asynchronous I/O implementations. Chapter 6 discusses conclusions and

possible future work.

7

2 Related Work

With a view of overlapping I/O latencies with computation, various asynchronous I/O

approaches are defined. The driving factor in choosing one implementation over

another is the purpose of the system and its environment. Real-time applications, for

example, must by definition deal with an unpredictable flow of external interrupt

conditions that require predictable, bounded response times. In order to meet that

requirement, a complete non-blocking I/O facility is needed. Violation of time

constraints may be catastrophic. The overhead of context switching and thread

managing in a multi-threaded asynchronous I/O implementation may deprive critical

tasks of CPU cycles. In this case it is better to employ a signaling model. In a broader

perspective there are two methods for asynchronous I/O implementation.

v Building the entire system in an asynchronous model. The Microsoft Windows

NT I/O subsystem is built with this method. It provides support for overlapped

files within the Win32 API [3]. The operations can be invoked in synchronous or

asynchronous mode. This method is useful if the system is built from scratch. But

if it is built on top of existing synchronous interfaces, changes to these interfaces

need to be made.

v A separate asynchronous operations interface is created. All asynchronous

operations follow a different path from the synchronous operations. This can be

used along with the existing synchronous interfaces. This is the approach most

8

Linux implementations of asynchronous I/O take, as it can coexist with the

existing synchronous interfaces.

When considered from an implementation point of view, there are three approaches

for asynchronous I/O implementation.

v The first approach is to use threads to process the I/O requests without blocking

the main thread (the process making the asynchronous request), thus making it

look asynchronous to the application/user. In a multiprocessor machine, different

processors can execute threads at the same time, thus attaining the actual

asynchronous behavior. This is done in two ways.

½ Using threads

A thread is created to process each asynchronous I/O request. The slave

threads block for request completion. The glibc Asynchronous I/O library

(part of the Real-time library) falls in this category [4]. The user is

abstracted from the threading implemented in this library. This method has

its drawbacks. As the number of outstanding requests increases, more

threads are created and take significant process time in context switching.

Therefore, this approach exhibits poor scalability and performance.

9

½ Using a thread pool

In this approach, a pool of threads services the requests. The request is

stored into an internal queue. Each thread polls this queue for requests and

services a task (request). The Solaris Asynchronous I/O library laio uses

this approach [5]. While the creation of a pool of worker threads up front

helps provide better scalability than the user-threads asynchronous I/O

facility, there is a trade-off between degree of concurrency and resource

consumption.

v While the threads library implementation of asynchronous I/O works well enough

for many applications, it does not necessarily provide optimal performance for

applications that make heavy use of the asynchronous I/O facilities. Overhead

associated with the creation, management, and scheduling of user threads

motivated the decision that an implementation that required less overhead and

provided better performance and scalability was in order. This gave rise to a

hybrid approach that makes use of the asynchronous behavior of the underlying

operation. For this purpose there needs to be specific asynchronous I/O read and

write routines at the device-driver level.

½ The SGI KAIO implementation employs this method [6].

� If the underlying operation is asynchronous in nature (i.e., the request is

kaio supported), kaio queues the request at the device and calls the

10

asynchronous I/O routine in the appropriate device driver. In this case the

degree of asynchrony depends on the device.

� If the operation is synchronous in nature (like filesystem I/O), kaio uses

the thread-pool approach or single thread per operation approach

depending on the implementation platform. In this case the number of

slave threads determines the degree of concurrency.

v The third approach is to implement a true asynchronous state machine for each

type of asynchronous I/O operation. This is achieved through a sequence of non-

blocking steps, with state transitions driven by IRQ techniques and event threads.

This approach is very hard to implement but provides greater flexibility and

greater asynchrony in comparison to the other two approaches. The asynchronous

I/O interface being developed at IBM uses these techniques (with some caveats)

[7].

Some other asynchronous I/O implementations are discussed below. Block

Asynchronous I/O (BAIO) developed at the University of Wisconsin-Madison is a

mechanism that strives to bypass the kernel abstraction of the file system [8]. In an

effort to obtain reasonable performance over different file systems, the kernel

provides a generic set of file-system polices. This generality leads to suboptimal

performance of the system. File systems based on these general set of policies end up

ignoring the application-level understanding of the data being stored, which might

11

facilitate highly optimized policies and decisions. The BAIO implementation

transfers this file system to the user level where it can use application level

information, enabling it to layout the data on the disk, caching and prefetching the

data in an optimal way. Unlike SGI KAIO that uses slave threads on a per task basis,

BAIO employs a service thread for each process. The service thread (BAIO service)

checks for request completion in a non-blocking manner. It is notified by the device

driver about the completion and then in turn notifies the user application.

The Message Passing Interface (MPI) Standard is a library specification for message

passing, which is proposed as a standard in the parallel computing industry [9]. Its

latest MPI 2.0 Specification has included primitives for buffered asynchronous I/O

through the MPI_FILE_IREAD_* and MPI_FILE_IWRITE_* initiation functions.

The non-blocking data access routines indicate that MPI can start a data access and

associate a request handle with the I/O operation. Non-blocking operations are

completed/synchronized via MPI_TEST, MPI_WAIT, or any of their variants. This

specification allows implementations to choose the old blocking I/O primitives, if the

underlying hardware is ill-fitted for asynchronous operations.

Titanium is an explicitly parallel dialect of Java developed at UC Berkeley to support

high-performance scientific computing on large-scale multiprocessors [10]. Titanium

is based on a parallel SPMD (Single Program, Multiple Data) model of computation

in which the same program runs on different processors each having its own data.

12

Even so, the I/O operation at each processor is essentially blocked I/O. Due to the

high I/O of intensive scientific applications, conventional blocking I/O has become a

performance bottleneck. To overcome the limitations of file I/O in Java, an

asynchronous I/O library is built to mask this disk latency with overlapped

computation.

Whichever model they use, all the above-mentioned implementations prove the fact

that asynchronous I/O is recognized as an important part of the design of a high-

performance parallel computing systems. This is a sign that in the near future, more

and more OS vendors will implement this feature in their system call or standard

library interfaces.

13

3 Design

UAIO is a user-level asynchronous I/O library based on the single-threaded model.

This library is built on top of the Reactor, an Object Oriented (OO) event

demultiplexing framework. The UAIO API is POSIX compliant and provides support

for asynchronous read and writes, batched asynchronous read and write,

synchronization, asynchronous request cancellation and signaling. This section

outlines the design behind development of the UAIO library. There are three major

components of this library. They are:

� Asynchronous I/O interface – This interface is in compliance with the POSIX

standard and can be used by the user to do asynchronous I/O.

� Library Internal Queue – This is internal to the UAIO library. The user requests

are stored in this queue.

� Reactor – Processes the requests in the queue and provides notification (if

desired) of the request completion.

As the interface provided by the UAIO library is well known (similar to the glibc/librt

AIO interface), it is not discussed here. However, the interface is dealt with in detail

in the next chapter (Implementation). This chapter first discusses the states

corresponding to a request, then the internal queue properties. Then the concept of the

Reactor with respect to I/O handling is explained in detail. Finally as all pieces of the

puzzle are defined, the placement of these pieces in the system and the interactions

among them are discussed.

14

3.1 Request States & Queues

In the UAIO library all request states are stored at the user-level. The possible

request states are:

� Incomplete or Pending – In this case the request is enqueued in the queue and

is waiting its turn to be processed.

� Running – The request is being processed (by the reactor).

� Completed or Terminated – The request is either terminated successfully

(request is processed) or unsuccessfully (failed to process the request).

The following queues1 are part of the UAIO library. The asynchronous I/O requests

are stored in these queues depending on their state.

� Free list – empty list

� Run List – contains the requests that need to be processed

� Done List – contains the processed requests.

During the library initialization, a list is created (free list) which can hold some

maximum number of elements (requests). When a request is submitted, it is stored in

an element of the free list. This element is then placed in the run list, and the request

state is set to pending. The allocation of resources (creation of the free list) is done

with a view to increase performance. The request is stored in the queue until its turn

to be processed by the Reactor. When its turn comes, the state of the request changes

to running. Upon processing of the request, this request element is placed in the done

list. The request is in the completed state. A request that is canceled by the user is also

placed in the done list.

1 The library internal queues are implemented as linked lists. In this document, the terms queue and

linked list both mean the same unless otherwise specified

15

3.2 Reactor

Figure 3-1 Reactor Pattern for I/O Handling [11]

The Reactor provides an object-oriented event demultiplexing and distribution

framework. The reactor handles events by using event handlers. A separate event

handler is generated that represents each service of the application. This event handler

is responsible for dispatching requests specific to this service. Each event handler is

registered with the Reactor. There are three prominent methods that each Reactor

objects defines. They are:

16

� handle_input() – called whenever data is ready to be read

� handle_output() – called whenever the output buffer is free to send data

� handle_close() – used to deregister the handler upon completion of the request

A handler is generated for each request and is registered with the Reactor either as

input type or output type. All the handlers registered with the Reactor are stored in the

reactor queue. At the core of the Reactor is a select call which checks for I/O request

that can be satisfied. The corresponding handler functions are called to process the

request. Demultiplexing of the requests (events), by mapping the event detected on a

file descriptor to a particular event handler, is performed by a synchronous

demultiplexer. This Reactor framework, event-driven in nature, eliminates the need of

threads to process the requests.

3.3 UAIO Asynchronous I/O mechanism

As discussed in the above section, the primary objective of the Reactor framework is

to provide the ability to register callback functions that are called when I/O is ready.

In the glibc version, a thread is created to satisfy each asynchronous I/O request. Each

service thread blocks until the I/O request is completed. In UAIO library, which

employs the single threaded model, this method causes the process as a whole to stop.

But using the concept of the Reactor, we can make the UAIO library provide for

asynchronous operations as we can register the asynchronous I/O events we are

interested in with the reactor. When the reactor detects that the I/O can be satisfied,

the request is completed and a notification (if requested) is sent to the user process.

17

Figure 3-2 Asynchronous I/O in UAIO library

As shown in the figure 3-2, a POSIX compliant interface is provided to the user to

invoke asynchronous I/O operations. The user can ask to be notified about request

completion or can check for completion. When a request is made using this interface,

the request is queued in the library internal queue. A new handler for the request is

generated and is registered with the reactor using the registration method that extends

Asynchronous I/O Interface
Request for asynchronous I/O

(POSIX Conformance)

Library Internal Queue
Enqueue or De-queue the request in the

queue. Contains functions associated
with queue maintenance

Asynchronous I/O Handler Methods
Methods to create AIO handlers, register &

deregister them, handle_input() &
handle_output()

Reactor
REGISTERHANDLER
REMOVEHANDLER
HANDLEEVENTS

SCHEDULER Timer
Interrupt

18

the registerHandler method of the reactor. The reactor (invoked for every 1msec timer

interrupt) checks if any of the requests can be satisfied. If the selected request is

registered for input, the handle_input() function is called, and if it is registered for

output, the handle_output() function is invoked. The results of the operation are

stored in the corresponding queue entry and a notification (if requested) is sent to the

user process indicating completion of the request. The user can retrieve the results

using the interface provided.

19

4 Implementation

This chapter discusses the implementation details of the UAIO single-threaded

library. First the data structures visible to the user and those internal to the library are

discussed. The next two sections discuss the implementation of the interface and the

library internal queue. Then the handle functions associated with each event handler

are explained. Finally the implementation level flow control within the system is

defined.

4.1 Data Structures Used in UAIO library

4.1.1 Data Structures visible to the user

These are provided to the user to submit asynchronous I/O requests and to tune

the parameters in the library.

� ‘struct aiocb’ – All AIO operations operate on files that were opened

previously. There might be arbitrarily many operations running for one

file.

struct aiocb{

 int aio_fildes;

 int aio_lio_opcode;

 int aio_reqprio;

 volatile void *aio_buf;

 size_t aio_nbytes;

 struct sigevent aio_sigevent;

 off_t aio_offset;

};

20

The asynchronous I/O operations are controlled using a data structure

named ‘struct aiocb’ (AIO control block). Though the asynchronous I/O

interface is POSIX compliant, the valid set of values for some of these

elements is constrained to suit the implementation. All such changes are

explicitly mentioned when discussing the corresponding structure

elements.

ìnt aio_fildes’ – File descriptor which is used for the operation.

The device on which the file is opened must
allow the seek operation.

òff_t aio_offset' – Specifies at which offset in the file the operation

(input or output) is performed.

‘volatile void *aio_buf’ – Pointer to buffer with the data to be written or

place where the read data is stored.

‘size_t aio_nbytes’ – Length of the buffer pointed to by ‘aio_buf’.

‘int aio_reqprio’ – Specifies the priority of the request.

‘struct sigevent aio_sigevent’ –

Specifies how the calling process is notified
once the operation terminates.

 If sigev_notify is
 SIGEV_NONE - No notification is send
 SIGEV_SIGNAL - signal send (sigev_signo)

The SIGEV_THREAD option where a thread is created to do the

notification (provided by the glibc asynchronous I/O

implementation) is not valid as this implementation is single-

threaded.

21

‘int aio_lio_opcode’ – Assumes significance only when used in the
‘lio_listio’ function. This parameter is used to
specify the action to be performed on each
request.

 Possible values:
 LIO_READ - Start a read operation.
 LIO_WRITE - Start a write operation.

 LIO_NOP - Do nothing for this control block.

� ‘struct aioinit’ – This data type is used to pass the configuration or tunable

parameters to the implementation. This is provided to initialize the library

in a way that is optimal for the specific application.

‘int aio_threads’ – Maximum number of threads which must be used
at any one time

‘int aio_num’ – Maximum number of simultaneously enqueued

requests

‘int aio_locks’ – Initial number of pre-allocated needed data

structures. Used by real-time programs to pre-
allocate needed data structures so that real time
programs do not need to allocate them in critical
areas.

struct aioinit{

 int aio_threads;

int aio_num;

int aio_locks;

int aio_usedba;

int aio_debug;

int aio_numsers;

int aio_reserved[2];

};

22

‘int aio_usedba’ – Try to use Database Administration(DBA) for raw
I/O in lio_listio

‘int aio_debug’ – Turn on debugging

‘int aio_numusers’ – Maximum number of user sprocs or pthreads

making aio_* calls (as in multithreaded programs).
Passing a number that is too small can result in
program deadlocks and other errors.

‘int aio_reserved’ – Reserved for future use

The glibc version uses the first two parameters to optimize the asynchronous

I/O library. The rest are left unused. As the UAIO implementation is single-

threaded, aio_threads is irrelevant. So, in this implementation only aio_num

of this aioinit structure is used.

4.1.2 Data Structures for queue/list

The library internal queue is implemented as a linked list. Elements are arranged

in descending order of priority with 0 as the minimum priority. Each element in

the list consists of some elements that represent the request and a pointer to the

next element. The parameter type is used to determine the operation performed on

the request (such as read, write or signaling). The event handler created for the

request is stored in handle. errorState indicates the current state of the request.

errorSate of a pending request is EINPROGRESS. If the request is completed

successfully, errorSate is set to 0, else set to the corresponding errno.

returnStatus holds the result of the request completion. For a request of type read

or write, returnSatus stores the number of bytes read/written. The last parameter

23

struct Notify *notify is used only when the user process is explicitly waiting on

this request. The results of completion of all the requests that the process is

waiting on are copied to this object. The library checks this object to decide when

to revoke the waiting process2.

The struct Notify data type contains the following elements.

‘int count’ – Indicates the total number of requests completed that the

process is waiting on.

‘int result’ – Indicates the total result of all the completed requests. It is 0

if all the requests completed successfully, else it is set to –1.

‘int signalFlag’ – Turn on if any of the completed requests asked for signal

notification upon completion of the request.

/* List element structure */

struct requestList{

int type; // specifies the type of operation

 struct aiocb *aiocbp; // aio control block

 aioHandler handle; // handler for the request

 int errorState; // error state of the request (error condition)

 int returnStatus; // return status of the request (result)

 struct Notify *notify; // if used, specifies the place to store the results

 // Used only when ulio_listio() is called in

 // LIO_WAIT mode or uaio_suspend() is called

// on this request

 struct requestList *next_prio;

};

2 As the library is user-level and single-threaded, it is a single process (library reactor + user

program). So, waiting is accomplished using busy waiting with a condition. System commands like
sleep() and wait() are not used, as they block the whole process.

24

4.1.3 Data Structures for Event Handler

Each request that requires an I/O operation must have a corresponding event

handler registered with the reactor. The handler object extends the default handler

provided by the reactor. The default handler ‘EventHandler * eh’ links the handle

functions like handle_input() and handle_output() with the handler. These

functions are called when the specific event occurs. aiocbp is the aio control block

that contains the asynchronous I/O request. fd is the file descriptor on which the

request is made. This is used by the select call to find if that file descriptor is

struct Notify{

 int count; // total # of requests(waiting for) completed

 int result; // cumulative result

 int signalFlag; // turn on if any request completed

 // has signal notification

};

typedef struct{

/* This structure must be included in all the modules that use reactor and the

function pointers in it must be set to appropriate values */

 EventHandler * eh;

 /* The fileds below are specific to aio implementation */

 struct aiocb *aiocbp; // aio control block (request)

 int fd; // file descriptor.(=aiocbp->aio_fildes)

 int isRegisteredAsInput; // if the handler is registered as input

 int isRegisteredAsOutput; // if the handler is registered as output

}aioHandler_struct;

25

ready for I/O. A handler can be registered for input (for reading) or output (for

writing). isRegisteredAsInput is set when the handler is registered to do an

asynchronous read operation. isRegisteredAsOutput is set when the handler is

registered to do an asynchronous write operation.

4.2 Implementation of the UAIO library interface

This section discusses the implementation of the interface provided to the user. The

asynchronous I/O interface is in conformance with POSIX standards. In the glibc

asynchronous I/O implementation, a thread is created to handle each request. But, as

UAIO is based on the Reactor (an event-driven model), the implementation does not

involve any multithreading.

� int checkRequest (int mode,struct aiocb *aiocbp)

This function is internal to the library. This function is used to check the

validity of the asynchronous I/O control block, i.e. if the control block is

checked for invalid file descriptors, file offsets etc. The first parameter ‘mode’

is used to specify the type (read/write) for which the request is to be validated.

‘aiocbp’ is the aio control block.

This function returns:

 0 - if ‘aiocbp’ is valid and the library queue is not full

 -1 - otherwise, and errno is set accordingly

26

 Possible errno values are:

EAGAIN – Indicating that the request cannot be queued due

to exceeding resource (queue) limitations.

EBADF – File descriptor ‘aio_fildes’ is not valid for

reading.

EINVAL – ‘aio_offset’ or ‘aio_reqprio’ value is invalid

� int uaio_read (struct aiocb *)

This function is used to submit an asynchronous read request. An aio control

block that corresponds to the request is passed as an argument. A handler is

Input: [for checkRequest]
 mode of request (read or write)
 asynchronous I/O control block aiocb (request)

Flow:

If queue is full (resource limitation)
 Set errno to EAGAIN;
 Return –1;
End if

If file descriptor in the request is not valid for the
mode specified
 Set errno to EBADF;
 Return –1;
End if

If file offset in not valid (i.e., offset is –ve or exceeds the current size of file) or #
of bytes to be read/written is -ve or invalid priority
 Set errno to EINVAL;
 Return –1;
End if

 Return 0;

27

generated for the request. The request is written to the library internal queue

with an element type LIO_READ and the handler is registered with the

reactor. The function returns immediately after it attempts to do the said tasks.

This function returns:

0 – if no error is detected before the request is enqueued

and its handler is registered

 -1 – otherwise, and errno is set accordingly

 Possible errno values are:

EAGAIN – Indicating that the request cannot be queued due

to exceeding resource (queue) limitations.

� int uaio_write (struct aiocb *)

This function is used to submit an asynchronous write request. This is similar

to uaio_read except that the handler is register with type LIO_WRITE.

28

� int ulio_listio (int mode, struct aiocb *const list[], int nent, struct sigevent

*sig)

The ulio_listio function allows the calling process to initiate a list of I/O

requests with a single function call. The mode parameter defines the function

behavior after having enqueued all the requests. If mode is LIO_WAIT, the

calling process waits until all requests are terminated. And if it is

LIO_NOWAIT, the calling process returns immediately after enqueuing all the

requests. list[] contains the batch of requests that are submitted at one time.

‘nent’ indicates the # of elements in list[]. The last parameter ‘sig’ , used in

LIO_NOWAIT mode, is used to notify the completion of all the requests

using the sigev_signo signal.

Input: [for uaio_read/uaio_write]
 Asynchronous I/O control block (request)

Flow:
 Check if the request is valid for read/write

 If checkRequest (read/write, request) is valid

 If enqueuing the request does not cause queue overflow
 (resource limitation)

 Create a handler for the request;
Enqueue the request in the internal queue with type
LIO_READ/LIO_WRITE;
Register the handler with the reactor as input/output type;

 Return 0;
 Else
 Set errno to EAGAIN;
 Return –1;
 End if
 Else
 Appropriate errno is set by checkRequest() function;
 Return –1;
 End if

29

Input: [for lio_listio]
 Mode indicates if the function waits for request completion
 List of asynchronous I/O control blocks (requests)
 # of elements in the list
 Signal used to indicate completion of the requests

Flow:
 If # of request in list > max requests allowed at one time
 Set errno to EINVAL;
 Return –1;
 End if

 If mode is neither LIO_WAIT nor LIO_NOWAIT
 Set errno to EINVAL;
 Return –1;
 End if

 For each element in the list
 If checkRequest(read/write, request) is valid
 If enqueuing the request does not cause queue overflow
 (resource limitation)
 Create a handler for the request;

Enqueue the request in the internal queue with
LIO_READ/LIO_WRITE type;

 Register the handler with the reactor as input/output type;
 Else
 Set errno to EAGAIN;
 End if
 End if
 End for

 If no request is enqueued and mode is LIO_NOWAIT
 Raise the signal (if specified) indicating completion;
 Return –1;
 Else
 If mode is LIO_WAIT
 Wait until all requests in the list are completed;
 Return 0, if all requests are completed successfully;
 Else errno set to EIO and return –1;
 Else //if mode is LIO_NOWAIT and signal is specified
 Enqueue another request containing the signal as LIO_SIGNAL type;
 Return 0;
 End if
 End if

 Return –1;

30

This function returns:

 0 – if all requests are enqueued/completed correctly

-1 – otherwise, and errno is set accordingly

 Possible errno values are:

EAGAIN – Resources necessary to queue all the requests are

not available at the moment. errorState of each

request in the list must be checked to find which

requests failed to be enqueued.

EINVAL – ‘mode’ is invalid or ‘nent’ is larger than the

maximum allowed requests at one time.

EIO – One or more request’ s failed

� int uaio_fsync (int op, struct aiocb *aiocbp)

This function is used to force all I/O operations queued at the time of this

function call operating on the file descriptor ’aio_fildes’ in aiocbp into the

synchronized I/O completion state; i.e., the requests for the file descriptor are

honored only after all the requests prior to the uaio_fsync call are completed.

‘op’ indicates if fsync (O_SYNC) or fdatasync (O_DSYNC) need to be

performed. ‘aio_fildes’ in aiocbp gives the file descriptor on which fsync or

fdatasync is performed. This function returns immediately after enqueuing the

request but the notification through the method described in ‘aio_sigevent’ is

performed only after all requests for this file descriptor have terminated and

the file is synchronized.

31

This function returns:

0 - if request was successfully filed

 -1 - otherwise, and errno is set accordingly

 Possible errno values are:

EAGAIN - Temporary lack of resources

 EBADF - ‘aio_fildes' is not valid or not open for writing

EINVAL - Implementation does not support I/O

synchronization or the OP parameter is other than

O_DSYNC and O_SYNC

Input: [for aio_fsync]
 Option indicating whether to do fsync or fdatasync
 Asynchronous I/O control block (request)

Flow:
 If enqueuing the request cause queue overflow
 (resource limitation)
 Set errno to EAGAIN;
 Return –1;
 End if

 If file descriptor is not opened for writing
 Set errno to EBADF;
 Return –1;
 End if

 Create a handler for the request
 If option is LIO_SYNC
 Enqueue the request in the internal queue as LIO_SYNC type;
 Else
 If option is LIO_DSYNC
 Enqueue the request in the internal queue as LIO_DSYNC type;
 End if
 End if

 Return 0;

32

� int uaio_suspend (const struct aiocb *const list[], int nent,

const struct timespec *timeout)

When called, this function suspends the calling thread until at least one of the

requests pointed to by the nent elements of the array list[] has completed. If

any of the requests in list[] is already completed, uaio_suspend returns

immediately. If any element in the list[] is NULL, the element is ignored. If

timeout is specified (not NULL), the process remains suspended until a

request is finished or timeout expires, whichever occurs first. Otherwise, the

process is not awakened until a request is finished.

Input: [for aio_suspend]

List of asynchronous I/O control blocks (requests) that the process is
waiting on

 # of elements in the list
 Timeout used to indicate duration to wait without any request completion

Flow:
 If list is empty // process blocking for no requests
 Return 0;
 End if

 For each element in the list
 If the request is completed
 Return 0;
 End if
 End for

 While no request in the list is completed
 Schedule the reactor to process the requests;
 If a request is completed
 Return 0 if no signaling is required;
 Else set errno EINTR and return –1;
 End if

 If timeout !=NULL and timeout is expired
 Set errno to EAGAIN;
 Return –1;
 End if
 End while

33

 This function returns:

 0 - if one or more requests from the list have terminated

 -1 - otherwise, and errno is set accordingly

 Possible errno values are:

EAGAIN – None of the requests from list completed in

 time specified by timeout

EINTR - Signal interrupted the uaio_suspend. This signal

might also be sent by AIO implementation

while notifying termination of one of the

requests

� int aio_cancel (int fildes, struct aiocb *aiocbp)

This function is used to cancel one or more outstanding requests. The first

parameter fildes denotes the file descriptor for which all the requests will be

canceled. This is used only when aiocbp is NULL. If aiocbp is specified, the

request corresponding to the specific control block is canceled. When a

request is canceled, notification based on its ‘struct sigevent' is performed. If a

request cannot be cancelled, it terminates the usual way after performing the

operation. The errorState of the canceled request is set to ECANCELED and

returnStatus is set to –1.

 This function returns:

AIO_CANCELED - Requests exist and are cancelled successfully

34

Input: [for aio_cancel]

File descriptor used to cancel all outstanding request on that file
Asynchronous I/O control block used to cancel a specific request

Flow:
 If file descriptor is –ve
 Set errno to EBADF;
 Return -1;
 End if

 If async control block is NULL
 // delete all requests corresponding to the file descriptor
 no_of_request_not_yet_completed = 0;
 unable_to_cancel=0;

 For each element in the library internal queue
 If same request’s file descriptor and request not yet completed
 Deregister the request from the reactor;
 If deregistration successful
 Update request element in the queue for cancellation;
 Else
 Update request element in the queue for non-cancellation;
 unable_to_cancel=1;
 End if
 no_of_request_not_yet_completed++;
 End if
 End for

 If no_of_request_not_yet_completed == 0
 // all requests are already terminated
 Set errno AIO_ALLDONE;
 Return –1;
 End if

 If unable_to_cancel == 1
 // at least one outstanding request could not be cancelled
 Set errno AIO_NOTCANCELED;
 Return –1;
 End if
 Else
 // cancel the specific request
 Find the element corresponding to the request in the queue;
 If request not yet completed
 Deregister the element from the reactor;
 If deregistration successful
 Update request element in the queue for cancellation;
 Return AIO_CANCELED;
 Else
 Update request element in the queue for non-cancellation;
 Return AIO_NOTCANCELED;
 End if
 End if

 Return AIO_CANCELED;

35

AIO_NOTCANCELED - one or more requests exist that couldn’t be

cancelled

AIO_ALLDONE - all requests already terminated

-1 - error occurred during execution of uaio_cancel

 errno is set to EBADF indicating fildes is not

valid

� int uaio_error (const struct aiocb *aiocbp)

This function returns the error status errorState associated with the aiocbp passed

in. The error status for an asynchronous I/O operation is the errno value that

would be set by the corresponding read, write, fsync or uaio_cancel operation.

This function returns:

 EINPROGRESS - If request not yet terminated

 errorStatus value - If the request is completed.

-1 - If aiocbp does not refer to an asynchronous operation

whose return status is not yet known. errno is set

EINVAL

Input: [for aio_error]
 Asynchronous I/O control block (request)

Flow:
 Find the element corresponding to the request in the queue;

 If element is found
 Return the error state of the request;
 Else
 Errno is set by the sub-function to EINVAL;
 Return –1;
 End if

36

� int aio_return (const struct aiocb *aiocbp)

This function returns the return status associated with the aiocbp passed in. The

return status for an asynchronous I/O operation is the value that would be returned

by the corresponding read, write or fsync operation. When uaio_error returns

EINPROGRESS, this function returns 0 (in the glibc version, the behavior is

undefined). Upon completion of the request, uaio_return must be used exactly

once to retrieve the return value and the request is erased from the queue.

uaio_error is used to check if the request is completed and only when the request

is completed, uaio_return must be used to get the result.

� void uaio_init (const struct aioinit *init)

The optional uaio_init() function allows the calling process to initialize the

asynchronous I/O interface. In the glibc asynchronous I/O implementation,

initialization of the interface may include starting slave threads that can be used to

Input: [for aio_return]
 Asynchronous I/O control block (request)

Flow:
 If the error state of the request is not EINPROGRESS
 Find the corresponding element in done list
 If such element exists
 Delete the request from the queue;
 End if
 Return the return status of the request;
 Else
 Errno is set by the sub-function to EINVAL;
 Return –1;
 End if

37

carry out I/O requests, and allocating data structures so that malloc as latter stages can

be avoided. But in UAIO, only optimization need is to pre-allocate the queue. As part

of this function, memory for the free_list queue is allocated for aio_num of elements

(in struct aioinit). A timer is also set to schedule the Reactor every 1msec.

4.3 Implementation of the reactor handler functions

This section discusses the handler functions associated with the asynchronous I/O

event handler objects. The reactor invokes these functions when the system is ready

to handle I/O. When the file descriptor is ready for an I/O operation, the reactor

triggers the handle functions handle_input() or handle_output() on the specific

handler. The input handle function handle_input() is called if the handler associated

with the file descriptor is registered for input operations (like read, uaio_read). The

handle_output function is invoked if the handler associated with the selected file

descriptor is registered for output operations (like write, uaio_write). The selected file

descriptor and its associated asynchronous I/O handler are passed as arguments to

these handler functions.

� int handle_input (void *arg, int filedescr)

This method is called whenever the reactor detects that data is available for

reading on the file descriptor. The asynchronous I/O control block aiocbp is

extracted from the handler and its elements are used to perform a pread operation.

The results of the read operation are stored in the corresponding queue element

38

and the handler is removed from the reactor. The queue is checked to see if the

next element in the queue is of type LIO_SIGNAL. Such an element is added to

the queue when ulio_listio is used in LIO_NOWAIT mode with a valid signal

request for notification. This is discussed in detail in the ulio_listio

implementation section. If so, the specified signal is raised to notify of completion

of requests submitted using ulio_listio. The element is removed from the run_list.

Input: [for handle_input]
 void *arg
 int filedescr

Flow:
 aioHandler aioh = (aioHandler) arg;

 // Retrieve the aio control block from the handler
 aioCB=aioh->aiocbp;

 // Perform the read operation
 bytes_read= pread(filedescr,(void *)aioCB->aio_buf,aioCB->aio_nbytes,
 aioCB->aio_offset);

 If read operation fails (i.e., bytes_read==-1)
 // Update the corresponding element in the queue with its Error
 // state set to the ‘errno’ value of pread. Return status is set to –1.
 update_request(aioCB,errno,-1);
 Else
 // Upon successful completion of the operation, error state is set
 // 0 and return status indicates the # of bytes read
 update_request(aioCB,0,bytes_read);
 End if

 Find the next element in the list;

 If the next element in the list is of type LIO_SIGNAL
 Raise the signal specified in aio_sigevent (part of the element)
 Delete the element from the queue;
 End if

 Deregister the handler ‘aioh’;
 Delete the handler;
 Return SUCCESS;

39

� int handle_output (void *arg, int filedescr)

This method is called whenever the reactor detects that an output port is available

and data can be written to the file descriptor. This function is similar to

handle_input() except that it checks if the next element is of LIO_SYNC or

LIO_DSYNC type. If so, fsync() or fdatasync() is performed on the file descriptor

and the element is updated accordingly.

40

Input: [for handle_output]
 void *arg
 int filedescr

Flow:
 aioHandler aioh = (aioHandler) arg;

 // Retrieve the aio control block from the handler
 aioCB=aioh->aiocbp;

 // Perform the write operation
 bytes_written= pwrite(filedescr,(void *)aioCB->aio_buf,aioCB->aio_nbytes,
 aioCB->aio_offset);

 If write operation fails (i.e., bytes_written==-1)
 // Update the corresponding element in the queue with its Error
 // state set to the ‘errno’ value of pwrite. Return status is set to –1.
 update_request(aioCB,errno,-1);
 Else
 // Upon successful completion of the operation, error state is set
 // 0 and return status indicates the # of bytes written
 update_request(aioCB,0,bytes_read);
 End if

 Find the next element in the list;

 While next element in the list is either LIO_SIGNAL or LIO_SYNC or LIO_DSYNC type
 If the next element in the list is of type LIO_SIGNAL
 Raise the signal specified in aio_sigevent (part of the element)
 Delete the element from the queue;
 Continue;
 End if

 If the next element in the list is of type LIO_SYNC
 Perform fsync() on the file descriptor aio_fildes.
 Update the error state & return status of element in queue.
 Raise the signal specified in aio_sigevent (part of the element)
 Continue;
 End if

 If the next element in the list is of type LIO_DSYNC
 Perform fdatasync() on the file descriptor aio_fildes.
 Update the error state & return status of element in queue.
 Raise the signal specified in aio_sigevent (part of the element)
 Continue;
 End If
 End While

 Deregister the handler ‘aioh’;
 Delete the handler;
 Return SUCCESS;

41

4.4 UAIO Library Initialization/Finalization

The asynchronous I/O library initialization and finalization are accomplished using

the uaio_init() and atexit() functions. The uaio_init function takes a struct aioinit as

its parameter. The aio_num parameter of this structure is used to pass the initial

desired number of free list elements. This function, if called, must be the first before

any other function of the UAIO interface is invoked. If not explicitly called by the

user, this function is invoked when the first asynchronous I/O request is submitted.

The initialization function performs the following tasks:

� Allocation of queue memory – This is done with a view for performance

improvement. As the memory is allocated early on in the process, the need to

do malloc to create queue elements is deferred. If the initially allocated

resources are not sufficient, then additional resources are allocated when

required.

� Setting the timer to schedule the Reactor – A timer is set to schedule the

reactor every 1msec3. As the reactor is part of the user process, scheduling it

effectively means calling the function handleEvents(), which detects the

events.

As part of initialization, atexit() is used to specify the function that is invoked during

the normal termination of the program. This method frees all the resources (queues &

other data structures) allocated to the library.

3 Even though the timer interrupt is set for each msec, the timer is triggered once every 10000 msec

only due to the coarse granularity of the system clock in Linux.

42

4.5 Implementation level flow control in the UAIO library

This section discusses the flow of control in the library. As discussed in the previous

section, the library initialization is accomplished using the aio_init() function. As part

of initialization, a timer is set to invoke the reactor every microsecond. Memory

allocation for the internal queue is also done to avoid allocation at a later stage. This

is done to improve the performance of the system. When an asynchronous I/O request

is made, the request can be a read, write, cancel, suspend or fsync request. There are

status requests (uaio_error & uaio_return) used to check the status of a request. Here

a request is used in a general perspective, and does not refer to the asynchronous I/O

control block. The reactor is used to do the asynchronous read or write operation. So,

only the tasks that require some I/O operation are registered with the reactor.

When the user submits a request, the request is checked for validity. If the request is a

read or write request, the request is stored in the library internal queue and is

registered with the reactor. All other types of requests are not registered with the

reactor. The uaio_fsync() and uaio_suspend() functions are the synchronization

primitives provided by the interface. These are discussed in detail in the previous

sections. The flow diagram depicted below illustrates the functional flow depending

on the type of user request. Status requests not included as they are involve only the

queue retrieval type functionality.

43

Figure 4-1 Process Flowchart

44

Figure 4-2 Process Flowchart Contd.

Figure 4-3 Reactor Flow

45

4.6 Limitations

This section discusses the limitations of the UAIO library. As the reactor and library

are part of the user process, the user process cannot wait (wait for a signal or sleep). If

the user process waits, the Reactor, being part of the process, is also forced to sleep.

This is not an issue in the glibc version of asynchronous I/O, as a thread is created to

handle each request. (In Linux, each thread is represented as a separate process.)

Another limitation of this library is its inability to distribute its load on different

processors in a multi-processor machine, because the library forms part of the user

process (single process). In contrast, the glibc version invokes separate threads

(which are processes) to process each request. Each thread/process can be given to a

processor and thus the parallelism of the underlying hardware is exploited.

46

5 Testing

This section describes how testing of the UAIO library is done. Testing is done to

verify correct operation of the library and its POSIX compliance. Performance testing

is also done to compare the performance of UAIO with the glibc asynchronous I/O

implementation.

5.1 Correctness Testing

Correctness comes first, with performance to follow. One of the goals of this

implementation is its POSIX compliance. The various functions provided as part of

the library interface are tested.

� Test 1 - Initially the functions are tested for their interaction with the user process.

Faulty requests are submitted to the library, and the return values, error states are

checked. This ensured the POSIX compliance of the library.

� Test 2 – Both explicit and implicit initialization of the library is checked. Explicit

initialization is done by invoking the uaio_init() function in the user program.

Implicit initialization is accomplished by submitting an I/O request. The library is

then checked for initialization. If not initialized, the library is initialized.

Finalization of the library (clean-up work on exit) is also verified.

� Test 3 – This test verifies the interaction between the library interface and the

Reactor. The basic function of asynchronous read uaio_read() and write

uaio_write() are tested. An I/O request is submitted to the library. Notification

mechanism upon request completion is also specified as part of the request. The

47

Reactor, triggered for each timer interrupt, process the request and updates the

corresponding fields of the request. Notification mechanism specified by the user

is used to notify the request completion. Signal notification and no notification

methods are also tested here.

� Test 4 – Upon validating the above said tests, batch submitted asynchronous I/O

operation (ulio_listio) is verified. For this a list of I/O read/write requests are

submitted using ulio_listio(). The completion of all the requests is verified.

ulio_listio() in both wait mode and no-wait mode is verified.

� Test 5 – In this test a list of requests is submitted using the ulio_listio() function in

no-wait mode. Then one of these requests is selected and cancellation function

uaio_cancel() is invoked to cancel the request. The error state of the request,

obtained using uaio_error(), is checked for successful request cancellation.

� Test 6 – The synchronization primitive uaio_fsync is checked as part of this test.

uaio_fsync() is used to do fsync() or fdatasync() on the specified file before any

further I/O requests on this file are honored. This is tested by submitting a list of

I/O requests, followed by a uaio_fsync() request and some more list I/O requests.

The fsync operation is found to occur after the first batch of requests is completed

and before the second batch is processed.

� Test 7 – In this test the uaio_suspend() function is used to suspend the calling

process until any one of the requests specified is complete or a timeout occurred.

This is verified by submitting a batch of requests in no-wait mode and invoking

48

uaio_suspend() on some of these requests. The control return to the calling

process upon timeout or request completion is verified.

During all these above tests, if there is no notification primitive indicated by the user,

the state of the requests is obtained using the uaio_error() and uaio_return()

functions.

5.2 Performance Testing

As mentioned above, the UAIO library is single threaded in nature, vying for better

performance by saving the CPU cycles needed for thread maintenance and context

switching among various threads. Comparing the UAIO library to its glibc equivalent,

which is a multi-threaded approach, is the best way to demonstrate the power (if not,

the weakness) of this implementation4.

5.2.1 One single write call with varied buffer size

Buffer size of a single aio_write call is varied and the corresponding

throughput is measured for UAIO and glibc AIO. 10 samples of each instance

are taken. The glibc version spawns one thread for each asynchronous I/O

call. As only one AIO call (aio_write) is used as part of this test, the glibc

version generates only one slave thread to process the request. So, there isn’ t

much noticeable difference between the throughput statistics for UAIO and

glibc AIO.

4 All the tests are conducted on a Pentium-III 802.933MHz machine with 256MB RAM.

49

Throughput Vs Write buffer size

0

20

40

60

80

100

120

140

160

Write buffer size (MB)

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

GAIO 133.8 137.4 15.39 17.54 4.724 4.669 4.806 5.016 5.013 5.069

UAIO 141.6 141.7 15.68 15.82 4.717 4.746 4.838 5.051 5.043 5.035

50 100 150 200 250 300 350 400 450 500

GAIO UAIO Write
Buffer

Size (MB)

Mean

95%
Confidenc
e Interval

Mean

95%
Confidence

Interval
50 133.8254 +/- 0.2719 141.6114 +/- 1.1762

100 137.4333 +/- 1.1622 141.6908 +/- 1.1590

150 15.391 +/- 0.4540 15.68189 +/- 0.4579

200 17.5362 +/- 0.6211 15.81765 +/- 0.4457

250 4.72431 +/- 0.0581 4.717336 +/- 0.0447

300 4.669149 +/- 0.1060 4.745678 +/- 0.0526

350 4.806358 +/- 0.0750 4.838455 +/- 0.0693

400 5.016221 +/- 0.0750 5.050673 +/- 0.0686

450 5.013109 +/- 0.0535 5.043232 +/- 0.0225

500 5.068782 +/- 0.0534 5.035199 +/- 0.0617

50

5.2.2 Varied number of I/O calls for constant write buffer size

In this test, the number of I/O calls or requests is varied and the corresponding

throughput is measured for UAIO and glibc AIO. The size of the total data

written is kept constant throughout the test. A list based I/O (lio_listio) is used

to submit a bunch of I/O requests. Each I/O call is a write request that writes

into a file. 20 samples of each instance are taken.

As the number of threads created is directly proportional to the number of I/O

calls, we see a noticeable difference in the throughput statistics due to the

overhead involved in creating and context switching threads for glibc AIO.

Throughput Vs # of IO Calls

0

1

2

3

4

5

6

of IO Calls

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

GAIO 2.715 2.76 2.58 2.9 2.766 2.429 2.836 2.94 2.381 2.488

UAIO 5.25 5.01 5.07 4.978 4.859 4.837 4.722 4.687 4.76 4.759

50 100 150 200 250 300 350 400 450 500

51

GAIO UAIO
No. Of I/O

Calls

Mean

95%
Confidenc
e Interval

Mean

95%
Confidence

Interval
50 2.715086 +/- 0.0589 5.24993315 +/- 0.1154

100 2.760442 +/- 0.0307 5.0101565 +/- 0.1420

150 2.57972 +/- 0.0441 5.06975625 +/- 0.0673

200 2.8996 +/- 0.0254 4.97798985 +/- 0.0832

250 2.766457 +/- 0.0453 4.85852445 +/- 0.0885

300 2.42936 +/- 0.0286 4.83662635 +/- 0.0588

350 2.835771 +/- 0.0474 4.7223428 +/- 0.0749

400 2.939973 +/- 0.0367 4.6865348 +/- 0.0605

450 2.381276 +/- 0.0210 4.7603343 +/- 0.0647

500 2.487636 +/- 0.0208 4.7586084 +/- 0.0811

5.2.3 Varied number of I/O read calls

In this test, the number of instances of a process that execute concurrently is

varied and the corresponding throughput is measured. Each process does a list

based I/O (lio_listio) operation, using which a batch of 200 I/O read requests

are submitted. In the glibc version, as each process makes 200 I/O calls and

each is assigned a thread, running 50 instances of the process amounts for

~10000 threads.

In UAIO, throughput drops slowly with the increase in the number of

instances of the same process that execute concurrently. But, the throughput in

the case of glibc AIO (GAIO) drops drastically due to the overhead associated

with the threads.

52

Throughput Vs # of Instances

0

5

10

15

20

25

30

35

40

45

of Instances

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

GAIO 28.8485875 15.7826564 12.0600556 10.1091167 8.9081153 8.0237879

UAIO 38.8604746 33.211297 32.4716229 31.2228486 31.0482758 29.9619724

10 20 30 40 50 60

GAIO UAIO Write
Buffer

Size (MB)

Mean

95%
Confidenc
e Interval

Mean

95%
Confidence

Interval
10 28.8485875 +/- 0.2489 38.8604746 +/- 0.8961

20 15.7826564 +/- 0.1049 33.211297 +/- 2.0953

30 12.0600556 +/- 0.0913 32.4716229 +/- 2.6864

40 10.1091167 +/- 0.0495 31.2228486 +/- 1.9044

50 8.9081153 +/- 0.0720 31.0482758 +/- 2.0664

60 8.0237879 +/- 0.0726 29.9619724 +/- 1.9132

53

5.2.4 Combination of CPU and I/O intensive tasks

While the previous tests are aimed at evaluating the library performance with

respect to I/O intensive jobs, this test aims at tasks that are both I/O and CPU

intensive. Audio data is read from different files of same size and Fast Fourier

Transform (F.F.T) is applied on the audio samples. The number of reads

performed is varied to create different I/O loads. The reads are done using

standard blocking I/O, glibc and UAIO asynchronous I/O methods. The

performance metric is chosen to be total execution time of the process. It was

observed that the performance of all the three implementations was almost the

same. A plausible reason for this result is that CPU processing was masking

I/O processing, i.e., CPU processing dominated I/O processing. Hence

performance gain due to UAIO could not be seen.

Execution Time Vs # of I/O Calls

0

20

40

60

80

100

120

of I/O Calls

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

BIO 20.37 39.76 64.92 79.07 97.94

GAIO 20.13 39.06 56.75 76.82 97.57

UAIO 19.61 39.22 57.46 77.75 97.43

10 20 30 40 50

54

6 Conclusions and Future Work

A user level single threaded asynchronous I/O library is implemented. The library is

POSIX compliant and can be used for I/O-intensive applications. We have tested it

with system data loads in excess of 300MB and it functioned correctly. It is

concluded from the performance tests that by eliminating the threads and associated

context-switching overhead, the UAIO implementation offers better performance in

comparison with the libraries that employ multi-threading (like the glibc version).

Future work includes writing wrappers to blocking system calls like wait() and

sigsuspend(), allowing the user to use programs written using these calls with

minimum modifications. Another possible extension includes developing a

conditional-threading framework within the library that uses the multi-processor

nature of the machine. In multi-processor systems, separate threads can be created to

handle requests corresponding to different files. Having threads to process requests

for the same file may not be worth the trouble as all these threads queue for the same

resource. This library can be used in the development of a Proactor, a pattern that

supports the demultiplexing and dispatching of multiple event handlers, which are

triggered by the completion of asynchronous events [12]. The regions of its use in

database systems can also be explored.

55

References

[1] Douglas C. Schmidt. Reactor: An object behavioral pattern for concurrent event

demultiplexing and event handler dispatching. In Proceedings of the 1st Pattern

Languages of Programs Conference, pages 529-545, Aug 1995.

[2] Information Technology -- Portable Operating System Interface (POSIX) --

Part1: System Application Program Interface (API) [C Language], chapter 6.7

Asynchronous I/O, pages 165-180. The Institute of Electrical and Electronics

Engineers, Inc, July 1996.

[3] Microsoft Windows 32-bit API, 1999.

[4] glibc/librt Asynchronous I/O Interface Reference man pages.

[5] Sun Solaris man pages for Asynchronous I/O interface laio.

[6] Silicon Graphics, Inc. Kernel Asynchronous I/O (KAIO) for Linux.

http://oss.sgi.com/projects/kaio/

[7] Suparna Bhattacharya. Design notes on Asynchronous I/O for Linux. Technical

report, IBM Software Labs, India, 2002.

[8] Remzi H. Arpaci-Dusseau, Muthian S., Venkateshwaran Venkataramani. Block

asynchronous I/O: A flexible infrastructure for user-level filesystems. In The

International Conference on High-Performance Computing (HiPC ’01), pages

249-261, Hyderabad, India, Dec 17-20 2001. HiPC ’01.

[9] Message Passing Interface (MPI) Standard 2.0 Specification, chapter 9. 1997.

56

[10] Dan Bonachea. Bulk file I/O extensions to java. In Proceedings of the ACM

2000 Conference on Java Grande, pages 16-25, San Francisco, CA, June 2000.

ACM.

[11] Rajukumar Girimaji. Reactor, a software pattern for building, simulating and

debugging distributed and concurrent systems. Master’s thesis, The University

of Kansas, 2002.

[12] Irfan Pyarali, Tim Harrison, Douglas C. Schmidt and Thomas D. Jordan.

Proactor: An Object Behavioral Pattern for Demultiplexing and Dispatching

Handlers for Asynchronous Events. In the 4th Annual Pattern Languages of

Programming conference, Allerton Park, Illinois, September, 1997.

[13] Bill Gallmeister. POSIX.4: Programming for the Real World. Sebastopol CA:

O’Reilly &Associates, 1 edition, 1995.

[14] Jim Mauro. Asynchronous I/O and large file support in Solaris. In SunWorld,

Vol. 12 No.7, July 1998.

[15] K. Yelick, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S.

Graham, D. Gay, Phil C., and A. Aiken. Titanium: A high-performance java

dialect. In Workshop on Java for High-Performance Network Computing, pages

1-13, Stanford, CA, February 1998. ACM.

[16] glibc/librt Source Code.

