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Abstract

Modern internet traffic is bursty in nature owing to the presence of long-range

dependencies in the traffic arrival stream. Unpredictable packet losses occur at

network multiplexing points due to burstiness, calling for traffic models which

provide insight into the nature of traffic arrival mechanism, and that can pre-

dict the queueing behavior accurately. We propose that a queueing system with

bursty input traffic can be effectively represented by a weakly stable multi-modal

nearly completely decomposable continuous parameter Markov chain. We develop

techniques to extract modes from traffic traces of known reliability, and study the

properties of the extracted modes. We then model the multi-modal lossy queueing

system using linear algebraic queueing theory techniques based on the observed

properties of modes. We derive analytically tractable solutions to find the steady

state vector of the system in a manner that provides an insight into the impact

of different modal components on the system performance. We then verify the

analytical model and the solution techniques developed by comparing the packet

loss estimates obtained from the model with those obtained from the trace driven

simulations employing the original traffic traces.
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Chapter 1

Introduction

Traffic flowing through the telecommunication networks in the pre-internet age

was predominantly ‘voice’. The number of calls arriving at a station, namely the

counting process, approximated a Poisson or renewal process. In either case ar-

rivals were memoryless in the Poisson case, or memoryless at renewal points, and

interarrival intervals were exponentially distributed. The Poisson arrival model

and exponentially distributed holding time model allowed analytically and com-

putationally simple ‘birth and death’ Markov chains to be used for much of the

telephone traffic modeling. An M/M/1/K chain can be used to accurately model

a single server finite queue system with exponential service and Poisson arrivals

yielding closed form solutions for queue length distribution, waiting time distri-

bution, blocking probability etc.

But we don’t have this comfort while modeling modern Ethernet traffic or
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Internet traffic, which behave very differently from such simple Markovian models.

Traffic measurements made at the Local Area Networks (LAN) and Wide Area

Networks(WAN) of Bellcore’s Morristown laboratories suggest that traffic exhibits

variability (traditionally called ‘burstiness’) over multiple time scales [30]. The

second order properties of the counting process of the observed traffic displayed

behavior that is associated with self-similarity, multi-fractals and/or long range

dependence(LRD). This indicates that there is a certain level of dependence in

the arrival process. Near-range and long-range dependencies often manifest them-

selves in a network by causing frequent and irremediable packet losses and other

serious effects in the network.

Dependencies and burstiness in traffic hence brought in an enormous amount

of attention from researchers. They attempted to develop mathematically-based

models that would help explain the nature of the systems exhibiting such phe-

nomena and provide critical insight into the actual mechanisms that led to this

behavior. Models like fractional Brownian motion, chaotic maps etc. were suited

to capture the second order self-similar behavior of traffic [5, 9, 23]. Their results

were difficult to get and harder to apply, and such models did not provide in-

sight into the actual mechanism of traffic generation. Many analytically simpler

modeling attempts to capture the first and second order properties of counts did

not predict the queueing behavior well enough. In the late 90s researchers dis-

cussed the impact of other properties of the self-similar process, such as marginal

distributions, in accurately predicting the queueing behavior. A simpler, more ac-
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curate and analytically tractable model that provides more physical insight into

why they are meaningful on physical grounds would help the network designers

produce more effective and efficient designs.

Some ideas generated in the last decade offer promise towards crafting the

model. Anderson and Nielsen [1] illustrated that continuous parameter Markov

chains (cpMc) can model the dependencies in network traffic over multiple time

scales; the advantage of such models is the availability of ready-made tools for

analysis. Their model matched the second order properties of the self-similar

process closely, but it was not sufficient for accurate prediction of queueing be-

havior. Grossglauser and Bolot [9] discussed both the importance of limiting the

view to the finite range of time scales of interest, and the influence of marginal

distributions in performance evaluation and prediction problems. From the above

discussions, one can infer that both the second order and marginal properties of

the process need to be matched for more accurate results. Salvador et al. [27]

achieved some degree of success by using a fitting procedure that matched both the

marginal distribution and autocovariance of the counting process, but a solution

form that provides deep insight into the system was still missing.

Jelenkovich [11] found that in MPEG traffic there are some unstable modes

(he refers to them as regimes) having conditional mean arrival rate greater than

that of server capacity, even though the overall system may be stable. He calls

this behavior weak stability. In general the unstable mode can be identified with

a class of states in the traffic model which is rarely entered but leads to burstiness.
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Hence it is possible that most of the dependent bursty Ethernet and Internet traffic

streams also can be characterized by a multi-modal cpMc. Juliano [12] showed

that, in the presence of highly correlated arrivals, the systems under study could

be divided into subsystems such that the interaction between certain subsystems is

much slower than the interactions within the subsystems. This property in Markov

chains is called near complete decomposability (NCD) [2, 33]. The multi-modal

systems can be NCD as there are weak inter-modal leakages between modes. Also

he showed that computations on Markov chains involving NCD matrices could be

simple and economical. The solution method he gave provided critical insight.

These ideas suggest that bursty behavior can be realistically and effectively

captured by a weakly stable NCD cpMc. To restate, in a weakly stable NCD

system the intra-modal interactions are much greater than the coupling between

the modes and the arrival rate of at least one of the modes exceeds the service rate

resulting in buffer overflows. This thesis explains the extraction of modes from

data of known reliability (like the Bellcore traffic trace data) and then attempts

to evaluate the effectiveness of the resulting model.

Organization of Thesis

Chapter 2 will discuss the concept of long range dependence in network traffic

and the causes. The different approaches of traffic modeling will be discussed,

stating the advantages of Markov models over other models. The Chapter also
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covers linear algebraic queueing theory techniques used in building the analytical

model. Chapter 3 will introduce the concept of modes and discuss the different

mode extraction procedures highlighting their advantages and disadvantages. The

properties of different modes obtained will also be discussed. Chapter 4 focusses

on the step-by-step development of the analytical model and discusses the methods

to obtain the solution for the model. Then the performance of the multi-modal

traffic model will be studied and compared with other published models. Chapter

5 will discuss the conclusions and future work.
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Chapter 2

Background

2.1 Introduction

The purpose of this chapter is to explain the nature of the dependent network traf-

fic and the parameters and terms used in the literature to describe such traffic.

Various mathematical models, their advantages and disadvantages, and support-

ive points in favor of Markov models will be discussed with appropriate evidences.

Sections also describe the property of near-complete decomposability and the ma-

trix exponential distributions.
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2.2 Self-similarity

2.2.1 Overview and causes

Self-similarity and fractals are notions pioneered by Mandelbrot [15]. Self-similarity

exists when a certain property of an object is preserved with respect to scaling

in time and/or space. If an object is self-similar, the parts which form the ob-

ject, when magnified, resemble the shape of the whole object [30]. Self-similar

processes are very different from the Poisson or even general renewal processes.

At every time scale ranging from milliseconds to perhaps several hours similar

looking bursts can be observed. On the other hand in Poisson or renewal traf-

fic, bursts tend to smooth out as the time scale is increased. The area of traffic

measurements and analysis has been tremendously active since the well-known

Bellcore traffic measurements, supporting the view that network traffic has self-

similar scaling behavior over a wide range of time scales. This property is robust

in the sense that though networks have evolved since the Bellcore measurements

in terms of topology, speed and traffic composition, observed traffic has behavior

consistent with self-similarity.

Several authors attribute this traffic invariant property to the TCP and

HTTP network traffic. Crovella [4] shows that network traffic that is a subset of

WWW transfers can show characteristics that are consistent with self-similarity.

He shows that file system characteristics and user behavior contribute to the prop-
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erty. He demonstrates that origin of self-similarity in WWW traffic can be traced

to heavy-tailed file transmission times due to the distribution of available file sizes

in the web transfers and the heavy tailed silent times due to the influence of user

think time. He also suggests that changes in protocol processing and document

display are not likely to remove self-similarity of WWW traffic. The work in [19]

show that in a realistic client/server environment the degree to which file sizes are

heavy tailed directly determines the degree of self-similarity. Also they show that

the reliable transmission and flow control mechanisms of TCP(Reno, Tahoe or

Vegas) serve to maintain the long range dependence structure induced by heavy

tailed distributions, in contrast to the unreliable UDP traffic which showed little

self-similar characteristics. Active research is going on to determine the causes of

long range dependence and provide physical explanations and interpretations for

such behavior.

Mathematical representations of self-similarity have been provided by many

authors. Second order statistics are the statistical properties that capture the

burstiness or variability and hence self-similarity is associated with them.

2.2.2 Mathematical definition

Let the time series X = (Xk : k = 1, 2...) represent the number of arrivals in

successive non-overlapping intervals of unit time(100ms , 1 sec etc). X is a wide

sense stationary stochastic process . The aggregated process X(m) is defined [30]
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as

X(m)(i) =
1

m
(X(i−1)m+1 + ... + Xim) (2.1)

where m is the level of aggregation. Then X is called asymptotically self-similar

if

lim
m−>∞

V ar(m1−HX(m)) = V ar(X) = σ2, 0 < σ < ∞, (2.2)

and

lim
m−>∞

rm(k) =
1

2
((k + 1)2H − 2k2H + (k − 1)2H), (2.3)

where rm = (rm(k), k ≥ 0) is the autocorrelation function of the aggregate process

and 0 < H < 1. X(m) is said to be exactly self-similar if V ar(m1−HX(m)) =

V ar(X) = σ2 and rm = rm(k) = 1
2
((k + 1)2H − 2k2H + (k − 1)2H) for all m and

0 < H < 1.

A second-order stationary stochastic process X = (Xk : k = 0, 1, 2...)

with autocorrelation function r(k) is said to be long range dependent if for some

0 < β < 1,

r(k) ∼ c1k
−β, k →∞ (2.4)

where c1 is a positive finite constant and β = 2−2H, H being the Hurst parameter.

The autocorrelations decay hyperbolically rather than exponentially fast, implying

a non-summable autocorrelation function. The existence of nontrivial correlation

at a distant lag is referred to as long range dependence. A second-order stationary
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stochastic process is called short range dependent if for some 0 < ρ < 1,

r(k) ∼ c2ρ
k, k →∞ (2.5)

where c2 is a finite positive constant. In contrast to LRD, SRD is characterized

by a geometrically decaying and summable autocorrelation function. Hence a

self-similar process is long range dependent if its autocorrelation function is non-

summable and short range dependent if summable. Equivalent definitions of self-

similarity can be found in [3] and [32].

2.2.3 Hurst parameter

Detailed discussions of exactly self-similar and asymptotically self-similar func-

tions can be found in [30]. The degree of self-similarity in a process can be found

by estimating the Hurst parameter and it typically depends upon the utilization

level of the Ethernet [30]. Higher the value of ‘H’ more bursty the traffic is. For

Poisson traffic H=0.5. Different methods are used for estimating the Hurst pa-

rameter namely R/S analysis, aggregated variance method, difference of variance,

absolute value of the aggregated series, Higuchi’s method, residuals of regression,

periodogram method, modified periodogram method, Whittle estimator, etc. are

described in [28]. Other measures of burstiness and variability include the ‘in-

dex of dispersion’, ‘peak-to-mean ratio’, and ‘coefficient of variation’. However,

‘peak-to-mean ratio’ and ‘coefficient of variation’ measures have been proved to
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be unsatisfactory for self-similar traffic [30] .

However, [24] suggests that the Hurst parameter is not a consistent and

monotonic indicator of burstiness, and hence LRD property of a traffic source

cannot be completely described by Hurst parameter alone. Research evidence also

suggests that larger ‘H’ is associated with smaller queue sizes hence questioning

the effectiveness of the ‘H’ parameter in determining the intensity of LRD.

2.3 Traffic Modeling

2.3.1 Introduction

The Self-similar property of traffic has serious effects on the design, control and

performance analysis of high speed data networks. The traditional modeling ap-

proaches like the simpler Markovian models fail in the case of self-similar traffic

as they often under-estimate the loss probabilities and buffer occupancy levels.

This calls for models that would characterize the network traffic and accurately

predict the queueing behavior. This section gives an overview of traffic models

that were used in the literature focussing on the advantages of Markov models.
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2.3.2 Modeling Approaches

Teletraffic modeling aims at evaluating the traffic performance taking into account

the network capacity, traffic offered and the performance goals of the system. The

input traffic to a network system should be characterized accurately. That is, all

the essential statistical characteristics of the traffic seen in measurements should

be captured. The traffic characterization should also provide critical insights into

the origin of the observed properties, and the models should be computationally

feasible (parsimonious modeling). Teletraffic modeling evolved at different stages

striving for accurate performance prediction. Willinger and Kihong [20] classified

the modeling approaches as measurement-based traffic modeling, physical model-

ing, and queueing analysis.

2.3.3 Measurement-based traffic modeling

In this approach the data is collected from the physical network and analyzed

to detect and identify characteristics. By analyzing the WAN traffic traces Pax-

son [21] showed that Poisson processes are valid only for modeling the arrival

of user sessions such as TELNET connections but fail as accurate models for

other WAN arrival processes; he found that WAN packet arrival processes appear

better modeled using self-similar processes. Garret and Willinger [8] gave a de-

tailed analysis of a 2 hour long empirical sample of VBR video, and showed the

presence of long range dependence in the trace. They proposed a source model
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which is non-Markovian and stressed that long range dependence and heavy tailed

marginals need to be considered while modeling VBR traffic. Leland et al. [30]

demonstrated that Ethernet LAN traffic is statistically self-similar by analyzing

the Bellcore traffic. They suggested the use of self-similar stochastic models like

fractional Gaussian noise (fGn), fractional Brownian motion (fBm), fractional au-

toregressive integrated moving average (FARIMA) models and chaotic maps to fit

the Ethernet traffic. Crovella et al. [4] attributed the self-similar property to the

WWW transfers in the network and suggested the use of heavy tailed distribu-

tions to model such traffic, heavy tailed behavior being inherent to the network

traffic. Willinger et al. [31] state that the superposition of many ON/OFF sources

(packet trains) whose ON-periods and OFF-periods exhibit the Noah Effect (i.e.,

have high variability or infinite variance) produces aggregate network traffic that

features the Joseph Effect (i.e., is self-similar or LRD). Here they deal with the

traditional ON/OFF source models.

These approaches attempt at matching the traffic data with an assumed

statistical model. But consistency with an assumed model does not rule out the

possibility of other accurate models that may reflect the properties of the traffic

in a better way. Having stated this, these authors succeeded in introducing a

new class of models namely the self-similar models and the long-range dependent

models. These models fitted to the second-order properties of the traffic very well.

However these models failed to give physical explanations on how self-similarity

is generated in traffic, nor do they predict behavior over the whole of the design
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parameter space.

2.3.4 Physical modeling

This approach aims at models that would explain how traffic is generated in the

actual network, that are capable of explaining phenomena such as self-similarity

in more elementary terms, and that provide new insights into the dynamic nature

of the traffic. For example in MPEG video streams the time duration between

successive scene changes exhibits variability at multiple time scales. Research

evidence suggest that the video traffic streams exhibit long range dependence.

Willinger describes this as single source causality. He also addresses structural

causality due to the heavy-tailed distribution of file or object sizes. The heavy

tailed file size distributions give a physical explanation of network traffic self-

similarity. In [31] Willinger et al. established that the long range dependence of

the aggregated ON/OFF process is determined by the heavy tailedness of the ON

or OFF periods thus providing some physical causality of self-similarity. However

finer time scale behavior of traffic also has brought attention among the researchers

because of variability observed in the packet interarrival times within sessions,

flows, or connections.
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2.3.5 Queueing analysis

Though the works in the above two categories gave physical interpretations to the

observed behavior and accurately captured the second order behavior, they did

not attempt at predicting the queueing behavior. The queueing behavior for long

range dependent traffic is very different from that for the Poisson or renewal input.

Works in this category provide mathematical models of long range dependent

traffic which support the analysis and estimation of queueing behavior. These

models play a vital role in determining the dimensions of the network. They place

performance boundaries on the models by investigating the queueing behavior.

The aim of these works is to provide an appropriate model for performance studies.

These works can be broadly classified into non-Markov and Markov.

Non-Markov models

The effect of correlations of the input traffic on the queueing systems was studied

by Li and Hwang [22]. They observed that queueing performance was dominated

by input power in the low frequency band, which is equivalent to long range de-

pendency. But the number of parameters required in such approaches was very

high and hence parsimonious models were preferred over highly parameterized

models when faced with the task of assigning model parameters in practice. The

models like fluid models, transform expand sample (TES), chaotic maps, fBm, fGn

and FARIMA were favored by many authors because of their ability to match the
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second order properties very well. Eramilli et al. [5] proposed a three param-

eter fractional Brownian motion model (originally adopted by Norros) which is

an exactly self-similar model. They supported the principle of parsimony (also

known as Occam’s Razor) and gave conditions under which parsimonious models

capture LRD. The conditions they specified include (i) the time scales of interest

in the queueing process coinciding with the scaling region, (ii) the traffic being

aggregated from a large number of independent users, (iii) negligibility of the ef-

fects of flow control. They used the results derived by Norros for determining the

queueing behavior with a deterministic service time. But their results deviated

significantly from reality. The fBm models and other gaussian models had rigid

and restrictive correlation structure. They were not able to effectively capture

the short term correlations whose importance has been demonstrated for queue-

ing in finite length buffers [23]. Ribero et al. [23] formulated multiscale queueing

analysis of long range dependent traffic. They used wavelet-domain independent

Gaussian (WIG) model and multifractal wavelet model (MWM) in their analysis

which had more flexible correlation structures. Grossglauser and Bolot [9] pro-

poses a modulated fluid traffic model and developed a procedure to evaluate the

performance of a finite buffer queue fed with that input.

The results of the above works were difficult to get and harder to apply.

Moreover they failed to predict the queueing behavior accurately and are handi-

capped in not providing physical insight into why they are meaningful on physical

grounds. In the late 90s research works evinced the importance of two other pa-
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rameters in performance evaluation, which paved way for Markov models to make

an impact in the long range dependent traffic modeling. They are the critical time

scales and marginal distributions.

Critical time scales

Network traffic is known to exhibit multiple time scale behavior. But what are the

relevant time scales or time scales of interest for accurate performance prediction?

Recent discoveries in [9] suggest that the amount of correlation that needs to be

taken into account for performance evaluation depends not only on the correlation

structure of the source traffic but also on the time scales specific to the system

under study. They found that the time scale associated to a queueing system is

a function of the maximum buffer size and that the correlations have negligible

impact on performance of the system after what they call correlation horizon (CH).

Other authors [6] define the dominant time scale (DTS) as the most probable time

scale over which buffer overflow occurs. They also state that the LRD property

by itself does not change the buffer distribution, but instead exerts its influence

on the value of the DTS by which the buffer behavior is determined. Some papers

have also discussed about the importance of CTS in aggregate traffic in backbone

networks. Based on the results of large deviation theory Ryu and Elwalid [26]

define the CTS of a VBR video source as the number of frame correlations that

contribute to the cell loss rate, given the buffer size, link capacity, and the marginal

distribution of frame size. They show that second-order behavior at the time scale
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beyond the CTS does not significantly affect the network performance. These

results imply that a model that can capture correlations up to a finite lag of

time would be a good approximation for performance evaluation in finite buffer

systems.

Marginal distribution

The work in [9] suggests that the marginal distribution of the traffic arrival process

should also be taken into account for accurate loss prediction. So a model used to

describe the traffic should match the autocorrelations up to a time lag, keeping the

marginals intact. The limitations of using only mean and autocorrelation structure

for describing the arrival process in predicting the queuelength distributions has

been discussed in [10].

Markov models

The desire for analytical simplicity in models and the quest for physical insights

on the traffic generation mechanism triggered the original enthusiasm among re-

searchers in favor of the traditional Markovian modeling approaches. The ad-

vantage of Markov models is that it is possible to reuse the well known solution

methods developed in the past in order to evaluate the performance of the net-

work. Markov models are known to capture the long range dependencies over a

finite range of time scales, which have been proved to be sufficient for performance
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evaluation in finite buffer systems. Robert et al. [25] introduced the concept of

pseudo long range dependent process which can model the aggregate traffic over

several time scales and illustrated that a simple Markov modulated model based

on the theory of near complete decomposability (developed by Courtois [2]) can

approximate LRD traffic. Feldmann and Whit [7] developed a fitting algorithm

for approximating a heavy tailed or long tailed distribution using a finite mixture

of exponentials called hyper-exponentials. Though the hyper-exponentials have

an exponential tail they can approximate heavy-tailedness in the regions of pri-

mary interest. This made queueing solution methods easier and motivated other

researchers to develop fitting algorithms on similar lines.

Anderson et al. [1] showed that the superposition of several two-state

Markov modulated Poisson process can model the self-similar behavior over several

time scales of interest. Their queueing results based on the matrix analytical

approach developed by Neuts [18] did not accurately predict the queueing behavior

suggesting the importance of fitting the marginals. They achieve a very good fit

on the covariances over several time scales by using a fitting algorithm based on

weighted sum of exponentials.

A similar fitting algorithm was used in [32] to fit the variance of their

MMPP model over several time scales. Again their fitting of second order statis-

tics alone was not sufficient to predict the queueing behavior accurately. However

Kasahara [13] concluded that variance fitting method seems to be enough to pre-

dict the loss behavior of finite queueing systems with LRD input when appropriate
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time scale is considered. Valados et al. [27] support the concept of critical time

scales and proposed an MMPP model that would match the covariance structure

of the process as well as the marginal distribution. They obtained very good re-

sults in estimating the loss probabilities at higher utilization levels but under light

loads their results deviated. Though the aforementioned works provided analyti-

cally simpler solutions and achieved a certain degree of success in predicting the

queueing behavior, a solution form providing deep insight into the nature of the

system was still missing.

Systems with long range dependencies can be divided into subsystems such

that the interaction between certain subsystems is smaller than the interactions

within the subsystems [12]. This property is called NCD and was shown by [12]

to be useful to derive analytical solutions, based on linear algebraic queueing the-

ory (LAQT) which gives flexibility in generating arrival processes with arbitrary

marginal and correlation structures. This method yielded the much needed critical

insight.
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2.4 Linear Algebraic queueing theory

2.4.1 Matrix exponential distribution

A matrix exponential distribution is defined as a probability distribution with

representation (p,B, ε) [14]. i.e.,

F (t) = 1− p exp(−Bt) ε′, t ≥ 0, (2.6)

where p is the starting vector for the process, B is the process rate operator or

the progress rate matrix which must be non-singular, and ε′ (the transpose of

ε) is the summing operator. The order of the representation is indicated by the

dimension of the B matrix, and the degree of the distribution F (t) is the minimal

order of all its representations. Its probability density function is defined as

f(t) =
dF (t)

dt
= p exp(−Bt)B ε′ (2.7)

The nth moments satisfy the following

E[Xn] =

∫ ∞

0

xnf(t) dt = n!pVnε′ (2.8)
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where V = B−1. The Laplace-Stieltjes Transform of f(t) is given by

B∗(s) =

∫ ∞

0

exp−st f(t) dt = p(I + sV)−1ε′ = p(B + sI)−1Bε′ (2.9)

Matrix exponential distributions have rational Laplace-Stieltjes transform and are

more general than the Phase-type (PH) distributions defined by Neuts [18]. ME

distributions place fewer constraints on its representation. Although the class of

second degree matrix exponential distributions are equivalent to the physically

based phase-type distributions, higher degree representations may not have phys-

ical representation. Phase type distributions are, in fact, a strict subset of matrix

exponential distributions.

The class of distributions with rational Laplace-Stieltjes transforms is dense

in the set of all distributions, which means that any density function can be ap-

proximated arbitrarily closely by a density with a rational transform. Some of

such distributions are exponential, Erlangian, Coxian, hypoexponential, hyperex-

ponential, Marie, and mixtures or convolutions of these distributions. Distribu-

tions belonging to the above class have probabilistically interpretable components

and have close relationship with Markov chains. The advantage of using matrix ex-

ponential distributions is that higher order moments can be matched using Appie

van de Liefvoort’s algorithm [29] and they can be represented in different canon-

ical forms through the use of similarity transforms. The LAQT solution method
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does not depend on the process representation and hence any representation can

be chosen while modeling.

2.4.2 Moment matching

Appie van de Liefvoort’s algorithm [29] can be used to match the moments of the

distribution. From the set of power moments E[Xn] of a continuous distribution

F (t) an ME distribution (p,B, ε) can be generated. Let,

rn =
E[Xn]

n!
(2.10)

be the set of normalized or reduced moments of the distribution. Applying the

algorithm we can generate,

p =

[
1 0

]
, V =

 r1 r1

(r2 − r2
1)/r1 (r3 − 2r1r2 + r3

1)/(r2 − r2
1)

 , ε′ =

 1

0


(2.11)

using the first three moments. This representation has the prescribed moments

and a rational Laplace-Stieltjes transform. The boundary conditions of the power

moments have been discussed in [16]. For a third order representation, the first

five moments are mapped into (p,B, ε)
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p =

[
1 0 0

]
, ε′ =


1

0

0

 (2.12)

V =


r1 r1 0

(r2 − r2
1)/r1 (r3 − 2r1r2 + r3

1)/(r2 − r2
1) r1

0 −(r3
2 − 2r1r2r3 + r2

3 + r4r
2
1 − r4r2)/(r

2
1 − r2)

2r1 β/γ


(2.13)

where

β =− r4
2r1 + 3r2

2r
2
1r3 − 2r1r2r

2
3 − 2r2r

3
1r4 + 2r2

2r1r4 − r2
3r

3
1 + r3

3 + 2r3r4r
2
1

− 2r3r2r4 + r5r
4
1 − 2r5r

2
1r2 + r5r

2
2,

γ =(r3
2 − 2r1r2r3 + r2

3 + r4r
2
1 − r4r2)(r

2
1 − r2)

2.4.3 Sequence of ME intervals

If T1, T2, T3, ... is a sequence of ME random variables then the joint probability

density function over any finite sequence inter-event times is given by
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fT1,T2,...,Tn(t1, ..., tn) = π(0) exp(−Bt1)L...exp(−Btn)Lε′ (2.14)

where π(t) is a vector representing the internal state of the process at time t and

L is the event rate matrix. If the process is renewal then L = Bε′p where p is

the starting vector for the process, the rank of L being 1.

If L is of rank greater than 1, then the process will exhibit auto depen-

dence. The covariance of a sequence of MEs [17, 18] assuming stationarity is given

by,

cov[Xn, Xn+k] = pV(Y)kVε′ − (pVε′)2 (2.15)

and the variance,

var[X0] = 2pV2ε′ − (pVε′)2 (2.16)

where V = B−1 and Y = VL such that Yε′ = ε′ and pY = p. Thus ε′ is

the right eigenvector of Y with eigenvalue 1 and p is the left eigenvector of Y

with eigenvalue 1. The value of p is assumed to be unique and its existence is

guaranteed if 1 is the largest eigenvector of Y. The autocorrelation is obtained

by dividing the covariance by the variance,
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Autocorr[Xn, Xn+k] =
pVYkVε′ − (pVε′)2

2pV2ε′ − (pVε′)2
(2.17)

If L = Bε′p then Y is of rank 1 and the process becomes renewal and hence

cov[Xn, Xn+k] = 0.

2.4.4 Introducing correlations

Auto-correlations can be arbitrarily introduced into a renewal process preserving

the marginal distribution the process by using Mitchell’s method. The progress

rate matrix of the arrival process (B) describes what happens before the arrival

event and the event rate matrix describes (L) what happens at the time of an

arrival. L can be altered from representing a renewal process to represent a semi-

Markov arrival process, which is correlated. The starting vector p and the progress

rate matrix B are kept unchanged from the renewal process representation. An

L can be chosen such that p and B remain unchanged,

L = β(Bε′p−B) + B (2.18)

L = (1− γ)(Bε′p−B) + B (2.19)
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where β = 1 − γ is called the persistence of the process, and as β → 0, the au-

tocorrelation exhibited by the point process increases. This method can be used

to match the decay of the desired autocorrelation structure rather than matching

the entire autocorrelation structure of the process, which Mitchell has found out

to be more effective.

2.4.5 Kronecker products and Hat spaces

Kronecker products [14] are used to combine processes operating in different

spaces. It is a way to preserve independence among process in different spaces, in

which disjoint operator spaces are embedded into the direct product space. For

example in a ME/ME/1/N queueing system the arrival process < Ba,La > and

the service process < Bs,Ls > operate in two disjoint spaces namely the arrival

space and the service space. Their independence is preserved by using the Kro-

necker product. The Kronecker product is represented by the symbol ⊗. The

Kronecker product of two matrices K1 (operating on objects in space 1) and K2

(operating on objects in space 2) is given by,

K = K1 ⊗K2 =

 (K1)11K2 (K1)12K2 (K1)13K2

(K1)21K2 (K1)22K2 (K1)23K2

 (2.20)

where K1 is of size 2 × 3 and K2 is of size 2 × 2. The Kronecker product is

27



not commutative or symmetric. That is, K1 ⊗K2 6= K2 ⊗K1 although the two

representations are equivalent provided order is consistent within a formula. To

hide the ordering and simplify visually, hat spaces are introduced. For example if

there are N spaces, then

K̂1 = K1 ⊗ I2 ⊗ I3...⊗ IN

K̂2 = I1 ⊗K2 ⊗ I3...⊗ IN (2.21)

K̂N = I1 ⊗ I2 ⊗ I3...⊗KN

where Ii is the identity matrix of dimensions mi×mi and Ki is the matrix of that

dimension. The property,

K̂1 · K̂2 = K1 ⊗K2 = K̂2 · K̂1 (2.22)

satisfies the independence of spaces condition. For the matrix exponentials oper-

ating in N independent spaces, the resultant matrices and vectors are given by,
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Matrix Bi:

B̂1 := B1 ⊗ I2 ⊗ I3...⊗ IN

B̂2 := I1 ⊗B2 ⊗ I3...⊗ IN (2.23)

B̂N := I1 ⊗ I2 ⊗ I3...⊗BN

Matrix Li:

L̂1 := L1 ⊗ I2 ⊗ I3...⊗ IN

L̂2 := I1 ⊗ L2 ⊗ I3...⊗ IN (2.24)

L̂N := I1 ⊗ I2 ⊗ I3...⊗ LN

Starting vector p:

p̂1 · p̂2 6= p (2.25)

p = p1 ⊗ p2 = p1p̂2 = p2p̂1 (2.26)

Summing vector ε′:

ε̂′1 · ε̂′2 6= ε′ (2.27)

ε′ = ε′1 ⊗ ε′2 = ε̂′2ε
′
1 = ε̂′1ε

′
2 (2.28)
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Chapter 3

Mode Extraction

3.1 Introduction

The packet losses occurring in a queueing system due to bursty traffic can be

explained by the concept of weak stability. The traffic arrival mechanism can be

modal. Modality in traffic can explain the weakly stable conditions observed in the

queues and also can characterize the observed burstiness. This chapter explains

the concept of modes in bursty traffic and the different methods to extract them

from traffic trace data. The major features of the extraction process are also

discussed. This chapter also deals with the properties of different modes and their

effect on a queueing system providing necessary insight into the actual nature

of the traffic arrival mechanism. The extraction process is illustrated through

analysis of two sets of traffic traces described in section 3.3.
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3.2 Modes and Weak stability

A premise of this work is that Ethernet traffic can be adequately represented by

a continuous time Markov chain (cpMc) model that captures the dependencies

and burstiness observed in the traffic, and that this traffic model can be used to

predict the queueing behavior of networking systems that handle this traffic.

Burstiness in traffic can be characterized by a modal cpMc. A modal

cpMc can be defined as a cpMc whose state transitions are nearly completely

decomposable, with decomposition classes each defining a particular arrival rate,

interarrival time distribution and/or dependency. These classes are called modes

because to a general observer the traffic pattern appears different whenever the

nearly-decomposable process jumps from class to class. To appear bursty one or

more modes must have a mean arrival rate which is significantly greater than the

mean arrival rate taken over all modes.

The concept of weak-stability, discussed by Jelenkovich [11], suggests that

with respect to traffic, a stable queueing system can be either weakly stable or

strictly stable. When it is weakly stable the arrival rate of one or more modes

exceed the service capacity, though the overall service rate is greater than the

overall arrival rate. As the modal traffic moves from mode to mode, the system

moves from stable to unstable even though the overall system is stable. On the

other hand, when the service capacity is greater than the arrival rate of the fastest

mode, the system is strictly stable. Figure 3.1 explains the concept of weak
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stability. The modes with mean arrival rate higher than the mean service rate are

unstable and the rest of the modes in the traffic are stable. As the service rate is

adjusted upward, unstable modes can become stable.

Unstable Mode 

Unstable Mode 

Stable Mode 

  Base Mode 

Mean service rate 

Mean arrival rate of the entire traffic 

Mode   
arrival
 rate  

Figure 3.1: Modes in traffic

3.3 Tactics

One of the goals of this thesis is to identify and extract the instabilities in the

form of unstable modes from the traffic. Efficient methods will be developed

to extract these modes from publicly available traffic traces. The extraction of

unstable modes from the traffic leaves behind the base mode. It is possible that

the modal structure extends even into the base mode (there might be slower sub-

modes within the base mode). But the extraction process will not attempt at

extracting these sub-modes as it is out of scope of this thesis.
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Based on the properties of the extracted modes an analytical model will

be built. Two stage hyperexponential distributions with physically interpretable

phases will be used to model the interarrival time distributions of the modes.

This makes the overall model simpler and easier to analyze, providing insight.

The solution techniques also become simple with the use of hyperexponential dis-

tributions. The mode durations will be modeled using exponential distributions.

Mitchell’s correlation model can be used to introduce finite lag autocorrelations in

the interarrival times of modes where autocorrelations are appropriate. The corre-

lation model is a single parameter model and cannot match the exact correlation

structure but can provide long but finite lag correlations.

The main strength of the multi-modal analytical model is that the insta-

bilities will be modeled very well. So the model is expected to perform well at

lower utilizations at which the unstable modes play a vital role in determining the

packet losses. The weakness comes in the form of the poor modeling of marginal

distribution of the base mode. The sub-modes are not modeled and this might

lead to poor performance at high utilizations at which the role of base mode is

vital in determining the queue occupancy. The base mode might well have slowly

decaying correlation structure which cannot be matched by Mitchell’s model. This

can be a deficiency in the model. It is possible that if the sub-modes are mod-

eled properly, the long scale interactions between them will automatically model

the correlations. It should be noted that memory is retained whenever there is a

transition from faster time scale to slower time scale and vice versa.
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The queueing system will be modeled using exponentially distributed ser-

vice times and finite buffer. Tractable solution techniques will be developed and

verified. The performance of the multi-modal model will be estimated by compar-

ing the packet loss probabilities obtained from the multi-modal model with those

obtained from the original trace driven simulations. To demonstrate the strength

of the multi-modal model, a comparison will be done with a published model.

3.4 Traffic traces used in extraction

Two traffic traces, namely the famous October and August Bellcore traces, were

used to test for the presence of modes. The following section describes the prop-

erties of these traces.

3.4.1 Bellcore October and August traces

The following description of the traffic traces is from

http://ita.ee.lbl.gov/html/contrib/BC.html :

The trace BC-pAug89 began at 11:25 on August 29, 1989, and ran

for about 3142.82 seconds (until 1,000,000 packets had been captured).

The trace BC-pOct89 began at 11:00 on October 5, 1989, and ran for

about 1759.62 seconds(until 1,000,000 packets had been captured).
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The trace captured all Ethernet packets. The files BC-pOct89.TL

and BC-pAug89.TL are ASCII-format tracing data, consisting of one

20-byte line per Ethernet packet arrival. Each line contains a floating-

point time stamp (representing the time in seconds since the start of a

trace)and an integer length (representing the Ethernet data length in

bytes). Although the times are expressed to 6 places after the decimal

point, giving the appearance of microsecond resolution, the hardware

clock had an actual resolution of 4 microseconds. The length field

does not include the Ethernet preamble, header, or CRC; however,

the Ethernet protocol forces all packets to have at least the minimum

size of 64 bytes and at most the maximum size of 1518 bytes. 99.5%

of the encapsulated packets carried by the Ethernet PDUs were IP.

All traces were conducted on an Ethernet cable at the Bellcore Mor-

ristown Research and Engineering facility, building MRE-2. At that

time, the Ethernet cable nicknamed the “purple cable” carried not

only a major portion of their Lab’s traffic but also all traffic to and

from the internet and all of Bellcore. The records include all complete

packets (the monitor did not artificially “clip” traffic bursts), but do

not include any fragments or collisions. These samples are excerpts

from approximately 300 million arrivals recorded; the complete trace

records included Ethernet status flags, the Ethernet source and des-

tination, and the first 60 bytes of each encapsulated packet (allowing

identification of higher-level protocols, IP source and destination fields,
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and so on).

3.5 Extraction Procedure

As described in section 3.2, in stable systems the overall mean arrival rate for the

input traffic will be less than the mean service rate. But in weakly stable systems

there may be one or more modes, rarely entered, having mean arrival rate greater

than that of the service rate of the system. These modes are called as unstable

modes, and if there is more than one, they will differ in their mean arrival rates.

The aim of the extraction process is to identify and classify modes of traffic

which are characterized by different arrival rates. A queue and server is used to

determine these modes by examining the rise and drop of queue lengths. If a

exponential server is used, the rate at which the queue length drops and rises is

determined by the local variations in service rates. Due to this there is a very good

chance that a few arrivals belonging to a particular mode may not get counted

towards that mode. So a deterministic server is used to eliminate this problem of

local variations in service rates. Service distributions does affect the extraction

process but deterministic service will allow us to identify the boundaries of the

modes clearly without ambiguity.

An analysis of the queue length evolution in a ‘trace/D/1’ system with

pOct.TL Bellcore trace as the input stream provides deep insight on the nature of
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the modes. At higher utilizations the system may exhibit a multiple of unstable

modes while at sufficiently low utilizations it may exhibit just one which is the

fastest mode. Analysis was performed at different utilizations to be able to identify

and possibly extract data about each of the unstable modes individually. Figures

3.2, 3.3 and 3.4 zoom in on the queue length evolution at different utilizations, to

illustrate the effect of mode 1, the fastest mode observed.
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Figure 3.2: Queue length evolution: ρ = 0.3
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Figure 3.3: Queue length evolution: ρ = 0.34

From the figures we can observe the following:
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Figure 3.4: Queue length evolution: ρ = 0.4

1. The start time of the burst of arrivals due to the mode is not affected by

changes in utilization and the start is marked by consecutive arrivals. For

example, for the mode depicted in the figures the start of the burst is around

1322.49 seconds.

2. The peak queue length reached by the burst belonging to the mode is con-

sidered to be the end of the burst since it is clear that arrivals have slowed.

The peak seems to attain higher values with higher utilizations. This is be-

cause, more arrivals add to the peak of the burst due to lower service rates

at higher utilizations.

3. The region between the start and the peak constitutes the interval of arrivals

in that mode. The mean rate of queue length increase in this region is given

by λ − µ where λ is the mean arrival rate of the mode and µ is the mean

service rate.

4. After the peak the queue length drops, as the mode switches to the base
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mode. The slope reflects the arrivals in the base mode which have lower

arrival rates (less than the mean arrival rate of the entire traffic stream).

5. From figure 3.4 we can observe a relatively slower mode becoming promi-

nent at 1324.6 seconds. Similarly various modes become evident at different

instants as the utilization is increased.

6. All the observed modes behave in a similar manner but the rate at which

they reach the peak is dependent on their mean arrival rate.

3.5.1 Extraction Methodologies

Packets contributing to the modal behavior can be captured by observing the

regions where the queue length exceeds a certain threshold queue size at different

utilizations. The packets belonging to the fastest mode can be extracted by fixing

the utilization low. But the above observations suggest that, as the utilization is

increased the adjoining packets with relatively slower rate contribute to the mode

and so the mode durations see an increase. The new packets joining the mode

may or may not cause a change (decrease) in arrival rate of the mode, but one

may not deny their association to that particular mode.

As suggested by Dr. Wallace, the extraction process can be performed

step by step by visual interpretation (by viewing the queue evolution over time

at different utilizations). The traffic stream was provided as an input to a sin-
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gle server deterministic queueing system with infinite buffer, deterministic service

times enabling clear identification of modes. Setting the utilization to a very low

value, the time instants of the start and end of the fastest mode were traced,

the start being indicated by increase in queue length beyond a threshold, the end

being indicated by queue length dropping below the peak. As explained before

there may be arrivals belonging to this mode at an adjacent interval not con-

tributing significantly to the buffer increase because of low utilization. There can

also be adjacent bursts belonging to the same mode that may merge as utilization

is increased and its possibility cannot be ruled out because one cannot expect

queue lengths to increase continuously without a few services happening. The

utilization was increased until a level after which newer modes began to appear.

The characteristics of the bursts belonging to this mode (burst durations, inter-

arrival times, mean arrival rate) were obtained from trace driven simulation. In

the simulation, whenever there is a burst, all the essential characteristics of the

arrivals belonging to the burst were monitored and buffered. From the buffered

data the marginal distribution of the interarrival times was estimated. Extracting

the fastest mode from the trace leaves behind the relatively slower modes. Then

the same experiment was performed to extract the relatively slower modes.
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This method had some disadvantages.

1. Observing the queueing behavior over the entire traffic duration is cumber-

some.

2. The extraction method entirely depends upon visual interpretation which is

prone to errors.

3. The method is extremely cumbersome if the traffic has a large number of

modes.

4. The communication between different modes is difficult to establish.

5. There is no standard method to determine the buffer threshold level to be

set for extracting different modes.

Because of these disadvantages a better strategy was developed. This

method is based on the fact that bursts belonging to a particular mode will cause

an increase in the queue length at the same rates (λ − µ). This is applicable to

all utilizations. Start of a burst was identified whenever there is a sudden rise in

queue length triggered by 5 or more consecutive arrivals without a service happen-

ing. The end of a burst was identified by two or more consecutive services before

the next arrival (There was at least a single service occurring during the presence

of a mode and the bursts would have parted into smaller insignificant lengths had

single service been used as end of burst). Since short bursts can also occur as a

natural effect of randomness in the base mode, bursts with arrival count less than
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10 were not taken into account (Poisson arrivals were determined to have very

low chance of bursts of more than 10). Again all the arrivals in the burst were

buffered to determine their characteristics.

The main features of this method are:

1. Most of the modes can be captured by fixing the utilization high, say 95%,

because the start of the burst belonging to a particular mode will be the

same regardless of utilization. Also, the peak queue length reached due to

the mode will be the highest at this utilization, so all the arrivals associated

with that mode can be captured.

2. There is no discrepancy in setting the buffer threshold levels and no visual

interpretation or manual intervention is needed in extraction of modes. The

process is automated.

3. The bursts extracted by this method have different mean interarrival times.

The bursts can be grouped together based on the mean interarrival times,

and bursts belonging to the same group form a mode. The mode having the

smallest mean interarrival time is the fastest mode and the one having the

highest mean interarrival time is the slowest mode.

4. From the simulation, properties of modes like mean burst duration in a

mode, mean arrival rate for a mode, mean burst interarrival time, squared

coefficient of variation of interarrival times within a mode, mean burst size

(in bytes) in a mode can be determined.
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5. After extracting the characteristics of the potentially unstable modes, char-

acteristics of the base mode can be determined by looking at the trace data

remaining after removing all the packets constituting the unstable modes.

6. Burst of two different modes do not overlap and hence the properties of a

mode are distinct.

7. Communication between different modes in the traffic can be easily deter-

mined. By observing the mode arrival instants in the traffic, the mode that

existed before the current mode and the mode that will appear after the

current mode can be easily determined. Based on this, the rate at which

one mode jumps to another mode can be estimated.

3.6 Windowing method

As a third option, the modal nature of the traffic can also be identified by a win-

dowing method. In this method the traffic stream is spilt into windows of equal

size and the average arrival rate in those windows is calculated. This method is

simple in the sense that a queueing system need not be used to determine the

presence of modes. The histogram plot (Figure 3.5) of the arrival rates in every

window gives an idea of the unstable regions in the traffic. Adjacent windows

having the same arrival rate can be merged and can be counted as a burst belong-

ing to the respective mode. One should be careful in the selection of the window
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Figure 3.5: Density of mean arrival rate in 50ms windows of pOct.TL trace

size such that the arrivals due to the base mode do not make contribution to

the bursts of the faster modes. This can be overcome by using a binary search

algorithm (not implemented) within the windows adjacent to each other. The

algorithm recursively looks for sections in a window which have the arrival rate

of the previous window. If the rates are same, then this section is merged with

the previous window. This method has not been used in this work to extract the

modes, but provides useful information about the unstable regions in the traffic.

44



3.7 Properties of modes

The properties that characterize a mode are mean arrival rate, marginal distribu-

tion of interarrival times, coefficient of variation and autocorrelation of interarrival

times, and the mean duration of bursts belonging to that mode. These properties

are used in building an analytical model described in the next chapter. By using

the extraction process described above, many modes having a wide range of arrival

rates were observed. These modes were grouped in discrete bins based on their

mean interarrival times. The grouping yielded a total of nine modes including the

stable base mode. Tables 3.1 and 3.2 list the mean interarrival time, coefficient

of variation of the interarrival times, and the mean burst duration for different

modes found in the pOct.TL and pAug.TL trace data respectively. Mode 1 is the

fastest mode and mode 9 represents the base mode. The mean interarrival time

for the entire pOct.TL trace is 0.00176s and for the pAug.TL trace is 0.003143s.

The following discussions are with respect to the pOct.TL trace. Graphical plots

representing the properties of pAug.TL can be found in the appendix.

3.7.1 Interarrival time distributions

This part deals with the interarrival time distribution of different modes. Figure

3.6 shows the sample interarrival time distribution for the entire traffic trace. It

can be observed that the marginal distribution has a long tail. Two prominent

peaks can be seen around 0.1ms and 1ms implying that the traffic consists mostly
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Modes Range (s) Mean C2 Mean burst
interarrival time (s) duration (s)

1 0.0003-0.0004 0.000317 1.427585 0.026185
2 0.0004-0.0006 0.000560 0.671417 0.012560
3 0.0006-0.0007 0.000664 0.490000 0.017110
4 0.0007-0.0008 0.000752 0.450612 0.021943
5 0.0008-0.0009 0.000842 0.425600 0.023674
6 0.0009-0.0010 0.000937 0.508573 0.024130
7 0.0010-0.0012 0.001060 1.214025 0.022000
8 0.0012-0.0017 0.001362 4.669000 0.033270
9 >0.0017 0.001824 3.249141 0.768197

Table 3.1: Modes of pOct.TL

Modes Range (s) Mean C2 Mean burst
interarrival time (s) duration (s)

1 0.0005-0.0009 0.000832 0.563744 0.024169
2 0.0009-0.0010 0.000957 0.576685 0.035730
3 0.0010-0.0011 0.001052 0.578358 0.039754
4 0.0011-0.0012 0.001152 0.582912 0.048140
5 0.0012-0.0013 0.001246 0.594057 0.044846
6 0.0013-0.0014 0.001346 0.564025 0.043820
7 0.0014-0.0016 0.001485 0.538976 0.047230
8 0.0016-0.0030 0.001765 0.811398 0.045357
9 > 0.0030 0.003296 3.132113 1.384005

Table 3.2: Modes of pAug.TL

of arrivals with shorter interarrival times around these peaks, which is very differ-

ent from that of Poisson arrivals having exponential interarrival distribution. The

base mode interarrival time distribution shown in Figure 3.7 is also heavy tailed

with similar peaks observed in the distribution plot of the original trace.

Figure 3.8 and 3.9 show the interarrival time distribution for modes 1 to

8. The plots show a great deal of variation in the number of arrivals in these

modes and also the relative prominence of two peaks around 0.1ms and 1ms. In

mode 1 only the peak at 0.1ms is prominent, signifying a higher mean arrival rate.

The number of arrivals in modes 2 and 3 are higher than in the mode 1. Also
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Figure 3.6: Interarrival time distribution: pOct.TL
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Figure 3.7: Interarrival time distribution: Base mode extracted from pOct.TL

the arrivals with interarrival times around 1ms gain prominence in modes 2 and

3 explaining the relative decrease in the mean arrival rate in these modes. This

trend is observed also in rest of the modes.
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Figure 3.8: Interarrival time distributions-Modes 1-4 of pOct.TL trace

3.7.2 Coefficient of variation and burst duration

Two other features, namely the coefficient of variation (C2) and the burst dura-

tion also distinguish the modes. The coefficient of variation is 1 for exponential

distribution. From the tables 3.1 and 3.2 we can see that the value of C2 is no-

tably different for each of the modes. Modes with values of C2 greater than 1 can

be represented using a hyperexponential (sum of exponentials) distribution and

those with C2 less than 1 can be represented using a hypoexponential (convolu-
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Figure 3.9: Interarrival time distributions-Modes 5-8 of pOct.TL trace

tion of exponentials) distribution. The burst length durations indicate the average

amount of time a mode contributes to the traffic generation process before switch-

ing to the base mode. Clearly arrivals due to the base mode has dominance in

the traffic; the base mode occupies nearly 97% of the total duration of the traffic

in both the October and August traces.
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3.7.3 Packet level analysis

The packet level discussion is being carried out to provide insight into the arrival

mechanism within modes. The Bellcore trace contains data on packet size for

every arrival which can be used in studying the characteristics of modes. Using
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Figure 3.10: Packet size distribution-pOct.TL trace

this information, the packet size distribution of the trace and different modes can

be obtained from the mode extraction process.

The packet size distribution of the pOct.TL trace (Figure 3.10) suggests

that it is bimodal in nature. The smallest packet size observed was 64 bytes which

corresponds to the acknowledgement (ACK) packets of Transmission Control Pro-

tocol (TCP) and the maximum packet size was 1518 bytes. The plot also gives an
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Figure 3.11: Packet size distribution-Modes 1-4 of pOct.TL trace

idea of traffic composition, with the 64 byte and 1082 byte packets clearly domi-

nating the traffic flow. A peek into the packet size distributions (Figures 3.11 and

3.12) for different modes of the traffic gave an idea on the nature of the arrivals

with shorter interarrival times. In mode 1 which is the fastest mode, the arrivals

mostly constituted 64 byte ACK packets. Because of their small size the packet

transmitter consumes less time to transmit these packets and hence they have

shorter interarrival times. Data analysis revealed that the 0.1 ms peak observed

in Figure 3.6 corresponded to the interarrival times of the ACK packets and other
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Figure 3.12: Packet size distribution-Modes 5-8 of pOct.TL trace

small sized packets. Also the 1 ms peak corresponded to the 1082 byte packets.

Plots representing other modes show a mixture of 64 byte and 1082 byte

packets (compare corresponding interarrival time distribution plots). The vari-

ation in mean arrival rate of these modes is due to the different proportions in

which these packets arrive in the respective modes. Very rarely do the 1518 byte

packets make their presence felt in the these modes and hence are a part of the

slower base mode.
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A section of the traffic in the mode 1 looked like 1082 1082 162 1082

... 1082 64 78 64... 64 1082 1082...(the numbers representing packet size in

bytes) which can be understood as a pattern of packet transmissions followed by

acknowledgements. Similar patterns were also observed in other modes. This

clustering pattern of the faster modes leads to rapid queue build up which has

been experimentally observed in the mode extraction process. But the base mode

had a well mixed pattern, clusters of packets having same size being rare and hence

the queue does not build up rapidly when in base mode. Service time distribution

depends on the packet size distribution but this work deals with deterministic and

exponential services. If necessary, the dependence of service time distribution on

mode can be incorporated in future work.

3.7.4 Correlation properties

In this section the correlation structure of the interarrival times of the traffic and

of the different modes constituting the traffic are studied.

Figures 3.13 and 3.14 depict the slowly decaying autocorrelation structures

of the interarrival times of the pOct.TL trace and the base mode respectively. The

autocorrelation structures of the different modes in pOct.TL trace are shown in

Figures 3.15 and 3.16. Modes 1, 4, 5 and 6 have pretty strong lag-1 correlation.

Mode 1 has short term correlations up to a lag of 10. Mostly the autocorrelations of

the modes exhibit oscillatory behavior around zero and one can assume negligible

53



10
0

10
1

10
2

10
3

10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Lag

A
ut

oc
or

re
la

tio
n

Autocorrelation of interarrival times of pOct.TL trace

Figure 3.13: Lag-k autocorrelations-pOct.TL trace
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Figure 3.14: Lag-k autocorrelations-Base mode of pOct.TL trace

correlations in interarrival times of modes while fitting with analytical model.

Contrary to this, the base mode has a similar correlation structure as that of the

original trace, with a small drop in the autocorrelation values. Mitchell’s gamma

model can be used to incorporate correlations in the base mode up to a finite

lag as described in section 2.5.3. Several modeling attempts discussed in chapter

2 were based on matching the entire autocorrelation structure with that of their

model. However this work does not attempt at fitting the entire autocorrelation
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structure.

Note: In modes 1 and 8, the number of samples is less than the lag range

over which the autocorrelation is evaluated. This results in null values represented

as straight line along zero, after certain lag (Figures 3.15 and 3.16).
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Figure 3.15: Lag-k autocorrelations-Modes 1-4 of pOct.TL trace
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Figure 3.16: Lag-k autocorrelations-Modes 5-8 of pOct.TL trace

3.8 Summary

This chapter discussed various methods to identify and extract modes from bursty

network traffic. The most efficient of the suggested methods was chosen to perform

extraction. The extracted modes were classified based on the packet interarrival

times within the modes. The mode which had the largest mean interarrival time

was identified as the base mode which keeps the queue stable at all server utiliza-

tions. The properties of modes like mean interarrival time, lag-k correlation, burst
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duration, packet size distribution were discussed and analyzed using appropriate

graphs. Some of these properties will be used to develop an analytical model

based on the linear algebraic queueing theory techniques discussed in Chapter 2.

The discussions provided insight into the arrival pattern of different modes in the

traffic. We have discussed the properties of the arrival stream in this chapter.

In the next chapter, we will study the effects of the multi-modal traffic arrival

stream on the queueing system by building a mathematical model based on the

properties of the extracted modes.
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Chapter 4

Analysis and Results

4.1 Introduction

A matrix exponential multi-modal queueing model can be constructed to match

the observed characteristics of the traffic model extracted in Chapter 4. The

model represents a weakly stable queueing system. This is because, over a range

of utilizations, one or more of the non-base modal components of the model have

mean arrival rate greater than the mean service rate, though the mean service rate

is greater than the mean arrival rate of the entire traffic. The buffer and service

structures can be modeled to allow comparison of its performance measures with

other published modeling approaches.
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4.2 ME −Modal/ME/1/N model

This section deals with development of a generalized analytical model using matrix

exponential multi-modal arrivals and matrix exponential service distributions with

a finite buffer.

4.2.1 Spaces

The queueing system consists of five independent spaces operating simultaneously.

The spaces are

1. Arrival space - the space that characterizes the interarrival times within each

mode.

2. Mode space - the space that characterizes the set of modes and transitions

between them.

3. Burst duration space - the space that characterizes the duration of the in-

tervals between mode changes.

4. Queue space - the space characterizing the buffer

5. Service space - the space that characterizes the service time distribution

The arrival, mode and burst duration space combined is referred to as the

traffic arrival space.
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4.2.2 Arrival space

Based on the properties of modes observed, the arrivals can be modeled using

a suitable distribution. The mean and coefficient of variation of the interar-

rival times, and correlation properties of different modes are used to construct

a marginal distribution and correlation having desired properties. As discussed

earlier, a simple hyperexponential distribution is used to model the mode interar-

rival times. A C2 of 1.5 is assumed for modes with C2 < 1.

Hyperexponential distribution

A two stage hyperexponential distribution with mean E[X] = 1/λ and C2 > 1

can be obtained as follows,

p1 =
1

2
(1−

√
[(C2 − 1)/(C2 + 1)]) (4.1)

p2 = 1− p1 (4.2)

The starting vector for the process is pa = [p1 p2] and progress rate matrix Ba

is given by,

Ba =

 λ1 0

0 λ2

 (4.3)
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where λ1 = 2p1λ and λ2 = 2p2λ. The summing vector is ε′
a =

 1

1


Thus a matrix exponential representation < pa,Ba, εa

′ > of the hyperex-

ponential distribution can be obtained. Using the above technique, the interarrival

time distributions for different modes can be obtained based on the assumptions

made. Correlations can be introduced in the model as described in 2.4.4. The di-

mension of the arrival space is 2×2. Since there are nine modes, the arrival space

is represented as a function of mode, m, given by < pa(m),Ba(m), εa(m)′ >, for

m = 1, 2, · · · , 9.

4.2.3 Duration space

The duration space represents the burst durations in a mode. The mode duration

space is represented by the pair < Bd(m),Md(m),Ld(m) >. Ld(m) represents the

event transition matrix for the transition from mode m to base mode and Md(m)

represents the event transition matrix for the the transition from base mode to

mode m. The matrices become scalars if exponentially distributed durations are

assumed.
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4.2.4 Mode space and construction of B̂mad

Totally nine modes were observed in the traffic traces and hence the dimension

of the mode space is nine. The mode space, arrival space and duration space are

combined using the operations described below.

Kronecker products and hat spaces can be used to combine the different

spaces. The subscripts identify the space in which the identified process operates

and the hat represents the extension of the process into the space inferred by the

equation. This is applicable throughout the following discussion. B̂a, B̂d and L̂d

can be written in ad-space as

B̂a(m) = Ba(m)⊗ Id (4.4)

L̂a(m) = La(m)⊗ Id (4.5)

B̂d(m) = Ia ⊗Bd(m) (4.6)

L̂d(m) = Ia ⊗ Ld(m) (4.7)

for m = 1, 2, · · · , 9.

The progress rate matrix representing the composite arrival stream Bmad

is obtained by summing B̂a and B̂d and then incorporating it in the mode space

by a “composition” operation. In the mad-space it is given by,
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Bmad =



B̂a(1) + B̂d(1) 0 . . . −L̂d(1)

0 B̂a(2) + B̂d(2) . . . −L̂d(2)

...
. . . . . .

...

−M̂d(1) −M̂d(2) . . . B̂a(9) + B̂d(9)


(4.8)

and the event transition matrix for the composite arrival stream in the mad-space

is

Lmad =



L̂a(1) 0 . . . 0

0 L̂a(2) . . . 0

...
. . . . . .

...

0 0 . . . L̂a(9)


(4.9)

4.2.5 Queue-server space - ‘qs’ space

The queue space describes the queue and events causing an increase or decrease

in the queue occupancy. The service space describes the service time distribution

completely. The dimension of the queue space is the size of the buffer. The matri-

ces Eqs,Bqs,Lqs,Bs,Ls describe the queue and service space. Bs is the progress
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rate matrix and Ls is the event rate matrix of the server. The entry matrix Eq of

size N×N represents the arrivals into the queue, where N is the buffer size. It has

upper diagonal elements signifying an arrival incrementing the queue occupancy

by 1. At the upper boundary, an arrival results in no change.

Eq =



0 1 0 . . . 0

...
. . . . . . . . .

...

0 0 0 . . . 1

0 0 0 . . . 1


(4.10)

Extending this into the qs-space gives,

Eqs = Êq (4.11)

The progress rate matrix in the queue-server space, Bqs(N ×N), is defined as

Bqs =



0 0 . . . 0

0 Bs . . . 0

...
...

. . .
...

0 0 . . . Bs


(4.12)

The event transition matrix in the queue-server space Lqs(N ×N) is defined as
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Lqs =



0 . . . 0 0

Ls . . . 0 0

...
. . .

...
...

0 . . . Ls 0


(4.13)

4.2.6 Combining traffic arrival space and queue-server space

The traffic arrival space and the queue-server space can be combined using the

Kronecker products. The hat notation now represents Kronecker product between

the traffic arrival and the queue-server space. The following equations represent

the process rate matrix and the event rate matrix for the ME/ME/1/N system.

Bmadqs = B̂mad + B̂qs − L̂mad · Êqs (4.14)

Lmadqs = Imad ⊗ L̂qs (4.15)

The infinitesimal generator Qmadqs is given by

Qmadqs = Lmadqs −Bmadqs (4.16)
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The resulting infinitesimal generator will have the following structure,

Qmadqs =



−B(1) 0 . . . L̂d(1)

0 −B(2) . . . L̂d(2)

...
. . . . . .

...

M̂d(1) M̂d(2) . . . −B(9)


(4.17)

where

B(m) = B̂a(m) + B̂d(m) + B̂qs − L̂a(m) · Êqs − L̂qs (4.18)

in the adqs-space.

4.3 H2 −Modal/M/1/N model

To make the model simpler, the burst durations of a mode are assumed to be

exponentially distributed reducing the dimensionality of the duration space to a

unity. This simplification modifies Bmad, the composite arrival progress rate ma-

trix, as
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Bmad =



Ba(1) + δ1Ia(1) 0 . . . −δ19Ia(1)

0 Ba(2) + δ2Ia(2) . . . −δ29Ia(2)

...
. . . . . .

...

−δ91Ia(9) −δ92Ia(9) . . . Ba(9) + δ9Ia(9)


(4.19)

Since this model also assumes exponentially distributed services the matrix expo-

nential parameters in the service space are converted to exponentials, simplifying

the queue-server space.

Qmadqs =



−B(1) 0 . . . 0 δ19Ia(1)

0 −B(2) . . . 0 δ29Ia(2)

...
. . . . . .

...
...

δ91Ia(9) δ92Ia(9) . . . δ98Ia(9) −B(9)


(4.20)

where, in this case

B(m) = B̂a(m) + δ̂mIa + B̂qs − L̂a(m) · Êqs − L̂qs (4.21)
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and

Bqs =



0 0 . . . 0

0 µ . . . 0

...
...

. . .
...

0 0 . . . µ


Lqs =



0 . . . 0 0

µ . . . 0 0

...
. . .

...
...

0 . . . µ 0


(4.22)

To provide insight, the matrix B̂(m) can be detailed as,

B(m) =



X −Y 0 . . . 0 0

−S X + S −Y
. . . 0 0

...
. . . . . . . . . . . .

...

...
. . . . . . . . . . . .

...

0 0 0 . . . X + S −Y

0 0 0 . . . −S X−Y + S



(4.23)

where X = Ba(m) + δmIa , Y = La(m) and S = µIa.

4.3.1 Solution

The steady state vector π for the matrix Qmadqs allows the probability distri-

bution of the number of customers in the queueing system at steady state to be

identified. π satisfies the following equation
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π ·Qmadqs = 0 (4.24)

The solution can be obtained by embedding a discrete-time Markov chain

at mode change instants. The mode starting probability vectors are obtained, and

are then used to obtain the system steady state vector. The following equations

lead to the solution for π. Let

B =



B(1) 0 . . . 0

0 B(2) . . . 0

...
...

. . .
...

0 0 . . . B(9)


(4.25)

L =



0 . . . 0 L̂d(1)

...
. . .

...
...

0 . . . 0 L̂d(8)

M̂d(1) . . . M̂d(8) 0


(4.26)

The above matrices are partitioned as indicated to a 2 × 2 form to make

the solution more intuitive,
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B =

B(a) 0

0 B(b)

 L =

 0 L(a)

L(b) 0

 (4.27)

We have Y = B−1L or Y = VL and hence,

Y =

 0 V(a)L(a)

V(b)L(b) 0

 =

 0 Y(a)

Y(b) 0

 (4.28)

where

Y(a) =


Y(a)(1)

...

Y(a)(8)

 Y(b) =

[
Y(b)(1) . . . Y(b)(8)

]
(4.29)

and

Y(a)(m) =B(m)−1 · L̂d(m) (4.30)

Y(b)(m) =B(m)−1 · M̂d(m) (4.31)
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Now define,

ν =νY (4.32)

ν(b) =ν(b) ·Y(b) ·Y(a) (4.33)

ν(a) =ν(b) ·Y(b) (4.34)

where ν(m) represents the system starting probability vector embedded at mode

change instants. ν(a) = [ν
(a)
1 ν

(a)
2 . . . ν

(a)
8 ] represents the starting probability vec-

tor embedded at mode change event from any other mode to the base mode and

ν
(b)
m represents the starting probability vector embedded at mode change event

from base mode to modes 1 to 8. The vector ν(b) can be easily obtained by find-

ing the steady state vector for the matrix Y(b) · Y(a) which is stochastic. From

Appendix A we have,

[πa πb] =
[ ν(a)V(a)

ν(a)V(a)ε′
a + ν(b)V(b)ε′

b

ν(b)V(b)

ν(a)V(a)ε′
a + ν(b)V(b)ε′

b

]
(4.35)

The probability vectors πa and πb are steady-state solutions to the system

being in the respective mode. The steady state vector of the entire system is given

by,

π = [πa πb] (4.36)
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4.3.2 Loss probabilities

As a performance measure, packet loss probabilities associated with the system are

calculated and compared with the packet loss probabilities obtained from trace

driven simulation employing exponential service. Having obtained the system

steady state vector, the loss probability is given by,

πPLP =
π(N)Laε

′∑N
i=1 π(i)Laε

′
(4.37)

4.4 Results

In this section the results of the analytical model will be presented. First, the

solution techniques developed for the analytical model will be verified by com-

paring the packet loss probability estimates of an artificially generated trace with

those of the analytical model (the analytical model was built using an exponential

server, so the comparison made is based on exponential service). A good match

of the results will confirm that the solution techniques are correct. Then, the

faithfulness of the multi-modal arrival model to the original Bellcore traffic traces

will be verified by comparing their packet loss probability estimates. The multi-

modal arrival model is expected to perform well at lower utilizations because the

shorter or the faster time scales are modeled very well by the unstable modes.
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The results and further discussions will explain the strengths and weaknesses of

the suggested multi-modal arrival model in modeling the original trace. Then, the

multi-modal arrival model will be compared with that of Markov modulated Pois-

son process (MMPP) modeling approach suggested by Anderson [1], discussing

the major differences between the two approaches.

4.4.1 Verification of solution technique

In this section, the solution techniques developed will be verified, without con-

sidering efficiency of the technique. We made a conscious choice to not focus on

efficient computation. Our principal purpose was to confirm (or deny) that the

approach was feasible and had potential for development into an effective tool for

understanding traffic.

The analytical model generated assumes a queue with modal hyperexpo-

nential arrivals, exponential burst durations and exponential service. The basic

observed mode properties provided in tables 3.1 and 3.2 were used in construct-

ing the model. Using the mathematics developed in the section 4.3, packet loss

probabilities can be estimated as a means of performance measure. The loss prob-

abilities are then compared with the loss probabilities obtained from trace driven

simulations using an artificial trace (generated based on the multi-modal arrival

model) as input, so as to demonstrate the correctness of the solution techniques.
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The analytical model was tested for both the October trace and the August

trace. The models were tested for buffer sizes up to 50 and utilizations of 40%,

50%, 60% and 70%. As the solution techniques developed were not meant to be

efficient, computations become more complex and time consuming as buffer sizes

increase. So tests were performed only up to buffer size of 50. Figure 4.1 shows the

packet loss probabilities for different utilizations for the analytical model based

on the extracted information from pOct.TL (October trace). The graphs show a

good match between the analytical results and the simulation for all the buffer

sizes tested but for the utilization of 60%. Similarly figure 4.2 show the comparison

plots for the August trace data. The above result serves as reassurance that the

solution methodologies for the analytical model are correct.

4.4.2 Modal traffic vs Original traffic - Performance com-

parison

In this section the faithfulness of the multi-modal arrival traffic model to the

original traffic will be demonstrated. The validity of the solution techniques has

already been established. But the techniques are not employed in this section

because the aim of this section is to compare the performance of the multi-modal

model with that of the original trace.

Using the multi-modal traffic arrival model artificial traces with 1 million

arrivals were generated (based on extracted data from October and August traces)
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Figure 4.1: Loss probabilities for analytical model (Oct) ρ=40, 50, 60, 70

with γ = 0 for the base mode and was fed to a queue with exponential server.

As discussed in Chapter 2, γ = 0 implies zero autocorrelations and γ approaching

1 implies presence of autocorrelations with long lag times. As a performance

measure, the packet loss probabilities were obtained at different utilizations for

both the multi-modal artificial traces and the Bellcore traces. Figure 4.3 gives

the comparison of packet loss probabilities for the original October trace and the

generated multi-modal traffic trace. Though autocorrelations are absent in the
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Figure 4.2: Loss probabilities for analytical model (Aug) ρ=40, 50, 60, 70

base mode (γ = 0) there is a good match at lower utilizations of 40% and 50%, but

at utilization of 60% the absence of correlations in the base mode can be felt. The

results deviate significantly at utilization of 60%. This experiment demonstrates

the importance of base mode correlation for performance predictions at higher

utilizations and the importance of unstable modes at lower utilizations. To study

the effect of autocorrelations on the loss probabilities, another sample trace was

generated with γ = 0.998 for the base mode. The results for this trace are shown
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Figure 4.3: Loss probabilities for modeled modal traffic and actual traffic (Oct
trace, ρ=40, 50 and 60, γ=0)
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in the figure 4.4. Introduction of correlations in the base mode causes a jump

in the values of loss probabilities, but there is overestimation. The gamma value

chosen provides autocorrelations extending up to a lag of 2000 as shown in figure

4.5. This provides a finite lag correlation structure to the model though it doesn’t

fit the original correlation structure. A model that capture correlations up to a

large finite lag can be good approximation for performance evaluation as discussed

in Chapter 2. Comparison plots (figure 4.6 for γ = 0.998 and figure 4.7 for γ = 0)

for the Bellcore August trace also illustrate the effect of correlations as discussed

above. These results again suggest the importance of modeling the base mode

accurately. But the results are encouraging in the sense that, in spite of the crude

assumptions made in modeling the base mode, the performance estimation has

been “pretty good” at lower utilizations and “fair” in the presence of correlations

at higher utilizations.

4.4.3 Comparison with Anderson model

Anderson et al. [1] use a model consisting of superposition of two-state MMPP’s.

They fit the correlation structure of the traffic arrival process to their model over

a finite range of time scales, using a fitting algorithm. They compare the tail

distribution of the queue with infinite buffer and deterministic service, obtained

using trace driven simulation of the data, with their analytical results. The per-

formance results are tested for both the October and August Bellcore traces and
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Figure 4.4: Loss probabilities for modeled modal traffic and actual traffic (Oct
trace, ρ=40, 50 and 60, γ=0.998)
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Figure 4.5: Finite lag correlation structure :October and August data

the solution techniques are based on the matrix analytical methods. Their results

deviated significantly at lower utilizations while the performance was better at
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Figure 4.6: Loss probabilities for modeled modal traffic and actual traffic (Aug
trace, ρ=40, 50 and 60, γ=0.998)
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Figure 4.7: Loss probabilities for modeled modal traffic and actual traffic (Aug
trace, ρ=40, 50 and 60, γ=0)

higher utilizations. Also, the performance results for the August trace was poor,

as their model overestimated the tail probabilities. They concluded that the
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queueing behavior cannot be predicted accurately by fitting the first and second

order properties of the counting process alone. This section compares the perfor-

mance of modal traffic modeling approach and the MMPP modeling approach of

Anderson.

The artificial multi-modal traffic arrival trace generated with γ = 0.998 for

the base mode was fed to an infinite queue with deterministic server. Anderson

used a deterministic server and estimated the probability of queue length exceed-

ing a certain limit for utilizations of 40%, 50% and 60%. For the October trace,

figures 4.8 to 4.13 give comparisons of the results obtained by Anderson and the

results of the multi-modal traffic model at different utilizations, for γ = 0.998.

In the case of the multi-modal model, due to high autocorrelations at lower lags,

the probabilities are overestimated, but there is a significant drop at larger queue

sizes. Anderson’s model does not predict the probabilities well after a buffer size

of 10 at ρ = 40% but shows a good match for ρ = 50 and 60 up to a certain buffer

size. In case of the August trace (figures 4.14 to 4.19), clearly the multi-modal

model is able to predict the probabilities better than that of the Anderson model

for ρ = 40% and ρ = 60%, for γ = 0.998.

From the above results it is evident that Anderson’s model did not model

the instabilities in the traffic which is essential for performance at lower utiliza-

tions, while the multi-modal model has an advantage in this respect. The weakness

of the multi-modal model is that the base mode modeling is crude, as explained

earlier. This causes deviation in results at higher utilizations but again, the results

83



are promising considering the deficiencies in modeling the base mode.

4.4.4 Summary of experimental results

From the above results it can be inferred that the presence of autocorrelations

at large lags (as observed in the extracted base mode) play an important role in

influencing the queue lengths at higher utilizations. The marginal distribution

and correlation structure of the base mode also play a vital role in providing close

match to reality. Higher γ values (close to 1) do provide long lag correlations but

they decay exponentially which is very different from the correlation structure of

the base mode.

In case of exponential service with γ = 0 the packet loss probabilities were

well estimated at lower utilizations, strengthening the importance of the concept

of weak stability. At lower utilizations the impact of the stable or the base mode

is less. The losses are mainly due to the presence of unstable modes and the short

range correlations (lag < 100) that arise because of the weak leakages from faster

unstable modes to the slower base mode. The short range correlations confirm

that communication between modes can give rise to dependence in the arrival

mechanism. It is likely that the long range correlation structure of the entire

traffic stream comes from the weak communication between the slower modes

within the base mode itself (the base mode could be structured!) and has to be

investigated.
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Chapter 5

Conclusions and Future research

The goal of this work was to show that bursty dependent network traffic can

be characterized by a multi-modal cpMc possessing the property of near complete

decomposability. The multi-modal traffic model provides much needed insight into

the traffic arrival mechanism which other published modeling approaches failed

to address.

We were successful in identifying and extracting modes from publicly avail-

able Bellcore traffic traces. Different methods were formulated to identify and ex-

tract the modes each having their own advantages and disadvantages. The most

efficient method was used in the extraction process; this method did not need

any manual intervention and was effectively used to obtain the properties of dif-

ferent modes. An analysis of the mode properties showed the nature of arrivals

within each mode. The analysis illustrated that the faster modes have negligible
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correlations in the interarrival times and that the base mode is characterized by

correlations of interarrival times extending to long time lags very similar to the

correlation structure of the real trace. We were able to split the traffic into mean-

ingful and probabilistically interpretable components such that every component

can be individually analyzed and modeled.

We were able to model the modal arrival structure using matrix exponential

extensions to Markov analysis, which is remarkable. We used the hyperexponential

distribution with physically interpretable phases to model the marginal structure

of the interarrival times of different modes and used the Mitchell method of intro-

ducing correlations into the base mode. As a one parameter model, the Mitchell

model can be expected to only crudely model the correlation structure of the base

mode. This modeling approach is different from other available arrival models in

the sense that the parameters used to build our model are directly obtained from

the traffic, without any need for fitting algorithms used in most of the models.

Linear algebraic queueing theory techniques were effectively used to model the

queueing system with modal arrival inputs. We followed a modular development

of the analytical model allowing deeper understanding of the model. The solu-

tion techniques based on LAQT allowed us to investigate the impact of different

modes on the packet loss probability of the system and yielded deep insight into

the nature of the system.

The correctness of the analytical solution technique was established by

the good match of the packet loss probability estimates of the analysis with that
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obtained from the artificial-trace driven simulation. Performance comparison was

also made with original traces and Anderson’s modeling approach, to study the

effectiveness of the proposed multi-modal model. Overall, performance results

showed a pretty good fit for the lower utilizations, highlighting the contribution

from the multi-modal representation. This supports the presence of modes in

the original traffic and suggests that a weakly stable queueing model with modal

input is a good approximation for systems with bursty traffic inputs. This result

also illustrates that a traffic arrival model that does not satisfy the property

of long range dependence can predict the performance quite accurately at lower

utilizations. The finite lag correlations of the base mode introduced in the form of

γ provided good estimates of loss probabilities at smaller buffer sizes over varying

utilizations.

The performance deviated significantly for higher buffer sizes at higher

utilizations. This might be due to the lack of accuracy in modeling the base mode

correlation structure. This stresses the need for a better approach to capture the

correlations in the base mode.

We conjecture that the multi-modal traffic model will provide accurate

performance estimates if the base mode is modeled properly. The base mode could

be structured because there are no reasons to believe that the modal structure

does not extend even into the base mode. It is possible that modeling the sub-

modes of the base mode and their weak interactions would automatically model

the correlation structure of the base mode. The extraction technique suggested is
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not suitable to analyze the base mode structure and the task is out of scope for

this thesis. Additional research is necessary to extract the sub-modes from the

base mode and to exploit them in refining the method.

We conclude by listing some of the major contributions of this work,

1. Introduced the notion of modes in bursty network traffic.

2. Developed efficient methods to extract the modes from trace data.

3. Analyzed the characteristics of modes.

4. Developed a mathematical model based on the multi-modal arrival model

using linear algebraic queueing theory techniques.

5. Evaluated the performance of the analytical model and compared it with

the trace driven simulations. A comparison study with another well known

modeling approach was also done.

6. Showed that a traffic arrival model with long but finite duration correlations

can predict the queueing behavior accurately at lower utilizations.
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Appendix A

Relationship between π and ν

The steady state vector π satisfies the following equations,

πQ = 0 (A.1)

π(L−B) = 0 (A.2)

πL = πB (A.3)

π = πLB−1 (A.4)

The equilibrium starting probability vector ν satisfies the following equations,

ν = νY (A.5)

ν = νB−1L (A.6)

(νB−1) = (νB−1)LB−1 (A.7)
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From equations A.4 and A.7 we have proportionality between π and νB−1

π ∝ νB−1 (A.8)

Let α = [αa αb] be the weights associated with the proportionality. Then,

[πa πb] = [αaν
(a) αbν

(b)]B−1 (A.9)

We know,

πQ = 0 (A.10)

−αaν
(a)V(a)B(a) + αbν

(b)V(b)L(b) = 0 (A.11)

−αaν
(a) + αbν

(b)V(b)L(b) = 0 (A.12)

−αaν
(a) + αbν

(b)Y(b) = 0 (A.13)

−αaν
(a) + αbν

(a) = 0 (A.14)

αa = αb (A.15)

Also,

πε′ = 1 (A.16)

αaν
(a)V(a)εa

′ + αbν
(b)V(b)ε′

b = 1 (A.17)

αaν
(a)V(a)ε′

a + αbν
(b)V(b)ε′

b = 1 (A.18)

αa(ν
(a)V(a)ε′

a + ν(b)V(b)ε′
b) = 1 (A.19)
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So,

αa = αb =
1

ν(a)V(a)ε′
a + ν(b)V(b)ε′

b

(A.20)

Hence,

πa =
ν(a)V(a)

ν(a)V(a)ε′
a + ν(b)V(b)ε′

b

(A.21)

πb =
ν(b)V(b)

ν(a)V(a)ε′
a + ν(b)V(b)ε′

b

(A.22)

101



Appendix B

Mode properties : pAug.TL
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Figure B.1: Interarrival time distribution: pAug.TL and base mode
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Figure B.2: Interarrival time distributions-Modes 1-4 of pAug.TL trace
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Figure B.3: Interarrival time distributions-Modes 4-8 of pAug.TL trace
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Figure B.8: Packet size distribution-Modes 1-4 of pAug.TL trace
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Packet size distribution on Mode 5 of pAug.TL trace
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Packet size distribution on Mode 6 of pAug.TL trace
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Packet size distribution on Mode 7 of pAug.TL trace
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Figure B.9: Packet size distribution-Modes 4-8 of pAug.TL trace
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