

Extending the Thread Programming Model

Across CPU and FPGA Hybrid Architectures

by

Razali Jidin

Submitted to the Department of Electrical Engineering and Computer Science and the

Faculty of the Graduate School of the University of Kansas in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Dr David Andrews, Chairperson

Dr Douglas Niehaus

Dr Perry Alexander

 Dr Jerry James

Dr Carl E Locke Jr.

 Date Submitted: _____________________________________

 i

ABSTRACT

Field-programmable gate arrays (FPGA’s) have come a long way from the days when they served

primarily as glue logic and prototyping devices. Today’s FPGA’s have matured to the level where

they can host a significant number of programmable gates and CPU cores to create complete

System on Chip (SoC) hybrid CPU+FPGA devices. These hybrid chips promise the potential of

providing a unified platform for seamless implementation of hardware and software co-designed

components. Realizing the potential of these new hybrid chips requires a new high-level

programming model, with capabilities that support a far more integrated view of the CPU and the

FPGA components than is achievable with current methods. Adopting a generalized

programming model can lead to programming productivity improvement, while at the same time

providing the benefit of customized hardware from within a familiar software programming.

Achieving abstract programming capabilities across the FPGA/CPU boundary requires adaptation

of a high-level programming model that abstracts the FPGA and CPU components, bus structure,

memory, and low-level peripheral protocol into a transparent computational platform [2]. This

thesis presents research on extending the multithreaded programming model across the

CPU/FPGA boundary. Our objective was to create an environment to support concurrent

executing hybrid threads distributed flexibly across CPU and FPGA assets.

To support this generalized model across the FPGA, we have developed a Hardware Thread

Interface (HWTI) that encapsulates mechanisms to support synchronization for FPGA based

threads. The HWTI enables custom threads within the FPGA to be created, accessed, and

synchronized with all other system threads through library API’s. Additionally, the HWTI is

capable of managing “thread state”, accessing data across the system bus, and executing

independently without the need to use CPU.

Current multithreaded programming models use synchronization mechanisms such as semaphores

to enforce mutual exclusion on shared resources. Semaphores depend on atomic operations

provided through the CPU assembler instruction set. In multiprocessor systems, atomic

operations are achieved by combinations of processor condition instructions integrated within

memory coherency protocol of snooping data caches. Since these current mechanisms do not

extend well to FPGA based threads, we have developed new semaphore mechanisms that are

processor family independent. We achieve a much simpler solution and faster mechanisms (8

 ii

clock cycles or less) for achieving semaphore semantics with new atomic operations implemented

within the FPGA. These new FPGA based semaphores provide synchronization for hardware,

software and combinations of hardware/software threads. We also migrate sleep queues and

wake-up capabilities that are normally associated with each semaphore into the FPGA. The wake-

up mechanism has the ability to deliver unblocked threads either to the CPU or FPGA. The queue

and wake-up operation do not incur any system software overhead.

As the total number of semaphore required in a system may be large, implementing separate

queues for each semaphore can require significant FPGA resources. We address the resource

utilization issue by creating a single controller and a global queue for all the semaphores without

sacrificing performance. We solve the performance issue with hardware and queuing algorithm

solutions. The semaphores are provided in the form of intellectual property (IP) cores. We have

implemented recursive mutexes, recursive spin lock and condition variable cores in addition to

the semaphore core. These cores provide synchronization services similar to the POSIX thread

library.

Toward the end of this thesis, we present an application study of our hybrid multithreaded model.

We have implemented several image-processing functions in both hardware and software, but

from within the common multithreaded programming model on a XILINX V2P7 FPGA. This

example demonstrates hardware and software threads executing concurrently using standard

multithreaded synchronization primitives transforming real-time images captured by a camera

and displayed on a workstation.

 iii

In loving memory of those departed during my tenure with this degree:

Mother (Year 2004)

Grand Father (Year 2002)

Auntie (Year 2004)

Step Father-in-law (Year 2005)

 iv

Acknowledgements

I would like to express my sincere appreciation and gratitude to everyone who made this thesis

possible. First and foremost, I would to thank my adviser Dr. David Andrews for his guidance,

encouragement and patience throughout the tenure of this research. From him, I hope that I have

learned enough to conduct research, to write and publish papers.

I am grateful to the members of my dissertation committee, Dr. Douglas Niehaus, Dr. Jerry

James, Dr. Perry Alexander and Dr. Carl Locke for their precious time and advice. A special

thank to Dr. Carl Locke for introducing me to KU and his for encouragement. I appreciate Dr.

Niehaus’s guidance on semaphore and thread especially during early stages of this research.

Testing work conducted would not have been possible without the assistance of Wesley Peck. I

appreciate all the help and discussion from Wesley Peck, Jason Agron, Ed Komp, Mitchell Trope,

Mike Finley, Sweetha Rao and Jorge Ortiz.

To my wife Norlida, thank you for her ceaseless support, love and patience throughout the entire

period of this study. This thesis is dedicated to my four children Nurul Farzana, Nurul Adeela,

Naeem and Nurul Irdeena, for without them I would not fulfill my long ambition of seeking this

degree. Their curiosity and aspiration helped me push through this very challenging period of my

life. They are adapting well to living in Kansas, enjoy learning another culture, and love attending

Hillcrest Elementary School.

My gratitude goes to both my departed parents Sa’amah and M. Jidin who always emphasized

that knowledge is important and for giving me the opportunity to learn.

Last, but not the least, my thanks to God, without His Mercy and Grace I would not be here

today.

 v

TABLE OF CONTENTS

1 INTRODUCTION.. 1

1.1 Objective.. 2

1.2 Approach ... 4

1.2.1 Enabling Atomic Operations .. 4

1.2.2 Co-design and Hardware Implemented O/S Services 6

1.2.3 Application Level CPU and FPGA Co-design.. 8

1.2.4 Experimental Platform and Evaluation ... 9

1.3 Contribution of this thesis.. 10

1.4 Outline ... 10

2 BACKGROUND.. 12

2.1 Field Programmable Gate Arrays Technology .. 12

2.1.1 Introduction ... 12

2.1.2 Configurable Logic Block (CLB).. 14

2.1.3 Sample of current generation FPGA ... 15

2.2 Programming of FPGA.. 17

2.2.1 Hardware Descriptive Languages ... 18

2.2.2 Streams-C.. 20

2.2.3 HANDEL-C .. 24

2.2.4 SYSTEM C ... 27

2.4.5 Summary ... 29

3 MULTITHREAD PROGRAMMING.. 30

3.1 Introduction ... 30

3.2 Thread.. 30

 vi

3.3 Synchronization Mechanisms.. 33

3.4 Thread Scheduling... 38

3.5 Context switching and Queues: ... 40

3.6 Thread Scheduling Policies ... 42

3.7 Deadlock, Starvation and Priority Failure ... 43

3.8 POSIX Thread Library: ... 44

4 HYBRID THREAD.. 46

4.1 Introduction ... 46

4.2 Hybrid Thread Abstraction Layer.. 47

4.3 Hardware Thread ... 49

4.3.1 Introduction ... 49

4.3.2 Hardware Thread Interface.. 51

4.4 Hardware Thread Interface Architecture ... 54

4.5 Hardware Thread User Interface ... 61

4.5.1 Interface Registers... 62

4.5.2 Hardware Thread Application Program Interfaces.................................. 63

5 HYBRID THREAD SYNCHRONIZATION... 66

5.1 Introduction – atomic operation .. 66

5.2 Spin Lock Prototype .. 68

5.3 Spin Counting Semaphore Prototype... 69

5.4 Multiple Spin Locks IP.. 70

5.4.1 Multiple Spin Lock Hardware Architecture.. 71

5.4.2 Resources Analysis ... 77

5.5 Blocking Synchronizations.. 78

 vii

5.6 MUTEX Prototype (A binary blocking lock).. 79

5.7 Multiple Blocking Synchronizations ... 80

5.8 Multiple MUTEXES IP ... 81

5.8.1 Multiple MUTEXES Hardware Architecture.. 82

5.8.2 Resource Utilization.. 97

5.9 Blocking Counting Semaphore Prototype ... 98

5.10 Multiple Blocking Counting Semaphores IP... 99

5.10.1 Multiple Counting Semaphore Hardware Architecture....................... 101

5.11 Condition variables.. 112

5.11.1 Hardware Implementation of Condition Variables: 115

5.11.2 Condition Variable Hardware Architecture... 118

6 HYBRID SYSTEM CORES INTEGRATION AND TEST .. 128

6.1 Introduction ... 128

6.2 Individual Core Functional Tests .. 130

6.3 Performance Evaluations... 135

6.4 Cores Hardware Resources:... 139

7 HYBRID THREAD APPLICATION STUDY .. 142

7.1 Introduction ... 142

7.2 Image Transformation ... 142

7.3 Experiment Set-up ... 143

7.4 Median & Binomial Filters.. 151

7.5 Results ... 155

8 CONCLUSION AND FUTURE WORK ... 157

8.1 Conclusion... 157

 viii

8.2 Future Work... 160

BIBLIOGRAPHY.. 161

 ix

LIST OF FIGURES

Figure 2-1 History of Xilinx FPGA in the Last Ten Years.. 12

Figure 2-2 Programmable Logic Array ... 13

Figure 2-3 Configurable Logic Block.. 14

Figure 2-4 An Example of Streams-C Process Declaration... 21

Figure 2-5 Streams-C Hardware Processes ... 22

Figure 2-6 Organization of the Streams-C Compiler... 23

Figure 2-7 Two Parallel Processes... 26

Figure 3-1 Threads within a Process ... 31

Figure 3-2 Thread States.. 38

Figure 3-3 Thread Execution Representation and Supporting Structures.................................... 41

Figure 4-1 Hybrid Thread Abstraction Layer .. 46

Figure 4-2 Hybrid Threads System.. 48

Figure 4-3 Hardware Thread Interface .. 50

Figure 4-4 Pseudo Code for Hardware Thread Create API ... 52

Figure 4-5 Hardware Thread States... 53

Figure 4-6 Hardware Thread Hardware RTL representation... 54

Figure 4-7 Hardware Thread Hierarchical Processes .. 56

Figure 4-8 Thread Scheduler State Machine ... 57

Figure 4-9 Bus Master State Machine ... 59

 x

Figure 4-10 Status Register Process .. 60

Figure 5-1 One Spin Lock ... 68

Figure 5-2 Spin Lock Pseudo Code API.. 68

Figure 5-3 Spin Counting Semaphore ... 69

Figure 5-4 Spin Counting Semaphore API .. 70

Figure 5-5 Multiple Spin Locks IP .. 70

Figure 5-6 Multiple Spin Locks Hardware Architecture ... 72

Figure 5-7 Multiple Spin Lock BRAM Access Controller State Diagram.................................. 76

Figure 5-8 Blocking Synchronization CPU Interface.. 79

Figure 5-9 Single MUTEX (a Blocking Binary Lock) .. 79

Figure 5-10 Blocking Binary Lock API .. 80

Figure 5-11 Multiple Blocking Locks IP Core .. 81

Figure 5-12 Multiple Mutexes IP Hardware Architecture... 84

Figure 5-13 Mutex BRAM Access Controller... 88

Figure 5-14 Global Blocking Queue and Lock Owner Structures... 89

Figure 5-15 Global Queue Operation .. 90

Figure 5-16 Queue Controller Enqueue State Machine... 92

Figure 5-17 Queue Controller De-queue Operation .. 94

Figure 5-18 HW/SW Comparator & Next Owner Address Generator .. 95

Figure 5-19 Bus Master State Machine ... 97

 xi

Figure 5-20 Blocking Counting Semaphore (Prototype)... 98

Figure 5-21 Blocking Counting Semaphore API... 99

Figure 5-22 Blocking Counting Semaphore .. 100

Figure 5-23 Blocking Counting Semaphore API... 100

Figure 5-24 Counting Semaphore Hardware Architecture .. 102

Figure 5-25 Counting Semaphore BRAM Access Controller ... 108

Figure 5-26 Dequeue State Machine ... 111

Figure 5-27 Multiple Condition Variables Core.. 115

Figure 5-28 Cond_wait API.. 116

Figure 5-29 Cond_Signal API ... 117

Figure 5-30 Cond_Signal API ... 118

Figure 5-31 Condition Variable Hardware Architecture ... 120

Figure 5-32 Cond_Signal State Machine... 124

Figure 5-33 Cond_Broadcast State Machine... 126

Figure 5-34 HW/SW Comparator & Next Owner Address Generator 127

Figure 6-1 Single FPGA Chip with Embedded CPU and Other Cores 128

Figure 6-2 An Example of Memory Map of a Hybrid Thread System...................................... 130

Figure 6-3 Hardware Thread vs. Software Thread .. 136

Figure 6-4 Mutex Access Speed (CPU Data Cache Off).. 137

Figure 6-5 Mutex Access Speed (CPU Data Cache On) ... 137

 xii

Figure 7-1 Binomial 3x3 Mask Kernel .. 143

Figure 7-2 Hybrid Thread Image Processing... 144

Figure 7-3 Software Thread on CPU (part of C program)... 145

Figure 7-4 Hardware Thread Control Pseudo Code .. 146

Figure 7-5 Hardware Thread Control Unit (VHDL Code) .. 148

Figure 7-6 Invert Image Data Path (VHDL code) ... 149

Figure 7-7 Invert Image “C” Code .. 149

Figure 7-8 Threshold Filter Data Path (VHDL code).. 150

Figure 7-9 Threshold Filter in “C” Language.. 151

Figure 7-10 Median Filter Data Path (VHDL) .. 153

Figure 7-11 Main Part of Median Filter (C Code)... 154

Figure 7-12 Main Part of Binomial Filter (C Code) .. 154

 xiii

LIST OF TABLES

Table 2-1 Current Generation of FPGAs... 15

Table 2-2 Example of Handel-C Language Constructs ... 25

Table 3-1 Thread State Descriptions ... 39

Table 4-1 Hardware Thread Application Program Interfaces (APIs).. 61

Table 5-1 Operations Request by the Application Interface.. 74

Table 5-2 Spin Lock API return values ... 75

Table 5-3 One spin lock prototype .. 77

Table 5-4 512 multiple spin locks implementation ... 77

Table 5-5 Mutex Application Interface Requests .. 85

Table 5-6 Mutex API Return Values ... 86

Table 5-7 Hardware Resources for a Prototype MUTEX.. 98

Table 5-8 Hardware Resources for Multiple (512) MUTEXES.. 98

Table 5-9 Semaphore Application Interface Requests... 104

Table 5-10 Semaphore API Return Values.. 106

Table 5-11 Condition Variable Application Interfaces.. 121

Table 5-12 Condition Variable API Return Codes.. 122

Table 6-1 Baseline HW Thread vs. SW Thread .. 135

Table 6-2 Cores Access Speed .. 138

 xiv

Table 6-3 Hardware cost for hardware thread interface .. 139

Table 6-4 Hardware cost for 64 Spin Locks (excluding bus interface) 139

Table 6-5 Hardware Cost for 64 MUTEXES (excluding bus interface) 140

Table 6-6 Hardware Cost for 64 Semaphores (excluding bus interface)................................... 140

Table 6-7 Hardware Cost for 64 CVs (excluding bus interface) ... 140

Table 6-8 Hardware Cost for 256 Synchronization Variables (excluding bus interface).......... 141

Table 6-9 Hardware Cost for 2048 Synchronization Variables (excluding bus interface)........ 141

Table 7-1 Hardware Thread Resources ... 155

Table 7-2 Image Transforms Execution Times ... 156

 1

1 INTRODUCTION

Field Programmable Gate Arrays (FPGA’s) have matured significantly from their origins as

simple programmable logic devices (PLDs) used as substitutes for SSI combinational logic chips.

Over the last three decades, FPGA’s have grown from simple glue logic components, through

moderate prototyping platforms and more recently, as complete systems on chip (SoC)

components. Today’s modern FPGAs now commonly share portions of their silicon die area with

a variety of diffused IP, such as multipliers, bulk RAM, and processor cores. The rapid increase

in fabrication technology has spurred increases in system developers desires to build more

complex systems with these fully capable commodity parts. Unfortunately, the increase in

fabrication capabilities has not been matched with a corresponding increase in software tools and

methods for exploiting the full potential of these components. The common methods in use for

circuit design are based on old hardware description languages (HDL’s) that were developed two

decades ago for describing low level SSI, MSI, and VLSI components. These languages were

adopted for circuit design and replaced schematic capture for application specific integrated

circuits (ASICs) in the 1980’s. Although they are still in use today, they present drawbacks for

specifying the complex subsystems and circuits associated with modern FPGA’s. First, they are

not a particularly efficient languages for driving modern automatic synthesis tools. This is a

result of their lack of abstraction in their data types and ambiguity in certain behavior constructs

that do no translate well to logic gates, wires, and finite state machines. Even though they allow

structural specification, they do not contain constructs that reflect the organization of modern

FPGA building blocks and interconnect networks. New low level languages such as JHDL [51]

have been proposed to address this problem. However, both artifact HDL’s and the newer JHDL

still present problems for dealing with the complexity of modern FPGAs. This approach requires

specifying individual circuits in terms of bits, combinational logic circuits, flip-flops, latches, and

I/O drivers. Designing at this low level of abstraction is simply becoming impractical for

efficiently exploiting the complexity of modern FPGA’s. An additional concern is that this

approach requires hardware design skills that are not possessed by the majority of system

programmers and software engineers.

New research is now addressing this problem by investigating new approaches to circuit

generation from traditional high-level software languages. Specifying circuit behavior from a

high level language helps in dealing with the complexity of modern FPGA’s as well as enabling

programmers to access the potential of the reconfigurable fabric [19, 21, 48]. Although an

 2

important step, enabling circuit specification from a higher level syntax only addresses part of the

problem. The missing component is advancements in not just programming languages, but also

programming models. A programming model specifies computational components such as tasks,

threads, and processes, as well as their interactions such as semaphores and inter-process

communications (IPC). Programming models also provide the definition of standard component

interfaces and abstract data types. Thus, a programming model provides the developer with an

abstraction that alleviates knowledge of low level platform details and allows the expression of

the application in a more appropriate form.

1.1 OBJECTIVE

The goal of this research was to develop such an abstract capability by bringing both hardware

and software computations under the familiar multithreaded programming model. This approach

provides the following advantages. First, extending a software programming capability over the

hybrid device enables programmers to gain access to the potential of the reconfigurable logic.

This is significant, as our current methods of programming the FPGA require hardware design

skills not familiar to software engineers and programmers. Second, the use of higher level

abstractions and languages decreases development time and costs. Bringing in higher levels of

abstractions is also important as the complexity of these components are already much greater

than can be efficiently handled with low level methods. Third, the system services that have been

developed to support the programming model provide increased capabilities for time critical

applications that could not be achieved through classical software approaches. This enables new

levels of precise control over critical real time applications.

We chose the multithreaded framework as our model as it represents the type of concurrency

typically found in a range of embedded applications, and is familiar to a wide range of system

programmers. This is evidence from wide acceptance of POSIX multi-threaded programming.

Additionally this model permits other computational models to be composed on top. As a simple

example the data streams model is easily implemented as a set of threads that linearly

synchronize.

The successful realization of a concurrent hybrid system requires uniform concurrency

mechanisms for both CPU based software threads as well as FPGA based hardware threads. The

different concurrency control primitives defined by POSIX include mutexes, semaphores and

 3

condition variables. Each of these synchronization primitives serves different purposes such as

mutual exclusion, event waiting and controlling countable resources. Blocking primitives require

sleep queues and wake-up mechanisms. Another category of concurrency control is referred to as

spin primitive. Spin is useful to serve blocking primitive such as condition variables and for

multi-processor environment. In our case spin is helpful to synchronize concurrent execution of

FPGA hardware threads and CPU based threads. Implementing all these mechanisms in FPGA

either partly or otherwise will depend on feasibility, performance enhancement, resources versus

performance trade-off, and other aspects of hardware software co-design. For example

implementing an efficient sleep queue may be costly in terms of FPGA resources if the size of the

supporting circuits must scale with the number of blocking primitives.

Developing a uniform computational model requires reconciling the different underlying

computational models of the CPU and FPGA. Whereas a CPU has a program counter, stack, and

register set, the FPGA has no cycle-by-cycle instruction stream, stack, and temporary register set.

Additionally, with current FPGA technology, system developers must synthesize and map the

data paths and operations that represent the computations of the thread into FPGA before runtime.

These differences require new mechanisms to represent FPGA based hardware computation to the

thread abstraction, and to support interactions among threads across the CPU/FPGA boundary.

Although it seems that the lack of an existing computation model is a detriment, on the contrary it

is an asset as it presents an opportunity to create more efficient mechanisms. The implementation

of threads in an FPGA must maximize the advantages of using the FPGA platform, while

preserving the common multithreaded programming model. At the same time, the FPGA thread

implementation must not use methods that degrade the efficiency of synchronization across the

CPU/FPGA boundary. Neither should the FPGA methods create any form of unfairness between

the FPGA and CPU threads.

On processors, an operating system provides services including general resource management to

the software threads. However, on the FPGA, the hardware threads do not have direct access to

these system services, and it is not efficient for the hardware threads to cross the boundary to seek

services from the operating system running on the CPU. There are several approaches to this

problem. First, new services hardware services can be created specifically to serve the hardware

threads. Second, base services can be created in the hardware that make use of software threads as

proxies to seek services from the operating system. Still yet, existing software services can be

migrated into the hardware to serve both hardware and software threads. Although more complex,

 4

this last approach can enable new levels of performance for software threads as well as providing

non-intrusive services to the hardware threads.

1.2 APPROACH

The objective of this research was to create a programming and execution environment that

strongly integrated the hybrid CPU/FPGA based computational components under familiar multi-

threaded programming paradigm. Our successful outcomes include an adaptable hardware and

software co-design and execution environment within which a given application can be realized

as a set computation threads with many possible mappings on both the CPU and FPGA

processing assets. Our approach was to bring both the FPGA based thread and CPU based

components of an application under the umbrella of the POSIX thread model. This first required

enabling the FPGA to support atomic operations equivalent to classic processor load-linked store

conditional instructions. Providing atomic operations is fundamental for supporting

synchronization operations, which in turn are used for thread synchronization. Following the

creation of new synchronization primitives, the first of two co-design efforts focused on

developing appropriate low-level services across and between the CPU/FGPA assets within the

operating system. The key issue in this co-design effort was to address how to decompose system

services and migrate them into the FPGA. The second co-design effort was to create the

application level API’s callable by both hardware and software threads. This required the

creation of small wrappers for software threads, and a new abstraction interface structure for

hardware threads. The abstraction interface encapsulated the lower level platform specific details

within procedures that had a similar API interface with their software API counterparts.

1.2.1 Enabling Atomic Operations

Management of shared resources is fundamental to the successful implementation of a concurrent

programming model. Accesses to common resources by the concurrent executing threads in a

shared-memory system are serialized by synchronization mechanisms such as semaphores, or

simple binary locks. On general-purpose processors, synchronization implementations are based

on the atomic operation such as test-and-set or swap instructions. For example, the PowerPC755

has lwarx and stwcx instructions with RSRV signal. In multiprocessor systems, atomic operations

are achieved by combinations of processor condition instructions integrated within a memory

coherency protocol of snooping data caches. Since these current mechanisms do not extend well

 5

to FPGA based threads, new methods have to be developed. In addition several issues must be

considered:

- The location of each synchronization variable and its associated services either on the

FPGA or processor and system memory.

- The number of synchronization variables in a given system can be changed without the

need to redesign the hardware.

- Portability: current System-on-Chip (SOC) has the capability to host multiple processor

architectures including digital signal processing (DSP) and the need to support possible

heterogeneous applications.

An efficient atomic operation based on normal write/read pair can be easily implemented within

FPGA to support synchronization primitives. These synchronizations will be CPU family

independent since their accesses utilize standard input/output operations. Implementing the

atomic operation within FPGA offers an additional advantage, as multiple bus cycle and wait

state associated with typical memory (DRAM) will be avoided.

To minimize time to market, system designers are now implementing the intellectual property

(IP) base design in scheming their hardware system. Adopting this approach permits modularity,

allowing FPGA based synchronization or other types of IP to be added to the system without the

need to redesign the hardware. However, the need to scale the IP core to the number of

concurrency primitives is also an issue to be addressed, as their number can change at run time

and varies from one application to another.

As multiple threads running on processors and FPGA can access the synchronization variables,

the appropriate solution requires the synchronization IP cores to be attached to the system bus. An

internal bus may be added, to allow FPGA threads to obtain the synchronization variables without

crossing the system bus, to reduce the system bus traffic. However an internal bus can be unfair

to the CPU based threads. Independent of the internal bus existence, both the FPGA threads and

the synchronization IP must have bus interfaces. In addition FPGA threads must have the ability

to initiate and arbitrate the system bus to access the synchronization IP. It must have facilities to

arbitrate the system bus, generating address and relevant bus handshaking and control signals.

 6

These basic atomic structures within the FPGA will provide basic building blocks toward

implementing the higher order concurrency control primitives such as semaphore, mutual

exclusion and condition variables.

1.2.2 Co-design and Hardware Implemented O/S Services

High-level integration of the CPU and FPGA provides opportunities to discover new ways of

implementing operating systems especially for embedded systems. Traditionally, an operating

system is a collection of system software that provides hardware abstraction to the application

layer, while the multiprocessing programming is the enabling technology permitting hardware

sharing. Current FPGA devices are not only allowing us to migrate the concurrent control

mechanisms from the CPU into the hardware, but other system software components as well,

especially toward achieving processor workload reduction and system response variability

improvement.

In current parallel programming implementation, the synchronization mechanisms provided can

be categorized into two types – busy wait or blocking type. The blocking type mechanisms, such

as semaphores, require sleep queues to place blocked threads when there are access contentions.

These sleep queues are traditionally implemented in the system memory and each semaphore has

its associated sleep queue. Thus, it is natural to migrate the sleep queue into the FPGA, as well. In

addition, blocking semaphore must have a facility to wake-up the blocked threads. As the

awakened threads can be FPGA threads or CPU threads, the blocking semaphore should have the

capability to deliver them either to the CPU or FPGA. As the number of blocking semaphores in a

given system can be large, the issue of mapping the sleep queue to hardware resources needs to

be addressed. The queue and its wake-up mechanism should expend FPGA resources optimally

and without sacrificing performance. In addition the state of the sleep queues have to be protected

between the start of unblocking process until the delivery of all the unblocked threads, as there

are possibilities of new requests.

Delivery of awakened CPU threads to the scheduler queue requires the generation of exception to

the processor. The scheduler then may need to run the scheduling decision depending on the

scheduling algorithm being used. Obviously not all insertion of unblocked threads cause

swapping of threads to run on the processor. Independent of scheduling algorithm, delivery of

unblocked threads to the scheduler queue can cause unnecessary exception processing overheads.

Obviously migrating the scheduler and key time services into the FPGA can eliminate context

 7

switching associated with the unblocking operation. However, the scheduler queue relocation to

the FPGA affects the handling mechanism of software threads. Thus, it is a natural extension to

migrate the software thread management into the FPGA, as well. Further, whether the system

functionality is implemented in hardware or software, it should be abstracted from the user

application. User applications do not need to know the location of services provided.

The above approach defines new partition for operating system services across hardware/software

boundaries. On the hardware side, FPGA threads cannot request system services using the same

mechanism as CPU based threads, such as traps to the operating system. As conventional

operating services cannot support the hardware threads, new services have to be invented to

enable hardware threads to have abilities to emulate the software threads. These new services will

abstract the low-level hardware architecture details from the user application. The degree of

abstraction required depends on the programming language chosen by the user and the

requirement of application. The operating system is not required to conceal all the hardware

instead it should abstract only the non-customized components. To manage these new services

and cope unclear boundary between hardware and software, we propose to classify the operating

system components for the hybrid CPU/FPGA devices into four categories:

1. Software implemented conventional operating system (soft O/S services)

2. Hardware implemented conventional operating system (hard O/S services)

3. Hardware implemented to service both hardware and software threads (hybrid O/S

services)

4. Hardware operating system (hardware services or hardware functions)

The second category, which we refer to as hard O/S, is to serve CPU based software threads

while the fourth category is for FGPA based hardware computation. An example of hard services

includes the software thread scheduler mentioned above. The hardware functions include the

facilities to enables FPGA thread to access memory and concurrency control mechanisms. Access

to system memory enables FPGA threads share data with the CPU based software threads. These

hardware functions will not cost much hardware resources and, for performance consideration,

there are best implemented within individual FPGA threads. These basic hardware functions are

sufficient to enable FPGA threads to perform tasks within the multithreading environment. The

need to transfer the data to the peripherals can be done with the help of the first category

operating service component that we refer to as soft O/S. The FPGA threads however must first

 8

transfer the data into the heap section of main memory. Alternatively, the support for peripheral

interfaces can be implemented within the FPGA. For example, hardware TCP/IP stack can be

implemented into the FPGA. These new hardware services can be categorized as hybrid services

as it could serve both software and the hardware threads. This attractive solution not only enables

FPGA threads communicate directly with peripherals, but will also reduce memory utilization

and free CPU from similar processing task. Concurrent control mechanisms mentioned previously

can be categorized as hybrid services mentioned above, and they will be useful to control sharing

of the new hardware implemented services. The scope of research in this thesis however is not to

implement all the mentioned services but rather to identify new hardware and software partition

and to create necessary enabling mechanisms that extend multithreaded programming model into

the FPGA.

In implementing this programming model, we have two options: a simple micro-kernel or desktop

type operating system. As the microkernel is designed to tame the complexity of the desktop

operating system, it offers small footprint and good timeliness behavior for the embedded system.

The micro-kernel is also an attractive choice when considering less effort is required to adapt it,

and to add certain system services into the hardware. However, it lacks much system services and

development tools. Sufficient system service is essential, especially displaying outputs

graphically during the demonstration phase.

1.2.3 Application Level CPU and FPGA Co-design

The acceptance of the multithreading programming model has led to the definition of a platform

independent operating standard (POSIX) that supports application level multi-threaded

programming. We will use the same approach as the POSIX multi-threaded library to provide

application program interface (API) to create our own library. We will approach the API

iteratively, first implementing basic FPGA-thread creation and then proceed to hybrid

concurrency control. Essentially, for the synchronization variables, at least two API are needed.

One is to acquire and the other is to release the variables. Acquiring APIs may cause blocking

operations. The blocking operation on the CPU requires switch of context and change of states.

The release may cause unblocking operation. On the CPU, the unblocking operation will change

the thread state and put it back into the scheduler queue. We will further concentrate on the

concurrency control mechanism, add more APIs as we adding more features.

 9

FPGA Thread Control

Current FPGA technology requires that logic primitives to be programmed prior to execution.

The algorithm that has been specified for a thread must be synthesized and loaded into the FPGA

prior to the run-time. In effect, the configured logic primitive and interconnections that form data

path and control unit for the hardware computational component must be pre-loaded without

allowing the FPGA thread to execute. When the thread is loaded into the FPGA, the thread will

default to the idle state. It remains in this state unless it receives a start command.

To start or suspend an FPGA thread requires creation of a “controller” that will manage state

transition similar to the software thread. Useful states that can represent the operation of a thread

includes idle, run, and wait. Similar to the software threads, a thread goes to sleep when it is

blocked from getting a semaphore. The thread transitions back to the run state when it is

unblocked. Therefore, a given state controller must have an interface in the form of memory-

mapped command register to accept control word from the CPU or semaphores. To start a thread,

an application program interface on the CPU writes a start command to the register. To unblock a

thread, semaphores write wake-up control word to the register. Additionally, the argument

registers can be added within the controller to provide options for a given thread to choose

different execution paths.

In addition to the duty of managing state transition, the controller provides other services as well.

The essential services include synchronizations and input/output operations that effectively

enable data exchange across the system bus with other threads. The controller performs these

services in response to requests from the user on the hardware side. The controller interprets a

user request, performs the intended service, for example, obtaining a semaphore. To abstract the

controller low-level details, the hardware implemented application program interfaces (APIs) are

provided. The user makes use of these APIs when requesting services from the controller.

1.2.4 Experimental Platform and Evaluation

We have chosen as our first experimental platform a commercially available development board

that contains a hybrid CPU/FPGA chip; the Xilinx Virtex-II Pro. The Virtex-II Pro chip contains

a Power PC 405 core embedded within an FPGA fabric that contains over 11,000 CLB’s. This

level of CLB integration provides a sufficient number of devices for our experimental hardware

co-design requirements. We also have access to a significant library of VHDL descriptions of IP

 10

cores which can be used a base and modified for our work. This provides us with a true SoC

target from which to proceed.

For evaluation of our hybrid threads, we have chosen to implement several image processing

algorithms. This evaluation will demonstrate hardware and software threads executing

concurrently, sharing data by means of new hybrid semaphores, transforming real-time images

captured by a camera and displayed on a workstation.

1.3 CONTRIBUTION OF THIS THESIS

The research presented in this thesis is part of KU Hybrid Thread Project. This thesis makes the

following contributions in the development of a framework for extending multithread

programming model across CPU/FPGA architectures:

1) Definition of FPGA based hardware thread context and control.

2) Design, implementation and testing of FPGA based threads.

3) Design, implementation, and testing of hardware implemented APIs for synchronization

services and memory accesses.

4) Design, implementation, and testing of FPGA based recursive spin lock core.

5) Design, implementation, and testing of FPGA based recursive mutex core.

6) Design, implementation, and testing of FPGA based counting semaphore core.

7) Design, implementation, and testing of FPGA based condition variables core.

8) Initial design and contribution to hardware based software thread management.

9) Implementation of synchronization primitive APIs for testing.

10) Integration and synchronization testing of CPU-based threads and FPGA-based threads.

11) Introduction to new partition of hardware and software services.

12) Evaluation of the hybrid multi-threads model using image transformations.

1.4 OUTLINE

The remainder of this thesis is organized as follows. The next chapter presents background

information on FPGA architectures, and related work in hardware compilation. Chapter three

presents an introduction to the POSIX multithreading programming model. Chapter 4 describes

the hybrid thread abstraction layer, context and control for hardware threads, and the VHDL

application interface. Chapter 5 starts with a general description of classic atomic operations,

 11

followed by descriptions of our evolutionary prototypes for synchronization primitives. This

chapter then describes the design and implementation of global queues and controllers to control

multiple instances of synchronization variables with efficient hardware costs but not at the

expense of execution times. The integration of all core modules, testing procedures, performance

tests and summary of results are covered in Chapter 6. In Chapter 7, we present an evaluation of

our hybrid thread model with image processing applications. This thesis concludes with future

research direction in Chapter 8.

 12

2 BACKGROUND

2.1 FIELD PROGRAMMABLE GATE ARRAYS TECHNOLOGY

2.1.1 Introduction

The Field Programmable Gate Array (FPGA) was first introduced in the mid-1980s, and is in the

class of programmable devices that provide the benefits of custom hardware, but avoiding the

initial cost, fabrication time delay, and inherent risk of conventional masked application specific

integrated circuits (ASIC). The primary advantage of an FPGA over an ASIC is that it can be re-

programmed an unlimited numbers of times to implement a wide variety of customized digital

systems. In the early days, FPGAs were used as testing and prototyping devices. As fabrication

technology improves, the use of FPGAs have widened to include “glue logic” to replace multiple

discrete chips with a single components, custom accelerators in digital signal processing

applications, and as general purpose high performance co-processors. Figure 2-1 shows the

maturation of FPGA’s happened in the last ten years. Within this period, FPGA’s have

significantly gained in density (200-fold) and speed (20 times faster) but their prices continued to

decrease (300 times) [40].

Figure 2-1 History of Xilinx FPGA in the Last Ten Years

 1/91 1/92 1/93 1/94 1/95 1/96 1/97 1/98 1/99 1/00 1/01 1/02

Capacity

Speed

Price
Virtex-II Pro

Spartan-3

Virtex-II Pro

Memory
Bandwidth

Year

1

10

100

1000

[40]

 13

Presently, FPGAs have matured to a stage where they can host a complete embedded system,

including a CPU, support components and other complex application specific functions. For

example, a XILINX VIRTEX XC4VFX140 device now contains 2 RISC processors, 10Megabits

memory, and 140K logic cells, with an operation frequency as high as 500Mhz [61].

The internal structure of a Xilinx FPGA is shown in Figure 2-2. This device that consists of a

matrix of configurable logic cells (CLBs), with a grid of interconnecting routing lines and

switches between them. Input/output blocks (IOB) exist around the perimeter to interface the

internal interconnect lines and external package pins. The specific implementation and

capabilities of a CLB varies with the manufacturer of the device. Xilinx CLBs are comprised of

combinational logic and storage cells. The storage cells can be used as look up tables for

realizing Boolean logic equations or as storage devices.

Figure 2-2 Programmable Logic Array

The programmable interconnect resources provide routing paths to connect the inputs and outputs

of the CLB and IOB onto appropriate networks. Programming or customizing an FPGA includes

configuring the logic cells to implement Boolean functions and connecting the switches in the

[34]

 14

interconnect lines to both route variables between functions and also to compose local functions

into more complex functions.

2.1.2 Configurable Logic Block (CLB)

A Xilinx CLB (Configurable Logic Block) element is shown in Figure 2-3. Essentially, each CLB

contains a pair of single bit flip-flops and two independent look-up table function generators.

These function generators are configurable either as four input lookup tables (LUT), two bits shift

registers or two bits distributed RAMs. Each look-up table takes four bits of inputs from the

routing network and generates a one-bit output. By filling in the look-up table with appropriate

bits, any four-bit logic function can be implemented. The table output can optionally be latched

by a flip-flop before being send back to the routing network to other logic blocks.

Configurable Logic Blocks implement most of the logic in an FPGA. Four inputs is a good size

for a look-up table as suggested by various studies, trading utility (complexity of a block) against

utilization (what fraction ends up in use) [34]. The symmetry of the CLB architecture is also

important as it facilitates the placement and routing of a given intended function. In addition to

the lookup tables, other related logic block resources such as dedicated carry chain circuits are

included to facilitate and speed-up common user intended logical operations.

F

G

H

Flip
Flop

Flip
Flop

4 inputs

4 inputs

LUT

LUT

switch

outputs

Figure 2-3 Configurable Logic Block

In addition to CLB’s, current generation FPGAs include additional diffused hardware resources

typically required for embedded systems. For example the Xilinx XC4FX140 (90 nm CMOS

technology, 500 MHz) features dedicated digital signal processing 18-bits multipliers and

accumulators (MAC), dual port memory block RAM (BRAM), digitally control clock manager

(DCM), 32-bits 5-stage pipeline PowerPC RISC CPU, Ethernet MAC, fast input/output

[61]

 15

transceiver (fast I/O transmit/receive), significant number of input/output pins (I/O), shown in

table 2-1 [61].

CLB Other Resources Device

Logic

cells

Distribut

ed RAM

(KB)

DSP

resource

18KB

Blocks

RAM

DCM CPUs Ethernet

MAC

Fast I/O

Tx/Rx

I/O

Pins

XC4VFX140 142,128 987 192 552 20 2 4 24 896

XC4VFX100 94,896 659 160 376 12 2 4 20 788

XC2VPro30 30,816 428 136 136 8 2 - 8 644

XC2VPro7 11,088 154 44 44 4 1 - 8 396

Table 2-1 Current Generation of FPGAs

2.1.3 Sample of current generation FPGA

The Virtex II Pro FPGA device family from Xilinx was chosen as our experimental platform

based on the availability of diffused and soft IP. For example a XC2VP125 FPGA includes two

PPC405 processor cores with up to 44,096 CLBs. Other resources include 18Kbit block RAMs

(BRAMs), 18bitx18bit multipliers and digitally control routing resources. The block RAMs are

extremely useful to store temporary data and are used throughout our design to hold state

information. The processors operate at clock speeds up to 300 MHz [60]. The FPGA logic can be

clocked up to 400Mhz, however the final operation speed will naturally depend on the critical

path of the implemented Boolean circuits.

Xilinx also provides a library of intellectual property (IP) cores. An IP core is a pre-made logic

block that can be implemented on FPGA or ASIC. As essential elements of design reuse, IP cores

are part of the growing electronic design automation (EDA) standard components. IP cores fall

into one of three categories: hard, firm and soft cores. Hard cores are physical manifestations of

the IP diffused into the silicon circuitry. Soft cores are provided as a list of the logic gates as an

HDL module. The soft core IP provided by Xilinx includes serial ports, Ethernet controllers,

processor busses (PLB), peripheral busses (OPB), bus arbiters, memory controllers and the

micro-blaze processor [61].

 16

CPU/FPGA Hybrid

Specific to our studies, the Virtex II Pro V7 has an IBM Power PC 405 RISC CPU hard core

embedded in the FPGA fabric logic. This high level of integration between a CPU and an FPGA

(CPU embedded within the FPGA) allows significant flexibility to attach peripherals or other IPs

to CPU. A wide range of peripheral IP can be implemented out of the FPGA logic fabric, and

accessible from the CPU via the standard processor local bus (PLB) or on-chip peripheral bus

(OPB). The details of these busses are described later. This configuration allows users to create

their own IP and connected it to the CPU via one of the busses. In fact almost the whole computer

system that used to be on a printed circuit board can now be implemented within this single

FPGA chip (except the main memory chips).

Processor resources

The Power PC 405 hard core is based on IBM-Motorola PowerPC RISC processor architecture.

The Power PC 405 architecture is optimized for embedded systems applications (low power). It

implements a subset of the PPC32 instruction set with additional extensions. An application

binary interface (ABI) provided by IBM serves as an interface for compiled programs to system

software [52]. The embedded Application binary (EABI) is derived from the PowerPC ABI

supplement to the UNIX System V ABI. The ABI differs from the supplement with the goal of

reducing memory usage and optimizing execution speed. The EABI describes conventions for

register usage, parameter passing, stack organization, small data area, object file and executable

file format.

Several low level details of the Power PC 405 architecture should be mentioned. First, the Power

PC 405 architecture does not have a push/pop instruction for manipulating the stack. Instead, the

architecture treats the stack pointer register as a general-purpose register that can be manipulated

using standard load/store register to memory instructions. Second, the PPC 405 does not have

expose internal signals necessary to lock the bus for synchronization operation (semaphores).

Although there are reserved instructions for synchronization operations useful for synchronizing

multiple processors configured in a shared memory processor (SMP) configuration, successful

concurrency control among multiple processors requires additional external mechanisms. This is

a critical issue for realizing hybrid threads in our system and necessitated the creation of more

efficient hardware based synchronization primitives.

 17

Core Connect Buses

Xilinx provides the standard IBM Core Connect [50] bus as soft IP to connect peripheral IP cores

to the processor. Core Connect provides three levels of hierarchical buses: processor local bus

(PLB), on-chip peripheral bus (OPB) and device control bus (DCR). The processor local bus

(PLB) is used to connect processor cores to the system main memory and other high-speed

devices. The OPB bus is dedicated for connecting slower on-chip peripheral devices indirectly to

the CPU. The OPB bus supports variable size data transfers and as well as flexible arbitration

protocols. Both the PLB and OPB busses have their own bus arbiters, and the two busses are

interconnected by at least one bridge.

Xilinx provides a convenient bus attachment interface layer for each of the three buses in the

form of soft core IP. The attachment, called the IPIF, allows peripheral IPs or other cores to

connect to either of the buses. The IPIF is decomposed into two layers to allow easy migration of

peripheral or IP cores for each of the different system buses. The first layer provides an interface

facility (including set of standard signals) to be used between the IP core and the IPIF. The

second layer is a bus specific portion, and interfaces the IPIF to one of the buses. To move an IP

core from one bus to another requires only substitution of the second layer.

The IPIF provides two different types of attachment to an IP core: a slave and a master

attachment. With the master attachment, user cores have ability to initiate bus transactions. Bus

arbitration logic is included within the master attachment. However it is the user core’s

responsibility to re-arbitrate or abort the bus and switch the data bus from slave mode.

2.2 PROGRAMMING OF FPGA

In current practice, hardware descriptive languages (HDL) are widely used to implement

applications on the FPGAs. However, using HDL requires knowledge of hardware details such as

timing issues, propagation delay and signal fan-out. New techniques are emerging that attempt to

raise the level of abstraction required to program FPGA’s. With these techniques, the designers

are no longer required to possess low-level hardware knowledge when implementing their

applications onto FPGA’s. In addition, researchers are seeking solutions to remove the boundary

between hardware and software components. Widely use FPGA programming languages are

discussed in the following sections.

 18

2.2.1 Hardware Descriptive Languages

VHDL [60] and VERILOG [59] are the two most widely used hardware descriptive languages

(HDLs) in use today for specifying digital systems. HDL syntax and semantics includes explicit

notations for expressing time and concurrency, two primary attributes of hardware. VHDL,

which stands for Very High Speed Integrated Circuit Hardware Descriptive Language, was

initially developed by Department of Defense for documentation and design exchange, and later

adopted as standard for hardware language by the IEEE [18]. VHDL, which is based on a discrete

event concurrency model, contains language elements that are capable of supporting behavioral,

dataflow and structural models.

In VHDL, the primary hardware abstractions are entities. They are used to identify and represent

digital systems. An entity interfaces to the external world with well-defined input and output

ports. The function to be performed by a digital system is specified inside the architecture

definition within an entity. The function can be described either behaviorally or structurally or in

combinations of both. Very basic building block entities are specified behaviorally. Then these

basic entities can be structurally connected to form a larger entity. For example the predefined

Xilinx block RAM entity can be wired to a controller entity to form a memory subsystem entity.

Interconnection of multiple entities adds up propagation delays, thus care must be taken to ensure

that the delay for the critical path of implemented circuit does not exceed the system clock period.

The functionality of a large entity can be described using combinations of dataflow, structure and

behavior specifications.

VHDL supports a two-level behavioral hierarchy. At the first level, specification can be

decomposed into sets of concurrent processes. At the second level, sequential execution can be

specified within a process. Additionally, to support notion of time, VHDL has signals, which

differ from variables in that their values are defined over time. These signals can be activated

either asynchronously or synchronously. These signals are employed as communication

mechanism between concurrent processes.

Synchronization in VHDL can be implemented in two ways, either using the process sensitivity

list or wait statements. A sensitivity lists provides initiating events for evaluating a process. As

such, the sensitivity list must consist of all events or signals that can trigger a reevaluation of the

process. To define synchronous processes the clock should be the only signal in the process’s

sensitivity list. Although convenient for simulating processes, the sensitivity list alone is

 19

insufficient for actual implementation of the circuit in hardware. To support implementations,

VHDL requires implementing conditional statements within the process body instead of the

sensitivity list.

Synthesis

After creating and simulating a digital design, then the circuit must be synthesized for actual

implementation. Synthesize is the process of translating a design to a gate level representation

which can be mapped to the hardware resources within the FPGA. The synthesize tool takes the

logic design, target technology features of the FPGA, and constraints specified by the user, and

generates a net-list of gate-level representations. Synthesize processes also typically involve

development of logic design in terms of library components, and optimization on area and gate

delay (the synthesizer is not aware of wire delay).

Implementation

The synthesizer outputs a netlist description of the design. The netlist is a standard format that

can then be mapped onto the physical logic elements and interconnection networks. This involves

three steps: the mapping of logic to physical elements, placement of resulting elements, and

routing of interconnect between the elements. The output of the physical mapping is a bit-stream

file. In the case of SRAM based FPGAs, the bit-stream programming tool generates the physical

implementation in the form of CLBs, IOBs, BRAMs, other FPGA resources and interconnections

between them.

Download

Download include clearing configuration memory, loading the bit-stream (configuration data)

into the configuration SRAM, and activating logic via a startup process. For non-volatile

configurations, the bit-stream can be stored in either EPROM or EEPROM. The configuration

data represents values stored in SRAM cells: CLB implement logic with SRAM-truth tables,

SRAM-control multiplexers and routing that makes use of pass transistor SRAM switches

(making/breaking the connection wire segments).

Disadvantages of HDL

Hardware descriptive languages such as VHDL offer the advantages of expressiveness in term of

temporal and fine grain parallelism. As such implementing applications in HDL requires

understanding of hardware details including clock cycles, hardware architectures and signal fan

 20

in/out, thus entails considerable efforts. There have been substantial research interests

investigating on extending the high level languages to bring them into the hardware domain.

Three of the more common efforts are Streams-C [21], Handel-C [48] and SystemC [54], which

are presented in the next sections.

2.2.2 Streams-C

Introduction

Streams-C [21] was developed for systolic type processing at Los Alamos Laboratories, and

extends the C programming language with capabilities for supporting reconfigurable logic

hardware. The objective of the Streams-C project was to bring a new high-level language

capability into the FPGA design environment. The research effort attempted to free application

developers from the low level details of gate-level design, enabling application programs for both

the FPGA and CPU to be written in a high-level language. Streams-C supplements the C

language with a set of additional annotations and callable function libraries. The annotations are

used to declare and assign hardware resources on the FPGA. The resources include processes,

streams, and signals. The libraries provide communication facilities between different processes

based on low-level handshake signals for hardware process synchronization.

The Streams-C environment includes a multi-pass compiler, and hardware and software libraries

targeted for stream based applications. The characteristic of stream-based computing can be

described as having a high data flow rate, fixed size, small stream payload, and repetitive

computation on the data stream [54]. As such, it is an appropriate tool for implementing image or

video processing type algorithms on FPGAs. A pre-processor converts the annotations and macro

calls (SC_MACRO) into PRAGMAS, and passes them to the compiler. For hardware processes,

the compiler generates a Register-Transfer-Level representation (or VHDL) targeting multiple

FPGAs on the Annapolis Microsystems Wild Force [58] board. For software processes, a

multithreaded software program is generated.

An application study of Streams-C has demonstrated that the circuit’s areas of compiler-generated

design are 1.37 to 4 times larger than that designed by VHDL. But the time spent to implement

the applications with Streams-C is favorably short. Streams-C study group claimed that

applications written in Streams-C could be completed five to ten times faster than designs that

implemented using VHDL [18].

 21

Hardware (Synthesis Compiler Library)

An application in Stream-C can be implemented as a collection of processes that communicate

using streams and signals. Processes can run either in software (CPU/host computer) or on the

hardware (FPGA).

The hardware process module has two main components, a data-path component (VHDL process)

and an instruction sequencer. The data-path component is decomposed into a data-path entity and

a pipeline control entity. The data path entity can be broken into instruction decoder and data-path

circuits. The instruction sequencer is a state machine that sequences the instruction set of the

process module. A process may have interface ports for stream, signal, external memory and

block RAM. Processes communicate by means of stream modules or signals.

The stream modules are FIFO (first in first out) based synchronous communication channels

between processes [21]. Each channel has a different data width to match the stream payload. It is

parameterized with respect to data register width and FIFO depth. The data width ranges from 16-

bit or 32-bit to 64-bit, specific to the size of the stream payload. Examples of stream modules are

StreamFifoWrite (software process to hardware process FIFO), StrmFifoRead (hardware to

software FIFO) and StreamIntraRead (hardware process to another hardware process). The stream

module uses signals to indicate it is ready to receive or output data. An example of process and

stream declarations in Streams-C is given in Figure 2-4.

/// PROCESS_X controller

/// INPUT frame_input // input stream

/// OUTPUT frame_output // output stream

/// PROCESS_X_BODY

SC_FLAG(tag) // stream element with one-bit flag

SC_REG(frame_word, 32); // 32-bits stream port

SC_STREAM_OPEN(frame_input); // stream operation open

SC_STREAM_READ(frame_input, frame_word, tag);

///PROCESS_X_END

Figure 2-4 An Example of Streams-C Process Declaration

 22

Streams-C Language Construct

The Streams-C language consists of a small set of annotations and library functions callable from

a conventional C program. The annotations are used to declare and to assign resources on the

FPGA to these following objects: processes, streams, and signals. The libraries provide low-level

hardware stream communication facilities and synchronizations between processes. An example

of a stream-oriented computation is depicted in Figure 2-5 [55].

Figure 2-5 Streams-C Hardware Processes

The hardware process 1 (on the left) receives stream of data (or images) from a software process

running on the CPU via the PCI bus. Then hardware processes 1 and 2 manipulate the stream, and

the result is returned back to another software process (on the right). In this example, processes

communicate and synchronize via the low-level hardware stream modules. The figure also shows

a memory interface to enable hardware process 1 to access the external memory. Each hardware

Memory Interface

Instruction

Sequencer

Datapath

Pipeline
Ctr

Inst.
Decode

Datapath Module

Process 1

Stream

Module

Stream

Module

Stream

Module

External Interface

FPGA Chip

Instruction

Sequencer

Datapath

Pipeline
Ctr

Inst.
Decode

Datapath Module

Process 2

Data from
CPU

Data to
CPU

 23

process has instruction sequencer and data-path modules. Stream data is processed in the data-

path module while the sequencer is the activity coordinator.

Streams-C Compiler

The Streams-C compiler [18] as depicted in Figure 2-6 is based on the multi-pass (Stanford

University Intermediate) SUIF infrastructure compiler [56].

Arch.
Def.

Streams-C pre processor

bitstream

app.sc

app_syn.cpp app.cf

SUIF based
Streams-C Compiler

app_all.vhd
app-arch.vhd

Runtime
Library

Hardware
Library

CAD Tools
(synthesis + implemetation)

executable

C Compiler

Figure 2-6 Organization of the Streams-C Compiler

It translates the C program (the FPGA processes part) into Register-Transfer-Level (RTL) or

VHDL and is capable of generating pipelined stream computations. Hardware processes are

written in a subset of C, and compiled into data-path modules on the FPGA. Features of the

Streams-C compiler include semantic validation of processes, streams, pipelining, state machine

generation for sequencing and stream communication libraries.

[18]

 24

2.2.3 HANDEL-C

Introduction

Handel-Cs approach to bringing high-level languages into the hardware design domain, shares

commonalities with Streams-C. Like Streams-C, it adopts C like syntax that can be directly

compiled into synchronous digital hardware. The Handel-C language consists of subset of the C

programming language and additional “low-level” augmentations for describing parallel

operations and specific hardware components [48].

Being not a hardware descriptive language, its compiler does not produce optimized hardware

circuits. It is however focused on fast prototyping and optimizing at the algorithmic level.

Program execution in Handel-C by default follows a sequential path, rather than maximizing

concurrency. Although programs execute sequentially, Handel C supports the par construct

(parallel), to enable a process to spawn multiple sub-processes (branches). All sub-processes

within the parallel construct will be executed concurrently, and execution flow rejoins when all

the sub-processes complete. Any sub-processes that complete early must wait for all other

processes to complete.

Handel-C Computation Model

Handel-C is based on the Communication Sequential Processes (CSP) model [49], and extends

the C language to overcome concurrency deficiencies of the basic language. Handel-C allows

programs to be specified as set of concurrent processes, using constructs that simplify the

specification of communication and synchronization between these processes. Communication

between concurrent processes can be achieved by means of message passing, with named non-

queue communication channels. A process block must wait until the other process is ready to

send or receive data over the channel.

The Handel-C compiler [49] was designed to hide the low gate-level details such as propagation

delays, clock skews, and pipeline lengths. Handel-C augments the high level language with the

capability to express the notion of time. The notion of time is simplified into two specifications;

time advances in a computation in units of one clock cycle, and variable assignments require

exactly one clock cycle. Thus it allows only the design of synchronous digital circuits.

 25

In contrast to HDL, which supports the specification of low-level concurrency, Handel-C adheres

to the sequential flow of the governing C program. Each assignment in the source program

executes in exactly one clock cycle. An application can be broken down into sets of sequential

units of computations called branches. Parallel branches communicate over a named non-buffered

blocking communication channel. One branch has to wait (block) another branch for sending and

receiving of data over.

Language Construct

Handel-C basically consists of a subset of the C language extended with additional constructs

such as par to exploit hardware parallelism, delay for timing, ram for built hardware component

and others. A list of the Handel-C language constructs is given in the table 2-2. Programs in

Handel-C by default are made up of sequential constructs. However designers can take advantage

of hardware parallelism (using par construct) for parallel processing.

Constructs Descriptions

Par Parallel execution

Delay One clock delay

Chan Channels for communications

? Reads from channel

! Write to channel

prialt Select first active channel

seq Sequential execution

signal Hold value for one clock cycle

interface External connection

Width(…) Determine number of bits

ram/rom Memory devices

Table 2-2 Example of Handel-C Language Constructs

Unlike conventional C which variable size cannot be reduced to less than 8 bits width, hardware-

optimized constructs such bit-width can be used to size variables or constants to as small as one

bit width, when declaring a simple flag, allowing efficient use of hardware resources. The

channel construct is to support CSP synchronous channel point-to-point communication. Other

 26

constructs include special data path variables (variables mapped to registers), logical, bit

manipulation, arithmetic, relational operators, delay construct, assignment and flow control. The

delay instruction takes one cycle.

Handel-C Program Examples:

a) Declaration syntax extended for bit-width (int n x);

 int 4 x, y; // define variable x, y as 4 bits variable

 unsigned int 2 z ; // define variable z of type integer, size is 2 bits

b) Sequential Expression

 {

 x = 1; // assignment statement execute sequentially

 y = 2; // requires two clock cycles

 }

c) Parallel Expression

 par {

 x = 5; // assignment statement run in parallel

 y = 2; // statements within par take one clock cycle

 }

d) Synchronization between parallel branches:

An example of two concurrent processes (two parallel branches) communicate by via a

channel is given in Figure 2-7:

X Ychannel

Branch 1 Branch 2

Figure 2-7 Two Parallel Processes

 27

The communication between the two branches can be achieved by the following constructs:

channel ? variable - to read a value from a channel and assigns it to variable

channel ! expression - writes a value resulting from expression evaluation to a channel

In each case the writer or reader is made to wait if there isn't a reader or writer at the other end of

the channel (branch X has to wait for Branch 2 to reach state Y, if it reaches state X earlier).

2.2.4 SYSTEM C

Introduction

Recently, multiple components including CPU, digital signal processors, memories, busses,

interrupt controllers, busses, and embedded software can be implemented within a single chip

called system-on-chip (SOC). To manage complexity of these SOC and to reduce design time,

designers are focusing on raising the design abstraction to system level design environments.

System level design environments enable designers to deal with hardware and software design

tasks simultaneously [44]. These tasks include modeling, partitioning, verification and synthesis

of a complete system. Current approaches of providing system level design tools include [23]:

- Reusing existing hardware languages, adapting and recreating new methodologies. For

example System VERILOG adapting VERILOG to include creation and verification of

abstract architectural level model.

- Extending high-level languages with hardware design capabilities. Examples of these

efforts include Spec C, Handel C and System C.

- Creating new languages like Rosetta.

System C extends the C++ language with hardware system descriptions targeting SOC devices. It

allows hardware modeling with explicit concurrent processes and communication channels.

System C supports multi-level communication semantics to enables system input/output protocols

with different level of communications abstraction. A port is an abstraction used to describe

communication interfaces at different levels of abstraction including data transaction level and

bus cycle level [45, 46].

 28

System C Language

System C language includes constructs such as processes, modules, channels, interfaces and

events. A system may be modeled as a collection of modules that contain processes, ports,

channels, and even other modules. As modules can be instantiated within other modules,

structural design hierarchies can easily be built. A channel is an object that serves as a container

for communication and synchronization. A channel implements one or more interfaces. An

interface is simply a collection of access methods or function definitions within a channel.

Therefore the interface itself does not provide the implementation. A process accesses a channel’s

interface via a port on the module. Ports and signals enable communication of data between

modules, and all ports and signals are declared by the user to have a specific data type. An event

is a low-level synchronization primitive that can be used to construct other forms of

synchronization. Channels, interfaces and events enable designers to model a wide range of

communication and synchronization that can be found in the system design. Features of System C

class library include [46]:

Modules:

Modules are considered as container classes (like C++) or fundamental building blocks. They are

hierarchical entities that other modules or process can be defined within them. Modules and

processes communicate by means of functional interfaces.

Processes:

Processes define the behavior of a particular module and provide methods for expressing

concurrency. Processes can be hardware or software. Processes can be stand-alone entities or can

be contained within modules. Process abstractions include asynchronous blocks and synchronous

blocks. Processes communicate through signals. Explicit clocks are used to order events and

synchronize processes.

Signals:

Signals can be resolved or unresolved types. Resolved signals have one driver while unresolved

signal can have more than one driver. Clocks are considered as special signals. Multiple clocks

with arbitrary phase relationship are also supported. Mechanisms such as waiting on clock edges

events, signal transition, and watching for event like reset event are included to support reactivity

modeling.

 29

Rich set of signal type (data type):

System C has rich set of signal types to support different design domain and abstraction level.

The abstraction level ranges from high-level functional model to low register-transfer level.

Signal types include single bit, bit vectors, fixed precision type (especially for simulations or

digital signal processing), four-states logic, arbitrary precision integer value, and floating point

[43].

2.4.5 Summary

In summary, advancements have been made in bringing high-level languages into the domain of

hardware design and toward seamless integration of hardware and software components.

However the research efforts described above are lacking especially in terms of hardware and

software integration. For example, in the case of Stream-C, the communication between hardware

and software components is achieved by using low-level streams and signals. Moreover Stream-C

is designed to handle systolic-based computation only. Handel C research effort was mainly focus

on raising the abstraction level to program the FPGA. Language constructs such as “interface”

and “ROM/RAM” in Handel C still require some knowledge of hardware details. The

synchronization of software and hardware components in Handel C environment is achieved by

means of low-level communication mechanisms. These efforts do not abstract away the boundary

between hardware and software components. Therefore new approaches are required, including

adopting system level and programming model methodologies to resolve these issues.

Programming models, specifically the multithreading programming model is discussed in the next

chapter.

 30

3 MULTITHREAD PROGRAMMING

3.1 INTRODUCTION

It is standard for operating systems today to support multiple processes in order to achieve better

resource utilization and processor throughput. The multithread programming model evolved as a

light multiprocessing model where each thread has it’s own execution path, but all threads share

the same address space. On single CPU machines, this allows a thread to block on a resource and

allows other threads within the same program to continue execution. The thread scheduler

achieves this capability by interleaving processing resources between multiple threads, thus

giving the illusion of concurrency on a single processor. Performance improvements can be

gained on a single processor system as it allows slow input/output device operations to overlap

with computations on a processor.

3.2 THREAD

A thread is an abstraction that represents an instruction stream that is able to execute independent

of all other threads. A thread possesses its own stack, register set, execution priority and program

counter as summarized below and shown in Figure 3-1. Additionally, each thread is also assigned

a unique identification code (ID)

• Program counter (current execution sequence).

• Stack pointer

• Stack frame

• State (other registers value beside stack pointer and program counter)

In addition to its own private execution context, all threads within a process share the process

resources such program code, heap storage, static storage, open files, socket descriptors, other

communications ports, and environment variables equally.

In a single-processor system, only a single thread of execution is running at a given time. The

CPU quickly switches back and forth between several threads to create an illusion of

concurrency.

 31

Stack Frame (T1)

Static (bss)

Heap

Stack Frame (T2)

Stack Frame (T3)

Code

Thread T1
Stack

Pointer

Thread T2
Stack

Pointer

Thread T3
Stack

Pointer

Program
Counter

(T1)

Program
Counter

(T3)

Program
Counter

(T2)

Figure 3-1 Threads within a Process

This means that a single-processor system supports logical concurrency, not physical

concurrency. On multiprocessor systems, several threads do in fact execute in parallel. Thus

physical concurrency is achieved. The important characteristic of multithreading is that it creates

logical concurrency between executing threads that can also be implemented using physical

concurrency, option based on the platform configuration.

Thread context switching is much cheaper than the context switching required between processes.

To switch threads, only the execution context is needed, so minimal kernel services are required.

This leads to at least two approaches for thread scheduling:

• User-level threads are scheduled independent of the kernel using a thread library. To the

kernel, the multiple threads appear as a single-threaded process. The advantage of this

approach is that switching between threads is fast as mode switching is not needed and

fairly portable. The disadvantage of this approach is it does require additional code to be

 32

written in assembly. For example context switches and certain parts of code must be able

to execute atomic instructions. This type of thread complicates its implementation, as all

I/O must be handled in a non-blocking manner.

• Kernel-level threads are scheduled in the kernel together with threads of other processes.

This approach has the advantage that multiple threads can be assigned to multiple

processors. The drawback of this approach is that two mode switches are required when

scheduling different threads.

The advantages of multithreading can be summarized as follows:

- Better utilization of the CPU in the presence of slower I/O devices, by switching out

threads that are waiting on I/O devices, and switching in a thread that is ready to run.

- Concurrency can be used to provide multiple simultaneous services to users. Users

perceive improved application responsiveness, if dedicated threads are used to serve

different services such as displaying outputs or reading inputs.

- The use of threads increases code visibility and makes code extension simple as it

provides more appropriate structures for programs to interact with the environment,

control multiple activities, and handle multiple events.

- Some applications are inherently concurrent in nature. For example a database server

may listen for numerous client requests, service concurrently active or data ready

connections. Scientific calculations that compute terms in an array, each term

independent of the others can be broken into multiple threads.

- Multithreading provides benefits to a large job when it can be divided into smaller jobs

and distributed amongst multiple processors for greater efficiency. Threads also can help

to deliver scalable multiprocessor systems.

Thread concurrency can introduce race conditions when multiple threads attempt access to shared

data without proper coordination. Race conditions are introduced by non-deterministic execution

sequences from input or output completion, signals, and the preemptive action of a scheduler.

Accesses to the shared resources are serialized and controlled with the aid of concurrency control,

or synchronization mechanisms. Proper use of synchronization mechanisms guarantees the

elimination of these race phenomena. The standard synchronization mechanisms in use in

multithreaded programming are discussed in the following section.

 33

3.3 SYNCHRONIZATION MECHANISMS

Management of shared resources is fundamental to the successful implementation of concurrent

programming model. Accesses to the shared resources by the concurrently executing threads must

be serialized to avoid programming errors or undesired inconsistent results. Processes or threads

that share access to these resources must execute in a mutually exclusive manner. These shared

resources are also known exclusive resources because they must be accessed by one thread at a

time.

Accesses to these exclusive resources are usually coordinated explicitly by programmers, using

concurrency control mechanisms such as locks, mutual exclusion (mutex), semaphores and

condition variables. Semaphores are useful for controlling countable resources, while condition

variables are employed for event waiting. These synchronization mechanisms are enabling

mechanisms that elevate the concurrent programming to a higher level than individual processor

instructions, permitting segments of programs to execute in apparent indivisible operations with

no interleaving.

These sequences of statements that must execute in a mutually exclusive manner are typically

referred to critical sections [33]. There are a number of requirements that need to be satisfied

when processes or threads execute within critical sections to ensure fairness and symmetric

progression [33, 39].

Mutual exclusion:

• Only one process is in the critical section at one time.

Progress:

• Progress in absence of contention. If no process is executing in the critical section, a

process that wishes to enter a critical section will get in. This ensures that if one process

dies, the others are not blocked.

• Live-lock freedom: process must not loop forever while in critical section.

• Deadlock freedom: if more than one process want to enter a critical section, at least one

of them must succeed.

 34

Bounded waiting:

• Getting fair chances to access to a critical section and no starvation: if a process wishes to

enter a critical section it will eventually succeed. No thread or process is postponed

indefinitely.

For a long critical section, threads that fail to acquire an unavailable synchronization variable

should be put to sleep instead of wasting processor resources busy waiting. Each semaphore can

have an associated queue in which to place the sleeping threads. When a semaphore is released, a

wake-up mechanism transfers a thread from the semaphore wait queue onto the ready to run

queue. Such synchronization mechanisms that support sleeping threads are referred to as

blocking synchronization primitives. Although blocking synchronization primitives are

advantageous, there are many scenarios in which polling the synchronization variable is more

desirable. As an example, in a multiprocessor system it is more efficient to busy wait for rather

than block when the rescheduling overhead is more expensive than short spinning times, and

when bus contention is low. This kind of synchronization is called spin type synchronization.

Lock

The simplest type of synchronization mechanism is a mutual exclusion lock or more commonly

referred to as a lock. A lock is essentially a binary variable that has two states: locked or

unlocked. It is normally used around a critical section to ensure mutual exclusion or to obtain

exclusive access to a shared resource. Only one thread can own the lock at a time. While a thread

holds the lock, all other threads are prevented from opening the lock until relinquished by the

owner thread. Thus locks protect critical sections from being executed simultaneously by multiple

threads.

Spin Lock

A characteristic of a spin lock is that a thread ties up a CPU while attempting to unsuccessfully

gain access to a critical section. Conversely a spin lock can be efficient when the amount of wait

time for the lock is smaller than the time required to perform a context switch. Thus it is essential

that spin locks execute for only extremely short durations. In particular, they must not be held

across blocking operations. Depending on system requirements it may also desirable to disable

interrupts on the current processor prior to acquiring a spin lock. The main advantage of using the

spin lock is that its operation is inexpensive when the probability of lock contention is low. When

there is no contention on the lock, the cost of both acquiring and releasing the lock typically

 35

amounts to few CPU cycles only. Thus, they are ideal to protect data structures that need to be

accessed briefly or when the critical section is short. They are also normally used to protect

higher order synchronization mechanisms.

Blocking Lock/Mutex
Depending on the length of the critical section, a thread may need to hold a lock for long

duration. For such situations, it is more efficient for the threads that wish to own the lock go to

sleep instead of wasting processor precious cycles, busy waiting for the lock to be available.

Going to sleep involves inserting the requesting thread id into a sleep queue and calling the

system scheduler to perform a switch context (changing its state to block, sleep on this resource,

and relinquish the processor to another thread). When the current lock owner exits the critical

section, it releases the lock, which generates a wake-up signal to the scheduler. If there is at least

on thread in the queue, the wake-up mechanism will de-queue one or all the threads from the

sleep queue, change their state to ready and transfer them to the scheduler queue. The next mutex

owner can then be decided according to the scheduling algorithm.

A mutex has a flag to represent the usage state and a queue to hold blocked threads. A locked

mutex may contain zero or more threads waiting in its queue. When the mutex is not locked, the

queue is empty. When the mutex is unlocked and while its queue is not empty, one of the blocked

threads will be removed from the queue and transferred to the ready to run queue. The following

are application program interface (API) provided for POSIX mutex:

pthread_mutex_init(mutex) – to initialize a mutex variable.

pthread_mutex_lock(mutex) – to acquire a lock or mutex before accessing a critical

section. The calling thread blocks if the mutex is not

available.

pthread_mutex_trylock(mutex) – to test whether a mutex is locked without cause the

calling thread to block. Therefore, a thread can do other

work instead of blocking if mutex is already locked.

pthread_mutex_unlock(mutex) – to release a mutex and unblock a sleep thread if there is

one in the mutex queue.

 36

Semaphore

A semaphore is a synchronization mechanism normally used for controlling access to a countable

shared resource. Each semaphore has a counter that can be used to synchronize multiple threads

and a sleep queue to hold blocked threads. The counter can be incremented to any positive value

or can be decremented to a non-negative value. Two atomic operations are used to change the

value of the counter – wait and post operations. The wait operation decreases the value of the

counter by one. If the value is already zero, the wait operation causes the calling thread to block

until the value of the semaphore becomes positive. When the semaphore’s value becomes

positive, it is decremented by one and the wait operation completes. Essentially when the value of

the counter is zero, any wait operation will cause threads to be blocked and queued into the

sleeping queue and the counter value remain unchanged at zero. A post operation increases the

semaphore counter value by one when the queue is empty. If the sleep queue is not empty, a post

operation causes one of the threads in the queue to be unblocked, and the counter remains zero.

The unblocked thread will be transferred to the scheduler queue.

sem_wait(semaphore)

- Decrements the semaphore counter value or the calling thread blocks if its current value

is zero.

sem_post(semaphore)

- Increments the semaphore counter value if queue is empty or wakes-up at least one

waiting thread and counter value remains zero.

Condition variables

Waiting in the sleep queue implies blocking until some event occurs. A condition variable waits

atomically on an arbitrary predicate, which makes it a convenient mechanism for blocking threads

on combination of events. A condition variable itself does not contain the actual condition to test,

instead it is a variable that allows threads to block safely (on it) when the condition is not true. It

has an associated lock that protects the condition to be tested. It is supported with three atomic

operations: waiting, signaling and broadcast. These operations allow threads to block and wake-

up within the context of the lock. To prevent lost wakeups, the lock is passed as an interlock

when a thread blocks on the condition. Thus a condition variable supplements mutex lock by

allowing threads to block and await signals from other threads when a condition is not true. When

 37

the running threads change the predicate, a condition variable wakes one or all the blocked

threads. The awaken thread will attempt to obtain the lock before testing the condition. The

following are application program interfaces (APIs) provided by POSIX for condition variables:

pthread_cond_wait(condition variable, mutex lock)

- Causes the calling thread to block on the condition variable and release its mutex lock.

pthread_cond_signal(cond)

- Awakens one thread waiting on condition variable.

pthread_cond_init(cond)

- To initialize a condition variable.

pthread_cond_broadcast(cond)

- Wakes up all threads waiting on a condition variable. These awakened threads contend

for the mutex lock. If more threads are waiting, one is selected in a manner consistent

with scheduling algorithm.

Atomic operation

All synchronization mechanisms rely on hardware to provide atomic operations. An atomic

operation is an operation that, once started, completes in a logically indivisible way (i.e. without

any other related instruction interleaved) [33]. Many systems provide an atomic Test-And-Set

instruction or an atomic Swap instruction. Test-And-Set sets a memory location and returns its

old value. If the return value is one, the lock is already own by another thread. Swap has two

arguments and swaps the values of its arguments atomically. The Test-And-Set must executed

atomically, even on multiprocessor systems. If Test-And-Set instructions are attempted

simultaneously by multiple CPUs, they must be executed sequentially.

 38

3.4 THREAD SCHEDULING

Figure 3-2 shows the possible states a thread may assume during its life. Typically, in a single

processor environment, a scheduler manages the sharing of the CPU by switching the threads

context in and out at periodic intervals. Many algorithms exist for determining when and how to

select a thread for scheduling. By far, the simplest scheduling algorithm is the first come first

served (FIFO) algorithm. In this approach, a thread that is running maintains the CPU until it

relinquishes the CPU via blocking or termination. All other threads are then scheduled in the

order that they were added to the ready to run queue. In the simple FIFO algorithm, a currently

running thread cannot be pre-empted thus potentially achieving poor aggregate system

performance. In contrast to the non-preemptive FIFO algorithm, preemptive scheduling

algorithms allow the currently running thread to be taken off the CPU and replaced by a different

thread. Preemption can be implemented based on time slicing, or priority assignments to the

threads. For time slicing, a hardware timer normally generates a periodic interrupt to the

scheduler to perform a forced scheduling decision. This type of time sliced periodic scheduler

allows other threads of the same priority to gain a slice of time on the CPU. This approach is

referred to as a round-robin scheduler. Additionally threads can be assigned priority levels, and a

thread with a higher priority that has been moved from a blocked queue to the ready to run queue

can immediately cause a preemptive scheduling decision. Thus, the thread with highest priority

level will always be running on the CPU.

wait

ready

dead

new

timer interrupt

scheduler dispatch

i/o event or
semaphore
wait

i/o event or
semaphore
complete

exit

enter

run

Figure 3-2 Thread States

 39

While a thread is in the run state, it may transit to the wait state when it fails to gain a resource

needed and is blocked. The resource includes a synchronization variable or data from a

peripheral. The following are events that can cause a thread to change its state and results in

context switching:

1. Synchronization – A thread that fails to gain a synchronization variable will change its

state to blocked or wait, places itself in a waiting queue (waiting queue associated to the

requested synchronization variable), and then calls the thread scheduler to allow another

thread to run.

2. Preemption – Preemption occurs if a running thread does something that causes a higher

priority thread to become runnable. The actions that causing this to happen include

releasing a lock, changing the priority level of a runnable thread upward, lowering its

(active thread) priority downward.

3. Yielding – The scheduler will dispatch another ready thread, if the active thread

voluntarily yields and there is at least one thread in the scheduler queue. Otherwise an

idle thread will run on the CPU.

Threads wait in sleep queues while in their wait state. A wake-up mechanism will change their

state to ready and put them back into the scheduler queue when the requested synchronizations or

the data from the peripherals become available. Description of each of these states is described in

table 1.

States Descriptions

Ready Ready to run, but waiting for a processor or CPU.

Run Currently executing on a processor. At least one is running with a maximum

equals to number of processors.

Blocked

or wait

Waiting for a resource other than the processor to become available. The

resource is a synchronization or data from peripheral device.

Terminated

or dead

Completes its execution but not yet detached or joined.

Table 3-1 Thread State Descriptions

 40

3.5 CONTEXT SWITCHING AND QUEUES:

Thread Queues:

- Conceptually threads migrate between the various queues during their lifetime.

- The queues are actually used hold thread ID or pointers to thread control blocks (TCBs).

- Scheduler ready queue: ready queue points to the TCB (Thread control Block) of the

threads ready to execute on the CPU.

- Synchronization blocked queue: it is for threads wait or block on a specific

synchronization variable.

- Device blocked queue: one blocked queue per device, and is used to hold the TCB

pointers of threads blocked waiting for an I/O operation (on that device) to complete.

- When a thread is switch out at a timer interrupt, it is still in the ready to run state, so its

TCB pointer stays on the ready queue.

- When a thread is switched out because it is blocked on a semaphore operation, its thread

ID is moved to the semaphore blocked queue.

- When a thread is switched out because it is blocked on an I/O operation, its TCB pointer

is moved to the blocked queue of the device.

- An example of threads execution states on a CPU with various queues, thread stacks, and

thread control blocks (TCB) is shown in Figure 3-3.

Except for certain operations and dependent on the scheduling algorithm, a thread scheduler

normally invokes context switch procedure when the periodic scheduling timer expires or the

thread blocks. The following are examples of events that can cause context switching and the

corresponding sequences of operations that occur during the associated context switching

operations.

Periodic Timer Interrupt:

a. Thread executing

b. Timer Interrupt occurs

c. Program counter changes to the vector of timer interrupt handler, and current thread state

is saved

d. Interrupt Service Routine (ISR) runs

i. Disables interrupt,

ii. Checks if the current thread has run long enough

 41

e. If YES post software (SW) trap

f. Enables interrupt

g. Returns from ISR

h. Check if SW Trap posted?

i. If NO: Restores thread state

ii. If YES: Performs context switch

Synchronization blocked queue m

Synchronization blocked queue 1

Scheduler queue (ready queue)

Scheduler
Context
Switch

Thread Control Blocks (TCBs)

CPU
registers

T2 T1

wait ready

T2

T1

T n

waitstate

SP

PC

MSR

Thread Stack Frames

Thread Program Code

SP

PC

PC

SP

MSR

T1 T2 T n

ID

1. TCBs and queues are in the static (bss) memory section.
2. Stack frames are in the stack memory section
3. Thread program code in the text memory section
4. PC is program counter
5. SP is stack pointer
6. MSR is machine state or condition code register

reg n

reg n

Figure 3-3 Thread Execution Representation and Supporting Structures

 42

Blocking I/O call:

a. Thread executing

b. System Call I/O

c. SW Trap handler runs in kernel. Saves the current thread state

d. Kernel code (OS) runs the I/O call

e. I/O operation starts (I/O driver)

f. Updates thread state to WAITING

g. Adds thread ID to the Wait Queue of the requested I/O device

h. Performs Context Switch

i. I/O done (I/O interrupt)

j. Wakes-up waiting thread, moves it from the Wait Queue to the Scheduler Queue

Blocking semaphore call:

a. Thread executing

b. Thread calls Semaphore API

c. Software Trap handler runs in kernel. Saves the current thread state.

d. Kernel code (OS) executes the semaphore call

e. If block:

i. Updates TCB thread state to WAIT

ii. Adds thread ID to Semaphore Wait Queue

iii. Calls scheduler to perform context switch to allow another thread to runs

f. The thread that currently owns the semaphore performs release call

g. Software Trap handler runs in kernel

h. Kernel code (OS) executes the release call

i. The semaphore is available now

i. Wakeup at least one thread waiting in the Wait Queue

ii. Move thread ID from Wait Queue to Scheduler Queue

3.6 THREAD SCHEDULING POLICIES

Threads that are queued and waiting on a synchronization variable may be unblocked using

various policies. These policies define the semantics when a synchronization variable is released

and there is more than one thread waiting to acquire the resource. Essentially a scheduling policy

defines which waiting thread shall acquire the synchronization when the current owner releases it.

 43

With a FIFO scheduling policy, threads waiting for the lock will be granted the lock in a first

come first served order. This can help prevent a high priority thread from starving lower priority

threads that are also waiting on the synchronization variables.

With a priority driven scheduling policy, the thread with the highest priority can acquire a

synchronization variable even though there may be low priority threads waiting in the

synchronization queue. This can lead to a starvation phenomenon, which implies low-priority

threads may never acquire a synchronization variable especially when there is high contention for

the variable and always at least one high-priority thread waiting for the same variable. When

there are multiple threads with the same priority level waiting for a synchronization variable, one

of the other scheduling priorities will determine which thread shall acquire the lock.

Conversely, situations can occur when a low priority thread owns a lock on which a higher

priority thread is blocked. If the lower priority thread is itself blocked on a different lock that

must be released by yet another higher priority thread, then the lower priority thread may never

get scheduled to release the lock to the blocked higher priority thread. Although a symptom of

bad usage of locks, this situation, termed priority inversion, can and does occur. Most operating

systems address this issue by allowing the priority of the thread that owns the lock to be raised to

at least the priority of the highest priority thread blocked on the lock. In this fashion, the

currently running thread will eventually get access to the CPU and relinquish the lock.

3.7 DEADLOCK , STARVATION AND PRIORITY FAILURE

Deadlock can occur when two or more threads are each blocked, waiting for conditions to occur

that only the other ones can cause. Since each is waiting on the other, neither will be able to

continue. A deadlock can happen when a thread needs to acquire multiple locks. For example

thread T1 holds resource R1 and tries to acquire resource R2. At the same time, thread T2 is

holding R2 and trying to acquire R1. Neither thread can make progress.

Starvation is the situation in which a thread is prevented from making sufficient progress in its

work during a given time interval because other threads own the resource it requires. This can

easily occur when a high priority thread prevents a low priority thread from running on the CPU,

or one thread that always win over another when acquiring a lock are examples of starvations.

 44

Priority inversion is a scenario that occurs when a high priority thread attempts to acquire a lock

that is held by a lower priority thread. This causes the execution of the high priority thread to be

blocked until the low priority thread has released the lock, effectively inverting the relative

priorities of the two threads. If other threads with medium level priorities attempt to run in the

interim, they will take precedence over both threads. The delayed execution of the high priority

thread (after the low priority thread release the lock) normally goes unnoticed and causes no

harm. However on some occasions, priority inversions can cause problems especially in a real

time system. If the high priority thread is deprived of a resource long enough, it may lead to a

system malfunction or triggering of corrective measure such as watchdog timer resetting the

whole system. The priority inversion can also causes threads to execute in such sequence that the

required work is not performed in time to be useful anymore. POSIX defines the two standard

mechanisms to avoid priority inversion: priority inheritance and priority ceiling protocols.

Priority inheritance allows a low priority thread inherits priority of a high priority thread, thus

preventing medium priority threads from preempting the low priority thread. Priority ceiling is a

procedure that assigns the thread that possesses a lock with high or ceiling priority. This works

well as long as other threads do not possess priority levels higher than the ceiling level priority.

3.8 POSIX THREAD L IBRARY :

Thread Management

Pthreads contains a runtime library to manage threads in a transparent way to the users. The

package includes calls for thread management, scheduling and synchronization. The thread

management APIs are given below:

 int pthread_create(thread_t id, void *(*start_function) (int), int argumnet, int priority)

- Create a thread to execute a specific function

void pthread_exit(void *value_ptr)

- Causes the calling thread to terminate without causing entire process to exit

int pthread_join(thread_t id, void **value_ptr)

- Causes the calling thread to wait for the specified thread (thread id) to exit

pthread_self() - return caller’s identity or thread ID

 45

 int pthread_yield()

- Threads can voluntarily release CPU to let other threads run by calling thread_yield.

Threads can be dynamically created and terminated during the execution of a program. However

the total of number threads is subject to the resource limitations of each given system. For

example the number of threads can be limited by the scheduler queue size. Threads are created

dynamically with the thread_create API. The thread_create reserves and initializes a thread

control table and adds a thread ID into the scheduler queue. The start_function is the name of a

function or routine that the thread calls when it begins execution. The start_function takes a

single parameter specified by the argument. The start routine returns a pointer (pointer of type

void), which later to be used for an exit status by the thread_join.

Threads exit in two ways. First, by returning from the thread function (implicit exit). For this

implicit exit, the return value from the function is passed back to the parent thread as the return

value. Alternatively, a thread can explicitly exit by calling thread thread_exit. The argument to

the thread_exit is the thread return value. The value_ptr parameter value is available to its parent

thread_join.

A parent thread uses thread_join to wait for all its children to terminate, before it can exit itself.

This will avoid de-allocating of data structures that its children may still require. The thread_join

API takes two arguments, the thread ID of thread to wait for and a pointer to a void* variable that

will receive the finished threads’ return value.

 46

4 HYBRID THREAD

4.1 INTRODUCTION

General programming models form the definition of software components and governing

interactions between the components [14]. Achieving abstract programming capabilities across

the FPGA/CPU boundary requires adaptation of a high-level programming model that abstracts

the FPGA and CPU components, bus structure, memory, and low-level peripheral protocol into a

transparent computational platform [3]. The KU hybrid threads project has chosen a

multithreaded framework as our model, supporting concurrent hybrid threads distributed flexibly

across the systems CPU and FPGA assets. Within our model, all threads adhere to the policies of

accepted shared memory synchronization protocols for exchanging data and synchronizing

control. To support this generalized model across the FPGA, we have developed a Hardware

Thread Interface that encapsulates mechanisms to support synchronization for FPGA based

threads. Under this unified model, application programmers perform procedure calls from within

both VHDL and C to access high level synchronization primitives between threads running across

both hardware and software computations. The set of Hardware Thread Interface components as

well as a standard software interface component form our system-level hybrid thread abstraction

layer as shown in Figure 4-1.

 s y s te m b u s

H a rd w a re T h re a d
In te r fa c e

C o m p o n e n t

U s e r
H a rd w a re
T h re a d 2

C P U

H y b r id
th re a d

a b s tra c t io n
la y e r

S o ftw a re T h re a d In te r fa c e C o m p o n e n t

H a rd w a re T h re a d
In te r fa c e

C o m p o n e n t

U s e r
H a rd w a re
T h re a d 1

S o ftw a re
T h re a d 1

S o ftw a re
T h re a d 2

H a rd w a re T h re a d s

Figure 4-1 Hybrid Thread Abstraction Layer

 47

4.2 HYBRID THREAD ABSTRACTION LAYER

Concurrent execution of FPGA based threads and CPU based threads as given in Figure 4-2

illustrates the low level services provided within the hybrid thread abstraction layer. As shown in

Figure 4-2, thread F3, an FPGA based thread and T11, CPU based thread, can communicate and

synchronize with thread concurrency control operations. The concurrency control mechanisms

include blocking and queue facilities enable threads to block other threads. Threads T8, T4, F2

and T9 enter blocked states when they attempt to acquire MUTEX N, already locked by another

thread. CPU threads T2, T5, T12 are in a runnable state waiting to be scheduled on CPU. Within

the abstraction layer the following services are supported:

- Fundamental atomic operations that form the basis of higher order concurrency protocols.

These “atomic operations” are CPU family independent, and are able to handle

multiprocessor environments.

- Uniform concurrency mechanisms that able to enforce mutual exclusion on shared resources

accessed by both CPU based software threads and FPGA based hardware threads. These

control primitives are enabling mechanisms that elevate concurrency higher than low-level

processor instructions.

- Blocking synchronization mechanisms that include queues and wake-up services for

concurrency control functions. The queuing operation and wake-up services operate

autonomously and require no overhead from the operating system running on the CPU. In

addition, the wake-up facility includes delivery of wake-up threads to the scheduler queue.

The performance of the queuing and wake-up facilities is independent of the number of

blocked threads in the queues.

- Synchronization mechanisms that enable for mutual exclusion, event waiting, controlling

countable shared resources and arbitrary blocking conditions in order to support assorted

applications. Also synchronization mechanisms that avoid lost wake-up and “thundering

herd” problems.

- A hardware thread support layer that acts as an interpreter for user computations to request

synchronization and access the system memory. Within this layer, a scheduler has also been

created to manage hardware threads with no overhead required on the CPU. Thread

management operations are also provided to software programs

 48

- Application programming interfaces (APIs) are presented to the threads on the CPU to access

the new concurrency control mechanisms. The APIs have two layers: the high level layer

which provides an interface for application programs, and a low level layer that provides an

interface for the operating system.

F3T7F1

F2T4T8 T9

T12

T15

T2T5

Mutex N

Scheduler
Queue

Mutex 3

T11

F3 F4

Hardware
API

Hardware
API

A
P
I

i/o

CPU

run

blocked
on i/o

Threads in sleep queues (blocked on mutexes)

CPU Threads ready to run on CPU

HW thread IPHW thread IP

Mutexes IP

Semaphore IP Other IP

Figure 4-2 Hybrid Threads System

The Hardware Thread Interface (HTI) component is provided as a library for inclusion within

user-defined hardware threads. The hybrid thread abstraction layer implements all interactions

between source hardware threads and other system components through the command and status

register pair. This capability is particularly useful for debugging and is used during runtime to

interact with other system components, such as our semaphore mechanisms for thread blocking

and wake-up. During debug, the status register is accessible from user programs allowing

developers to monitor and control the execution state of a hardware thread.

 49

4.3 HARDWARE THREAD

4.3.1 Introduction

Some applications naturally decompose into as collection of distinct tasks that can be executed

concurrently. Traditionally these concurrent tasks are implemented as processes or threads

executing either on a single or multiple processors. A thread can be thought as independently

executable sequence of instructions. For software threads, these instructions are stored in the

system memory and are available to be executed by multiple invocations of a common thread.

To extend the multithreaded programming model across the processor/FPGA boundary, we must

first understand the operational semantics of a hardware thread. First, unlike software threads, a

hardware threads do not share a common code base. Instead, each hardware thread is a unique

physical parallel hardware compute engine built within the configurable logic fabric. The

execution sequence of the thread is based on a finite state machine and not modeled on the von

Neumann stored program architecture. As hardware threads are independent executable entities,

we can capitalize on the potential of the FPGA to support true physical concurrency. This view

exposes the FPGA to wider pools of system designers. Other incentives includes:

• Reduce development times in implementing applications in FPGA

• Offering new insights and techniques toward a more unified platform of hardware and

software co-design and presenting a more integrated view of processor and FPGA

components.

• Provides faster and more deterministic system response times through the co-designed

system services.

To promote portability and platform independence of the user computation from the underlying

platform, we provide the Hardware Thread Interface (HWTI) shown in Figure 4-3.

To enable these hardware-implemented computations, new services such as synchronization,

thread management and other operational support must be created. In addition, other services

such input and output infrastructure are necessary to enable user computations to share data with

other threads across system bus. The collection of these new services and necessary support

hardware forms the hardware thread interface. The support hardware includes register sets,

architecture dependent and independent system bus interface logic, and hardware controllers. The

services are packaged in the form of a standard application program interface (API). User

 50

computations use these API’s to request services from the interface. The interface responds to

requests and provides feedback to the user computation in form of a return status.

data-write

address

parameter1operation status

User Hardware Thread (Application)

command

Bus Interface (Architectural dependent + independent components)

State Machines:
- Thread state scheduler*
- Status process
- Command process
- Bus Slave Handshake

argument2

result1

result2

argument1

State Machines*:
- Bus Master Handshake
- Address Generator
- Bus Writer/Reader
- Data in/out
- Synchronization tests,
 Busy wait

read data

parameter2

Use APIs (operation=mutex, mutex_id=xx, parameter=thread_id)

Spin lock:
loops until status = lock acquired
{
 address <= lock L address
 operation <= spin lock
 parameter 1 <= thread_ID
 }

Block lock/mutex:
{ do once
address <= mutex N address
operation <= mutex
parameter 1 <= thread_ID
 }
if status = lock fail, waits

Other APIs

CPU Interface Registers

User Hardware Thread Interface Registers

* Hardware Thread State Controller

Figure 4-3 Hardware Thread Interface

At this time both the user-specified and the interface components are synthesized and loaded into

the FPGA before run time. However, this interface has been designed to serve as the common

interface for dynamic reconfiguration of the FPGA.

H
W

T
H
R
E
A
D

I
N
T
E
R
F
A
C
E

 51

4.3.2 Hardware Thread Interface

The Hardware thread interface (HWTI) is placed between the system bus and the user thread. The

HTI acts as interpreter that translates user thread requests to sequences of actions and provides

feedback when the actions are complete. In the opposite direction, it responds to commands

issued by the CPU and other entities on the system bus. One new requirement for supporting

hardware threads when compared to existing approaches is the ability of a thread to write in

addition to read from memory mapped locations. The bus interface supports both bus slave and

master modes. As a bus master, bus transfers can be requested on behalf of the user thread.

To serve user computations efficiently, we divide the Hardware Thread Interface component into

three subcomponents according to their distinct functions: a CPU interface, a hardware-thread

state controller, and a user hardware-computation interface. The user interface defines a set of

platform independent functions implemented within the library API’s. The API uses set of

interface registers to request services from the thread state controller. The thread state controller

accepts the user requests, performs the necessary operations and returns both the status and the

requested information. The command register defined within the HWTI CPU interface enables

the system CPU, or any other bus controller, to interact with the user hardware thread.

HWTI - CPU Interface

The CPU interface contains the bus interface, the command/status register pair, argument and

result registers. These registers collectively enable the CPU and other system bus entities to

control the execution of the hardware thread. These registers are memory mapped components

instantiated with the hardware thread HWTI.

This interface provides an application program running on the CPU to start or stop a hardware

thread’s execution. Writing a command into the command register is analogous to the software

thread create and exit operations. During run time, this facility enables other system bus entities

such as semaphores to wake up a sleeping thread. This capability is also particularly useful for

debugging purposes. A CPU based application thread may also inspect the status register to

determine the state of the hardware thread’s current execution.

We provide an application program interface (API) library function similar to current software

thread packages for thread creation and deletion. In software based multithreading packages, the

 52

scheduler does not guarantee immediate execution of a newly created thread. Instead, the API

contains a call to the scheduler that may or may not immediately run the new thread. In contrast

to this approach, a hardware thread is an independent computational component and will be

executed immediately upon creation. The API to create the hardware thread is shown in Figure

4-4. To initiates hardware thread execution, the API writes of a unique op_code into the thread’s

command register.

hw_thread_addr = hw_thread_base + (thread_id * 256);

#define cmd_reg_offset 0x05;

#define arg1_reg_offset 0x07;

#define arg2_reg_offset 0x07;

#define cmd_run 0x03;

 hw_thread_start(thread_id, arg1, arg 2) {

 *(hw_thread_addr + arg1_reg_offset) = arg1;

 *(hw_thread_addr + arg2_reg_offset) = arg2;

 *(hw_thread_addr + cmd_reg_offset) = cmd_run;

 }

Figure 4-4 Pseudo Code for Hardware Thread Create API

HWTI - Thread State Controller

Our approach for controlling hardware threads is to provide the state machine template shown in

Figure 4-5. Threads that have not yet started or have terminated are in the idle state. Threads that

are currently in the run state enter the wait state when a thread requests, or continues to be

blocked on, a semaphore. Threads request a semaphore by executing our library API's discussed

in Chapter 5. Our API's implement a semaphore request by writing the address of the semaphore

into an address register, and writing a unique op_code into the operation register. When the

request is made, the controlling state machine transitions the thread from the running to the wait

state. The status of this, or any operation, is available to the thread in the status register. As long

as a thread remains in the wait state, no further execution of the user thread is allowed. A thread

in the run state releases a semaphore by executing a release semaphore library API. The

implementation of the release API is similar to the request API, using semaphore address and

operation registers.

 53

Our state machine supports both spin lock and blocking semaphores for hardware threads. For

hardware threads task switching on a blocking semaphore is not required, as the thread does not

contain shared resources that should be rescheduled. Instead, the dedicated hardware thread

simply idles in the same fashion as it would with a spin lock. The hardware thread interface

component however does perform different processing for spinning and blocking semaphores.

For the spinning semaphore, the hardware thread interface transitions the thread state into the

wait state, issues a single request for the semaphore across the bus, and returns the thread to

running when the status of the request is returned into the status register.

idle

run

wait

usr_request
or

cmd stop

cmd_run

hw thread
waits for lock
or semaphore

CPU writes to
command
register

reset

ack

usr_stop

Figure 4-5 Hardware Thread States

In contrast, for a blocking semaphore the hardware thread interface transitions the thread to the

wait state, issues the request for the blocking semaphore and leaves the thread in the wait state if

the semaphore is in use. Upon a grant or release the state machine will then transition the thread

back into the run state. The semaphore IP's discussed in Chapter 5 details the differences in the

semaphore logic for the two types of semaphores. The thread scheduler manages the transitioning

between states during the lifetime of the thread. The states are visible via the status register to all

other threads. User computations are treated as autonomous threads and can be stopped by the

controller at selected points of execution. This implies that a user computation may decide when

it is appropriate to check the status register and control it's own operation. This allows

independent hardware threads to be stopped by a controlling CPU based thread to load new

operating information or configuration.

 54

4.4 HARDWARE THREAD INTERFACE ARCHITECTURE

The diagram of hardware thread interface RTL representation is given in Figure 4-6. The

hardware thread interface can be decomposed into the following hardware components:

- Architecture dependent bus interface

- Architecture independent bus interface

- Thread Scheduler

- Bus master controller

- Register processes

Read Addr Gen

Write Addr Gen

Address
MUX

Delay bet Reads

Repeat Rd Max

Bus Master (BM)
- read/write reqs
- coordinate test

Mutex Test

Sema Test

Read Req Handler

Write Req Handler

Mutex Req Handler Write Data A

Read Data

Write Data B

Data Out
MUX

Sema Req Handler

Spin Lock Handler

Thread Scheduler
idle/run/block

- request to Handlers
- wait response fr BM

Cmd run/stop/wakeup

Read/Write ACK, MUX

Status

param1

param2

addr

Status
Control

 Bus Interface (Architecture Dependent + Independent)Bus Interface

RdReq WrReqack

operation

addr data

states

sem
mtx
read
write

cmd

APIs User Application

addr
req/
ack

args

latch

latch

latch

Release Handler

Figure 4-6 Hardware Thread Hardware RTL representation

 55

The system bus components that can instantiated within the hardware thread interface is:

processor local bus (PLB) or peripheral or off-processor bus (OPB). These buses support

facilities that include communication exchange protocols and bus arbitration. A standard set of

signal interface (IPIF) is used on the IP core side to enable attachment of different IP modules to

either bus. This IPIF interface facilitates migration of core modules including the hardware thread

from one system bus to another.

The kind of services that IPIF provides include address decoding, data buffering, interface

registers, and peripheral interrupts. The details technical specification these system busses can be

found in IBM and XILINX datasheets [50,61].

Instead of creating a new interface, we utilize the IPIF as a part of our hardware thread interface

to serve as a layer between the system bus and architecture independent bus interface component.

In implementing the architecture independent interface we select bus slave and bus master

services common in most microprocessor-based system. Adopting this approach enables users to

replace only the architecture dependent interface portion when porting hardware threads to other

hardware platforms.

The collection of interface, thread scheduler, bus mastering and register processes can be grouped

into two distinct functions: a control unit to manage user thread execution and data path for data

flow in and out of the user thread. The control unit is broken into several hierarchical processes or

state machines as shown in Figure 4-7. The hierarchical state machines are identified as A, B and

C as shown in the Figure 4-7. Each hierarchy state machine is further decomposed into several

concurrent state machines or processes as indicated in the diagram. Hierarchical state machine A

is made up of thread scheduler state machine (A1), status register process (A2), and so on. B1

represents group of request handler processes and B2 is the bus mastering state machine that

provides input/output access services across the system bus and synchronization ownership tests.

The interface procedure (API) in hierarchy process U generates appropriate address and operation

codes for the thread scheduler upon a request from the user program. For a semaphore request,

the API calculates the semaphore variable address from the semaphore base address and the

semaphore ID.

 56

1. Thread Scheduler
2. Status Process
3. Command Process
4. Bus Slave Process

operation status

1. Request handlers
2. Bus Master
 - input/output
 3. Status/Test/Busy wait, etc

User application
programming interface
(API)

Bus Master Interface

User Program

system bus

A B

U

C

signals*

signals**

signals***

Bus Slave Interface
D

command arguments

H
W

T
H
R
E
A
D

I
N
T
E
R
F
A
C
E

USER
HW

THREAD

Figure 4-7 Hardware Thread Hierarchical Processes

The API then writes an appropriate code into the operation register. The operation code can be

one of the different types of synchronizations requests or data input/output transactions. The

specific hardware procedures available to a user thread are discussed in next section. The user

program then waits for status register to be updated by the scheduler. The scheduler then

transitions from the run state to one of the waiting states determined by the operation register

content. The state machine of the thread scheduler is given in Figure 4-8. As shown in the state

machine diagram in the Figure 4-8, there are five different possible execution paths the scheduler

must follow depending on the request made by the user program. The execution path can be for a

spin lock, block lock, semaphore wait, read or write transaction. The write transaction is not only

for sending data out but also for spin un-lock, mutex un-lock or semaphore post operation. It also

needs to switch the bus from bus slave to the bus master, since CPU read and bus master write

transaction uses the same data lines. When the scheduler moves from the run state to the wait

state, it issues a signal to latch the address and the parameter registers (the user interface

registers).

 57

wait
write

wait
write2

write
ok

write_req_done**

write_req_ack**

wait
read

wait
read2

read
ok

read_req_done**

read_req_ack**

wait
spinlk

wait
spinlk2

spinlk
done

mutx_acquired**
or

mutx_acq_fail**

mutx_req_ack**

wait
sema

wait
sema2

sema
block

sema
ok

sema_acq_fail**

cmd_wake
/cmd_reset

sema_req_ack**

sema_acquired**

wait
mutx

wait
mutx2

mutx
block

mutex
ok

mutx_acq_fail**

cmd_wake
/cmd_reset

mutx_req_ack**

mutx_acquired**

spinlock sema_wait write read

idle

run

cmd_run
/cmd_reset

CPU writes commands into command register
 - cmd_run cause hw thread start to run
 - cmd_reset resets commad register

cmd_stop
/cmd_reset

read write spinlock

sema_waitmutex_lock

mutex_lock

runrunrun

run run

/read_request* /write_request* /mutx_request*

/sema_request*/mutx_request*

operation/latch_registers

spinlk_unlock
mutex_unlock
sema_post

- API writes to operation register
 to request service.
- latch_registers latches all user
 interface registers.

hw thread
waits for
semaphore

hw thread
waits for
mutex

reset

Lagends:
* signal from state machine A1
** signal from state machine B2

Figure 4-8 Thread Scheduler State Machine

 58

Then it generates a request signal to the request handler state machine B1, which in turn causes

bus master B2 to perform the intended operation on behalf of the scheduler.

The state machines for different request handlers are given in Figure 4-9. The task of the request

handlers is to deliver the scheduler request only when the bus master is in the idle state. This

approach permits concurrent processes and ensures that the request will not be missed. Then it

sends an acknowledgement to the scheduler to indicate the request is in progress and for the

scheduler to de-assert it’s request and move to another waiting state. Request handler B1 not only

ensures the request will not be missed but also prevents the bus master from repeating a requested

task when it returns back to idle state once it has completed its duty. The state machine diagram

for the bus-master controller is given in Figure 4-9. Depending on the type of responses it

receives from the bus master, the scheduler returns to the run state or goes into blocking state.

The scheduler remains in the block state until a synchronization core sends a wake-up command

to it via the command register. Upon receiving the wake-up command, the scheduler resets the

command register to the init state.

The responsibility of the bus-master controller is to accept different bus transaction requests from

one the request handlers, and generate read or write request signals to the bus master interface. If

a request is for a semaphore acquisition then it also must perform a synchronization ownership

test. As shown in Figure 4-9, there are four possible paths the bus master will follow depending

on which request handler it receives signal from. If the request is for a semaphore, the bus master

carries out a read operation to fetch the requested semaphore variable, and proceeds to perform

synchronization test to determine whether it has ownership of the requested semaphore.

For the spin lock and binary blocking lock operations, the read data is compared with the thread

ID. If the read data is the same as the thread ID, the lock is obtained. For the semaphore wait

operation the read data is compared with zero. If they are equal the semaphore is exhausted. It

then sends an appropriate acknowledgement (semaphore fail or success) to the scheduler.

 59

B1: Generate one mutex lock request

send
data

send
done /write_req_done**

ack***

read
data

read
wait

read
done

ack***/data_avail

read_sema send_data read_data

init

read_data
send_data

read_mutx

init

init

/MstRdReq****

/MstWrReq****

- write data out
- spinlk_unlock
- mutex_unlock
- sema_post

- mutex_lock
- spinlk_lock

- sema_wait

read
sema

sema
done

sema
test

ack***/data_avail

read_sema

init

/MstRdReq****

/read_req_done**

if read_data_reg = zero
 /sema_acq_fail**
else
 /sema_acquired**

read
mutx

mutx
done

mutx
test

ack***/data_avail

read_mutx

init

/MstRdReq****

if read_data_reg = thread_id
 /mutx_acq_fail**
else
 /mutx_acquired**

reset

m0

m1

m_state = init
and

mutx_request*

/mutx_req_in
/mutx_req_ack**

reset

r0

r1

m_state = init
and

read_request*

/read_req_in
/read_req_ack**

reset

s0

s1

m_state = init
and

sema_request**

/sema_req_in
/sema_req_ack**

reset

w0

w1

m_state = init
and

write_request*

/write_req_in
/write_req_ack**

reset

mutx_req_in sema_req_in write_req_in read_req_in

B1: Generate one read request B1: Generate one sema wait request

B1: Generate one write request

Lagends:
* signal from state machine A1
** signal from state machine B2
*** signal from state machine C
**** signal to state machine C

B2: Bus Mastering &
 Synchronization Test

Figure 4-9 Bus Master State Machine

 60

As mentioned in the previous section, the status register is necessary to represent the execution

state of the hardware thread and the status of user request. Thus some of the registers bits are used

to represent the state of hardware, while other bits are used to indicate the status of a user request.

An additional requirement is that the status must be in a format that is meaningful to the user

program rather in terms of low-level hardware details. Thus a simple technique of copying the

hardware thread states into the status register will prove to be inadequate and not user friendly.

We take an approach that a single process (A2) is dedicated to update the status register with all

required information provided as inputs to this process as shown in Figure 4-10. The status

register bits however do not represent every possibility of input combinations, but instead reflect

useful states and conditions meaningful to the user thread.

status register process status register

1. Main controller states
2. Command
3. Bus master
 synchronization test:
 - mutx_acquired
 - mutx_acq_fail
 - sema_acquired
 - sema_acq_fail
4. Bus master read/write:
 - write_req_done
 - read_req_done

Valid values of status
register/ constant

Figure 4-10 Status Register Process

As mentioned previously, the command register is provided to control the operation of the

hardware thread from the system bus. Process A3 is responsible for updating the command

register and deliver commands to the thread scheduler. This process changes this register state in

response to system resets, CPU commands, or acknowledgements from the thread scheduler. The

valid states of this register are INIT, IDLE, RUN, and WAKE-UP. It goes into the initial state

following a system reset. Either the CPU or the semaphore IP core writing a command codes into

this register causes it’s a state change into a RUN, IDLE or WAKE-UP state. The thread

scheduler detects this register state change, and responds by sending an acknowledgement back to

the process. The process in turn resets this register back to initial state.

 61

4.5 HARDWARE THREAD USER INTERFACE

A combination of register sets and hardware-implemented procedures represent this sub-

component. This interface provides hardware threads with standard procedures for

communicating with other entities or cores such as semaphores across the system bus. The set of

registers in this interface are the operation, status, address, parameters, and read data registers.

The operation and status register pair serves as the interface for coordinating between the user

thread control unit and the thread scheduler. In addition to the control unit, address, read data, and

parameter registers are provided as data paths for exchanging user data across the bus. These

registers also provide storage and buffering of temporary data for the user computation.

Temporary data includes data brought in from memory, and data coming from user hardware

thread going out to other cores connected to the bus.

The set of functions or hardware procedures callable by the user thread are provided in form of

standardized program interface. The programming tasks that to be performed by the user are

significantly reduced by means of this standardized program interface (API).

Pseudo API Opcode Return Code

Read_data() READ READ_OK

Write_data() WRITE WRITE_OK

Sem_post() WRITE SEM_POST_OK

Sem_wait() SEM_WAIT SEM_WAIT_OK

Mutex_lock MUTEX_LOCK MUTEX_LOCK_OK

Mutex_Unlock WRITE MUTEX_UNLOCK_OK

Spin_lock() SPIN_LOCK SPIN_LOCK_OK

Spin unlock() WRITE SPIN_UNLOCK_OK

Table 4-1 Hardware Thread Application Program Interfaces (APIs)

The control protocol for all API’s includes writing a unique code into the operation register and

reading the status register. The set of operations provided by the API, the operation code and the

return code expected from the status register is shown in table 4-1. The implementation details of

the application interface are described later in section 4.5.2

 62

4.5.1 Interface Registers

The functionality of each register in the hardware thread interface are summarized below:

a) Command register

- It is a CPU writable register, for starting/stopping execution of the hardware thread. If

the thread is already in the run state, the user has to decide when to check the command

register in order to stop at safe or allowable states.

- Semaphore controller writes wake-up code into this register to unblock the hardware

thread from the blocking condition when a synchronization variable becomes available.

b) Status register

- This register represents the current execution state of the hardware thread and the status

of the user request. Therefore, it is updated by the thread controller and is accessible from

the user programs. The user programs or computations wait or proceed to a next sequence

depending the status return by this register.

c) Argument registers

- These registers are used to hold arguments. A program running on a CPU or a hardware

thread writes arguments such as addresses of shared data or other information to these

registers before commanding a hardware thread to start execution. For example a

software program writes pointers into these register after memory allocation operation.

- User program read these register either to determine the algorithm it has to execute or to

obtain addresses of shared data in memory it can access to. For example user program

may execute different image processing algorithm depending on values written into one

of these registers.

d) Result registers

- User program has option to use these registers to store temporary result of computation

and write it out to memory. In addition, programs in other entities may read these

registers to get the results. User program can signal other threads that its computation has

completed by using synchronization primitives.

 63

e) Operation register

- User program writes operation codes to this register to request different services from the

thread controller or scheduler. User program can request for synchronization or memory

accesses. User program then read status register to determine it’s next step. If the user

program requests for a semaphore and no more semaphore available, the thread goes to

blocking state and the state is returned by the status register.

f) Address register

- API writes an address of memory or synchronization variable that it needs to

communicate with. To write or read data, user program needs to provide actual address of

data to be sent out to or to read from. However to request for a semaphore, user program

needs to specify the semaphore ID instead of the semaphore address. The API calculates

the semaphore address from the semaphore ID and semaphore base address, and writes

appropriate semaphore addresses into this register.

g) Parameter/output registers

- These registers used by the user program API for multiple purposes. It writes data that

need to be transferred to memory into one of them. In addition it can be use to hold other

parameters such as thread id and the number of semaphore to request.

h) Input register

- These registers provide temporary storage for read data. User program API reads this

register after the controller has fetched data from the memory or device connected on the

system bus. User program knows that data is already available in this register when status

register returns success status on its read request.

4.5.2 Hardware Thread Application Program Interfaces

The following are partial portion of application program interfaces (APIs) provided within the

hardware thread interface to allow user thread to request for different kind of synchronization

operations and memory accesses. Synchronization APIs make use of base addresses of

synchronization cores that are passed as generics to calculate location of each variable. An

example how to use one of these APIs is as follows: sem_wait(sem ID).

 64

procedure write_data

 (signal address : out std_logic_vector(0 to addrbus_width);

 signal addr : in std_logic_vector(0 to addrbus_width);

 signal opcode : out std_logic_vector(0 to 3);

 signal param : out std_logic_vector(0 to databus_width);

 signal data : in std_logic_vector(0 to databus_width)) is

 begin

 address <= addr;

 opcode <= WRITE;

 param <= data;

 end procedure write_data;

procedure read_data

 (signal address : out std_logic_vector(0 to addrbus_width);

 signal addr : in std_logic_vector(0 to addrbus_width);

 signal opcode : out std_logic_vector(0 to 3)) is

 begin

 address <= addr;

 opcode <= READ;

 end procedure read_data;

procedure sem_wait

 (signal address : out std_logic_vector(0 to addrbus_width);

 constant sema_id : in std_logic_vector(0 to 5);

 signal opcode : out std_logic_vector(0 to 3)) is

 begin

 address <= sem_baseaddr(0 to 12) & sema_wait & hw_thread_id & sema_id & “00”;

 opcode <= SEM_WAIT;

 end procedure sem_wait;

procedure sem_post

 (signal address : out std_logic_vector(0 to addrbus_width);

 constant sema_id : in std_logic_vector(0 to 5);

 65

 signal opcode : out std_logic_vector(0 to 3);

 signal param : out std_logic_vector(0 to databus_width)) is

 begin

 address <= sema_baseaddr(0 to 12) & sema_post & hw_thread_id & sema_id & “00”;

 opcode <= WRITE;

 param <= x”00000” & “000” & hw_thread_id;

 end procedure sema_post;

procedure spinlock_lock

 (signal address : out std_logic_vector(0 to addrbus_width);

 constant spinlock_id : in std_logic_vector(0 to 5);

 signal opcode : out std_logic_vector(0 to 3)) is

 begin

 address <= spinlock_baseaddr(0 to 12) & sp_lock & hw_thread_id & spinlock_id & “00”;

 opcode <= SPIN_LOCK;

 end procedure spinlock_lock;

procedure spinlock_unlock

 (signal address : out std_logic_vector(0 to addrbus_width);

 constant spinlock_id : in std_logic_vector(0 to 5);

 signal opcode : out std_logic_vector(0 to 3);

 signal param : out std_logic_vector(0 to databus_width)) is

 begin

 address <= spinlock_baseaddr(0 to 12) & sp_unlock & hw_thread_id & spinlock_id & “00”;

 opcode <= WRITE;

 param <= x”00000” & “000” & hw_thread_id;

 end procedure spinlock_unlock;

 66

5 HYBRID THREAD SYNCHRONIZATION

5.1 INTRODUCTION – ATOMIC OPERATION

Management of shared resources is essential to the implementing a multithreaded programming

model. Current multithreaded programming models use synchronization mechanisms such as

binary semaphores to enforce mutual exclusion on shared data to avoid concurrent access by

multiple threads. Thus, providing atomic operations are fundamental to achieving efficient

semaphore semantics. Semaphores are implemented on general purpose CPU's with atomic read

and (conditional) write pair operations such as the load linked and store conditional, test and set,

and test-swap instructions [39]. For example MIPS R4000 and Digital’s Alpha AXP processors

use load and store instruction to provide an atomic read-modify-write operation [42]. While

semantically correct, these existing mechanisms introduce additional complexity in the system

design that is not easily extendable to hardware threads. Instead of replicating these mechanisms,

we use the FPGA to implement more efficient mechanisms that are CPU family independent, and

require no additional control logic to interface into the system memory coherence protocol for

hardware threads. As such, our new mechanisms are easily portable across shared and distributed

memory multiprocessor configurations and are also available to CPU/FPGA systems with only

software threads.

During the course of this research project, we developed several new methods of achieving

atomic operation to implement semaphores in FPGA. Our first attempt was to mimic the classic

standard atomic write and read operation pair. We created memory mapped request and/or owner

registers and a simple control structure within the FPGA that conditionally accepted or denied the

request. The sequence of operations executed by a thread requesting a lock was to write its thread

ID into the request register followed by a read operation of an owner register to see if the request

had been accepted. The order of these operations was reversed from the classic read first,

followed by conditionally write to request and check the success of obtaining the semaphore. We

created a second method based on this first attempt that reduced the two instruction pair into a

single atomic read bus transaction. This single operation approach was possible by using the

address lines to encode the requesting thread ID during a normal bus read operation. The control

structure within the semaphore IP then conditionally accepted or denied the request during the

single read bus operation.

 67

This approach was then extended to support blocking semaphores that are common for situations

where shared resources must be locked for long durations. To enable blocking semaphores,

queues are required to hold the thread id’s of the sleeping threads. Wake-up mechanisms are also

required that select a blocked thread id or multiple id’s to be transferred from the blocked queue

onto the schedulers ready to run queue. In multi-processor environments, however, spin locks are

still appropriate synchronization primitives as their overhead is comparatively lower than a

blocking semaphore. This is method of choice when application programs will busy wait for less

time than required to perform context switching. Obviously for a single processor environment,

spin locks can cause deadlock since the lock owner has no chance to release the lock while the

other thread spins. This phenomenon can be avoided if the owner is not preempted or the owner

has to release the lock before it goes to sleep.

We have support and have implemented both type spin and blocking locks within the FPGA. In

addition to extending the multithreaded programming synchronization capabilities to hardware

threads, these new synchronization primitives are also significantly lower overhead for threads

running on processors. We achieved lower overhead by:

- Migrating operating system functionality associated with processing semaphore requests

and maintaining the semaphore into the FPGA.

- Creating the capability to port other operating system services into the FPGA to further

reduce the overhead of operating system services that improve system response times and

provide more deterministic delays.

In our first prototypes, we implemented each semaphore with dedicated FPGA resources. As the

number of semaphores in most system can be large, this approach did not scale well within

FPGA’s with limited resources. To minimize the resources requirements, we then created a single

control mechanism that managed multiple instances of the semaphores within a single entity. In

addition, the semaphore entity was designed to exploit our single read bus transaction approach to

achieving atomic operations. This reduced the application program interface (API) to a single

read instruction, instead of a write followed by read instruction pair, to request and check the

success of obtaining the semaphore. We present the complete evolution of our implementations in

order, starting with a simple single semaphore and proceeding through our optimizations leading

to our final implementation of our multiple spinning and blocking semaphores that use a single

control entity and are accessed with a single atomic read operation.

 68

5.2 SPIN LOCK PROTOTYPE

The block diagram for a spin lock is shown in Figure 5-1. The API pseudo code for accessing the

binary spin lock is given in Figure 5-2.

request lock_own release

Data Bus

Spin Lock Controller

Figure 5-1 One Spin Lock

 spin_lock_request(&sema, thread_id) {

 grant = 0;

 while(!grant) {

 thread_id � request_reg

 if (lock_owner == thread_id)

 grant = 1;

 else delay(); } }

 spin_lock_release(&sema, thread_id) {

 thread_id � release }

Figure 5-2 Spin Lock Pseudo Code API

The semantics for accessing a lock for both hardware and software threads are identical. API’s for

both hardware and software threads and are made available as library routines to the system

developer. To request the semaphore, the API first writes the thread_id into the request register.

After the thread_id has been written, the API then reads the lock owner register (lock_own) and

compares it with its own thread_id. To release the semaphore, the thread writes its thread_id into

the release register. When a thread_id is written into the request register and the semaphore is

free, the state machine control logic implemented within the semaphore IP updates the lock

 69

owner register. If the semaphore is currently locked, then the control logic performs no update.

After the first access, the lock is only freed when a thread writes into the release register.

5.3 SPIN COUNTING SEMAPHORE PROTOTYPE

The block diagram of a spinning counting semaphore is shown in Figure 5-3. The user API

pseudo code for accessing this structure is shown in Figure 5-4. The max_cnt register is

initialized to the maximum number of resources initially available. The thread first gains access

to the counting semaphore request registers by accessing the binary spin lock. The binary spin

lock protects the next two instructions that first write the requested number of resources and then

reads back a status. A requesting thread writes its request for a number of resources into the

req_num register. The semaphore logic then checks to see if sufficient resources are available

and appropriately sets the grant register. If insufficient resources are available, then a Boolean

value of 0 remains in the grant register. If sufficient resources are available, then the Boolean

value 1 is written into the grant register. In either event, the thread reads the result of the request

from the grant register. The control logic resets the grant register upon read. The grant flag will

stay valid for the request and will not change until the requestor performs the reading of the grant

flag. No other requester can cause recalculation to occur as the request/grant check pair are

protected by the spin lock. Even if these two sequential operations are interrupted by a valid

release request, the grant flag will not be affected and will continue to reflect the value of the

count when the requesting task entered into the spin lock. A thread can release any number of

resources by writing into the rel_num register. Accessing the spin lock is not required for the

resource release, as its operation does not affect the grant register.

release

request

lock_own

Data Bus

Spin Lock
Controller

rel_num

req_num

grant0:1max_cnt

Spin Counting
Semaphore logic

Figure 5-3 Spin Counting Semaphore

 70

spin_sema_request(&sema, thread_id, value) {

 grant = 0;

 while (!grant) {

 spin_lock_request(&sema, thread_id)

 value � req_num

 grant grant0:1

 spin_lock_release(&sema)

 if (!grant) delay(); } // end while

 }

 spin_sema_release(&sema, value) {

 value � rel_num

 }

Figure 5-4 Spin Counting Semaphore API

5.4 MULTIPLE SPIN LOCKS IP

The block diagram for achieving multiple spin locks using a single controller is shown in Figure

5-5. This single entity provides control for sixty-four spin locks. We use the address lines to

encode both the semaphore ID and thread ID during a normal bus read operation. A single control

structure within the semaphore IP then conditionally accepts or denies the request during a single

read bus operation.

Controller

Thread_1

Thread_7

Owner registers

Address bus:
 6 lines for spin lock id
 9 lines for thread id
 2 lines for operation code

Data Bus

Figure 5-5 Multiple Spin Locks IP

 71

We migrated the multiple owner registers of our previous design into the on chip BRAM thus

eliminating the FPGA gates that were used to implement the individual owner registers. This

resulted in significant savings of the FPGA’s CLBs. The semaphore ID that is encoded within

the address is directly decoded to select the semaphore in the BRAM.

To request a semaphore, the API issues a read to an address formed by encoding the semaphore

ID and thread ID as the least significant bytes of the base address. In response to this read

operation, the spin lock controller decodes the address lines and extracts both the semaphore and

thread ID’s. The extracted thread ID is then compared with the thread ID stored in the owner

register to determine if the semaphore is empty or currently in used. If the owner register is free,

it will be updated with the requested thread ID. If the lock is currently locked, then the control

logic performs no update. After the check is performed, the controller places the appropriate

thread ID from the current owner thread id onto the data bus and terminates the bus cycle. The

controller takes eight cycles to complete the request. To release the semaphore, the API writes

its thread ID to an appropriate address. The controller state machine then decodes the address

lines and updates the selected owner register to non-owner status.

5.4.1 Multiple Spin Lock Hardware Architecture

Our final architecture for multiple spinning binary semaphores consists of: 1) interface and error

registers 2) lock owner registers, recursive counters (and its controller) 3) operation mode

controllers 4) atomic transaction controller 5) soft reset circuits. Figure 5-6 shows the RTL level

description of this architecture. The figure does not include the reset circuit for clarity.

1. Interface and error registers:

• Lock ID register

• Thread ID register

• Error status register (recursive overflow)

• Data Multiplexer (API return value: error bit and lock owner)

2. Owner registers and its controller

• 64 Owner registers implemented within BRAM (Lock BRAM)

• 64 Recursive lock counters (implemented within Lock BRAM also).

• Lock BRAM access controller

 72

3. Operation mode controller

4. Atomic transaction component

5. Soft reset counters

Address counter used to reset all the owner registers and recursive counters

system bus

Bus Slave Interface
A

1. Select locks
2. Request lock
 - update owner register
 if free.
 - add recursive counter
 - error if recursive counter
 overflow
3. Release lock
 - reduce recursive counter
 - free lock
4. Soft Reset all registers

C Multiple Locks Controller

1. Write request ack
2. Atomic read operation
 - control lock owner
 register read
 - read request ack
 delay counter

B Atomic transaction

lock_id register process

thread_id register
process

D Operation mode request

release

a_enable

a_r/w

opr enable addr data_in

data_out

- Decode address & r/w
- Determine lock/unlock
- Generate signals to
 locks controller

sdata saddrrdreq rd_ack
wr_ack

wr_req

Multiple
lock

owner
registers

Multiple
lock

recursive
counters

data_mux

error statuserror

read

 addr from
lock_id
register

thread_ID

lock_ID

thr id
rcnt

Figure 5-6 Multiple Spin Locks Hardware Architecture

 73

Lock ID register

This register holds a requested lock ID decoded from the address bus. Our application program

interface (API) uses address lines A24:A29 to encode the lock ID. The number of address lines

used for encoding the id is set during design and based on the number of system locks set by the

developer. For this example, sixty-four spin locks are supported within this single entity. The

address lines are latched into this register when either the read request or the write request signal

goes high. The BRAM Access Controller then uses this register as an index to select one of the

sixty-four owner registers within the BRAM.

Thread ID register

The thread ID register latches and holds the thread ID encoded on address lines A23:A14. These

nine lines support 512 active threads (256 software threads and 256 hardware threads). The

content of this register is then compared with the contents of the appropriate owner register. This

register is also used as a transit place to hold a thread ID, before transferring it to one of the

owner registers. In addition, this register also encodes a NO OWNER value when a lock is

released to free a selected owner register.

Lock Owner registers (Lock BRAM)

The Lock owner registers hold the thread IDs of the threads that currently own the locks.

Recursive counters

The recursive counter register holds the number of grants for an owner thread to support recursive

lock semantics. We currently implement 64 recursive counters, one for each of our sixty-four

spin locks. To implement the counters, we divided each 16 bit BRAM entry into two columns:

one that holds the 9 bit thread id for the current owner, and the second to hold an associated 6 bit

recursive counter.

Lock BRAM Access Controller (lock & recursive counter controller)

The Lock BRAM access controller updates the lock owner registers and recursive counters. The

state machine for this controller is shown in Figure 5-7. This state machine waits for the

Operation Mode controller to issues run signals. When a lock request signal is received, the

controller starts by reading the selected lock BRAM location and determines if the requested lock

is free. If free (rcnt = 0), the controller writes the requesting thread id (thr id) into the owner

register. If the lock is not free, the controller then compares the requesting thread ID with the

 74

owner thread ID read from the lock BRAM. If identical, the controller then checks if the recursive

counter is already at maximum value. If the counter value (recur cnt) has not reached it’s

maximum value, the recursive counter is incremented and stored back into the BRAM. If the

recursive counter is already at maximum, an ERROR signal is asserted within the error status

register. If however the two thread IDs compared do not match, the controller immediately

returns to the init state. When the Operation Mode controller issues a lock release signal, the

controller reads the recursive count and if the read value is not one, it decrements the recursive

count. If the read value is one, it first sets the owner register with a NO OWNER value before

decrementing the recursive counter to zero.

Operation Mode Controller

This controller serves as an interface between the application program and the spin lock IP. The

operating mode controller decodes the application program interface request and generates the

appropriate control signals for the other controllers. The supported op_codes that can be issued by

our API’s are given in table 5-1. This controller uses read and write request signals, and two

address lines to decode requests. Based on the request, the controller then outputs the following

signals: lock request, lock release, and lock (owner register) init. This controller works

concurrently with the Atomic Transaction controller to process lock request transactions. (Atomic

Transaction controller will be described later). This controller also generates signals that initiate

processing of the lock BRAM Access Controller.

Spin lock (recursive lock/unlock)

Write

Request

Read

Request

A13 A14 Operations Error &

Status

0 1 0 0 Read a spin lock (owner register) N/A

0 1 0 1 Spin_lock() Recursive

overflow

0 1 1 1 Spin_unlock() N/A

Table 5-1 Operations Request by the Application Interface

 75

Atomic Transaction Component

This component consists of two processes. The first process acknowledges the system buses write

operation, which occurs when a lock is released. The acknowledgement is asserted on the next

cycle, immediately after the write request occurs. The second process acknowledges an atomic

read request, which occurs when a spin lock is requested. An atomic read process is initiated

when the read request line goes high. However it does not immediately terminate the bus read

request cycle with an acknowledgement. Instead, the controller waits until the selected owner

register update (by the Lock BRAM access controller). As shown in Figure 5-6, the atomic

transaction controller outputs two signals - enable (a_enable) and read acknowledge (rd_ack).

These signals are asserted at six and eight cycles respectively, after the read request to the owner

register occurs. The enable signal causes the owner register referenced by the lock ID to be read.

The read acknowledgement signal to bus request occurs two cycles after the owner register has

been accessed. The two cycle delay is required to allow the owner register’s data output to

stabilize on the system bus. Updating the owner register update time from the initial read request

occurs in six cycles.

 Data output multiplexer (API return value)

The result of each request is the returned of the owner thread ID and the error status as shown in

Table 5-2. Both the error status and/or thread ID are input to the data multiplexer prior to being

driven on the data bus.

Return values: bits (0 to 31)

Spin Lock

APIs

Recursive

Error

(4 bit)

Not used

Zeroes

(19 bits)

Lock Owner

Thread ID

(9 bits)

Descriptions

spin_owner thread ID read lock owner

spin_unlock write operation

spin_lock 0 thread ID success

spin_lock 0 other thr ID lock not avail

spin_lock 1 thread ID recursive cnt overflow

Table 5-2 Spin Lock API return values

 76

reset
owner

reset
done

cnt_addr =
last_addr

Init

reset

uread
recur
cnt

uread
wait

/addr = lock_id
/enable = yes
/opr = read

ucheck
recur
cnt

lock_release lock_request

soft_reset
/reset_cnt_start

soft_reset_low

read
wait

check
recur
cnt

read
recur
cnt

rcnt == 0

init

threadID?

rcnt == max

no

yes

yes

equal

not equal

no(recur
count

overflow)

(other
thread

attempt to
get the
lock)

/error

init

(recursive
lock)

init

(lock is
free, thread

obtained
the lock)

lock owner(lock ID) = thread ID
recur cnt(lock ID) = 1

init

rcnt == 1
no

yes

lock owner(lock ID) = NO OWNER
recur cnt(lock ID) = 0

(free
the

lock)

init

(recursive
unlock)

lock owner(lock ID) = CUR OWNER
recur cnt(lock ID) = rcnt(lock ID) - 1

init

update recur count only:
lock owner(lock ID) = CUR OWNER
recur cnt(lock ID) = rcnt(lock ID) + 1

init

/addr = lock_id
/enable = yes
/opr = read

/addr = lock_id
 counter
/enable = yes
/opr = write
/datain = zero

lock ID counter

/addr = lock_id
/enable = yes
/opr = write
/data = recur cnt &
 thread ID

BRAM fields : recursive count (0 to 7) & zeroes(0 to 14) & thread ID (0 to 8)

Figure 5-7 Multiple Spin Lock BRAM Access Controller State Diagram

 77

5.4.2 Resources Analysis

Tables 5-3 and 5-4 show a comparison between the resources required to implement one spin

lock from our first prototype against the resources required to implement 512 spin locks from our

final design. Even though the multiple spin lock IP supports 512 spin locks, it only requires a

slight increase in the total number of slices, flip-flops, and LUTs compared to a single spin lock

prototype. This was a result of implementing the 512 lock owner registers and 512 recursive

counters within a BRAM instead of using LUT based registers and having a single controller

handle all requests.

Spin lock # used #total % used

Slices 72 4928 1.46

Flip-flops 96 9856 0.97

4 inputs LUTs 71 9856 0.72

BRAMs 0 44 0.00

Table 5-3 One spin lock prototype

Spin lock # used #total % used

Slices 104 4928 2.11

Flip-flops 157 9856 1.59

4 inputs LUTs 82 9856 0.83

BRAMs 1 44 2.27

Table 5-4 512 multiple spin locks implementation

 78

5.5 BLOCKING SYNCHRONIZATIONS

Blocking synchronization allows threads that are not granted access to the semaphore to be

queued and suspended, thus enabling more efficient usage of the computing resources and

decreasing congestion on the system bus. For our prototype, the basic blocking control

mechanism includes queue structures associated with each blocking semaphore to hold the thread

ids of suspended threads or next lock owner threads.

Releasing a blocking lock can generate a wakeup event that needs to be interfaced to the

operating system scheduler as well as the independent hardware threads. Thus blocking

synchronization mechanism must have the capability to deliver the next lock owner or wakeup

signal to the responsible subsystem. For a hardware thread to receive wakeup signal, an

additional supporting interface and control infrastructure is required. For software threads, an

interrupt to the processor is required to place the “unblocked” thread id back into the scheduler

ready to run queue. The scheduler then may need to run a scheduling decision if a preemptive,

priority based scheduling policy is in use. Obviously, not all insertions of a new thread id into the

ready to run queue would result in a swapping of the currently running thread with the new

unblocked thread. Independent of the outcomes of any scheduling decision, routing interrupts

from external semaphores into the scheduler on the CPU will result in additional overhead

processing and jitter. Obviously, migrating the scheduler and key system time services into the

FPGA can eliminate the overhead and jitter of the interrupt processing and context switching

associated with the unblocking operation. Instead of directly interrupting the processor to deliver

the “next lock owner” to the scheduler, the blocking semaphore communicates directly with a

new hardware module, the software thread manager, which then interfaces with a hardware

resident scheduler. A detailed description of the thread manager including its design and

implementation can be found in [61]. Interfaces and communication protocols between blocking

semaphores and the hardware based thread manager will be discussed in Section 5.8.1.

Independent of the actual location of the scheduler, blocking synchronization mechanisms need to

deliver the thread IDs of unblocked software threads into the scheduler queue, and issue

additional wake-up commands directly to hardware threads. For testing purposes, we

implemented the additional interface structure shown in Figure 5-8 between the CPU and the

individual blocking synchronizations. This structure simplifies the interrupt logic needed between

 79

the blocking synchronization components and the CPU, and reduces the unnecessary interrupt

overhead. This structure interrupts the CPU via the interrupt controller module.

Thread_3

Thread_5
Thread_8

Interrupt
controller

Queue Manager

Data Bus

to CPU interrupt

SW Threads

Figure 5-8 Blocking Synchronization CPU Interface

5.6 MUTEX PROTOTYPE (A BINARY BLOCKING LOCK)

The block diagram of our first single MUTEX prototype (prototype blocking binary lock) and its

API are shown in Figure 5-9 and Figure 5-10 respectively.

request owner release

Thread_3
Thread_2

Thread_5
Spin Lock Control

Thread Queue Manager

Data Bus

Figure 5-9 Single MUTEX (a Blocking Binary Lock)

The blocking semaphore API writes a thread id into the request register and then follows up with

checking the owner register similar to the binary spin lock. If the thread did not receive the lock,

then the API puts the thread to sleep in the case of a software thread, or into the wait state in the

case of a hardware thread. Once awakened, the thread will read the owner register.

 blk_lock_request(&sema, thread_id) {

 grant = 0;

 while(!grant) {

 thread_id � rqst_reg

 80

 if(lock_owner == thread_id)

 grant = 1;

 else sleep() //context switch }

 }

 blk_lock_release(&sema, thread_id) {

 thread_id � release }

Figure 5-10 Blocking Binary Lock API

The lock is released by writing the thread_id into the release register similarly to releasing a spin

lock. Unlike a spin lock, the control logic must now queue a requested thread_id if the lock is

currently owned by another thread. The depth of the request queue for our prototype is a system

parameter set at design time.

5.7 MULTIPLE BLOCKING SYNCHRONIZATIONS

In traditional operating systems, a sleep or wait queue is associated with each blocking

semaphore. A thread goes to sleep by queuing itself into the appropriate queue. The first

prototype of a blocking mechanism (described previously) included similar queue structures

associated with each blocking semaphore to hold the thread ids of suspended threads. As the total

number of synchronization variables in a system may be quite large, implementing separate

queues for each semaphore required significant FPGA resources. We addressed this resource

utilization issue by creating a single entity to control queuing and wakeup operations for multiple

blocking locks.

Additionally, this approach created a single global queue for all blocking semaphores. The global

queue size need only be equal to the total number of threads in the system. Conceptually, this

global queue is configured as multiple sub-queues associated with different semaphores.

However, the combined lengths of all sub-queues need not be greater than the total number of

threads in the system as sleeping threads cannot make additional requests for other semaphores.

Releasing a blocking semaphore triggers de-queuing of the semaphore’s next owner. To manage

 81

the global queue efficiently, we created a single waiting queue that is divided into four tables -

Queue Length, Next Owner Pointer, Last Request Pointer and Next Next-Owner.

The Queue Length Table maintains the length of each semaphores queue, and is accessed by

indexing into the global queue table using the semaphore ID. The Last Request Table contains

either a thread ID or pointer to the Next-next owner table. This table is also indexed by

semaphore ID. The table is used to point to the last semaphore request.

The Next Owner Table contains the next owner thread IDs, which is used to index into the Next-

Next-Owner Table. When a semaphore is released, this pointer is used to provide fast lookup of

the next semaphore owner. After the next owner has been accessed the location is updated with

the new next owner by reading the next-next owner table. In summary, the Next-Next owner

entry serves as the head of a linked list of all blocked threads for a given semaphore.

5.8 MULTIPLE MUTEXES IP

The block diagram for a multiple block lock (MUTEX) IP is shown in Figure 5-11. This single

entity carries sixty-four block locks (64 owner registers in BRAM). In addition to the lock owner

registers, other structures include the global wait queue used to hold the thread ID’s of blocked

threads.

Controller
- mutex or blocking lock
- tables/queue
- bus master

Thread_7

Thread_9

Thread_1

Owner registers Tables

Address bus:
 6 lines for mutex id
 9 lines for thread id
 2 lines for operation code

Data Bus

Last
Request

Next
Owner
Queue
Length

Link
Pointer

Figure 5-11 Multiple Blocking Locks IP Core

 82

Each sub-queue within the global queue has its own queue length that varies from zero to

maximum number of thread in the system. The controller responds in a similar fashion to the

controller for a spin lock. However, if the owner is not free, the appropriate queue length will be

updated and the requested thread ID will be queued. The controller takes eight cycles to complete

the request.

To release the semaphore, the API writes its thread ID to an appropriate address. The controller

will decode the address lines and update the selected owner register to non-owner status if the

queue is empty. If the queue length of selected semaphore ID is not zero, the queue length will be

decremented and the next owner pointer will be read to de-queue a next owner thread ID, and the

owner register will be updated with the next owner.

5.8.1 Multiple MUTEXES Hardware Architecture

Our final blocking lock (mutexes) architecture consists of: 1) interface and status registers 2) lock

owner registers, recursive counters (and its controller) 3) blocked threads global queue 4) global

queue controller 4) other sub-controllers 5) soft reset circuits. Figure 5-12 shows the hardware

components of the blocking binary semaphore (mutexes). The figure however does not include

the reset circuit.

1. Interface and status registers:

• Single Mutex ID register

• Single Thread ID register

• Busy status register

• Error status register

• Output MUX (API return status)

2. Owner registers, recursive counters and its controller

• Up to 512 mutex owner registers implemented within BRAM (Mutex BRAM)

• Up to 512 recursive counters implemented within BRAM (within the Mutex BRAM)

• Mutex BRAM access controller (Multiple Mutexes controller)

 83

3. Queue and its controller

• Queue implemented within BRAM (Queue BRAM)

• Queue Controller

• Next Mutex Owner register (unblocked thread register)

4. Other Controllers:

• Operation Mode controller

• Atomic Transaction controller

• HW/SW Comparator and Next Owner Address Generator

• Bus Master

5. Soft reset circuit

• Part of global queue and lock BRAM controllers: to reset the recursive counters, lock

owner register and global queue.

• Counter generates addresses used to reset all the owner registers and recursive

counters

• Counter generates addresses used to reset all the global queue cells

Mutex ID (Lock ID) register

This register latches the mutex ID encoded in address lines A24:A29. The address lines are

latched into this register when the read request signal goes high. This register is used as an index

by the Mutex BRAM Access Controller to access one of the sixty-four lock owner registers, and

as an index to access tables in the next owner queue.

Thread ID register

The Thread ID register is used to hold thread ID to be compared with a lock owner register. This

register is additionally used as transit storage for a thread ID, before it moves either into the

global queue or an owner register. The Queue Controller uses this register as an index to access

the Link Pointer table in the queue. It holds NO OWNER default value when a lock is released

and no new owner available in the queue.

 84

Bus Master Interface
(IPIF MASTER)

system bus

B
Bus Slave Interface (IPIF SLAVE)

A

1. Determine next owner:
 HW or SW thread
2. Generate read or write to
 Bus Master
3. Calculate next owner
 address

F Comparator

1. Enqueue blocking thread
2. Dequeue next lock owner
 - signals E to update owner register
 - signals D to via F to deliver next owner
3. Manage queue/4 tables
4. Soft Reset, clear all the table

H Queue Controller

Link Pointers

Last Request

Next Owners

Queue Lengths

1. Manage recursive mutexes
2. Update owner register
 - with new owner if free
 - with next owner (deque)
3. Gen enque if lock not free
4. Gen deque if lock release
5. Soft Reset all own registers

E Controller for multiple
 mutexes

1. Request Handlers
2. Bus Mastering
 - reader
 - writer

Bus Master

Atomic read operation
 - control owner register
 - read req ack delay

C Atomic transaction

mutex_id register

thread_id register

G Operation mode

enque
deque

deq_done
deq_none
enq_done

nx_owner

request*

release

a_enable
a_r/w

opr

qread_write

qenable

qaddr

qdata_in

enable
addr

data_in

next_owner register

rreq
wreq

ack

nx_owner

latch_next_owner

msc_start

- Decode address & read
- Determine lock/unlock

saddrrdreq rd_ack

nx_owner
Queue with 4 tables

wr_ack
wr_req

D

xaddr +
control

qdata_out

prev status
register

cur status
register

- Status busy/OK
- Xfer status betw regs

deq_done
deq_start

status

addr_out
data_out

J Next Owner Address Generator

Parameters:
- HW thread base address
- HW Thread size
- SW thread Manager address

data_out

addr_out

do_compare

K API return status

addr_out &
data_out

regs

Multiple
mutex

recursive
counters

Multiple
mutex
owner

registers

Data mux

status
error bit

error bit

mutex ID

error

sel

sdata xdata
& xack

msc_
done

deq_start
deq_done

Note:
 request* = (trylock or lock or readlock)
 ack = bus_master_last_ack
 rreq = read_request control = MstWrReq, MstRdReq
 wreq = write_request xack = bus interface read_ack or write_ack

API ret status

rcnt
thr id

Figure 5-12 Multiple Mutexes IP Hardware Architecture

Operation Mode Controller

This controller serves as an interface between the application program and semaphore hardware.

It decodes the application program interface request and generates appropriate signals to other

 85

controllers. The allowable operations that can be requested by the application program and

control signals output by this controller are given in table 5-5. It uses read request and two

address lines to decode an application request and outputs: lock request, lock release, and try lock

signals. This controller works concurrently with the Atomic Transaction controller to service lock

request transactions. (Atomic Transaction will be described later). The generated outputs initiate

the Lock BRAM Access Controller operation, which in turn will cause other controllers to start

operations.

Write

Request

Read

Request

A13 A14 Operations Error &

Status

0 1 0 0 Read a mutex (owner register) N/A

0 1 0 1 Mutex_unlock(), release a mutex, dequeuing

a next owner if there is one in the queue.

Busy

0 1 1 0 Mutex_lock(), request for a mutex,

enqueuing the calling thread if the requested

mutex is not free.

Recursive

overflow,

Busy

0 1 1 1 Mutex_trylock, request for a mutex, but do

not enqueue the calling thread if the mutex is

not free.

Fail/Succeed,

Busy

Table 5-5 Mutex Application Interface Requests

Atomic Transaction Controller

For a description of the Atomic Transaction Controller see section 5.4.1.

Busy Status Mechanism and Error Status registers

Busy status serves as a busy indicator to the API request when the Queue controller has not

completed delivery of next owner (unblocked thread) thread id to the thread manager. Even

though the de-queue operation takes at most nine cycles, the delivery operation across the bus

may be delayed by other system bus activities. The busy status mechanism includes two registers:

Previous Status and Current Status. The status in the Previous Status register along with error

status and other information as shown in table 5-6 is returned to the API request. The error status

 86

register provides an error indicator (the error bit is set) when the number of recursive lock

requests surpasses the maximum value of the recursive counter.

The start and completion of an unblocked thread delivery event causes the Current Status register

to change state to “busy status” and “non-busy status” respectively. An API request (lock,

unlock, or try lock request) causes transfer of status from the Current Status register to the

Previous Status register. Therefore an API request that occurs between the start and completion of

the delivery will receive a “busy status”. When an API receives a busy status, it must retry its

request. As the Lock BAM Access controller will not return to its initial state if the delivery of

unblocked thread is not completed, any new API request will not cause any new operation. Since

the new API request will not cause any operation and not affect the busy status (if the unblocked

thread is not delivered yet), the integrity of all internal core operations is maintained.

Data output multiplex (API return value)

Hardware returns busy status, recursive error status and thread ID as shown in Table 5-6 to

response to the API request (return value read by the API). The thread ID is read from one of the

owner registers chosen by the atomic transaction controller. The status and thread ID are

transferred to the data bus through a data multiplexer.

Return Values: bits (0 to 31)

Mutex

APIs

Busy

status

(4 bits)

Recursive

Error

(1 bit)

Not used

Zeroes

(11 bits)

Not used

Zeroes

(8 bits)

Mutex Owner

Thread ID

(8 bits)

Descriptions

mutex_owner current mutex owner

mutex_unlock 1010 not busy or success

mutex_unlock 1110 busy

mutex_lock 1010 0 thread ID not busy, get mutex

mutex_lock 1010 1 thread ID not busy, recursive error

mutex_trylock 1010 thread ID not busy, get mutex

mutex_trylock 1010 other thr ID not busy, mutex not avail

mutex_trylock 1110 busy

Table 5-6 Mutex API Return Values

 87

Mutex BRAM Access Controller (Recursive Mutex Controller)

The MUTEX BRAM access controller has several responsibilities including updating the lock

owner register, modifying the recursive lock counters, and activating queue (en-queue or de-

queue) operations when necessary. The state machine of this controller is given in Figure 5-13.

This controller waits for the Operation Mode controller to issue an initiate processing signal.

When it receives a lock acquisition signal, it starts by reading the selected lock BRAM location to

determine whether the requested lock is free. If it is free (rcnt = 0), the controller updates the

owner register with the requester thread ID. If the lock is not free, the controller compares the

requester thread ID with the thread ID (thr id) it just read from the lock BRAM. It they are the

same, the controller then checks if the recursive counter is already at maximum value. If the

counter value is not maximum, it increments the recursive counter and save the new counter value

(recur_cnt) into the BRAM. If however the two thread IDs are not the same, it raises a signal to

command the Queue Controller to en-queue the requester thread ID.

When the Operation Mode controller issues a lock release signal, this controller makes

comparison whether the recursive count is equal to one. If the counter is not equal to one, the

recursive count is decremented and the new value is saved into the lock BRAM. If the recursive

counter is equal one, the controller will issue the dequeue signal to the Queue Controller. It then

waits for a response from the Queue Controller. If the Queue Controller response indicates that

there is no next owner in the queue, it will update the lock BRAM with NO_OWNER and reset

recursive count to zero. If the Queue Controller responds that there is a next owner, it will issue a

signal to busy status mechanism, and update the owner register with a new owner thread ID and

set the recursive count to one. The busy status signal is to flag that it is busy and waits for Bus

Master to deliver the de-queued next owner to the final destination (either scheduler queue or

hardware thread). Upon received of delivery completion acknowledgement signal from the Bus

Master, it resets the Current Status register to NOT_BUSY status and returns to init state.

 88

trylock
read

trylock
wait

Init

reset

uread
recur
cnt

uread
wait

/addr = lock_id
/enable = yes
/opr = read

ucheck
recur
cnt

lock_release lock_request

read
wait

check
recur
cnt

read
recur
cnt

rcnt == 0 threadID?

rcnt == max

no

yes

yes

equal

not equal

no(recur
count

overflow)

(other
thread

attempt to
get the
lock)

/error

init

(recursive
lock)

init

(lock is
free, thread

obtained
the lock)

lock owner(lock ID) = thread ID
recur cnt(lock ID) = 1

init

rcnt == 1
no

yes

(free
the

lock)

init

(recursive
unlock)

lock owner(lock ID) = CUR OWNER
recur cnt(lock ID) = rcnt(lock ID) - 1

init

update recur count only:
lock owner(lock ID) = CUR OWNER
recur cnt(lock ID) = rcnt(lock ID) + 1

/addr = lock_id
/enable = yes
/opr = read

/addr = lock_id
/enable = yes
/opr = write
/data = recur cnt &
 thread ID

Note:
mutex fields : recursive count (0 to 7) & zeroes(0 to 14) & thread ID (0 to 8)
API status return: busy status(0 to 3) & error (0 to 3) & recursive cnt (0 to 7) & zeores(0 to 7) & thread ID(0 to 8)

next
owner
upd

deque?
none

done

next
owner
dlvry

Lock free, no owner update:
lock owner(lock ID) = NO OWNER
recur cnt(lock ID) = 0

lock owner(lock ID) = dequeued thread ID
recur cnt(lock ID) = 1

msc_done

/seq_done

/seq_done

/dequeue

/seq_done

init

enque
wait

/enqueue

enque_done

reset
owner

reset
done

soft_reset
/reset_cnt_start

soft_reset_low cnt_addr =
last_addr

init

/error (fail to
acquire lock

lock == free

yes

no

init

/seq_done

lock owner(lock ID) = thread ID
recur cnt(lock ID) = 1

/seq_done

trylock
acquire

Figure 5-13 Mutex BRAM Access Controller

 89

Global Queue

The global queue is designed to hold up to 512 thread IDs blocked on any of the sixty-four

MUTEXES. The queue is divided into the four tables shown in Figure 5-14, and is implemented

within the BRAM (Queue BRAM).

00

L ink P ointer
Table

Last R equest = 4

Last R equest = 11

...

Last R equest = 5

Last R equest
 P ointer Table

N ext ow ner = 8

N ext ow ner = 07

...

N ext ow ner 20

N ext O w ner
P ointer Table

Q ueue leng th = 0

Q ueue leng th = 3

Q ueue leng th = 8

… .

Q ueue Length
Table

sem a/lock id reg is ter = 2

thread id reg is ter = 11

next ow ner reg ister

 lock ow ner S0 = 00

lock ow ner S1 = 00

lock ow ner S2 = 99

lock ow ner S3 = 00

… ...

lock ow ner S 26 = 00

lock ow ner S 27 = 00

… ...

lock ow ner S 40 = 00

… ..

… .

lock ow ner S 63 = 01

N ext next ow ner = 009

00

N ext next ow ner = 011

00

indexed
by

lock id

indexed
by

lock id

indexed
by

lock id

Indexed by
thread id

000

62

63

62

63

511

62

63

000

000

000

008

002

325

002

009

007

011

002

A ddress

A ddress
 + 64

Interface
to the bus

lock id is extracted from
address bus (6 lines)

thread id is extracted from
address bus (9 lines)

S em aphore or lock ow ner reg isters

Figure 5-14 Global Blocking Queue and Lock Owner Structures

 90

The individual tables implemented are the Queue Length, Last Request, Next Owner and Link

Pointer tables. Except for the Link Pointer, all other tables are indexed by the mutex ID (lock ID

or semaphore ID). The Link Pointer table is indexed by the thread ID register. An example of the

operations performed on the global queue for a given mutex is shown in Figure 5-15. In this

figure, the Next Owner Pointer (one of the Next Owner table cells) contains a next owner thread

(thread ID). The Last Request Pointer (a table cell) contains the thread id that has made the latest

mutex request, and it is used to update the Link Pointer table. For a given mutex, the Link Pointer

table provides a link list of all its next owners as shown at the bottom part of the figure.

004
Queue Length
Pointer

019

030

Last Request
Pointer

Next Owner
Pointer

Contains the most recent request thread ID, and it is
used as a pointer to update Link Pointer. The Link
Pointer will be used by the Next Owner Pointer during
de-queueing operation.

Contains next owner thread ID, use it to update
Next Owner register and as a pointer to get a new next owner
in order to update Next Owner table with a new value.

Contains queue length of given MUTEX queue

Last Request, Next Owner and Queue Length Tables
indexed by MUTEX ID (a given MUTEX)

010
Enqueue
Operation

Dequeue
Operation

007

010 007 019 xxx

019 xxx

slot = 030 slot = 010 slot = 007 slot = 019

slot = 030 slot = 010 slot = 007 slot = 019

Last Request = 019

Next Owner = 030

Update LP slots to create a link list of next owner
Blocked thread IDs: 30, 10, 7, 19

A link list created above for a
given MUTEX. Use LP to get a
next next owner, to update next
owner table

Link Pointer Table (LP)
slots indexed by thread
ID:

Figure 5-15 Global Queue Operation

 91

Next Owner Register

The Next owner register saves the next owner thread ID de-queued from the global queue by the

Queue Controller. This enables the Queue Controller to continue managing the queue and at the

same time allows other controllers to start initiating processing delivery of the next lock owner.

Queue controller

The Queue Controller is responsible for three distinct tasks: queuing and dequeing a locks next

owner, and initializing all queue tables. The state machine diagrams for Queue Controller

operations (queue and removal elements from the Queue BRAM) are given in Figure 5-16 and 5-

17. It follows three different paths responding to three different input signals - ENQUE,

DEQUEUE and SOFT RESET. If the SOFT RESET is active, it transitions to the reset state.

While in transition, it outputs a signal to initialize the BRAM address counter. The BRAM

address counter generates BRAM cell addresses. In the reset state, this controller initializes all

the BRAM cells or locations. After clearing all the queue BRAM locations, it moves into the

QueResetDone state, and asserts the Sem_Rst_Done signal. It remains in this state and

continuously asserts the Sem_Rst_Done until the soft reset signal is de-asserted.

A Request for an owned lock initiates an en-queuing operation. An en-queuing operation starts by

reading the Length Queue pointed by the Lock ID register. If the queue length is zero, the

controller increases the queue length by one. Next it uses lock ID as an index to access both the

Last Request Pointer and Next Owner Pointer, and initializes both pointers with current requester

thread ID.

If the queue length is non-zero, the controller must perform several additional tasks. First it

updates the queue length. Then it reads Last Request to get the index of Link Pointer and writes

the current requester thread ID into the Link Pointer table. It uses the index it has just retrieved as

a pointer into the Link Pointer table. The Link Pointers serve as a series of link lists of all the next

lock owners for a given lock or semaphore. The link pointers are also used later by the Next

Owner Pointer to find a new next lock owner. Finally it updates the Last Request with current

requester thread ID.

 92

reset
Que

reset
done

qcnt_adr =
qlast_addr

Dequeue

Qinit

Qinit

Qinit

read
LastReq

read
wait

Qinit

reset

read
QueL

read
wait

update
LastReq

If Queue Length = 0

/qaddr = queL_tbl & sem_id
/qenable = yes
/qread_write = read

/qaddr = LastReq_tbl & sem_id
/qenable = yes
/qread_write = read

/qaddr = LinkPtr_tbl & q_dataout
/qdata_in = thread_id
/qenable = yes
/qread_write = write

/qaddr = LastReq_tbl & sem_id
/qdata_in = thread_id
/qenable = yes
/qread_write = write
/enque_done

update
LinkPtr

update
LastReq

update
NxOwn

/qaddr = NxOwn_tbl & sem_id
/qdata_in = thread_id
/qenable = yes
/qread_write = write
/enque_done

/qaddr = LastReq_tbl & sem_id
/qdata_in = thread_id
/qenable = yes
/rqead_write = write

If Queue Length > 0

update
QueL

/qaddr = queL_tbl & sem_id
/qdata_in = data_out + 1
/qenable = yes
/qread_write = write

/qaddr = queL_tbl & sem_id
/qdata_in = data_out + 1
/qenable = yes
/qread_write = write

/qaddr = q_addr_cnt
/qdata_in = empty
/qenable = yes
/qread_write = write

soft_reset_low

enqueue soft_reset

dequeue soft_reset/qreset_cnt_start

/soft_reset_done

Lagends:
link_ptr_tbl : address offset for Link Pointer table
nx_own_tbl : address offset for Next Owner table
queL_tbl : address offset for Queue Length table
LastReq_tbl : address offset for Last Request table
qread/write : qr/w read or write to the queue

Ptrs
Initialization

Ptrs Update

Enqueue Reset

Figure 5-16 Queue Controller Enqueue State Machine

 93

Releasing a lock causes the de-queuing to begin. The state machine for the de-queue operation is

given in Figure 5-17. As shown in the state machine diagram, the de-queue operation has three

execution paths depending on the length of the next owner in the queue. Thus all de-queue

operations start with first checking the queue length. The queue length is retrieved from the

Queue Length table by using the lock ID as an index.

If the queue length is zero, which means no next lock owner, the de-queue operation ends here. It

then notifies the Lock BRAM Access Controller by raising the DEQUE_NONE signal. The Lock

BRAM Access Controller then frees the lock by writing NO_OWNER value into the owner

register.

If the queue length is one, controller proceeds to reduce the queue length by one. Then it de-

queues the next owner from the Next Owner table into the Next Owner register and signals the

Hardware/Software Comparator (including Next Owner Address Generator) to start its task,

which in turn will signals the Bus Master. The Bus Master delivers the next owner (unblocked

thread) to either the Software Thread Manager or hardware thread.

If the queue length is more than one, the controller needs to execute several more steps in

addition to mentioned above. First it updates the Queue Length table with a new length. Next it

de-queues the next owner, and transfers it to the Next Owner register, and signals the

Hardware/Software Comparator. It also needs to update the Next Owner Table with a new next

owner. To get a new next lock owner, it uses the next owner that it just retrieved as an index to

read the Link Pointer table. Then it updates the Next Owner table with the new next owner it just

obtained from the Link Pointer table. The Next Owner table update and the next owner delivery

(notification) in actual run concurrently, as shown in the state machine diagram.

HW/SW Comparator & Next Owner Address Generator

This controller includes a comparator, a process to calculate delivery destination (of next owner

or unblocked thread), a state machine, and a pair of register to place the unblocked thread address

and its wake-up code: ADDR_OUT and DATA_OUT.

 94

read
nx_own

read
wait

start
bus mst

queL
update

Qinit

read
queL

read
queLW

read
linkptr
wait

update
nx_own

read
nx_own

read
wait

read
link_ptr

Qinit

deq_non

Queue Length = 0

Queue Length > 1 Queue Length = 1

/msc_start
/deque_done

/latch next owner

/qaddr = nx_own_tbl & sem_id
/qenable = yes
/qread_write = read

/qaddr = link_ptr_tbl & qbram_out
/qenable = yes
/qread_write = read
/msc_start
/deque_done

/qaddr = nx_own_tbl & sem_id
/qdata_in = qdata_out ie. new nx own
/qenable = yes
/qread_write = write

/qaddr = nx_own_tbl & sem_id
/qenable = yes
/qread_write = read

/qaddr = queL_tbl & sem_id
/qenable = yes
/qread_write = read

/deque_done

Qinit

/qaddr = queL_tbl & sem_id
/qdata_in = qbram_out - 1
/qenable = yes
/qread_write = write

/qaddr = queL_tbl & sem_id
/qdata_in = qbram_out - 1
/qenable = yes
/qread_write = write

Lagends:
link_ptr_tbl : address offset for Link Pointer table
nx_own_tbl : address offset for Next Owner table
queL_tbl : address offset for Queue Length table
LastReq_tbl : address offset for Last Request table
qread/write : qr/w read or write to the queue

Dequeue
one

Dequeue
None

Dequeue
Next Owner Ptr Update

Dequeue

reset

Figure 5-17 Queue Controller De-queue Operation

Upon receiving a signal from the Queue controller, this controller (as shown in Figure 5-18)

determines whether the next owner (unblocked thread in the next owner register) is a hardware or

software thread. The Software Thread Manager requires a read transaction in order to put the

 95

unblocked thread back into the scheduler queue. However, hardware threads require

synchronization IP to write wake-up codes into command register in order to unblock.

next
owner

out

delivery
done

hw/sw
cmp init

hw/sw
cmp
init

cmp
waitA

cmp
waitB

msc_start
/do_compare

reset

if thread ID > 255
 // hardware thread
 address = hw_thr_base + thread ID * 256
 data = wake_up code
 hw_sw_thr = hw
else
 // software thread
 address = sw_thread_manager + thread ID * 4
 hw_sw_thr = sw

sw thr
xfer
read

hw thr
xfer
write

hw_sw_thr = hw hw_sw_thr = sw

/read_request/write_request

read_start_ackwrite_start_ack

bus_master_last_ack
/msc_done

Figure 5-18 HW/SW Comparator & Next Owner Address Generator

In the case of a software thread, an address is calculated by adding the Software Thread Manager

base address with the thread ID multiplied by four. For hardware threads, the address of a

command register is calculated by adding the command register address offset, the base address

for hardware threads location in system memory map and the product of thread ID with hardware

thread size. In addition, a hardware thread requires a wake-up code be placed into the

DATA_OUT register. The base addresses of both hardware base address and the software

 96

manager as well as the hardware thread size are passed as generics during system set-up. The

controller then asserts either a read or a write request to one of the request handlers of the Bus

Master, and wait for acknowledgement.

When the controller receives the acknowledgment from the Bus Master, it de-asserts its request

and proceeds to the wait state. It waits in this state until it receives delivery acknowledgement

(LAST_ACK) from the Bus Master. Upon receiving this acknowledgment, it issues DEQ_DONE

(MSC_DONE) and returns to the initial state. The DEQ_DONE is required to signal the Lock

BRAM Access controller and busy status process that the delivery of the unblocked thread has

completed.

Bus Master

Unlike spin locks, blocking locks must master the bus in order to en-queue blocked threads to

either the thread manager or a specific hardware thread command register. The Bus Master

hardware includes Bus Master controller and a pair of request handlers. Since the

Hardware/Software Comparator makes available the destination address and data registers, this

module does not provide multiplexers and registers for both the data and address buses. The

responsibility of the bus-mastering controller is to accept different bus transaction requests from

one the request handlers, generates read or write request signals to the Bus Master interface either

to read in data or write wakeup code to hardware threads.

As shown in Figure 5-19, there are two possible paths the Bus Master follows depending on

which request handler it receives signals from. The Bus Master performs read operation to the

software Thread Manager to deliver next lock owner to the scheduler queue. Otherwise the Bus

Master writes the wake-up code to the appropriate hardware thread. The state machine asserts

read/write request, with the address bus and data bus connected to the ADDR_OUT and

DATA_OUT registers respectively, and waits for acknowledgment from the bus interface. When

it receives acknowledgement, it de-asserts its request, issues LAST_ACK signal to the

Hardware/Software Comparator and return to init state.

 97

Generate one write request
if bus master is not busy

read
data

read
done

msc
init

init

reset

w0

w1

m_state = msc init
and

write_request*

/write_req_in
/write_req_ack

reset

r0

r1

m_state = msc init
and

read_request*

/read_req_in
/read_req_ack

reset

Generate one read request
if bus master is not busy

send
data

send
done

send wakeup
code to hw thread

msc
init

msc
done

write_req_in read_req_in

read to software
thread manager

Deassert bus intf request lines
Deassert bus intf request lines

Assert bus intf request lines
/MstRdReq to bus interface

Asser bus intf request lines
/MstWrReq to bus interface

bus interface
write_ack

bus interface
read_ack

/bus_master_last_ack/bus_master_last_ack

Figure 5-19 Bus Master State Machine

5.8.2 Resource Utilization

Tables 5-7 and 5-8 show the resource comparisons for our blocking lock implementations. It is

interesting to observe that our new design, which fully supports 512 blocking locks now requires

less slices, flip-flops, and LUT’s that the original design for a single blocking lock. Our new

approach does require an additional BRAM.

 98

Block lock # used #total % used

Slices 584 4928 11.12

Flip-flops 572 9856 5.80

4 inputs LUTs 808 9856 8.20

BRAMs 1 44 2.27

Table 5-7 Hardware Resources for a Prototype MUTEX

Block lock # used #total % used

Slices 357 4928 7.24

Flip-flops 381 9856 3.87

4 inputs LUTs 548 9856 5.56

BRAMs 2 44 4.56

Table 5-8 Hardware Resources for Multiple (512) MUTEXES

5.9 BLOCKING COUNTING SEMAPHORE PROTOTYPE

The block diagram of a blocking counting semaphore is shown in Figure 5-20. The API pseudo

code for a blocking counting semaphore is shown in Figure 5-21.

release

request

lock_own

Data Bus

Spin Lock
Controller

rel_num

req_num

grant0:1max_cnt

Block Counting
Semaphore logic

thread5
thread7
thread2

Queue
Manager

Figure 5-20 Blocking Counting Semaphore (Prototype)

With the blocking counting semaphores if the resources are available, the thread continues to run.

However, if insufficient resources are available, then the thread will be queued and suspended

similarly to a blocking binary lock. The semaphore IP will issue all queued thread_ids for

 99

rescheduling when resources are released. Just as in the spin semaphore protocol, writing a value

into the request number register (req_num) causes a Boolean value to be set in the grant register.

If insufficient resources are available, then the thread_id needs to be queued before the spin lock

is released.

blk_sema_request(&sema, thread_id, value){

 grant =0;

 while (!grant) {

 spin_lock_request(&sema, thread_id)

 value � rqst_num

 grant grant0:1

 if (grant)

 spin_lock_release(thread_id)

 else {

 queue thread_id/&command_reg

 spin_lock_release()

 sleep() //context switch } } }

Figure 5-21 Blocking Counting Semaphore API

5.10 MULTIPLE BLOCKING COUNTING SEMAPHORES IP

The block diagram for our final multiple blocking counting semaphores is shown in Figure 5-22.

This entity carries sixty-four counting semaphores (64 counters in BRAM). In addition to the

counters, there is a wait queue to hold the thread ID’s of blocked threads. This single queue is

designed to queue all threads blocked on all of the sixty-four semaphores. To request for a

semaphore, the sem_wait() API issues a read to an address formed by encoding the semaphore

ID and thread ID as the least significant bytes of the base address. In response to this read

operation, the controller decodes the address line and extracts both the semaphore and thread

ID’s. The controller reads the counter pointed by the extracted semaphore ID, places the read

value on data bus, terminates the bus cycle, and performs additional operations depending on the

value of the counters. If the counter value is non-zero, the controller decrements the counter by

one, otherwise extracted thread id is en-queued. If the returned value is zero, the API puts the

thread to sleep. The API pseudo code for blocking counting semaphore is shown in Figure 5-23.

 100

Controller
- semaphore
- tables/queue
- bus master

0
4
0

5

3

4

Counters

Last
Request

Next
Owner

Queue
Length

Link
Pointer

Tables

Address bus:
 6 lines for semaphore id
 9 lines for thread id
 2 lines for operation code

Data Bus

Figure 5-22 Blocking Counting Semaphore

sem_wait(sema_id, thread_id) {

 address <= encode sema_id , thread_id;

 if location(address) == zero

 sleep();

 else

 continue;

}

sem_post(&sema, thread_id) {

 address <= encode sema_id , thread_id;

 thread_id � location(address);

}

Figure 5-23 Blocking Counting Semaphore API

 101

To release the semaphore, the sem_post() API write its thread ID to an appropriate address. The

controller state machine then decodes the address lines and reads the selected counter. If the

selected counter is non-zero, it will incremented by one. Otherwise if the counter is zero, the

controller proceeds checking the queue length of the selected semaphore. If the queue length is

zero, the counter will be incremented. If the queue is not zero, the next semaphore owner will be

de-queued and the counter will not be updated.

5.10.1 Multiple Counting Semaphore Hardware Architecture

Our final multiple counting semaphore IP hardware architecture consists of: 1) interface and

status registers 2) semaphore counters and its controller 3) global queue 4) global queue

controller 4) other controllers 5) soft reset circuits. Figure 5-24 shows the hardware components

of the semaphore. The Figure 5-24 however does not include the reset circuit.

Semaphore counters and its controller

• Semaphore counters implemented within BRAM (SEMA BRAM)

• SEMA BRAM access controller

Interface and status registers:

• Semaphore ID register

• Thread ID register

• Busy status register

• Error status register

• Output MUX (API return status)

Global queue and its controller

• Global queue implemented within BRAM (Queue BRAM)

• Queue Controller

• Next Owner register (next semaphore owner or unblocked thread)

 102

Bus Master Interface
(IPIF MASTER)

system bus

B
Bus Slave Interface (IPIF SLAVE)

A

1. Determine next owner:
 HW or SW thread
2. Generate read or write to
 Bus Master
3. Calculate next owner
 address

F Comparator

1. Sem_wait: queue blocking threads
2. Sem_signal: dequeue next semaphore
 owner
 - signals D via F to deliver next owner
3. Manage queue of 4 tables
4. Soft Reset, clear all the table

H Queue Controller

Link Pointers

Last Request

Next Owners

Queue Lengths

1. Manage semaphores cnt
2. Initialize each semaphore
 count resource value,
 error if count too big
3. Incr/ decrement count
4. Generate enque & deque
5. Soft reset all own registers

E Controller for multiple
 counting semaphores

1. Request Handlers
2. Bus Mastering
 - reader
 - writer

Bus Master
1. Write request ack
2. Atomic read operation
 - rd counter before update
 - read ack delay

C Atomic transaction

sema_id register

thread_id register

G Operation mode

enque deque
deq_done
enq_done

nx_owner

request*

release

a_enable
a_r/w

opr

qread_write

qenable

qaddr

qdata_in

enable
addr

datain

next_owner register

rreq
wreq

ack

nx_owner

latch_next_owner

msc_start

- Decode address & r/w
- sem_wait, sem_post

saddrrdreq rd_ack

nx_owner
Queue with 4 tables

wr_ack
wr_req

D

xaddr +
control

qdata_out

prev status
register

cur status
register

- Status busy/OK
- Xfer status betw regs

msc_start
msc_done

status

addr_out
data_out

J Next Owner Address Generator

Parameters:
- HW thread base address
- HW Thread size
- SW thread Manager address

data_out

addr_out

do_compare

K API return status

addr_out &
data_out

regs

Multiple
semaphore

counters

Data mux

status
error bit

error bit

sema ID

error

sel

count

xdata
& xack

initialize

msc_
done

Note:
request* = sem_wait or sem_trywait or read counter
 ack = bus_master_last_ack
 rreq = read_request control = MstWrReq, MstRdReq
 wreq = write_request xack = bus interface read_ack or write_ack

API ret statussdata

cnt

Figure 5-24 Counting Semaphore Hardware Architecture

 103

Other Controllers:

• Operation mode controller

• Atomic transaction controller

• Comparator/Next Owner Address Generator

• Bus master

Soft reset mechanism

• To initialize global queue and semaphore counters

• Semaphore address counter generates addresses of all the semaphores that to be reset.

• Queue address counter generates addresses of all global queue location to be reset.

Semaphore ID register

See description in binary blocking semaphores or mutexes (Section 5.8.1)

Thread ID register

See description in binary blocking semaphores or mutexes (Section 5.8.1)

Busy status and error status registers

The error status register provides error indicator (the error bit is set) when the initialization value

is greater the maximum value of the semaphore counter. Similar to the MUTEX busy status, a

status mechanism serves as a busy indicator to the API requests when the queue controller has not

completed its delivery of next owner or unblocked thread from previous API request. The busy

status mechanism includes two registers: Previous Status and Current Status. The start and

completion of thread delivery events cause the current status register to change to “busy status”

and “non-busy” status respectively. Every API operation including wait, post and try wait causes

transfer of status from the current status register to the previous status register. The status in the

Previous Status register is returned to the API. When an API receives busy status, it should retry

the request. API requests that occur while the current transaction is yet to complete will cause no

harm. If the current transaction is busy, SEMA BRAM access controller will not return to initial

state, thus any new API requests will not cause any new operation.

Operation Mode Controller

This controller serves as an interface between the application program and semaphore hardware.

It decodes the application program interface request and generates appropriate signals to other

 104

controllers. The type of operation requested by the application program and control signals output

by this controller is given in table 5-9. It uses read request, write request and two address lines to

decode application requests and generates appropriate signals: SEM_GETVALUE, SEM_POST,

SEM_WAIT, SEM_TRYWAIT, SEM_INIT. This controller works concurrently with the atomic

transaction controller in response to semaphore wait API request. (Atomic transaction controller

will be described later). The generated signals trigger the SEMA BRAM Access Controller and

Queue Controller to start to execute, which in turn cause other controllers to start their tasks.

Write

Request

Read

Request

A12 A13 A14 Operations Error &

Status

0 1 0 0 0 Sem_getvalue(), read a semaphore

counter

N/A

0 1 0 0 1 Sem_post(), add count, unblocked

thread if there is at least one in the

queue

Busy

0 1 0 1 0 Sem_wait(), decrement count,

block if counter is 0

Busy

0 1 0 1 1 Sem_init status* Error

(Count>max),

Busy

0 1 1 0 0 Sem_trywait(), request a

semaphore, thread will not block if

not successful

Success/Fail,

Busy

1 0 0 1 1 Sema_init()* initialize a

semaphore counter

N/A

Table 5-9 Semaphore Application Interface Requests

Semaphore Counters (SEMA BRAM)

This semaphore IP entity supports sixty-four 8-bit non-negative counters implemented in the

block RAM (BRAM). The current implementation can support up to 512 semaphore counters

within this BRAM (we named it SEMA BRAM). The read and write operation on the SEMA

 105

BRAM is controlled by an access controller (SEMA BRAM access controller) that will be

described later.

Atomic transaction controller

This component consists of several processes. The first process is to acknowledge the system bus

write operation. This process asserts acknowledgement on the next cycle after the write operation

occurs. The second process is to acknowledge atomic read operation when a hardware thread or a

software thread requests for a semaphore. This atomic read process is initiated when the read

request line goes high. However it does not perform immediate acknowledgement but waits for

the referenced semaphore counter output become stable, which can occur before the counter value

is updated. As shown in Figure 5-24, the atomic read process issues two signals; enable and read

acknowledge (a_enable and rd_ack) that goes high at four and six cycles respectively after the

sem_wait request occurs. (Enable is asserted just before semaphore counter update, to wait for

busy status register output to become stable, as semaphore count and busy status are returned to

the API). Enable signal causes counters referenced by the semaphore ID to be read, output its

content on the data bus. The controller then issues acknowledgement for the system bus to latch

the output (when the counter data output is stable). The nonzero value (counter value) returned to

the API indicates that the requested semaphore resource is available. This controller does not

modify the counter value, which is the responsibility of SEMA BRAM access controller.

Output MUX (API return value)

All API requests are returned through this output multiplexer. Different statuses including busy

status, error status, and semaphore availability returned to the API are shown in table 5-10.

SEMA BRAM access controller

Two controllers manage accesses to the SEMA BRAM (multiple semaphore counters): the atomic

transaction controller and SEMA BRAM access controller. The atomic transaction controller

reads a semaphore counter pointed to by the semaphore ID register, and puts this value on the bus

in response to sem_wait() API. The transfer of the counter contents to the data bus must be

completed before the alteration of the value for a current sem_wait() operation. A more detailed

description is given in the atomic transaction controller.

The SEMA BRAM access controller is the main controller for accessing the SEMA BRAM. The

operation of the state machine shown in Figure 5-25 is described below for each different API

 106

request. This controller updates the semaphore counters in response to the operation mode

controller signals.

Return values: bits (0 to 31)

Semaphore

APIs

Busy

status

(4 bits)

Overflow

error

(1 bit)

Not used

Zeroes

(11 bits)

Not used

Zeroes

(8 bits)

Sema

Counter

(8 bits)

Descriptions

sem_cnt_read 1010 count read semaphore counter

sem-post 1010 not busy or success

sem_post 1110 busy

sem_wait 1010 zero not busy, no semaphore

sem_wait 1010 nonzero not busy, get semaphore

sem_wait 1110 busy

sem_trywait 1010 zero not busy, no semaphore

sem_trywait 1010 nonzero not busy, get semaphore

sem_trywait 1110 busy

sem_init 1010 0 init success

sem_init 1010 1 init error

Table 5-10 Semaphore API Return Values

When the operation mode controller issues a sema_post (lock release) signal, this controller

performs several steps depending on the value of the counters and the number of thread blocked

on the referenced semaphore:

1. Generate de-queue signals to the Queue controller to allow concurrent operations.. The

Queue controller outputs the queue length or number of blocked thread in the queue. The

queue length is pre-fetched at this step to be available at the start of step 3.

2. Check if the referenced counter value (cnt) is equal to zero. If the counter is nonzero, the

counter will be incremented by one, the new counter value is saved and controller returns

to init state.

3. If the counter is zero, further steps are required. It checks the queue length provided by

the Queue controller.

 107

4. If the queue length is zero implying no blocked threads are in the queue, then the counter

will be incremented by one, the new counter value saved. The controller returns to init

state.

5. If the queue length is nonzero, the controller proceeds to a wait state, and waits until the

Bus Master controller on behalf of the Queue controller delivers the unblocked thread

either to the software thread manager or hardware thread (further details is given in

Queue controller). In this case counter remains zero. When it receives the MSC_DONE

signal from Bus Master, it returns to the init state.

6. It does not return to init state until the delivery of unblocked thread is completed, thus

any new request from the API will not cause any operation. This is to ensure that API

gets busy status consistent with the SEMA BRAM access controller action. In other word

it should return to the init state at the same time as the busy status register changes to

NON_BUSY status.

Sem-wait operation:

The sem_wait operation depends on the value of the counters:

1. When the sem_wait is initiated, this controller reads counter and checks its value

2. If the counter is nonzero, it will be decremented by one, new value is saved and controller

returns to init state.

3. If the counter is zero, the en-queue operation is initiated. The controller asserts the en-

queue signal to command the Queue controller to en-queue the requester thread ID.

4. The controller then waits for the Queue controller to complete its operation before

returning to the init state.

Sem-trywait operation:

The sem_trywait operation is similar to the sem_wait operation except requester thread will be not

queued (thread will not block) if it cannot gain the requested semaphore: The controller state

machine executes the following sequences:

1. The controller reads the referenced semaphore counter and checks the value

2. If the counter is nonzero, it will be decremented by one and the new value saved.

Controller returns to init state.

3. If the counter is zero, perform no further action and return to the init state.

 108

reset
owner

reset
done

cnt_addr =
last_addr

Init

reset

read
count

read
wait

/addr = sem_id
/enable = yes
/opr = read

sema
wait4

check
count

sem_post
/dequeuesem_wait

sema
post1

soft_reset
/reset_cnt_start

soft_reset_low

sem
count

init

init_count

sema
post2

sema
post3

sema
post4

cnt == 0

queL == 0

yes

no

no

sem wait () sem post ()

yescnt == 0

yes

no

cnt = cnt - 1 * cnt = cnt + 1 *

cnt = cnt + 1 *

/enqueue

msc_doneenque_done

init

init
init

init

init

init

/addr = sem_id
/enable = yes
/opr = read

Note* cnt update:
/addr = sem_id
/enable = yes
/opr = write
/datain = cnt

/addr = sem_id
 counter
/enable = yes
/opr = write
/datain = zero

sem_try
done

sem_try
wait

/error (fail to
acquire sem

cnt == zero

yes

no

/seq_done

/seq_done

sem_try
read

cnt = cnt - 1

sem_trywait

val > max

/seq_done

cnt = val

no

yes

/error

sem init()

sem trywait()

Figure 5-25 Counting Semaphore BRAM Access Controller

 109

Sem_init operation:

The semaphore counter value initialization procedure is made-up of a pair of write and read

operations. First the API writes the initial value, followed by a read operation. If the read

operation returns NO_ERROR status, the initialization was successful. The controller takes the

following steps in response to the initialization procedure:

1. In response to the write, the controller checks if the value is greater than the maximum

value.

2. If the value (val) if greater than maximum value, overflow error bit is set, and the error is

returned to the read operation.

3. If the value is within the allowable range, the counter is updated with the new value,

followed by initialization of the queue length (of the referenced semaphore) to zero (by

the Queue controller). NO_ERROR status is returned to the read operation.

Global Queue

The queue is divided into the four previously described tables implemented within the BRAM

(Queue BRAM). The tables are semaphore queue length, last request, next semaphore owner and

link pointer. Except for the Link Pointer table, all other tables are accessed with the semaphore ID

as an index. The Link Pointer table is indexed by the thread ID. The global queue can support up

to 512 blocked threads.

Next Owner Register

The Next owner register saves the thread id of the next owner de-queued from the global queue

by the Queue Controller. This enables the Queue Controller to continue managing the queue and

at the same time allows the global queue controller to simultaneously deliver the next semaphore

owner.

Global Queue Controller

The Queue Controller is responsible for three distinct tasks: queuing the semaphore next owners,

de-queuing the next owner and initialize all the queue tables. It follows three different paths

responding to three different input signals - ENQUEUE, DEQUEUE and SOFT RESET. If the

SOFT RESET is activated, the controller transitions to the reset state. While in transition, it

outputs a signal to initialize the BRAM address reset counter. In the reset state, this controller

initializes all the QUEUE BRAM locations similar to reset operation described in the MUTEX

section.

 110

Requesting semaphore zero (sem_wait) initiates an en-queuing operation. Upon receiving the

ENQUEUE signal from the SEMA BRAM access controller, the en-queuing operation reads the

Length Queue table indexed by the semaphore ID register. If the queue length is zero, the

controller increases the queue length by one. Next it uses the semaphore ID as an index to access

both the Last Request Pointer and Next Owner Pointer, and initializes both pointers with the

current requester thread ID. If the queue length is non-zero, the controller performs the following

additional tasks. First it updates the queue length. Next it reads Last Request to get the index of

Link Pointer. Then it writes the current requester thread ID into the Link Pointer table. It uses the

index it has just retrieved as a pointer to the location in the Link Pointer table. The Link Pointers

serve as a link list for all next owners for a given semaphore, which will be used later by the Next

Owner Pointer to find a new next semaphore owner. Finally it updates the Last Request with

current requester thread ID.

A semaphore post causes the de-queuing to run concurrently with SEMA BRAM access

controller. The state machine for the de-queue operation is given in Figure 5-26, and the shaded

states run concurrently with SEMA BRAM access controller. As shown in the state machine

diagram, the de-queue operation has three execution paths depending on the length of the next

owner in the queue. Thus all de-queue operations start with checking the queue length first. The

queue length is retrieved from the Queue Length table by using the semaphore ID as an index. If

the queue length is zero, which means no next semaphore owner, the de-queue operation ends

here. It then notifies the SEMA BRAM access controller by raising the DEQUE_NONE signal.

If the queue length is one, controller proceeds to reduce the queue length by one. Then it de-

queues the next owner from the Next Owner table into the Next Owner register and signals the

HW/SW Comparator/Next Owner Address Generator to start its task, which in turn signals the

Bus Master. The Bus Master starts to deliver the next owner.

If the queue length is more than one, the controller needs to execute several more steps in

addition to mentioned above. First it updates the Queue Length table with a new length. Next it

de-queues the next owner, and transfers it to the Next Owner register, and signals the

Comparator/Next Owner Address Generator. Then it needs to update the Next Owner Table with

a new owner. To get a new next semaphore owner, it uses the next owner that it just retrieved as

an index to read the Link Pointer table. Then it updates the Next Owner table with the new next

 111

owner it just obtained. The Next Owner table update and the delivery of next owner run

concurrently, as shown in the state machine diagram.

read
nx_own

read
wait

start
bus mst

queL
update

Qinit

read
queL

read
queLW

read
linkptr
wait

update
nx_own

read
nx_own

read
wait

read
link_ptr

Qinit

deq_non

Queue Length = 0

Queue Length > 1 Queue Length = 1

/msc_start
/deque_done

/latch next owner

/qaddr = nx_own_tbl & sem_id
/qenable = yes
/qread_write = read

/qaddr = link_ptr_tbl & qbram_out
/qenable = yes
/qread_write = read
/msc_start
/deque_done

/qaddr = nx_own_tbl & sem_id
/qdata_in = qdata_out ie. new nx own
/qenable = yes
/qread_write = write

/qaddr = nx_own_tbl & sem_id
/qenable = yes
/qread_write = read

/qaddr = queL_tbl & sem_id
/qenable = yes
/qread_write = read

/deque_done

Qinit

/qaddr = queL_tbl & sem_id
/qdata_in = qbram_out - 1
/qenable = yes
/qread_write = write

/qaddr = queL_tbl & sem_id
/qdata_in = qbram_out - 1
/qenable = yes
/qread_write = write

Lagends:
link_ptr_tbl : address offset for Link Pointer table
nx_own_tbl : address offset for Next Owner table
queL_tbl : address offset for Queue Length table
LastReq_tbl : address offset for Last Request table
qread/write : qr/w read or write to the queue

Dequeue
one

Dequeue
None

Dequeue
Next Owner Ptr Update

Dequeue

Output is Queue Length (queL)

reset

Figure 5-26 Dequeue State Machine

 112

When the de-queue operation starts, the controller issues a BUSMSC_START signal to flag that

it is busy and waits for the Bus Master signal to deliver the de-queued next owner to the final

destination (either scheduler queue or hardware thread). As there are possibilities of new API

requests from other processors or hardware threads between the acknowledgement of the current

API request and delivery of an unblocked owner, a busy status is necessary. The

BUSMSC_START (msc_start) signal causes the current status register to change to a busy status.

Upon receiving a completion delivery acknowledgement signal from the Bus Master, it issues

MSC_DONE signal to reset the busy status to NOT_BUSY and returns to its init state.

The Bus Master and Next Owner Address Generator operations are similar to the ones described

in the MUTEX section (Section 5.8.1).

5.11 CONDITION VARIABLES

Condition variables enable threads to block and synchronize for arbitrary conditions. Condition

variables typically support the wakeup of one or all blocked threads when the blocking condition

is met. Thus condition variables prevent threads from wasting processor time waiting for certain

conditions to change. The condition variable is usually used in conjunction with a lock and a

predicate (typically a Boolean variable). The lock is needed to protect the predicate since it is

normally associated with shared resources.

Consider for example, a shared queue where client threads queue their job request and worker

threads remove the requests and perform the requested tasks. The shared resource in this case is

the queue and the predicate is an empty queue. The shared resource has to be protected by a lock,

(either blocking or spin lock) since any code that uses it is part of a critical section. An additional

variable (condition variable) is needed to provide a safe mechanism for worker threads to block

on predicates involving the shared resource rather than busy waiting. The worker threads need to

block when the predicate is true. Worker threads go to sleep with the condition variable (CV) by

calling cond_wait(CV) when the predicate is true. The predicate changes when the client threads

deposit their job requests. The client threads then use the condition variable to signal (wake-up) a

worker thread. Whenever a client thread adds a request into the queue, it signals (calls

cond_signal(CV)) on the condition variable that a change has taken place. This signal wakes up a

blocking thread, which then reevaluates the predicate.

 113

When a waiting thread is signaled, it must acquire the lock first before evaluating the predicate.

If the predicate is false, the thread should release the lock and block again. The lock must be

released before the thread blocks to allow other threads to gain access to the lock and change the

protected shared resource. The release of the lock and the blocking must be atomic so that

another thread does not change the queue status between these two operations (queuing requests

can occur between the lock release and thread block events). The cond_wait function takes the

lock as an argument and atomically releases the lock and blocks the calling thread. Since the

signal only means that the variable may have changed and not that the predicate is now true, the

unblocked thread must retest the predicate each time it is signaled.

The predicate itself is not part of condition variable. It must be evaluated by calling the routine

each time before cond_wait() is called. The following are the steps should be followed when

using a condition variable to synchronize on an arbitrary predicate or condition [40]:

Waiting on a condition variable

Acquire a lock or mutex say M1 (M1 protect predicate)

Evaluates the predicate

If the predicate is false, call cond_wait(&cv, &M1) and go to step 2 when it returns.*

If the predicate is true, perform some work

Release mutex M1

Signaling on a condition variable

Acquire mutex M1

Change the predicate

Call cond_signal(&cv) to signal the condition variable

Release mutex M1

*The cond_wait() atomically releases the lock and blocks the calling thread in order to avoid the

lost wake-up problem. Thus, the lock is released explicitly if the predicate is true and released

implicitly within the cond_wait() predicate is false. When a thread waiting on a condition

variable is unblocked, it reacquires the lock automatically as part of the unblocking process.

 114

Sample implementation of the condition variable functions [42]:

/* The user program has to acquire a mutex say mtx before testing the predicate */

/* If the predicate fails, call this function */

/* If predicate is success, perform some work and release the mutex */

void cond_wait(condition *cv, lock_t *mtx)

{

 spinlock_lock (&cv->queueLock); /* protect condition variable queue */

add self to the queue;

spinlock_unlock (&c->queueLock);

mutex_unlock (mtx); /* release mutex that protects the predicate before blocking */

context_switch(); /* perform context switch */

/* When wake-up from sleep, the signal has occurred */

mutex_lock(mtx); /* acquire the mutex (predicate protection) again */

return;

 }

void cond_signal (condition *cv)

/* Wake up one thread waiting on this condition */

{

spinlock_lock (&cv->queueLock); /* protect condition variable queue */

de-queue one thread from linked list, if it is nonempty;

spinlock_unlock (&cv->queueLock);

if a thread was removed from the list, make it runnable;

return;

 }

void cond_broadcast (condition *cv)

/*Wake up all threads waiting on this condition */

{

spinlock_lock (&cv->queueLock); /* protect condition variable queue */

while (queue or linked list is nonempty) {

 dequeue all threads from linked list;

 transfer them to scheduler queue;

}

spinlock_unlock (&cv->queueLock);

 }

 115

5.11.1 Hardware Implementation of Condition Variables:

The block diagram for a multiple condition variable is shown in Figure 5-27. This single entity

provides control for sixty-four condition variables. The essential components include a global

waiting queue, atomic transaction controller and bus master. The global waiting queue is used to

hold the threads (thread IDs) waiting on one of the sixty-four condition variables. This single

global queue is sized to queue up to 512 threads blocked on sixty-four condition variables. The

condition variable IP expects the application interface (API) to encode a condition variable ID

and a thread ID within the address during each normal read operation. A single control structure

within the condition variable IP then performs the necessary steps within each single read bus

operation. If the controller cannot complete its operation within a given read operation, it asserts

its busy status. Busy controller does not take any actions on new API requests except returns the

busy status. The API must then retry the read until it receives a non-busy status from the

hardware.

Controller
- operation mode
- queue or tables
- bus master

Last
Request

Next
Owner

Queue
Length

Link
Pointer

Tables

Address bus:
 6 lines for condition variable ID
 9 lines for thread ID
 2 lines for operation code

Data Bus

Figure 5-27 Multiple Condition Variables Core

 116

The cond_wait API is given in Figure 5-28. In response to this read operation, the controller

decodes the address lines and extracts both the condition variable and thread ID. The controller

transfers the busy status register to the data bus, and terminates the bus cycle. It then may

continue to perform additional operations depending busy status. If the busy status is not set (not

busy), the controller queues the extracted thread id into the global queue, otherwise it performs no

additional operation. If the returned value is not busy (success), the API then can proceed to

release the predicate spin lock and continues to perform a context switch (sleep). If the return

value is busy (fail), the API continues to perform read operations until it gets the free status. The

API pseudo code for condition wait is shown in below:

/* The user program has to acquire a mutex say mtx before testing the predicate */

/* If the predicate fails, call this function */

/* If predicate is success, perform some work and release the mutex */

void cond_wait(cv_id, mtx)

/* Queue thread waiting on this condition */

{

 address = encode cv_id, thread_id

 status = fail

 while(status == fail) {

 status = *address /* perform read on the busy status register */

 wait ()

 }

 mutex_unlock(mtx) /* release mutex that protects predicate before blocking */

 context_switch()

 /* When wakes-up from sleep, the event has occurred */

mutex_lock(mtx) /* reacquire mutex */

 return

 }

Figure 5-28 Cond_wait API

 117

To signal a condition variable, the cond_signal() API (as shown in Figure 5-29) performs a read

with an address formed by encoding the condition variable ID as the least significant bytes of the

base address. The controller state machine then decodes the address lines to extract the operation

request and condition variable. The controller places the busy status on the data bus in response to

the request. If the controller is still busy performing a previous request, no further action on the

new request will take place. If controller is free, it proceeds checking the referenced condition

variable queue length. If the queue length is zero, controller goes no further and returns to init

state. If the queue is not zero, it removes the next condition variable owner from the queue. Then

it turns on busy status and proceeds to deliver the unblocked thread (thread ID) to the scheduler

queue or hardware thread. When the delivery is complete, it updates the busy status register to not

busy.

void cond_signal (cv_id)

/* Wake up one thread waiting on this condition */

{

 address = encode cv_id, thread_id

 status = fail

 while(status == fail) {

 status = *address /* perform read busy status register */

 wait ()

 }

 return

}

Figure 5-29 Cond_Signal API

To broadcast a condition variable, the cond_broadcast() API performs a read from an address

formed by encoding the condition variable ID as the least significant bits of the base address and

two address lines for operation request. The cond_broadcast() API is shown in Figure 5-30. The

controller state machine then decodes the address lines to extract the operation request and

condition variable. The controller places the busy status on the data bus in response to the request.

If the controller is still busy performing a previous request, no further action occurs on the new

request. If the controller is free, it proceeds checking the referenced condition variable queue

length. If the queue length is zero, the controller terminates. If the queue is not zero, the controller

removes all the blocked thread id’s for the condition variable. It then asserts a busy status and

 118

proceeds to deliver the first unblocked thread (thread ID) to the scheduler queue or hardware

thread. When the delivery of all of the unblocked threads is complete, it updates the busy status

register to not busy. The system bus can be locked while delivering all the unblocked threads to

the scheduler. However locking the system bus for long durations will affect system response.

Instead the busy status is used to indicate the state of the controller.

void cond_broadcast (cv_id)

/* Wake up all the thread waiting on this condition */

{

 address = encode cond_var_id, thread_id

 status = fail

 while(status == fail) {

 status = *address /* perform read on busy status */

 wait ();

 }

 return

 }

Figure 5-30 Cond_Signal API

5.11.2 Condition Variable Hardware Architecture

The condition variable IP architecture consists of: 1) interface and status registers 2) a global

queue to hold thread (thread ID) block on the condition variables 3) global queue controller 4)

other controllers 5) soft reset circuits. Figure 5-31 shows the hardware components of multiple

condition variables IP core. The figure however does not include the reset circuit.

Interface and status registers

• Condition variable ID register

• Thread ID register

• Busy status register

• Output MUX (API return status)

Global Queue and its controller

• Global Queue implemented in BRAM (Queue BRAM)

• Queue Controller

 119

• Next Owner register (next condition variable owner)

• Queue Length register

Other Controllers:

• Operation mode

• Atomic transaction controller

• HW/SW Comparator/Next Owner Address Generator

• Bus Master

Soft reset component

• To initialize condition variable global queue

• Address counter (BRAM address reset counter) generates address of all global queue

cells that to be reset.

Condition variable ID register

This register holds the condition variable ID referenced by a thread. A user program interface

(API) uses several address lines to encode a specific condition variable ID that it needs to access.

For the sixty-four condition variables implemented within our system address lines A24 to A29

are used to encode the condition variable ID. These lines are latched into this register when the

read request goes high and this IP is selected. This register is also used for other purposes

including as an index to access queue length, next owner and next owner tables of the global

queue.

Thread ID register

See description in the blocking mutex section (Section 5.8.1).

Busy Status Mechanism

Similar to MUTEX busy status mechanism, a condition variable core has two registers: Previous

Status and Current status to serve as a busy indicator to the API when the queue controller has not

completed its delivery of unblocked threads (condition variable next owners).

 120

Bus Master Interface
(IPIF MASTER)

system bus

B
Bus Slave Interface (IPIF SLAVE)

A

1. Determine next owner is
 HW or SW thread
2. Gen read or write to
 module D

G Comparator

1. Enqueue blocking thread
 when cond_wait ()

2. Dequeue next lock owner
 when cond_signal ():
 - signals D via G to
 deliver next owner

3. Dequeue all next owners
 when cond_broadcast()
 - signal D via G to
 deliver all next owner

4. Manage queue/4 tables

5. Soft Reset, clear all
 the table

6. Send status when the
 delivery of next owners
 completed

F Queue Controller

Link Pointers

Last Request

Next Owners

Queue Lengths

H Next Owner Address

1. Request Handlers
2. Bus Mastering
 - reader
 - writer

Bus Master

Atomic read operation
 - read request ack delay
 (queue operation done)

C Atomic transaction

thread_id register

prev status
register

E Operation mode

nx_owner

enqueue

qread_write

qenable

qaddr

qdata_in

next_owner register

rreq
wreq

ack

qdata_out
from

queue
(debug)

nx_owner

latch_next_owner

msc_start

- Decode address &
 read request
- Generate enqueue
- Generate dequeue
- Generate broadcast

saddrrdreq rd_ack

Queue with 4 tables

wr_ack
wr_req

1. Calculate next owner
 address
 (HW or SW thread)
2. Parameters:
 - HW base address
 - HW thread size
 - SW thread Manager
 address

D

xaddr +
control

qdata_out

broadcast

queL_counter
(broadcast opr) cnt_decr

cnt_latch

cond_var_id register

cur status
register

API return
status

denqueue

deque_donedeq_start

enqueue

broadcast
denqueue

data_out

addr_out

data_out

addr_out

API
status xdata (nx owner)

addr_out
data_out

transfer
do_compare

do_compare

data_mux

saddr

sel

msc_done
qLength

sdata

Figure 5-31 Condition Variable Hardware Architecture

 121

Even though the de-queue operation takes at most nine cycle, the delivery operation across the

bus may be delayed by other system bus activities, especially when more than one unblocked

thread needs to be transferred to the software manager for the broadcast mode. The content of the

Previous Status register together with next owner thread ID is returned in response to the API

requests. The API has the option either to check all the information or only the busy status

returned by the hardware. The hardware returns “non-busy “status, if it processes an API request.

Otherwise the API should retry its request.

The Current Status changes to “busy status” when the delivery of unblocked thread starts. It is set

back to “non-busy status” when the delivery completes. Every API operation, either waiting or

signal or broadcast causes transfer of status from the Current Status register to the Previous Status

register. However, the API request will not cause the Current Status register to change its status.

Its status can only be changed by the current transaction of unblocked thread delivery that

supposed to be completed.

Operation Mode Controller

This controller serves as an interface between the application program and condition variable

hardware. It decodes the application program interface request and generates appropriate signals

to other controllers. The type of operation requested by the application program and control

signals output by this controller is given in table 5-11. It uses read request and two lines of

address to decode the API requests and asserts one of these signals: COND_WAIT,

COND_SIGNAL or COND_BROADCAST. The signals cause the Queue Controller to start its

queuing tasks. The controller issues de-queue signal to the Queue Controller in response to either

signal or broadcast API requests.

 Write

Request

Read

Request

A13 A14 Operations Error &

Status

0 1 0 0 Read condition variable next owner (debug) N/A

0 1 0 1 Cond_signal(), enqueue a calling thread Busy

0 1 1 0 Cond_wait(), dequeue one next owner Busy

0 1 1 1 Cond_broadcast(), dequeue all next owner Busy

Table 5-11 Condition Variable Application Interfaces

 122

Output MUX (API return value)

To indicate that the API request has been processed, the controller returns the busy or not busy

status along with other information as shown in Table 5-12. For a cond_wait, the next owner

thread ID is returned in addition to the status if controller is not busy.

Return Values: bits (0 to 31)

Condition

Variable APIs

Busy

status

(4 bits)

Not used

Zeroes

(19 bits)

Next Owner

thread ID

(9 bits)

Descriptions

cond_owner next owner

cond_signal 1010 not busy or success

cond_signal 1110 busy

cond_wait 1010 not busy or success

cond_wait 1010 busy

cond_broadcast 1010 not busy or success

cond_broadcast 1110 busy

Table 5-12 Condition Variable API Return Codes

Atomic Transaction Controller

This duty of this controller is to acknowledge atomic read operation when a hardware thread or a

software thread requests for a condition variable. This atomic read process is initiated when the

read request line goes high. It does not perform immediate acknowledgement but waits for the

queue operation completed. It however does not wait for completion the delivery of the next

owner (in the case of broadcast or signal operation).

Global Queue and Queue Controller

The queue is divided into four tables, and is implemented within the BRAM (Queue BRAM). The

tables are queue length, last request, next owner and link pointer. Except for the Link Pointer, all

other tables can be access by using the condition variable ID as a reference. Link Pointer table is

indexed by the thread ID. The Queue Controller responsible for three distinct tasks: queuing the

condition variable next owners, de-queuing the next owner and initialize all the queue tables. The

controller follows four different paths responding to different input signals: enqueue, dequeue,

broadcast and soft reset. If the soft reset is active, it transitions to the reset state. While in

 123

transition, it output a signal to initialize the BRAM address counter. In the reset state, this

controller initializes all the BRAM locations similar to the reset operation described in the

MUTEX section.

Cond_wait initiates an en-queuing operation. An en-queuing operation starts by reading the

Length Queue pointed by the condition variable ID register. If the queue length is zero, the

controller continues to increment the queue length by one. Next it uses condition variable ID as

an index to access both the Last Request Pointer and Next Owner Pointer, and initializes both

pointers with current requester thread ID. If the queue length is non-zero, the controller has to

perform several additional tasks. First it updates the queue length. Next it reads Last Request to

get the index of Link Pointer. Then it writes the current requester thread ID into the Link Pointer

table. It uses the index it has just retrieved as a pointer to a location in the Link Pointer table. The

Link Pointers serve as a link list of all the next lock owners for a given condition variable, that

will be used later by the Next Owner Pointer to find a new next condition variable owner. Finally

it updates the Last Request with current requester thread ID.

Cond_signal initiates the de-queuing operation. The state machine for the de-queue operation is

given in Figure 5-32. As shown in the state machine diagram, the de-queue operation has three

execution paths depending on the length of the next owner in the queue. Thus all de-queue

operations start with checking the queue length. The queue length is retrieved from the Queue

Length table by using the condition variable ID as an index. If the queue length is zero, which

means no next owner, the de-queue operation ends. If the queue length is one, controller proceeds

to reduce the queue length by one. It then raises the DEQ_START signal to flag busy status. Then

it de-queues the next owner from the Next Owner table into the Next Owner register and signals

the HW/SW Comparator & Next Owner Address Generator to start its task, which in turn signals

the Bus Master. The controller then waits for Bus Master to complete its task. Once the Bus

Master has successfully delivered the next owner, it raises the MSC_DONE signal to inform the

Queue Controller. The Queue Controller then return to init state and at the same time asserts the

DEQ_DONE to reset the busy status. If the queue length is more than one, the controller needs to

execute several more steps in addition to mentioned above. First it updates the Queue Length

table with a new length. Next it de-queues the next owner, flags busy status (DEQ_START),

transfers the next owner thread to the Next Owner register, and signals the HW/SW Comparator

(including Next Owner Address Generator).

 124

read
nx_own

read
nx_own

wait

deq/start
bus mst

queL
update

read
queL

read
queLW

read
linkptr
wait

update
nx_own

read
nx_own

read
wait

read
link_ptr

deq_non

Queue Length = 0

Queue Length > 1 Queue Length = 1

/latch next owner

/qaddr = nx_own_tbl & sem_id
/qenable = yes
/qread_write = read

/qaddr = link_ptr_tbl & qbram_out
/qenable = yes
/qread_write = read
/msc_start

/qaddr = nx_own_tbl
 & sem_id
/qenable = yes
/qread_write = read

/qaddr = queL_tbl & sem_id
/qenable = yes
/qread_write = read

/deque_done

Qinit

/qaddr = queL_tbl & sem_id
/qdata_in = qbram_out - 1
/qenable = yes
/qread_write = write

/qaddr = queL_tbl & sem_id
/qdata_in = qbram_out - 1
/qenable = yes
/qread_write = write

Dequeue

Lagends:
link_ptr_tbl : address offset for Link Pointer table
nx_own_tbl : address offset for Next Owner table
queL_tbl : address offset for Queue Length table
LastReq_tbl : address offset for Last Request table
qread/write : qr/w read or write to the queue

Dequeue when
qLength is one

Nothing
to dequeue

Dequeue when
qLength is > one

/msc_start

nx_own
delivery

doneQinit

 msc_done
/deque_done

nx_own
delivery

done Qinit

/qaddr = nx_own_tbl & sem_id
/qdata_in = qdata_out ie. new nx own
/qenable = yes
/qread_write = write

bus_msc_done
/deque_done

reset

Figure 5-32 Cond_Signal State Machine

Then it needs to update the Next Owner Table with a new owner. To get a new next condition

variable owner, it uses the next owner that it just retrieved as an index to reads the Link Pointer

 125

table. Then it updates the Next Owner table with the new next owner it just obtained. The Next

Owner table update and the next owner delivery by the Bus Master run concurrently, as shown in

the state machine diagram. When the Bus Master completes its delivery task, it raises the

MSC_DONE signal to inform the Queue Controller. The Queue Controller returns to init state

and at the same time issues the DEQ_DONE to reset the busy status.

Cond_broadcast initiates de-queuing all of the threads that blocked on condition variable

referenced by the condition variable ID register. The state machine for the broadcast operation is

given in Figure 5-33. As shown in the state machine diagram, the broadcast operation has three

de-queuing execution paths depending on the length of the next owner in the queue. Thus all

broadcast operation starts with checking the queue length first. The queue length is retrieved from

the Queue Length table by using the condition variable ID as an index. If the queue length is zero,

which means no next owner, the de-queue operation ends here. If the queue length is one,

controller updates the queue length to zero. It then de-queues the next owner from the Next

Owner table into the Next Owner register, and asserts DEQ_START signal to flag busy status. It

then issue MSC_START signal to the HW/SW Comparator (including the Next Owner Address

Generator) to start its task, which in turn signals the Bus Master to deliver the next owner.

If the queue length is more than one, the controller issues signal (CNT_LATCH) to latch the

queue length into a register (queL_counter register). It then updates queue length of referenced

condition variable with zero. The controller then loops to de-queue all the blocked threads using

the queue length register as a counter. The controller issues CNT_DECR signal to decrement the

counter each time it loops the dequeue operation. The HW/SW Comparator shown in Figure 5-34

asserts the TRANSFER signal once the dequeued thread is already transferred from the Next

Owner register to Bus Master ADDR_OUT register to signal the Queue Controller that it is safe

to de-queue another thread into the Next Owner register, thus allowing de-queue operation to run

in parallel with delivery operation. The shaded states in broadcast state machine and HW/SW

Comparator state machine diagrams are to show that the de-queue operation and delivery of last

de-queued thread execute in parallel.

 126

read
nx_own

read
wait

deq+start
bus mst

queL
update

read
queL

read
queLW

read
link_ptr

read
link_wait

read
nx_own

read
nx_wait

hw/sw
cmp

deq_non

Queue Length = 0

Queue Length > 1 Queue Length = 1

/msc_start

/latch next owner

/qaddr = nx_own_tbl & sem_id
/qenable = yes
/qread_write = read

/qaddr = link_ptr_tbl & next_owner_latch
/qenable = yes
/qread_write = read
/cnt_decr

/qaddr = nx_own_tbl
 & sem_id
/qenable = yes
/qread_write = read

/qaddr = queL_tbl & sem_id
/qenable = yes
/qread_write = read

/deque_done

Qinit

/qaddr = queL_tbl & sem_id
/qdata_in = EMPTY
/qenable = yes
/qread_write = write

/qaddr = queL_tbl & sem_id
/qdata_in = qdata_out - 1
/qenable = yes
/qread_write = write

Broadcast

Lagends:
link_ptr_tbl : address offset for Link Pointer table
nx_own_tbl : address offset for Next Owner table
queL_tbl : address offset for Queue Length table
LastReq_tbl : address offset for Last Request table
qread/write : qr/w read or write to the queue

Dequeue
one

Dequeue
None

Dequeue
All Next Owners

/latch queL counter

chk cnt
lptr_out

BCOne
last

owner

BCOne
End Qinit

transfer

queL_counter ! = 1

queL_counter == 1

transfer

/latch next owner

/msc_start

/msc_start

nx_own
delivery

doneQinit

bus_msc_done
/deque_done

Final
dequeue

repeat
dequeue

Check for transfer signal then bus_msc_done,
otherwise the final deque will be missed as this
state machine run in parallel with bus master

queL counter

next owner

bus_msc_done
/deque_done

reset

Figure 5-33 Cond_Broadcast State Machine

 127

next
owner

out

delivery
done

hw/sw
cmp init

hw/sw
cmp
init

cmp
waitA

cmp
waitB

msc_start
/do_compare

reset

if thread ID > 255
 /* hardware thread */
 address = hw_thr_base + thread ID * 256
 data = wake_up code
 hw_sw_thr = hw
else
 /* software thread */
 address = sw_thread_manager + thread ID * 4
 hw_sw_thr = sw

sw thr
xfer
read

hw thr
xfer
write

hw_sw_thr = hw hw_sw_thr = sw

/read_request/write_request

read_start_ackwrite_start_ack

bus_master_last_ack
/msc_done

/transfer

For broadcast: Next owner is latched into another
register at this step, allows dequeuing (of another
next owner) run in parallel with the delivery operation

Figure 5-34 HW/SW Comparator & Next Owner Address Generator

Once the last thread is successfully delivered, the controller asserts DEQ_DONE to reset the busy

status register (current status register) to NOT_BUSY state and returns to init state. The Bus

Master and HW/SW Comparator operations are similar to those described in the MUTEX section

(Section 5.8.1) except for broadcast operation described above.

 128

6 HYBRID SYSTEM CORES INTEGRATION AND TEST

6.1 INTRODUCTION

This chapter describes the testing performed to verify the functionality and performance of all

synchronization cores, as well as hardware thread cores. Figure 6-1 shows the block diagram,

along with address ranges, of the specific cores included in our test system. At this point it is

worth outlining how address ranges are determined and provided to the hardware cores that need

to associate an address with a thread. This is important as we currently assign a thread id value to

a hardware thread based on the address offset of its command register from the starting base

address of the hardware thread address range, as address ranges for cores must be assigned during

the initial system design. To allow hardware threads to access the synchronization cores, the base

addresses of the synchronization cores are passed as VHDL generic parameters during

instantiation of the hardware thread cores.

Embedded
CPU

(SW THREADS)

HW
THREAD

HW
THREAD

SW THREAD
MANAGER

MUTEXES
COUNTING

SEMAPHORES

SDRAM
CONTLR

INTERRUPT
CONTLR

BRAM
W/CONTLR

Hardware modules or IP cores

x0800_0000* x0800_0100*

x2000_0000* x1008_0000* x1010_0000* x1000_0000*x3000_0000*

x0200_0000* xFFFF_4000*

module_id = 651module_id = 650module_id = 601module_id = 600

module_id = 400 module_id = 401

* base address

FPGA

Interrupt

Interrupt

SDRAM

Figure 6-1 Single FPGA Chip with Embedded CPU and Other Cores

 129

For the blocking synchronization cores such as MUTEXES, semaphores and condition variables,

the start address of the hardware thread cores and the software thread manager are also passed as

VHDL generic parameters. The starting addresses enable the synchronization cores to transfer

unblocked threads to appropriate destinations. If the unblocked thread is a hardware thread, the

synchronization cores will write a wake-up command code to the hardware thread command

register. Within each synchronization core, the addresses of a hardware threads command register

is calculated by adding the start address of the first hardware thread core with the product of

thread ID and the size of the hardware thread interface component. Figure 6-2 shows an example

memory map that includes two hardware threads. In the memory map, the start address of the first

hardware thread interface component is set to 0x0800_0000 and passed as a generic parameter

during the instantiation of the synchronization cores. To improve system performance, the

memory map is arranged such that the SDRAM can be cached. An example of calculation

performed by the semaphore core to deliver the unblocked thread (or next semaphore owner) to

appropriate destination address is as follows:

Semaphore Core:
If the unblocked thread is a software thread, it will be delivered to the scheduler ready queue in
the Software Thread Manager core:

If unblocked thread is a HW Thread:
 Say the unblocked thread is hardware thread number 2 (Thread ID 262)
 Destination address:
 = HW Thread Start Address + (HW Thread ID x HW Thread Size) + Command Register Offset
 = 0x0800_0000 + (2 * 0x100) + 0x5

If unblocked thread is SW Thread:
 Say the software thread number is 4 (Thread ID 4)
 Destination address:
 = SW Thread Manager + Add Register Offset + 0x4 << 2
 = SW Thread Manager + Add Register Offset + 16
 = 0x3000_0000 + 0x100 + 0x10

For the hardware thread core (HW Thread) the address encoding process to acquire or release a
semaphore can be summarized as follows:
HW Thread Core:
Say HW Thread 5 (Thread ID 260) makes a request for semaphore 3
Encoded address generated by the HW Thread:
 = Operation Code + Semaphore Base Address + (Thread ID << 8) + (Semaphore ID << 2)
 = Operation Code + 0x1010_0000 + (0x105 << 8) + (0x3 << 2)
 = 0x20000 + 0x1010_0000 + 0x10500 + 0xC (sem_post operation)
 = 0x40000 + 0x1010_0000 + 0x10500 + 0xC (sem_wait operation)

 130

External
SDRAM

HW THREAD

HW THREAD

SPIN LOCKS

MUTEXES

SEMAPHORES

ETHERNET

UART

xFFFF_FFFF

xFFFF_4000

x0200_0000

x0800_0000

x0800_0100

on chip memory
BRAM

x02FF_FFFF

x1000_0000

x1008_0000

x1010_0000

x2000_0000

x2000_0100

SW THREAD MANAGER

Figure 6-2 An Example of Memory Map of a Hybrid Thread System

6.2 INDIVIDUAL CORE FUNCTIONAL TESTS

We have performed a variety of stress tests to validate the functionality of all synchronization

cores under various scenarios of concurrently executing software and hardware thread loads. The

tests include semantic verification of hybrid threads competing for locks, queuing blocked

threads, and associated unblocking operations. The unblocking tests involved invocation of

interrupts and deliveries of unblocked threads to the CPU scheduler queue.

 131

Functional Test Set-up:

Hardware required for these tests include each synchronization core, timer, interrupt module,

reset module, and CPU. The test program on the CPU include timer interrupt handler and reset

interrupt handler. The timer interrupt handler contained a counter that incremented at every

interrupt. At different counter values different testing tasks are assigned, for example requesting

or releasing several semaphore variables. The different sequence of tests performed for each core

are summarized as follows:

Spin locks:

1. Acquire free spin locks from hardware and software threads.

2. Release “owned” spin locks.

3. Try to acquire “owned” locks will not cause ownership change.

4. Acquire same spin locks recursively.

5. Release same spin locks recursively.

6. Core soft reset to initialize recursive counters and lock owner registers.

7. Repeat above tests after soft reset.

MUTEXES:

1. Acquire free MUTEXES from hardware and software threads.

2. Release of MUTEXES.

3. Acquire the same MUTEXES recursively causing recursive counter to be incremented.

4. Release of the same MUTEXES recursively causing the counter to be decremented.

5. Acquiring of “owned” MUTEXES causing en-queue of software and hardware calling

threads

6. Repeated acquisitions of “owned” MUTEXES causing queue sizes to grow accordingly.

Capacity testing of maximum number of threads

7. Release of MUTEXES that have blocked threads in queue, causing de-queuing of

blocked threads. If the unblocked threads are hardware-based, wake-up command codes

will be delivered to the hardware thread command registers. If the unblocked threads are

CPU based threads, read operations to appropriate locations of Software Thread Manager

will be performed.

8. Repeated release of MUTEXES cause de-queuing of threads in appropriate order.

9. Core soft reset to initialize MUTEX owner registers, recursive counters and global queue.

10. Repeats tests 1 to 8 after performed the reset.

 132

Semaphores:

1. Semaphore wait operation on zero semaphore resource (counter is zero) causes the

calling thread to be queued and the counter remains zero.

2. Semaphore wait performed when the semaphore counter is not zero causes the counter to

be incremented by one.

3. Semaphore post when the semaphore counter is not zero causes the semaphore counter

decremented by one.

4. Semaphore post when the semaphore counter is zero causes a thread to be removed from

the semaphore queue (if there is one in the queue). The de-queued thread will be

delivered to either the Software Thread Manager or Hardware threads.

5. Consecutive semaphore waiting when the semaphore counter is zero causes queuing all

the calling threads and counter remains zero. Followed by consecutive semaphore release

operations that will cause de-queuing of threads and counter remains zero and

incremented when no more thread in the queue.

6. Proper initialization of semaphore counters, core soft reset operations.

7. Repeat tests 1 to 6 after performed the core soft reset.

Condition variables:

1. Condition wait operations cause the calling threads to be queued

2. Condition signal causes a thread in the queue to be removed (if there is one in the queue)

3. Condition broadcast causes all the blocking threads to be de-queued and delivered to

appropriate destinations.

4. Consecutive wait calls cause queuing of the calling threads. Consecutive signal calls

cause removal of threads from the queue.

5. Proper execution of its operation to response to different sequences of wait, signal and

broadcast calls.

6. Perform core soft reset and repeat test 1 to 5 after soft reset.

In addition, each synchronization cores is subjected to regression tests of a system with 250

software threads that generate more than 100,000 events in each test. The test scenarios are

summarized as follows:

 133

Mutex & Spin Lock Cores:

This test involved 250 software threads competing to acquire a mutex. The first thread that

attempts to lock the mutex owns the lock, and blocks the other 249 threads (no blocking and

queuing in the case of spin lock). The test starts with the main thread creates 250 children and

then performs thread_join on all its children. Each created child loops attempting to acquire the

lock, followed by yield, unlock and yield again. Mutex unlocking by the current owner causes the

next thread in the queue to wake-up and own the mutex. Observe that blocked threads cannot

print their thread ID and make any new lock request.

Semaphore Core:

In this test, the main thread creates 125 consumer threads and 125 producer threads. The main

thread then performs join to suspend itself and wait for its children to exit. Each created

consumer performs wait say on semaphore S1 and then yields. Since S1 is initially at zero, all

consumer threads go to sleep into the S1 queue. Each created producer thread loops to perform

post on semaphore S1, and then yields. Each semaphore post operation awakes one consumer

thread. Active consumer thread prints its thread ID to indicate it is now running.

Condition Variable core:

• The main thread creates a lock or mutex, a variable, two condition variables (CV1 and

CV2), 125 worker threads + 125 dispatch threads, and then performs join on all its

children. The variable is to represent the number of jobs available in a bounded buffer.

The lock is used to protect the variable. The condition variable, CV1 enables worker

threads to sleep when the buffer is empty. The other condition variable, CV2 is employed

to block dispatcher threads when the number of job reaches a certain number (arbitrary

number that normally matches the size of the job buffer say ten).

• Each created worker thread loops to acquire the lock and check the buffer. If the buffer is

empty, it goes to sleep by calling condition wait on CV1. When a worker thread awakens,

it checks the buffer, removes a job from the buffer if it is not empty, performs condition

signal on CV2, releases the lock, and yields.

• Each created dispatcher thread loops to acquire the lock and checks the number of jobs

available in the buffer. If the number of jobs in the buffer is ten, the dispatch thread goes

to sleep by calling condition wait on CV2. If the number of job is less than ten, it adds

one job into the buffer, performs signal on condition variable CV1, releases the lock, and

yields. An awakened dispatcher thread checks the number of job in the buffer, adds a job

 134

if the number of job is less than ten and then performs condition signal on CV1. Then it

releases the lock and yields.

Hardware Thread Cores:

Tests on the hardware threads can be divided into functional tests and performance tests. The

functional tests include proper working of the hardware thread controller to access multiple

synchronization variables and memory locations. The synchronization variables and memory are

accessed by means of procedures or APIs. The functional tests can be summarized as follows:

1. Acquire spin locks, MUTEXES, semaphore.

2. Release of spin locks, MUTEXES, semaphores.

3. Memory accesses either read or writes.

4. Blocking operations when fail to gain synchronization variables. Unblocking

operation when semaphores write wake-up codes.

5. Competition with other hardware and software threads to gain synchronization

variables.

 135

6.3 PERFORMANCE EVALUATIONS

The performance tests on the cores include performance evaluations of hardware threads against

software threads competing for synchronization resources. Each hardware thread and software

thread runs individually to establish base line performances as shown in table 6-1. Both the

hardware thread and CPU are clocked at 100 MHz. The result indicates that hardware thread is

about six times faster than the software thread in acquiring a spin lock.

Time in

seconds

Lock Access

Count by HW

Thread (HW)

Lock Access

Count by SW

Thread (SW)

(HW)/ (SW)

6 7456497 1183568 6.30

12 14927918 2369504 6.30

18 22399315 3555435 6.30

24 29870751 4741374 6.30

30 37342162 5927308 6.30

36 44813614 7113248 6.30

42 52285041 8299185 6.30

48 59756442 9485118 6.30

54 67227884 10671057 6.30

60 74699301 11856992 6.30

66 82170757 13042933 6.30

Table 6-1 Baseline HW Thread vs. SW Thread

Then both threads competed to acquire a spin lock. The hardware thread access is delayed

gradually to study the effects of competition. The effect of competition is shown in Figure 6-3.

As indicated in the graph, when the hardware thread is not delayed, hardware thread dominates

the lock access and the ratio can be as high as twenty (Hardware thread gaining lock twenty times

more than that of software thread).

 136

Spin Lock Access Competition Evalution between HW Thread and Software
Thread

0.5

2

5.44

8.875

23

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1
Lock Access Count Ratio: Sum of HW and SW Threads Count to HW Thread Count when it runs alone

(Access Count due HW and SW threads) / (Access count due HW thread alone)

Lo
ck

 A
cc

es
s

C
ou

nt
 R

at
io

:
H

W
 T

hr
ea

d
C

ou
nt

 /S
W

 T
hr

ea
d

C
ou

nt
)

Figure 6-3 Hardware Thread vs. Software Thread

We have conducted performance tests on our mutex or lock cores with various loads of software

threads running concurrently on PPC405 CPU. The mutex cores are clocked at 100 MHz, the

maximum clock speed for our FPGA logic and the CPU is operated at 300 MHz. The number of

lock acquisitions for each load of threads in the system is about 100,000 events. As depicted in

Figure 6-4 and Figure 6-5, depending on the mode of CPU cache, the average time required for

requesting a lock is about 75 or 59 clock cycles respectively. With the CPU cache turned on, the

lock access times are mostly at 580ns but can be as high as 790ns when the cache miss occur.

 137

Figure 6-4 Mutex Access Speed (CPU Data Cache Off)

Figure 6-5 Mutex Access Speed (CPU Data Cache On)

 138

The access times for different synchronization API operations are given in Table 6-2. The total

clock cycles for each operation is defined as the time taken when the internal operation within the

core starts and excludes the time required to issue a request from either the CPU or the Hardware

threads. The issue request time for these tests is excluded in order to eliminate the time difference

that exists between a CPU and Hardware thread performing bus requests. The bus transaction is

either for acknowledgment or for the bus master within the core to perform a bus operation either

to read the Software Thread Manager to deliver an unblocked thread or write wake-up command

to a hardware thread. If we define synchronization latency as the time to acquire a

synchronization variable in absence of contention and synchronization delay, then this time can

be measure as the time between request and acquisition acknowledge. For a MUTEX variable,

the latency and delay are 11 and 23 clock cycles respectively (measured from the moment the

core receives a request and generates an acknowledgement).

Synchronization

APIs

Internal Operation

(clk cycles)

Bus Transaction after

the Internal Operation

starts (clk cycles)*

Total Clock

Cycles

spin_lock 8 3 11

spin_unlock 8 3 11

mutex_lock 8 3 11

mutex_trylock 8 3 11

mutex_unlock 13 10 23

sem_post 9 10 19

sem_wait 6 3 9

sem_trywait 6 3 9

sem_init 3 3 6

sem_read 6 3 9

cond_signal 11 10 21

cond_wait 10 3 13

cond_broadcast 6n 10n 16n

Table 6-2 Cores Access Speed

 139

6.4 CORES HARDWARE RESOURCES:

This section summarizes the hardware cost of implementing our synchronization cores on a

XILINX VIRTEX V2P7. The V2Pro7 resources include 4928 slices and 44 blocks of distributed

RAM (BRAM). The hardware resource to implement hardware thread interface which includes

the thread state controller, synchronization and bus master components is about 3 percent of total

slices available on V2P7. The different type of resource needed to implement one hardware

thread interface is given on Table 6-3.

Resources

Types

Resources

Used

Total Resources

on chip
% Used

Slices 128 4928 3

Flip-flop 153 9856 2

4 -input LUT 205 9856 2

BRAMs 0 44 0

Table 6-3 Hardware cost for hardware thread interface

The cost of FPGA hardware to implement sixty-four recursive spin locks core is about 2.5 of total

hardware resource available on FPGA as shown in Table 6-4. The single BRAM is used as 64

spin lock owner registers and 64 recursive counters.

Resources

Types

Resources

Used

Total Resources

on chip
% Used

Slices 123 4928 2.5

Flip-flop 80 9856 0.8

4 -input LUT 215 9856 2.2

BRAMs 1 44 2.3

Table 6-4 Hardware cost for 64 Spin Locks (excluding bus interface)

The hardware resource required to implement sixty-four MUTEXES core is given in Table 6-5.

One BRAM is used as a queue to hold up to five hundreds and twelve sleeping threads (hardware

or software threads). The second BRAM is used as MUTEX owner registers and recursive

counters. The resource also includes the controller to de-queue and deliver the wake-up threads

either to the scheduler queue or hardware threads.

 140

Resources

Types

Resources

Used

Total Resources

on chip
% Used

Slices 189 4928 3.8

Flip-flop 134 9856 1.4

4 -input LUT 328 9856 3.3

BRAMs 2 44 4.5

Table 6-5 Hardware Cost for 64 MUTEXES (excluding bus interface)

The FPGA hardware resource to implement sixty-four semaphores is given in Table 6-6. The

semaphore entity supports sem_wait, sem_trywait, sem_post, and sem_count_init operations

similar to POSIX API. The semaphore queue is sized to hold up to five hundreds and twelve

sleeping threads (hardware or software threads). The resource also includes the controller to de-

queue and deliver the wake-up threads either to the scheduler queue or hardware threads.

Resources

Types

Resources

Used

Total resources

on chip
% Used

Slices 229 4928 4.6

Flip-flop 186 9856 1.9

4 -input LUT 414 9856 4.2

BRAMs 2 44 4.5

Table 6-6 Hardware Cost for 64 Semaphores (excluding bus interface)

The cost of FPGA hardware to implement sixty-four condition variables (CVs) is given in Table

6-7. The CV has a queue that is sized to hold up to five hundreds and twelve sleeping threads

(hardware or software threads).

Resources

Types
Used # total on chip % used

Slices 137 4928 2.8

Flip-flop 136 9856 1.4

4 -input LUT 231 9856 2.3

BRAMs 1 44 2.3

Table 6-7 Hardware Cost for 64 CVs (excluding bus interface)

 141

Table 6-8 summarizes hardware cost to implement different types of synchronization. Table 6-8

also indicates the number of slices needed to implement one synchronization variable of each

type. For example one spin lock variable requires only 1.9 slices only, while one semaphore

variable costs about 3.6 slices and .07 percent of BRAM. As the capacity of BRAM is not fully

utilized in the current design, each synchronization core can be expanded to support up to 512

variables (total 2048 synchronization variables) without additional cost except three more address

lines are needed. Table 6-9 shows hardware cost in term of slices needed to implement one

synchronization variables for each type.

Synchronization

Type

Total Slice for 64

synchronization

variables

Number of Slices for

each synchronization

variable

Spin lock 123 1.9

Mutex 189 3.0

Semaphore 229 3.6

Condition Variable 137 2.1

Table 6-8 Hardware Cost for 256 Synchronization Variables (excluding bus interface)

Synchronization

Type

Total slices for 512

synchronization

variables

Number of slices per

synchronization

variable

Spin lock 123 0.2

Mutex 189 0.4

Semaphore 229 0.4

Condition variable 137 0.3

Table 6-9 Hardware Cost for 2048 Synchronization Variables (excluding bus interface)

 142

7 HYBRID THREAD APPLICATION STUDY

7.1 INTRODUCTION

This chapter presents an application study of our hybrid multithreaded model. We have

implemented several image-processing functions in both hardware and software from within our

common multithreaded programming model on a XILINX V2P7 FPGA. The transforms were

first implemented as software threads that communicated using our synchronization primitives

running on the PPC 405 processor core. Then the software threads that performed the transforms

were recoded in VDHL and implemented within the FPGA still using our programming model

and synchronization primitives. This example demonstrated hardware and software threads

executing concurrently using standard multithreaded synchronization primitives. The application

threads transformed real-time images that were first captured by a camera connected to our host

workstation, and then the results were displayed back on the workstation. All communications

between the V2P7 and the host workstation were across Ethernet. In both the software and

hardware implemented transform test cases, a communications Ethernet driver thread ran in

software. The driver thread communicated with the transform threads using our synchronization

primitives. Both hardware and software threads synchronized their access to shared data through

our standard API’s. Our hardware thread application interface enables application developers to

write applications in VHDL without going into the details of the system bus architecture. Thus,

our current hybrid thread programming model can reduce development time, and opens the door

for software engineers to access the reconfigurable logic through a familiar POSIX like

generalized software multi threaded programming model.

7.2 IMAGE TRANSFORMATION

Filtering is an example of transformation process that can be applied to images. Filtering may

remove noise, enhance details, or blur image features depending on the selected transform

algorithm. Examples of filter used for smoothing in the spatial domain include median filters,

binomial average filters, and Gauss kernel filters. A spatial filter replaces each pixel within an

image with a new value that is produced by a function with inputs coming from itself and its

neighbors.

 143

The spatial filter algorithm defines contributing neighbors by a mask. Figure 7-1 shows an

example of a 3x3 mask kernel for a binomial average filter. The values in the mask are the

weights (wi) applied to each pixel (pi) in the average when the mask is centered on the pixel being

transformed.

1

1 2 1

2 4 2

21 1
16

x

++

++++

++

=

+++++++−+−

++−−

−+−+−−−−−−

1,11,11,1,1,11,1

,1,1,,,1,1

1,11,11,1,1,11,1

,

16

1

jijijijijiji

jijijijijiji

jijijijijiji

ji

pwpwpw

pwpwpw

pwpwpw

p

Figure 7-1 Binomial 3x3 Mask Kernel

Binomial filters generally reduce noise in an image by replacing each pixel with the binomial

weighted average of itself and neighboring pixel values. Figure 8-1 shows a 3x3 binomial kernel

example represented by 1/16 [1 2 1 2 4 2 1 2 1]. The Binomial filter is an example of a general

linear filter, as the function is the weighted average of the pixels in the mask. In contrast, a

median filter is a non-linear filter, as the median cannot be obtained from a linear combination of

the pixels under the mask.

7.3 EXPERIMENT SET-UP

We developed the following experimental setup to verify our multithreaded models capability to

support concurrent execution of both hardware and software threads communicating and

synchronizing using our standard shared memory synchronization protocols. We implemented

several simple image transforms using the experimental set-up illustrated in Figure 7-2. A

camera attached to a PC running LINUX was used to capture real time pictures of moving

objects. The image frames were then transferred from the PC to V2P7 FPGA board via a

dedicated Ethernet link. After each frame had been processed on the V2P7 board, the modified

image was then sent back to the PC. Both the original and modified images were then displayed

on the PC real-time.

 144

A software thread was created on the embedded PPC405 CPU to receive frame data from the

Ethernet and place it on the heap (in SDRAM). We used two counting semaphores to synchronize

the CPU resident software and the FPGA resident hardware threads. Semaphore S1 synchronized

accesses to shared image data not yet processed, while semaphore S2 serialized access to

processed images.

An initialization software thread first ran on the PPC 405. The C program listing for the

initialization routine is given in Figure 7-3. The initialization routine performed two memory

allocations on the heap to get two pointers for storing image data, initialized the Ethernet link and

called a hardware thread create API. The hardware thread create API provided the two address

pointers to the hardware thread through the hardware thread interface’s argument registers. The

hardware thread create also resulted in the transition of the hardware thread’s controlling state

machine from the idle state to the run state.

The software thread then waited for image to arrive from the Ethernet link. When a new image

was available, the software thread transferred the received image into the SDRAM location

pointed to by the first pointer. The software thread then performed a semaphore post on S1 to

communicate to the hardware thread that the image to be processed was available on the heap.

The software thread then executed a wait on semaphore S2.

CPU

BRAM

Semaphores
HW

Thread

SDRAM

Ethernet

 bus

Ethernet

Virtex2ProP7

ControllerController

IBM Compatible

Camera driver: USBVISION
Device name: /dev/video0
Camera: <linux/videodev.h>
Display: <SDL/SDL.h>

ether_init ()
open_camera ()
while (1) {
 img = read_camera ()
 display_memory (img,0)
 send (img)
 receive (img)
 display_memory (img,1)
 display_flip ()
 }

Figure 7-2 Hybrid Thread Image Processing

 145

{

//Initialize Ethernet link

ether_init();

//Raw image data pointer

address1 = malloc(image_size)

// Processed image data pointer

address2 = malloc(image size)

img->in = address1;

img->out = address2;

//Hardware thread create API

hw_thread_create(address1, address2, algorithm)

while (1) {

 // Get image from ethernet

 receive(img->in, img_size)

 // Let hw thread know image data is available

 sem_post(S1);

 //Wait for hw thread finish processing

 sem_wait(S2);

 // Send processed image

 send(destination, img->out, img_size);

 }

 }

Figure 7-3 Software Thread on CPU (part of C program)

Upon receipt of the semaphore post (S1) operation from the software, the semaphore IP wrote a

wake-up command to the blocked hardware thread (a write to the hardware thread command

register). The hardware thread awoke, read the image from the heap, performed the image

processing specified within the thread, and wrote the processed image back into heap at the

location pointed to by the second pointer variable. When the hardware thread finished processing

 146

all the image pixels, it performed a post on semaphore S2 to signal the completion of the image

frame to the software thread. The posting on semaphore S2 caused the sleeping software thread to

wake and initiate the transfer of the processed image frame back to the workstation for display.

This section describes the organization of the hardware user thread used during the experiment.

The hardware thread user component consists of – a control unit and a filter data path. The

control unit synchronizes with the software thread and accesses the external global memory

through the hardware thread interface. Addresses for the global data contained in the external

SDRAM are generated by the control unit. For several of our simple image processing functions

such as gray scale inversion or threshold, the control unit is represented by the following five

states: 1) semaphore wait, 2) read, 3) waiting for process to complete, 4) write and 5) semaphore

post. The pseudo code for these five states is shown in Figure 7-4. The VHDL code for this

hardware thread pseudo code that use API is shown in Figure 7-5.

if command == run // hardware thread in run mode

 {

 SW: sem_wait(S1) // perform semaphore wait operation

 pixel_count = 0 // initialize number of pixel to be processed

 RD: read data (address1) // get image from main memory

 WT: process wait // wait for data path to transform image

 WR: write data(address2) // store processed image to main memory

 address1 = address1 + 4 // memory address to read image pixel

 address2 = address2 + 4 // memory address to write processed image to

 pixel_count = pixel_count + 4 // four bytes transferred for each memory access

 if (pixel_count == image_size) // image_size = image_width * image_height

 go to RD:

 SP: sem_post (S2) // perform semaphore post operation

 branch SW:

 }

Figure 7-4 Hardware Thread Control Pseudo Code

 147

-- ** Control Unit to Invert Image ** --

when sema_wait => -- semaphore wait

 semw1: sem_wait(usr_base_addr, S1, usr_operation);

 if thread_status = SEMA_WAIT_OK then

 reset_count <= ‘1’; -- to reset pixel_count

 next state <= inv_read;

 end if;

when inv_read => -- read pixels from memory

 inv_rd: read_data(usr_base_addr, buf_in_pointer, usr_operation);

 if thread_status = READ_OK then

 start_process <= START; -- signal to start perform transform task

 next state <= inv_filter;

 end if;

when inv_filter =>

 --if img_process = DONE then -- receive signal that transform completed

 next_state <= inv_write;

 --end if;

when inv_write => -- write processed pixel (invert_out) to memory

 inv_wr: write_data(usr_base_addr, buf_out_pointer, usr_parameter, invert_out);

 if thread_status = WRITE_OK then

 update_count <= ‘1’; -- to increment pixel_count

 next state <= inv_done;

 end if;

when inv_done => -- last pixel to be processed in an image frame

if pixel_count = image_size then

 next_state <= sema_post

else

 next_state <= inv_read

end if;

 148

when sema_post =>

 semp2: sem_post(usr_base_addr, S2, usr_operation); -- semaphore post operation

 if thread_status = SEM_POST_OK then

 next state <= sem_wait;

 end if;

Figure 7-5 Hardware Thread Control Unit (VHDL Code)

The data path consists of the logic for transforming data to the desired output. For the gray scale

inversion and threshold filters, the data paths are given in Figure 7-6 and Figure 7-8 respectively.

For performance comparisons, we have also implemented our targeted image algorithms in C.

Part of the code for both filters running on software is shown above in Figure 7-7 and Figure 7-9

respectively.

-- ** Invert Image Data Path Component ** --

-- Counts number of pixel within an image frame

-- buf_in_pointer is memory address from where the pixel to be read from

-- buf_out_pointer is memory address to where the processed image to be written

-- Both addresses initialize with values obtained from usr_argument registers.

-- Software writes initial addresses into usr_argument registers during hw_thread creation API.

counter: process(clock) is

begin

 if clock = ready then

 if reset = yes or start = yes then

 pixel_count <= zero;

 buf_in_pointer <= unsigned(usr_argument1);

 buf_out_pointer <= unsigned(usr_argument2);

 elsif update_count = yes then

 pixel_count <= pixel_count + 4 // 4 byte or 4 pixels for each I/O operation

 buf_in_pointer <= buf_in_pointer + 4;

 buf_out_pointer <= buf_out_pointer + 4;

 end if;

 end if;

 149

end process counter;

--Inverts image pixels. The pixel is read from memory and stored in register usr_ret_data

--Inverted pixel is stored in invert_out register before transferred to memory

--N is image depth, intensity of each pixel, if N = 8 then 255 is white and 0 is black

Invert_Filter: process(clock) is

begin

 if clock = ready then

 if reset = yes then

 invert_out <= zero;

 elsif start_process = START then -- start process, 4 pixels at a time

 invert_out(0 to N-1) <= max_value – usr_ret_data(0 to N-1);

 invert_out(N to N*2-1) <= max_value – usr_ret_data(N to N*2-1);

 invert_out(N*2 to N*3-1) <= max_value – usr_ret_data(N*2 to N*3-1);

 invert_out(N*3 to N*4-1) <= max_value – usr_ret_data(N*3 to N*4-1);

 --img_process <= DONE; -- process end

 end if;

 end if;

 end process Inverse_Filter;

Figure 7-6 Invert Image Data Path (VHDL code)

// Invert Filter “C” code:

// Invert all pixels within a frame of size height*width

int max_value = 0xFF; // image depth is 8 bit, max value is 255

for (y = 0; y < height; y++ {

 for (x = 0; x < width; x++) {

 inv[y*width+x] = max_value – img[y*width +x] ;

 }

}

Figure 7-7 Invert Image “C” Code

 150

-- ** Threshold Image Data Path Component** --

-- Function to perform threshold

-- N is pixel depth, bits/pixel

function thresholding(pixel : std_logic_vector(0 to N-1))

 return std_logic_vector(0 to N-1) is

 variable min_value : std_logic_vector(0 to N-1) := x”00”;

 variable max_value : std_logic_vector(0 to N-1) := x”FF”;

 variable threshold : std_logic_vector(0 to N-1) := x”2E”; -- setting threshold value

begin

 if pixel >= then threshold then

 return max_value;

 else

 return min_value;

end thresholding;

-- Threshold the image pixels

Threshold_proc: process(clock) is

begin

 if clock = ready then

 if reset = yes then

 threshold_out <= zero;

 elsif start_process = ‘1’ then // process 4 pixels at a time

 threshold_out(0 to N-1) <= thresholding(usr_ret_data(0 to N-1));

 threshold_out(N to N*2-1) <= thresholding(usr_ret_data(N to N*2-1));

 threshold_out(N*2 to N*3-1) <= thresholding(usr_ret_data(N*2 to N*3-1));

 threshold_out(N*3 to N*4-1) <= thresholding(usr_ret_data(N*3 to N*4-1));

 end if;

 end if;

 end process Threshold_proc;

Figure 7-8 Threshold Filter Data Path (VHDL code)

 151

// “C” code for threshold filter:

// Perform threshold operation on all pixel within an image of size=width*height

int max_value = 0xFF;

int min_value = 0x00;

int threshold = 0x2E;

for (y = 0; y < height; y++ {

 for (x = 0; x < width; x++) {

 if img[y*width+x] > threshold

 thr[y*width+x] = max_value;

 else

 thr[y*width+x] = min_value;

 }

}

Figure 7-9 Threshold Filter in “C” Language

7.4 MEDIAN & B INOMIAL FILTERS

Median filters reduce “salt and pepper” noise within an image by replacing each pixel with the

median of the neighboring pixel values. A 3x3 median filter replaces each referenced pixel with

the median obtained from its eight neighbors and itself. Implementing the binomial and median

filters in hardware required several modules. The required modules include a frame buffer

module, boundary condition module and the filters itself. The frame buffer provides temporary

storage for the current referenced pixel and its eight neighbors. The frame buffer can be sized to

reduce the number of memory reads required to process a given pixel. The optimal size of this

frame buffer is (2*W + 3) * N, where W is the width and N is the depth of an image frame. When

a new pixel is read from the main memory, all other pixels in the frame buffer shift to their next

positions before the new one loads into position zero. For a 3*3 windowed filter, the frame buffer

is implemented such that it outputs pixels at positions 0,1,2,w, w+1,w+2, 2w, 2w+1, and 2w+2

where the referenced pixel is at position w+1 and other outputs are its neighbors.

The boundary condition module is needed to provide neighbor values that are out of the image

frame when the referenced pixels are at the edges of the frame. This module is a state machine

that transitions either by counting the number of pixels passed through the frame buffer, or

 152

calculating position of a pixel in each column of an image frame. The out of frame neighbor pixel

values can be zero or be set to the same value as the referenced pixel. For two-dimensional

images, the number of states is ten including the init state. Obviously, no output is produced

during the init state. Even though both the frame buffer and the boundary module are capable of

producing a new pixel value every clock cycle, new pixel values are not made available at every

clock cycle as transferring pixel values between main memory and frame buffer takes twenty

clock cycles per four bytes.

For median filters, there are at least two common techniques available to be implemented into the

hardware. The first technique requires nineteen compare and sort operations, while the second

pre-sort technique requires only thirteen compare and sort operations. For both techniques, the

basic building block is an N bit compare and swap, where N is the pixel depth. To operate at high

frequencies, pipelining is used between stages. An example implementation of a multi-stage

median filter produces nine sorted pixels during the final stage. However since the median is the

only output of interest, FPGA resources can be saved if the number of sorters is reduced at the

few last stages, where the median will be at column 4 (column 0 to 8, sorting pixel P1 to pixel P8,

where column 0 is supposed to produce smallest byte pixel).

For the binomial average, the pixel outputs from the boundary condition module at position P1,

P3, P5, P7 are shifted left once, while P4 requires left shift operation twice. After all the shift

operations complete, all shifted pixels are summed. The sum output is then shifted right four

times as to the divide it by sixteen.

Median Filter Data Path

For the median filter algorithm, the data path is given in Figure 7-10, and consists of a frame

buffer, a module to handle boundary conditions, and nine 8-bit comparators that produces the

median of the nine pixels. The median filter operates at 100 MHz, and is capable of producing a

new pixel value every clock cycle.

 153

2w+22w

w+2

0 2

w

1 w-1

P0 P1 P2

P3 P4 P5

P6 P7 P8

P0 P1 P2 P3 P4 P5 P6 P7 P8

Nine stages of 8-bit parallel comparators

Padding zero to handle boundary condition

Frame buffer
size: 2W+3, each 8 bit

data in

shift

shift

data out

Figure 7-10 Median Filter Data Path (VHDL)

For performance comparisons, we implemented both Median and Binomial filters in software,

coded in “C” language. Part of “C” code for the median filter running on CPU is shown in Figure

7-11.

//Median Filters

img = (int*) malloc(width * height * sizeof(int)); // original image

med = (int*) malloc(width * height * sizeof(int)); // processed image (median)

k = (int*) malloc (9 * sizeof(int)); // temporary result

for (y = 0; y < height; y++ {

 for (x = 0; x < width; x++) {

 kc = 0;

 for(dx=max(0,x-1); dx<=min(width-1,x+1); dx++) {

 for(dy=max(0,y-1); dy<=min(height-1,y+1); dy++) {

 k[kc++] = img[dy*width + dx];

 }

 }

sort(k, kc); // outer loop sort until (kc+1)/2

med[y*width+x] = k[kc/2]

 154

 }

}

Figure 7-11 Main Part of Median Filter (C Code)

// Binomial Filter “C” Code:

int dx, dy, x, y;

int idx, total_data, total_mask;

int mask[9] = [1,2,1,2,4,2,1,2,1]; //binomial mask kernel

int* bin;

img = (int*) malloc(width * height * sizeof(int)); // raw image

bin = (int*) malloc(width * height * sizeof(int)); // processed image (binomial)

for (y = 0; y < height; y++ {

 for (x = 0; x < width; x++) {

 idx = 0;

 total_data = 0;

 total_mask = 0;

 for(dx=max(0,x-1); dx<=min(width-1,x+1); dx++ {

 for(dy=max(0,y-1); dy<=min(height-1,y+1); dy++) {

 total_data += img[dy*width + dx] * mask[idx];

 total_mask += mask[idx];

 idx++;

 }

 }

 bin[y*width+x] = (total_data / total_mask);

 }

}

Figure 7-12 Main Part of Binomial Filter (C Code)

 155

7.5 RESULTS

The hardware cost to implement the four image transforms is given in Table 7-1. The cost

includes the hardware thread interface component. The hardware thread interface contributes to

about one fourth of total slices needed to implement the four image processing algorithms.

Resources

types

Resources

used

Total resources

on chip
% used

Slices 1429 4928 29

Flip-flop 1205 9856 12

4 -input LUT 2590 9856 26

BRAMs 0 44 0

Table 7-1 Hardware Thread Resources

This experiment demonstrates the utility of our approach in providing programmers access to the

potential of the FPGA through a familiar programming model. The performance results given in

Table 8-2 shows a comparison between the software and hardware implemented filters. The

results clearly show that the median filter implemented on hardware can handle about 90 frames

per second based on an image size of 320 x 240 x 8 bits per frame. For comparison we operate

the embedded CPU and reconfigurable logic at 100 MHz, the clock limit of our current XILINX

FPGA. For the software implementations, we ran separate experiments with the processor

memory cache both on and off to study the effect of memory access on the CPU execution time.

Further the four different transforms also indicated that CPU spends more time to perform the

image processing operations as compared to memory references, particularly for the median filter.

Comparison of execution times between the hardware based and software based transform

implementations also reveal that the hardware thread enables us to exploit the nature of the

reconfigurable hardware architectures ability to parallelize and pipeline tasks.

The four different hardware based transforms demonstrate that the execution times are dominated

by the image data transfer from/to the system memory. This can be deduced from the same size of

images processed by different transforms and their slight variation of execution times (9.05ms to

11.2 ms). Even though the latency of each hardware transform algorithm is small, ranging from

three to eleven clock cycles, and capable of producing average of nine pixel every clock cycle in

 156

the case of binomial and median transforms, the communication costs far overweigh the image

processing times as indicated by the results in the table.

Image

algorithms

HW

image

processing

SW image

processing

cache off

SW image

processing

cache on

Threshold 9.05 ms 140.7ms 19.7 ms

Negate 9 .05ms 133.9ms 17.5ms

Median 11.2 ms 2573ms 477ms

Binomial 10.6 ms 1282ms 320 ms

Table 7-2 Image Transforms Execution Times

 157

8 CONCLUSION AND FUTURE WORK

8.1 CONCLUSION

This thesis presents research on the extension of the multithreaded programming model across

general processor and reconfigurable hardware architectures. The goal of this research is to create

a programming environment able to support concurrent execution of both FPGA based hardware

and CPU based software threads. Our approach allows an application to be broken into multiple

threads that can be implemented into the hardware and software to take advantage of both

domains within a familiar programming model. We have delivered a successful running hybrid

thread system with hardware and software components synchronized using our new FPGA based

synchronization mechanisms as the final outcome of this research. In addition this work provides

initial framework in migrating other system services into the hardware especially to improve

system performance variability. We believe that adopting this generalized programming model

can lead to productivity improvement as it enables hardware and software components to share

resources and synchronize at higher level communication protocol.

To extend this programming model, we have created new synchronization mechanisms and

hardware thread interfaces (HWTI) within the abstraction layer described in Chapter 4. Hardware

thread interface is provided to elevate the hardware computation to a higher level of

representation equivalent to the software thread. The synchronization mechanisms implemented

within the FPGA control mutual exclusion and countable resources to avoid concurrent access to

the shared resources by multiple threads. In addition, these mechanisms provide facilities for

hardware and software threads to safely sleep and wake-up. The HWTI and all the

synchronization mechanisms are provided in the form of hardware libraries or IP cores

(intellectual property cores). Both the CPU and FPGA threads perform their synchronizations by

means of application programming interfaces (API’s), similar to POSIX thread API’s, to relieve

users from low level system software and hardware.

As the number of synchronization variables required in a system can be large, we have created a

single controller to manage multiple synchronization variables of the same type. We also migrate

the sleep queues that are normally associated with each blocking synchronization variable into the

FPGAs. Adopting this approach will reduce system memory requirement, free CPU from

queuing tasks and improve overall system performance. Instead of implementing one queue for

 158

each synchronization variable, we create a global queue for all the synchronization variables to

minimize utilization of FPGA resources. We achieve efficient global queue operation with

algorithm solution. Essentially multiple variables share common controllers and one global

queue within a single entity is able to reduce the hardware utilization significantly without

sacrificing performance. This approach is able to lower the hardware cost to implement each

synchronization variable. The hardware cost per variable for semaphores, mutexes and condition

variables are 3.6 slices (0.07% of our FPGA candidate), 3 slices (0.06%) and 2.1 slices (0.04%)

respectively. These new synchronization mechanisms provide fast synchronization for hardware,

software and combinations of hardware/software threads. In terms of performance, a complete

blocking semaphore operation on CPU, including the request and checking granting of

semaphore, and subsequent queuing of a blocked thread is performed in 58 clock cycles

(580nsecs on our 100 MHz system). Not only are these new mechanisms fast but they are

processor family independent too. These synchronization mechanisms have capabilities similar to

the POSIX thread library. The atomic operation that usually achieved by combinations of

processor condition instructions integrated within memory coherency protocol of snooping data

caches is encapsulated within these synchronization mechanisms. We have achieved much a

simpler solution and faster mechanism for achieving semaphore semantic within 8 or less clock

cycles.

We present a new enabling method in the form of HWTI core library for custom hardware

computation to participate in a highly integrated manner within the general software concurrent

programming model. Our approach differs from other research efforts in that the computation

within the hardware is an entity that is able to execute independently, accessing data on its own

and exchange data with the software components according to shared data protocol. We have

created HWTI as a supporting layer that act as a system service for user computation to request

for synchronization and access to system memory. In other word, HWTI enables custom threads

within the FPGA to be created, accessed, and synchronized with all other system threads through

library APIs. Within this layer, supporting mechanisms such as controllers to maintain the “state”

of a hardware thread, provide execution control over the thread, and a set of hardware functions

serving as programming interfaces (APIs) are included. The supporting mechanisms enable

hardware computations to behave as independent entities that synchronize and suspend their

execution similar to that of software based threads. In terms of hardware resource, each HWTI

requires about 128 slices or 3% of total slices available on our FPGA example (XILINX V2P7).

 159

The HWTI also promotes portability by encapsulating the platform specific signal within generic

API’s callable by the user code.

We have performed regression and functional tests on our mutex, spin lock, counting semaphore

and condition variable cores. Each regression test is loaded with 250 threads generating more

than 100,000 events. In each functional test, each core is subjected to a series combination of

command sequences to validate its operation including requests made by the hardware thread.

Similarly, we have rigorously tested the hardware thread operation in accessing synchronization

variables and system memory. For example, we have tested a hardware thread that ran

individually to acquire a lock. It subsequently competed with the software thread over a period

that generated more than 100,000 acquisitions. The test also includes verification of blocking and

unblocking operation of hardware threads. In our tests, the hardware thread is about six times

faster in acquiring a synchronization variable and accessing memory compared to our embedded

CPU.

High-level integration of CPU and FPGA provides new opportunities to redefine the partition

between hardware and software boundaries. Migration of synchronization mechanisms to extend

the multi-thread programming model provides an exploratory step in altering these boundaries.

Other system components can be migrated from the CPU into the hardware, in particular to

reduce processor workload and help improve system response variability. This approach enables

improvement of overall system performance that could not be achieved through traditional system

software approaches alone. This research provides initial steps to migrate the software thread

manager, thread scheduler and system timing services into the FPGA.

Our application study demonstrates hardware and software threads executing concurrently,

synchronizing by means of our hybrid semaphore, transforming real-time images captured by a

camera and displayed on a workstation. This evaluation study verifies that our hybrid thread

model can be implemented within the reconfigurable hardware. The demonstration also provides

insights into how best to decompose an application into multiple hybrid threads. For example

sequential properties can be gathered within one thread or by using several binary blocking

semaphores. This approach enables us to harness FPGA superiority in performing repetitive tasks

and at the same time allows general-purpose processors to execute irregular code within the

familiar multithreading program model. The result from our experiments shows that speed-up of

42 times can be achieved when hardware thread based median filtering is evaluated against the

 160

software implemented ones. In our evaluation study, hardware thread “creation” and hardware-

software synchronization are achieved by means of application program interfaces (APIs).

Similarly, the image processing within the hardware thread performs access to the system

memory with APIs and without the need to use CPU. Thus this evaluation study has

demonstrated that adopting our approach can lead to programming productivity improvement.

8.2 FUTURE WORK

The hardware thread provides an excellent base to migrate other computation components for

example Java garbage collectors into the hardware especially to improve program execution

times. Adopting hardware thread and the synchronization mechanism cores can relieve users from

hardware/software synchronization and data exchange issues when implementing their

applications. As the hardware thread and concurrency mechanisms are provided in the form of

verified IP cores, users can instantiated as many hardware threads or other provided cores to suit

their application without the need to rewrite them.

At present, users have to use hardware descriptive languages when implementing their

applications into hardware threads. In the future, we wish to seek a suitable compiler that can

translate an application written in a high-level language into both hardware and software

components. For example, we are searching a compiler that can translate a high-level language

program to hardware descriptive language such as VHDL.

The FPGA device that we currently use in our experiment has one embedded CPU and limited

hardware resources. We are porting our hardware cores into a bigger FPGA device that has two

embedded CPUs. We wish to test our synchronization mechanisms in truly multiprocessors

environments.

 161

BIBLIOGRAPHY

1. Alexander, P. and Kong, C., Rosetta: “Semantic Support for Model Centered

Systems Level Design”, IEEE Computer, November 2001

2. Anderson, T., “The performance of spin lock alternatives for shared memory

multiprocessors,” IEEE Transaction on Parallel and Distributed Systems, vol. 1, no.

1, pp. 6-16, January 1990.

3. Andrews, D.L., Niehaus, D., Ashenden, P. " Programming Models for Hybrid

FPGA/CPU Computational Components", IEEE Computer, January 2004

4. Andrews, D.L., Niehaus, D., and Jidin, R., Implementing the Thread Programming

Model on Hybrid FPGA/CPU Computational Components,” Proc. 1st Workshop on

Embedded Processor Arch, Proc. 10th Int’l Symp. High Performance Computer

Architecture (HPCA 10), Feb 2004.

5. Andrews, D.L., Niehaus, D., Jidin, R., Finley, M., Peck, W., Frisbie, M., Ortiz, J.,

Komp, E., Ashenden, P., “Programming Models for Hybrid FPGA-CPU

Computation Components – A Missing Link”, IEEE Micro, July/Aug 2004.

6. Andrews, D.L., Niehaus, D., “Architectural Framework for MPP Systems on a Chip”,

Third Workshop Massively Parallel Processing (IPDPS), Nice, France 2003

7. Ashenden, P., Designer’s Guide to VHDL, Morgan Kaufmann, 2002

8. Baloron, F., Giusto, P., Jurecska, A., Passerone, C., Sentovich, E., Chiodo, M.,

Hsieh, H., Lavagno, L., Sangiovanni-Vincentelli, A.L., and Suzuki, K., “Hardware-

Software co-design of embedded systems: the POLIS approach”, Kluwer, 1997

9. Böhm, A.P.W., Draper, B., Najjar, W., Hammes, J., Rinker, R., Chawathe, M., and

Ross, C., "One-Step Compilation of Image Processing Algorithms to FPGAs," in

IEEE Symposium, Field-Configurable Custom Machines (FCCM 2001), Rohnert

Park, CA, 2001.

 162

10. Böhm, W., Hammes, J., Draper, B., Chawathe, M., Ross, C., Rinker, R., and Najjar,

W., "Mapping a Single Assignment Programming Language to Reconfigurable

Systems," The Journal of Supercomputing, vol. 21, pp. 117-130, 2002.

11. Bouganis, C.S., Cheung, P.Y.K, Ng, J., and Bharath, A.A., “A Steerable Complex

Wavelet Construction and Its Implementation on FPGA”, Field-Programmable and

Applications, 14th International Conference, FPL 2004, Antwerp, Belgium, Aug/Sept

2004.

12. Duncan, A.B., Arnold, J.M., Kleinfelder, W.J., Splash 2: FPGAs in a Custom

Computing Machine. IEEE Computer Society Press, 1996

13. Dydel, S. and Bala, P., “Large scale protein sequence alignment using FPGA

reprogrammable logic devices”,14th International Conference, FPL 2004, Anterwerp,

Belgium, August/September 2004

14. Edward, L., "Whats ahead for Embedded Software?", IEEE Computer, Sept 2000, pp.

18-26

15. Edward, L., “Overview of Ptolemy Project”, Technical Memorandum, UCB/ERL

MO 1/11, University of California, March 6, 2001.

16. Engel, F., Heiser, G., Kuz, I., Petters, S.M., Ruocco, S., “Operating Systems on

SOCs: A Good Idea? “, 25th IEEE International Real-time Systems Symposium

(RTSS 2004), Decemmber 5-8, 2004, Lisbon, Portugal. 2004.

17. Finley, M., Hardware/Software Co-design: Software Thread Manager, MSc thesis,

ITTC, University of Kansas, Lawrence, KS, Fall 2004.

18. Frigo, J., Gokhale, M.B., Lavenier, D., “Evaluation of the Streams-C C-to-FPGA

Compiler: An Application Perspective, ACM/SIGDA 9th International Symposium on

Field Programmable Gate Arrays, February 11-13, 2001, Monterey, California, USA,

pp 134-140.

 163

19. Gajski, D.D., Vahid, F., Narayan, S., Gong, J., Specification and Design of

Embedded Systems, Prentice Hall, 1994.

20. Gokhale, M.B., J. Frigo, J., Stone, J., Parallel C programming of reconfigurable

computers: the Streams-C approach. In HPEC 2000, September 2000

21. Gokhale, M.B., Stone, J.M., Arnold, J., Kalinowski, M., "Stream-Oriented FPGA

Computing in the Streams-C High Level Language," in IEEE Symposium on Field-

Programmable Custom Computing Machines, 2000.

22. Gupta, S., Luthra, M., Dutt, N.D., Gupta, R.K., Nicolau, A., “ SPARK: A high -Level

Synthesis Framework for Applying Parallelizing Compiler Transformations,

Proceedings of the International Conference on VLSI Design, January, 2003

23. Habibi, A., Tahar, S., “A Survey on System-On-a-Chip Design Languages”, Proc.

IEEE 3rd International Workshop on System-on-Chip (IWSOC’03), Calgary, Alberta,

Canada, June-July 2003, pp. 212-215, IEEE Computer Society Press

24. Jidin, R., Andrews, D.L., and Niehaus, D., “Implementing Multithreaded system

Support for Hybrid FPGA/CPU Computational Components, “Proc. Int’l Conf. on

Engineering of Reconfigurable System and Algorithms, CSREA Press, June 2004.

pp. 116-122.

25. Jidin, R., Andrews, D.L., Niehaus, D., Peck, W., Komp, E., “Fast Synchronization

Primitives for Hybrid CPU/FPGA Multithreading”, 25th IEEE International Real-time

System Symposium (RTSS2004 WIP), Dec 5-8, 2004, Lisbon, Portugal

26. Jidin, R., Andrews, D., Peck, W., Chirpich, D., Stout, K., Gauch, J., “Evaluation of

the Hybrid Multithreading Programming Model using Image Processing Transform”,

12th Reconfigurable Architectures Workshop (RAW 2005), April 4-5, 2005, Denver,

Colorado, USA

27. King, L.A., Quinn, H., Leeser, M., Galatopoullos, D., Manolakos, E.,"Runtime

Execution of Reconfigurable Hardware in a Java Environment" in the Proceedings of

 164

the IEEE International Conference on Computer Design (ICCD-01), 2001, pp. 380-

385.

28. Lee, J., Hardware/Software Deadlock Avoidance for Multiprocessor Multi-resource

System-on-Chip, PhD thesis, Georgia Institute of Technology, Atlanta, GA, Fall

2004.

29. Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U., and Stockwood, J.,

"Hardware software co-design of embedded reconfigurable architectures," in Design

Automation Conf. (DAC), 1999.

30. Loo, S.M., Wells, B.W., Freije, N., Kulick, J., “Handel-C for Rapid Prototyping of

VLSI Coprocessors for Real Time System”, 24th IEEE International Conference,

Southeastern Symposium on System Theory Conference (SSST2002), Huntsville,

Alabama.

31. Micucci, D., Ruocco, S., Tisato, F., and Trentini, A., “ Time Sensitive Architectures:

a Reflective Approach”, Proceeding of 7th International Symposium on Object-

oriented Real-time distributed Computing (ISORC 2004) IEEE Computer Society

Press, May 12-14, 2004, Vienna, Austria

32. National Research Council, Embedded Everywhere, A Research Agenda for

Networked Systems of Embedded Computers, National Academy Press, 2001.

33. Robbins, K.A., and Robbins, S., “Practical UNIX Programming, A Guide to

Concurrency, Communication, and Multithreading”, Prentice Hall, 1996

34. Rose, J., Gamal, A.E., Sangiovanni-Vincentelli, A., “Architecture of Field-

Programmable Gate Arrays,” Proceedings of the IEEE, Vol. 81, No. 7, pp. 1013-

1029, July 1993.

35. Self, R.P. M. Fleury, and A. C. Downton, “A design Methodology for Construction

of Asynchronous Pipelines with Handel-C”, IEE Proceedings Software, Volume

150(1), pp. 39-47, 2003

 165

36. Shaw, A.C., Real-Time Systems and Software, John Wiley & Sons. Inc., 2001.

37. Singh, H., Lee, M.H., Lu, G., Kurdahi, F.J., Bagherzadeh, N., and Chaves Filho,

E.M., "MorphoSys: An Integrated Reconfigurable System for Data-Parallel and

Computation-Intensive Applications," IEEE Trans. on Computers, vol. 49(5), pp.

465-481, 2000.

38. Snider, G., B. Shackleford, B., Carter, R.J., “Attacking the Semantic Gap Between

Application Programming Languages and Configuration Hardware”, International

Symposium on Field Programmable Gate Arrays, FPGA’01, Monterey, California,

USA, Feb 2001, pp.115-124

39. Vahalia, U., “UNIX Internals, The New Frontiers, Prentice Hall, 1996

40. Vissers, K., Cases Keynote Speech, www.casesconference.org, 2004

41. Waingold, E., Taylor, M., Srikrishna, D., Srakar, V., Lee, W., Lee, V., Kim, J.,

Frank, M., Finch, P., Barua, R., Babb, J., Amarsinghe, S., and Agrawal, A., "Baring it

all to Software: Raw Machines," IEEE Computer, vol. 30, pp. 86 - 93, September

1997.

42. Edwards, M., and Fozard, B., “Rapid Prototyping of Mixed Hardware and Software

Systems”, http://www.celoxica.com/technical_library/academic_papers/

43. Connell, J., Johnson, B., Early HW/SW Integration Using System C v2.0, Embedded

Systems Conference - San Francisco, http://www.systemc.org/ , 2002

44. Gerlach, J., Rosenstiel, W., System Level Design Using the SystemC Modeling

Platform, (SDL 2000), http://www.systemc.org/

45. Pasricha, S., STMicrolectronics, Transaction level modeling of SoC with SystemC

2.0, http://www.systemc.org/, 2002

 166

46. Swan, S., Cadence, An Introduction to System-Level Modeling in SystemC 2.0,

http://www.systemc.org/, 2003

47. Cypress Information Resources, http://www.mindbranch.com/, 2004

48. Handel C, Celoxica Inc., www.celoxica.com, 2005

49. Handel-C Language Reference Manual, Version 3,Celoxica Limited, 2004.

50. IBM core connect bus. http://www-03.ibm.com/chips/products/coreconnect/, 2005

51. JHDL 0.3.41, www.jhdl.org/,2005

52. Microcontroller Application IBM Microelectronics, ppcsupp@us.ibm.com, 1998

53. Ocapi Overview IMEC, www.imec.be/ocapi, 2003

54. Open System C Initiative, www.systemc.org, 2005

55. Streams-C sc2 Reference Manual, Los Alamos National Laboratory,

http://rcc.lanl.gov/Tools/Streams-C/

56. SUIF Compiler, http://suif.stanford.edu/suif/suif1/, 2004

57. Synplify Pro, Advanced FPGA-Synthesis Solution for Multi-Million Gate

Programmable Logic Designs, www.synplicity.com, 2005

58. The StarFire Board, www.annapmicro.com, Annapolis MicroSystems, 2004

59. VERILOG, www.eda.org/sv-cc/, 2004

60. VHDL, www.eda.org/vhdl-200x/, 2003

61. Xilinx. http://www.xilinx.com/, 2005

