A Multipath Channel
Estimation Algorithm using
the Kalman Filter.

Rupul Safaya



Organization

i Introduction

i Theoretical Background

B Channel Estimation Algorithm
i Conclusions

i Future Work



Introduction



Definitions:

B Channel: In its most General sense can describe everything from
the source to the sink of the radio signal. Including the physical
medium.

B In this work “Channel” refers to the physical medium.

B Channel Model: Is a mathematical representation of the transfer
characteristics of the physical medium.

B Channel models are formulated by observing the characteristics of the received
signal.

B The one that best explains the received signal behavior is used to model the
channel.
B Channel Estimation: The process of characterizing the effect of the
physical medium on the input sequence.



General Channel Estimation
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B Aim of any channel estimation procedure:
I Minimize some sort of criteria, e.g. MSE.
i Utilize as little computational resources as possible allowing
easier implementation.
1 A channel estimate is only a mathematical estimation of
what is truly happening in nature.

I Why Channel Estimation?

B Allows the receiver to approximate the effect of the channel on
the signal.

B The channel estimate is essential for removing inter symbol
interference, noise rejection techniques etc.

i Also used in diversity combining, ML detection, angle of arrival
estimation etc.



Training Sequences Vs.

Blind Methods

BThere Are two Basic types of Channel Estimation Methods:

Training Sequence methods:

Sequences known to the receiver
are embedded into the frame and
sent over the channel.

Easily applied to any
communications system.

Most popular method used today.
Not too computationally intense.

Has a major drawback: It is
wasteful of the information
bandwidth.

Blind Methods:
B No Training sequences required

B Uses certain underlying
mathematical properties of the
data being sent.

i Excellent for applications where
bandwidth is scarce.

B Has the drawback of being
extremely computationally
intensive

B Thus hard to implement on real
time systems.



Algorithm Overview

i Consider a radio communications system using training sequences
to do channel estimation.

B This thesis presents a method of improving on the training
sequence based estimate without anymore bandwidth wastage.
B Jakes Model: Under certain assumptions we can adopt the Jakes
model for the channel.
I This allows us to have a second estimate independent of the data
based (training sequence) estimate.

I The Kalman estimation algorithm uses these two independent
estimates of the channel to produce a LMMSE estimate.

B Performance improvement: As a result of using the Jakes model in
conjunction with the data based estimates there is a significant gain
in the channel estimate.



Theoretical Background
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Multipath

B Signal multipath occurs when the transmitted signal arrives at the
receiver via multiple propagation paths.

B Each path can have a separate phase, attenuation, delay and
doppler shift associated with it.

B Due to signal multipath the received signal has certain undesirable
properties like Signal Fading, Inter-Symbol-Interference, distortion
etc.

B Two types of Multipath:

I Discrete: When the signal arrives at the receiver from a limited number
of paths.

I Diffuse: The received signal is better modeled as being received from a
very large number of scatterers.
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Diffuse Multipath

B The Signal arrives via a continuum of multipaths.

Thus the received signal is given by:
I 50= [amvsc-o4 Where @@t is the complex

attenuation at delay 7 and time t and s() is the

signal sent

i The Low Pass time variant impulse response is:

~ | 27 . .
I imy=a@rve © where f.is the carrier frequency.

I If the signal is bandlimited then the channel can
be represented as a tap-delayed line with time-

varying coefficients and fixed tap spacing.
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Tap Delayed Line Channel
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Tap-Delay Line Model

I Thereceived signal can be written as:
I yo=3§ (s —va) where:
m

1 g’m(t):%ﬁ(%;t) is the sampled (in the r domain ) complex

low-pass equivalent impulse response. W is the Bandwidth of
the Bandpass Signal

I WSSUS (Wide Sense Stéti onary Uncorrelated

Scattering): Assuming WSSUS the delay profile and scattering

function are as follows:

I Multipath Intensity Profile: R.(r) :%E%;* (.0h(.H3 This
defines the variation of average received power with delay.
Delay spread is the range (in delay) for which the average

power is non-zero.
B Scattering function: S(r;v) = F[R~(r)] This describes the power

spectral density as afunction of Doppler frequency (for fixed
delay)

14



Tap gain functions

I Complex Gaussian process: Assuming infinite
scatterers, as a consequence of the Central Limit
Theorem, we can model the impulse response as a

complex Gaussian process.

B Rayleigh: If thereisno one single dominant path, then the
process is zero mean and the channel is Rayleigh fading.
B Ricean: If thereis asingle dominant path then the processis non-

zero-mean and the channel is Ricean.

1 Thetap gain functions are then sampled complex

gaLissian processes.
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Model Parameters

I The tap-delay model requires the following

Information.

B Number of taps are TyW+ 1. Where T\, is the delay spread and W
IS the information bandwidth.

B Tap Spacingis. 1/W.

i Tap gain functions are discrete time complex Gaussian processes
with variance given by the Multipth spread and PSD given by the
scattering function.

i Tap gain functions as key: Once having specified the
tap spacing and the number, it only remains to track
the time varying tap gain functionsin order to
characterize the channel as modeled by the tap-delay
line.

I Jakes model: The Jakes model (under certain
assumptions) assigns the spectrum and autocorrelation
to the tap-gain processes.
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Jakes Model

Propagation
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i Assume plane waves are incident upon an omni-
directional antenna from stationary scatterers.
i Therewill be adoppler shift induced in every wave.
0§ Function of angle of arrival, carrier frequency and
the receiver velocity.
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i Bounded Doppler Shift: The doppler shift is given by
f, =%cos(a) (wherevis Vehiclevelocity, s , the

wavelength of the carrier and « isthe angle of arrival)

TIME - —

§ Narrowband process. Since the Doppler spectrum is
bounded, the electric field at the recelver isa
narrowband process.

I Complex Gaussian Process: Assuming infinite
scatterers and using the Central Limit theorem for
narrowband processes, the received electric field is
approximately a complex gaussian process.
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Jakes Spectrum

i Uniformangleof arrival: Assume that the received
power is uniformly distributed over the angle of arrival.

I Constant vehicle velocity: Finally the assumption is
made that the vehicle is not accelerating.

§ Power spectrum expression:
=1/2

U Hf_f BZD
| S(f)=§—Df—CDE where f_ isthe carrier frequency and f_ is
B O m 0O E
the doppler spread.
i Shaping Filter: The Jakes spectrum can be synthesized
by a shaping filter with the following impul se response;

_S1/4-,3 -1/4
| hj(t)—Zl M) (@t 074y @ o
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The Channel Estimation
Algorithm
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Introduction

Aim: To improve on the data-only estimate.

Jakes model: We have adopted the Jakes model for the radio
channel.

B Tap-gains as auto-regressive processes: The Jakes power spectrum
is used to represent the tap-gains as AR processes.

i State-Space Representation: We have two independent estimates
of the process from the data-based estimate and the Jakes model.

I These are used to formulate a State-Space representation for the tap-
gain processes.

I An appropriate Kalman filter is derived from the state-space
representation.

i Derivation: The algorithm is developed first for a Gauss-Markov
Channel and then for the Jakes Multipath channel
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AR representation of the
Tap-gains

\

S(n)
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B General form: Any stationary random process can be represented
as an infinite tap AR process.

B The current value is a weighted sum of previous values and the
plant noise.
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1 Difference Equation form:
1 S(n):i(pIS(n—i)+w(n) Where S(n): is the complex gaussian

process, ¢ are the parameters of the model. The model is driven
by w(n): A sequence of identically distributed zero-mean
Complex Gaussian random variables.
i Solving for the AR parameters. This can be done in two ways

I YuleWalker equation solution: The autocorrelation coefficient
of the process, is an N (number of taps in the AR model) order
difference equation that can be solved.

B PSD of the process: This method is more complex and involves

finding the form of the shaping filter for the process PSD.
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Data based estimator

i Assumption: The channel remains constant over
the span of the training sequence.

i Specifics:

i Training sequence: Let the M’length training sequence be:

B Channel Impulse Response: Let the ‘L' length impulse

~

response be h = [ﬁoﬁlﬁz ...... h.l|
B Received signal: For channel noise Nc of variance o2 the
received signal in vector formisgiven by: Y =Xh+n,. WhereX is

an (L+N-1xL) Toeplitz matrix containing delayed versions of the

training sequence sent.
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B Channel estimate. The data based estimate is given by
correlating the received signal with the training sequence:
I h=(X"X)XY)

i Estimation error. As expected the estimation error is a
function of the channel noise. It isgiven by h =(X"X)*(X"n)

B Error Covariance: The performance of the data based
estimator depends on the length of the training sequence and
its autocorrelation:

B P =0?(X"X)*

I For an ided training sequence autocorrelation the error

2
covarianceisgiven by P, :%
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Tracking a Gauss-Markov
Channel
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B A Gauss-Markov tap-gain process has an exponential autocorrelation.

28



Kalman Filter Derivation

I Syssem Model: Since the auto-correlation Is
exponential, the tap gain is a simple first order AR

Process:
B S(n)=¢gS(h-1)+wn) Where
S(n) : Isthe complex gaussian tap-gain process.
@ isthe parameter of the AR model assumed.
i Observation Model: Since the data based estimator

produces “noisy” estimates of the process. The
following model emerges.

B x(n)=sm+vin). Where
xm 1S the data based estimate of S(n)
vin) iIsthe error of the data based estimate and

»2=% isthe error variance
M 29



Kalman filter equations

I Scalar Kaman filter: Given the state space
representation, a standard scalar Kalman filter is used
to track the process.

i Equations:

B Theinitia conditions are:

0)=E{st} =0

P@) > avzvandag
I TheKamangainisgiven by:
k(n) = Ln)z
P(n) +a;(n)
B The current estimate of the process, after receiving the data estimate is

given by: ) ) )
Sur(M=S(N) + k(N[ X(n)-S(n)]

i The predicted estimate of the processis given by:

é(n +1)= qal{écurr(n)}

i The current error covarianceis given by:
Pare (0) = [L= k() |P(n)

curr

i The prediction error covariance (MSE in this case) is given by:
P(n+1) =@*{P.,, (N} + o7,

curr
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Simulation Parameters

i Systemequation: Sn)=95n-1)+w(n)
Observation Equation: X (n) = S(n) +v(n)
I Theframerateis: R. =5x10*Frames/ sec. The simulation is run at the

frame rate.

B ™ =8: The length of the training sequence. The channel is assumed
to beinvariant for these M hits.

i Thesigna to noiseratio of the channdl, for E; =1 is:

B _ B
N, 207
B Thus o2 =.1256

= 6dB

2

I The data estimator variance o2 = KA =0.0157

1 Thevariance of thetap gain plant noiseis o, =207 =0.0314
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MSE for the estimator:

B Definition:
B Thecurrent MSEis:
P = Efstm) - 0. 0]y - S )]
B Theprediction MSE is:

P = efstr) - &) - o' -
1 Steady State: B Simulation Results:

I The steady state current error covarianceis. 1 Thecurrent error covarianceis:

P, =.0113 P, =.0113
I The steady state prediction error covarianceis: 1 Theprediction error covarianceis:
Py =.0406 Py = .0406

1 Performance Improvement: We can see that compared to the data only

estimator, there is asignificant improvement:

2
O—V _F)CUI’I’
s — 280
—Y__Ss = ogy
UV
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Tracking a single Jakes
Tap-Gain Process

34



Single ray Jakes Channel

Consider a single ray line of sight radio channel.

More Complex Channel: The underlying channel model is no longer
a single tap AR process.

AR representation: The tap-gain process with the Jakes spectrum is
a stationary process. We can represent it as an AR process.

I Parameters: We derive the co-efficients for the process from the closed
form expression of the Jakes channel-shaping filter.

State-Space representation: Using the AR model and the data
based estimator, a state-space representation is derived.

Kalman tracking filter: Similar to the Gauss-Markov case, a Kalman
filter to track the process is derived from the State-Space
representation.
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AR representation of the
Jakes Process

I Jakes Shaping Filter: The closed form expression of the
Jakesfilter is given by:

1 h, t)=2Y 4F(g)fm(2nfmt)_l/ 431/ 4,2t 1. Where I isthe Gamma
functionand J;, ,isthe fractional Bessel function.

i FIR filter: Thisexpression is sampled to produce the FIR
Jakes channedl shaping filter.

i Output: If the input to thisfilter is gaussian white noise,

then the output is simply the convolution sum:

i S(n) = MZ_jhj (mw(n-m). Where M isthe liength of the FIR filter.

36



i Convolution asaMA sum: The convolution is nothing but a

weighted moving average of the white noise inputs.

w(n-1) w(n-2)

W(n) > Unit > Unit o - Unit
Delay Delay Delay

~
>
|
<
+
N

§ Partia Fraction Inversion:

I A finite order MA model can be represented as an infinite order AR series
by the method of partial fractions as described by Box and Jenkins.
B Order Truncation: Obviously for our purposes an infinite order AR model

Isimpractical, so the infinite order AR model istruncated to order N. 37



Model Validation

B Truncated AR model: The accuracy of the truncated models in
representing the Jakes process is studied.

B Parameters:

f., =50Hz . Thisisthe Doppler bandwidth of the channel.

Fs =16x f . Thisisthe Jakes-shaping-filter sampling rate.

Fe., =5x10°samples /Hz . Thisis the Jakes spectrum sampling frequency.
Ny. = 64. Thisisthe FIR shaping filter length.

N isthe length of the truncated AR model.

B PSD and autocorrelation:

2

I PSD isgiven by the analytical expression: s, (f)=— 2
1_Zﬂe_j2nﬁ

i Autocorrelation was estimated by actually creating the processes and

finding their autocorrelations.
38



AR process length comparison
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Kalman filter Derivation

I State Space representation: Asin the previous case,

we are going to represent the system using the State-

Space form and derive the appropriate Kalman filter.

I Systemmodel: The AR form of the Jakes processis

N
i sn=7 @S(n-i)+w(n). Where @ are the AR coefficients
i=1
calculated and N is the order of the model used.

B Itstwo equivalent forms are:

[§(n) S @ o . . g UEn S E\W(n)g
%(n-l) . 51 T .0 o0 Bg":(n-Z) . %) .
0 O=b 1 . 0 000 O+ O Oinmatrix form
0 O O 00 O O O
E oL - - - 0ngQ@ O O O
BnN+1)F f0 0 0 1 OFHENN) H B

and S(n) = AS(n-1)+W(n) in vector form.
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B The system matrix is defined as:

i % - - QC
51 .0 og
| A:Bo 1 .0 og
s m——
o o0 01 OF
B The Plant noise covariance matrix is
%Z oo....o%
........... 0
E W g— 0
Ik Nv(n) ") D g)oo ........ o
DO0....... 0F

i Observation Equation:

B X(n)=5(n)+v(n) Wherev(n) isthe error of the data based
2
estimate with a variance of 52 :iA—C

B Expressed in matrix and vector form:
[X(n) O [8n) D v(n)

. KM g S g )
0

I:II:IQ
L4

[]

t

O _ _

B or X(n)=H xS(n)+v(n)
t

H

@((n N+1)H En-N+1)H Hn-N+1)

where H is the identity matrix.
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B Observation noise covariance matrix:

0 a 0 O... OB

I R= EQ/(H)EU(I’])H_{ 5 %) ............ OD
E D E 0O0o1........ OS

%) Ormrrer 10

I Kaman filter Equations. Given the above State Space
formulation, we can use avector Kaman filter to track
the tap gain process.

B Theinitial conditions are:

§0)=E{s(n)} =zero matrix of length (NxL)
P@ = a&v[l]andag[l]
B TheKaman gainisgiven by:
K(n) =P(NH' [HP(N)HT + R]™*
B The current estimate of the process, given the data estimate is given
by:

’ Sare(M=SM) + KM X(n)-H(n)]

B The predicted estimate of the process, is given by:

Sn+1)=A8,..(n)}
B Thecurrent error covariance is given by:
P (M) = [1 =K (M)H]P(n)

curr

B The predicted error covariance is given by:
P(n+1) = AP, (M}A" +Q
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Simulation Parameters

i System equation:

S(n) = AS(n-1) +W (n)
I N=5. Thisisthe number of tapsin the AR mode.

i @ =[9086, - 0.0590, - 0.0548, - 0.0486, - 0.0409)

9086 —-0.0590 —0.0548 —0.0486 - 0.0409[]
0 0 0 0 0

MmOoOoOOdo

1 0 0 0
0o 0 1 0 0
0 0 1 0

i Observation Equation:
X (n) = H xS(n) +V(n)
i The Doppler bandwidth is f,, =500Hz

B Theframerateis: Re =5x10%Frames sec. The sSimulation is run at the frame
rate 44



i M =8: Thelength of the training sequence.
i The signal to noiseratio of the channel, for e -1 is:

E

B _
NO
Thus o2 = 1256
i Thevariance of the tap gain plant noise is 2 =207 =0.0314

1 00..00
0
Q =0.0314 x g) ........... 0 5
[0 0........ 0O
0 0. o5
: _ P
I The data estimator variance of, =-¢ =001s7
1 00.0 O
O
R=.0157.x %) 1. 0|:|
001....00
0 0. 1



Results
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Error covariance:

B Theerror covariance is defined as:

% N DD N d*%
P=EOS(n+1)-S(n+1)IB(n+1)-S(n+1)0 O
5
I We can then interpret the diagonal elements as follows:
%M (n+1/n)** ....... E
E Kh LK O
3 M&Enn) .
Pzg FOMSE gt E
O 0
0 0
¥ MSEgy_N+2/n) B

Where  MsE ), Isthe MSE of the prediction.

MSE( n/n) isthe M SE of the current states estimate

a7



i The steady state and simulated error covariance
matrices are:

0 1.0921[] 0 1.0777 O
o 011177 o 01125 -
| dlag(PSS):E 0.0565% diag(Pg,) =0 0.1081 E
0 0.03887 0 01118 o
H 0.0296H H 0.1144 H

i Performance Improvement: Thereisasignificant
performance gain compared to the data only estimator

. 03 -diag(Pg, )(21)

o2

\%

29%




Multipath Channel
Estimation
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Multipath Jakes Channel

Consider a multipath radio channel.
Assume the Jakes model on each path.

AR representation: For the Multipath case, a modification of the
single ray AR system model is presented.

i State-Space representation: Using the AR model and the data
based estimator, a state-space representation is derived.

i Kalman tracking filter:Once again a vector Kalman filter is used to
track the tap-gain functions.
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System model

i Assumptions. The tap gain processes are independent
but have the same Jakes spectrum.
1 AR Representation:

N
S0= 3 A1)+ w()

N
Sz(n) = zlqalsz(n—i) +w2(n)

N
SL(n) = zlgaISL(n—i)+wL(n)

where
I S (n isthe " processto be tracked

1 ¢ are the AR model parameters. These are the same for each
process.

B w(n) isthe plant noise driving the tap gain function. The relative

variance is determined by the power delay profile of the channel.

B L isthe number of processes being tracked -



I The matrix form of the system equation for ‘L’ processes is:

gsl(n) .............. S, () B E“WZ ________ o Séﬁl(n-l) ........ SL(n-l)B W, (1)-oe WL(n)E
Sfl(”-l) ---------- S, (n-1) B A 00...0 050-2...5 (N-20 ... 0 O

_ o I O
E =0 1......... 0 Bk O g 0
0 N o Ot 0 0 O
i 00 0 =
(1N +1)..S (1-N+1) E)o ....... 10 55,(-N)-..S (0-N) %) ................... 0 g

@olqu ........ quD
d 00..0 0
I A=91....0 gis the system matrix.
Do 0 B
5) 0...10g
35 62().....00
o (l)........
m=1 " 0
0 0 g) ................... og
i Q-E@T/(n)@/wn)D il L JE 0 BIS the plant noise covariance matrix.
H U HH g 0
) I oG
O O
H H



Observation Model

i Assuming that the data based estimates are path-wise
independent, we have the following model:
X, (1) =S, (n) +v,(n)
X2(n) = Sz(n) +v2(n)

X (=5 (n)+v (n)
Where,
I s(): Thel ™ processat timen.

I X (n: Thel'™ databased estimate of Sn)
I v,(n): Error of the '™ data based estimate.
|

2

T/T Is assumed to be the same for all paths

2 _
o, —
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# The Observation Equation can be written in matrix and vector form as
follows:

D<1(n) XL(n) 0 @1(n) SL(n) 0 D/l(n) vL(n) 0
Exl(n-l) o XL(n-l) B gsl(n-l) o SL(n-l) B g/l(n-l) o vL(n-l) B
I 0 =0 Or O 0
0 O 0 O 0 O
B . il . 00 .. =
D(l(n-N+1) .o XL(n-N+1)D ﬁl(n-N+1) - SL(n-N+1)D wl(n-N+1) .o vL(n-N+1)D
0 O 0 O 0 0

B Xm=HxSm+vn) whereH isan identity matrix.
I The observation noise covariance matrix is given by:
1 R=ENVM)V)™1=(Lo?)x([1] where[]isan (N xN) identity matrix.
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Simulation parameters

N=5. Thisisthe number of tapsin the AR model.
L=3: Thisisthe number of tap-gain processes being tracked.

@ =[9086,- 0.0590, - 0.0548, - 0.0486, — 0.0409)
The System Equation

[9086 —0.0590 -0.0548 -0.0486 -0.04090

01 0 0 0 0

A=0 0 1 0 0 0 O

E 0 0 1 0 0 S

Ho 0 0 1 o H
The Doppler bandwidthis f,, = 500Hz
The frame rate is : R. =5x10*Frames/sec. The simulation is run at the
frame rate.
M =8: The length of the training sequence. The channel is assumed to

be invariant for these M hits.
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The signal to noise ratio of the channel, for E, =1 is.
B _ B
N, 207

Thus o2 =.1256

The power delay profile 05\/ (1) = 0.0314%[1,0.9,0.81]

= 6dB

The covariance of the plant noiseis:

[0.0851 . 0O
Q:

IR

0
.
0 . OH
0.2

The data estimator variance 2 = - =0.0157 Here the assumption is

made that the training sequence has an ideal autocorrelation.
I R=3x0.0157.x]l]
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1 Channel estimation for the first process.



Real part
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1 Channel estimation for the second process.
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1 Channel estimation for the third process.
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Error Covariance

1 The Error covariance is defined as:
[ E@S(n +1)—é(n+1)][5(n+1)—é(n+1)]H @
I We can then interpret the diagona elements asfollows:

DMSE () **.... *

(n+1/n)

SMSE (I)** ... *

I (n/n)

* SMSE () **. *
I (n—=1/n)

K s Sy MSE ()
I (n—=N+2/n)

o
]
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of
D

I sMsE () :thesum of the MSE of the predicted state estimate
I (n+1/n)

on all processes.

I yM<sE () . the MSE of the current states estimate on all
I (n/n)

processes.
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1 The ssmulated error covariance diagonal is given by:

. Process#(l ) . .

diag (Pyy, (1)) — > — diag (Pg, ) diag (Pg)
0.0384 0.0351 0.0321 0.1056 0.1111
0.0112 0.0109 0.0106 0.0327 0.0321
0.0098 0.0097 0.0097 0.0292 0.0169
0.0105 0.0105 0.0105 0.0315 0.0122
0.0112 0.0111 0.0112 0.0335 0.0096

diag (P, (1)) diag (Peyr ) diag (Pour )
0.0112 0.0109 0.0106 0.0327 0.0321
0.0098 0.0097 0.0097 0.0292 0.0169
0.0105 0.0105 0.0105 0.0315 0.0122
0.0112 0.0111 0.0112 0.0335 0.0096
0.0117 0.0117 0.0117 0.0351 0.008

1 Performance improvement on each path:

The data based estimate has aMSE of 65, = 0.0157 on each path.

_ o, —diag(P,,, )11 _.0157-.0112
Path 1 improvement: > =
o 0157

.0157 -.0109
Path 2 improvement: ——————— %100 = 30.57%
.0157

.0157 -.0106
Path 3 improvement: ——————— %100 = 32.48%

.0157

%100 = 28.66%

1 Almost a 30% improvement on each path
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Conclusions

i Developed a Kalman filter based channel estimation
algorithm for the Multipath radio channel.

1 Significant gain in performance over a training sequence
based estimator.

1 This improvement is obtained without wasting any more
bandwidth.

B Also allows us to predict the channel state without
having to wait for data.
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Future Work

i Use Of Multiple Sampling Rates:

I Instead of waiting for the data to arrive at the end of every frame we can run
the Kalman filter at a higher rate than the frame rate.

I Inthe absence of a data based estimate perform the time-update portion of the
algorithm and do a measurement update when data is received.

I Allows estimates to be available as required.

i Different process models on each path:

I In case the process model varies with path, we can still use the Kalman filter but
with some modifications to the system matrix.

i Correlated paths:
I For correlated paths the Kalman filter needs to be modified.
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