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Abstract: 
Data based channel estimation methods offer low complexity and good 

performance and are thus quite widely used in communications systems today. But they 

are also wasteful of bandwidth since they use training sequences to estimate the channel.  

This thesis presents a method of improving the channel estimate without 

increasing the length of the training sequence. This method uses the underlying channel 

model and the available data based estimate, to implement the channel estimation 

algorithm in the form of a Kalman filter. The Kalman filter based channel estimator leads 

to a significant gain in performance as compared to the data-only estimator. The Kalman 

filter also allows us to predict the state of the before the frame is actually received. 
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1 Introduction: 
1.1 A brief background of wireless communications. 

When land line based telephony systems were first introduced in the earlier part 

of this century, they allowed people to communicate almost instantaneously over large 

distances at a reasonable cost for the very first time. Indeed it was the advent of 

telephony and the advance in communications technology that has drastically influenced 

the way we live and our outlook on life. 

If land based telephony ushered in the age of communications; then wireless 

communications is its legitimate successor. Though land based systems will go on 

providing backbone connectivity for a long time to come, it has become increasingly 

clear in the last decade or so, that for the last hop in the information chain (that links the 

user to his information source), the user prefers wireless access. The reason for this is 

simply convenience. Nobody wants his or her mobility restricted. Wireless access allows 

the user the freedom to be mobile. Apart from user satisfaction, there is a very legitimate 

justification of wireless connectivity from the service provider’s point of view. There are 

many areas in the world that are still inaccessible to land line systems due to their 

remoteness or because of intervening inhospitable terrain. Wireless systems are a very 

practical alternate in such a scenario to replace or supplement the backbone landlines.  

The last and perhaps most important factor in the drive towards mobile telephony 

is simply economics [1]. For the first 35 years since its first commercial deployment, 

wireless systems saw little market penetration due to the high cost and the technological 

challenges involved. But in the last fifteen years, cellular telephony alone (not including 

paging, amateur radio, terrestrial microwave radio systems) has been growing at rates 

similar to that of television and the automobile as seen in the figure below. So we see that 

wireless communications holds enough promise to be the technology that drives our 

lifestyle and indeed our culture into the next millenium. 
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Figure 1-1: Mobile Telephony growth compared with other inventions this century 

As with most things this promising, wireless communications opens a whole 

Pandora’s box of complications. A radio signal transmitted from a base station to a 

mobile in a typical urban environment, exhibits variations in both received amplitude and 

phase/frequency. The change in amplitude us usually manifest in the form of sharp drops 

in signal level called Fades. Fades of 40dB or more below the mean signal level are 

common with successive minima occurring every few inches of the motion of the mobile. 

A vehicle traveling at 60 miles/hr can easily experience fades at the rate of 100Hz, thus 

distorting speech [1]. 

Each radio wave received at the mobile has an associated Doppler shift that 

depends on the mobile velocity, the carrier frequency and the angle between the velocity 

vector and the wave propagation vector. This manifests itself as a random variance in the 

instantaneous frequency of the received signal, causing further distortion. 

These obstacles may seem to defy any attempt at a systematic interpretation or 

analysis. However, starting from a model that takes into account the buildings and other 

structures in the vicinity of the mobile, that affect the signal, we can successfully predict 

many of the observed properties of the received signal by utilizing statistical techniques. 
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1.2 What is Channel Estimation?  

Before we approach the problem of predicting and analyzing the observable 

properties of transmission, we must first define what we mean by a channel. In its most 

general sense, a channel can describe everything from the source to the sink of a radio 

signal [3]. This includes the physical medium (free space, fiber, waveguides etc.) 

between the transmitter and the receiver through which the signal propagates.  The word 

channel refers to this physical medium throughout this work. An essential feature of any 

physical medium is, that the transmitted signal is received at the receiver, corrupted in a 

variety of ways by frequency and phase-distortion, inter symbol interference and thermal 

noise.  

A channel model on the other hand can be thought of as a mathematical 

representation of the transfer characteristics of this physical medium. This model could 

be based on some known underlying physical phenomenon or it could be formed by 

fitting the best mathematical / statistical model on the observed channel behavior. Most 

channel models are formulated by observing the characteristics of the received signals for 

each specific environment. Different mathematical models that explain the received 

signal are then fit over the accumulated data. Usually the one that best explains the 

behavior of the received signal is used to model the given physical channel. 

Channel estimation is simply defined as the process of characterizing the effect of 

the physical channel on the input sequence. If the channel is assumed to be linear, the 

channel estimate is simply the estimate of the impulse response of the system. It must be 

stressed once more that channel estimation is only a mathematical representation of what 

is truly happening. A “good” channel estimate is one where some sort of error 

minimization criteria is satisfied (e.g. MMSE). 
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Figure 1-2: A general Channel Estimation Procedure. 

In the figure above  e(n)  is the estimation error. The aim of most channel 

estimation algorithms is to minimize the mean squared error (MMSE), )]([ 2 neE  while 

utilizing as little computational resources as possible in the estimation process. 

1.3 Why Channel Estimation? 

Channel estimation algorithms allow the receiver to approximate the impulse 

response of the channel and explain the behavior of the channel. This knowledge of the 

channel's behavior is well-utilized in modern radio communications. Adaptive channel 

equalizers utilize channel estimates to overcome the effects of inter symbol interference. 

Diversity techniques (for e.g. the IS-95 Rake receiver) utilize the channel estimate to 

implement a matched filter such that the receiver is optimally matched to the received 

signal instead of the transmitted one.  Maximum likelihood detectors utilize channel 

estimates to minimize the error probability. One of the most important benefits of channel 
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estimation is that it allows the implementation of coherent demodulation. Coherent 

demodulation requires the knowledge the phase of the signal. This can be accomplished 

by using channel estimation techniques. 

1.4 Training Sequences vs. Blind Methods. 

Once a model has been established, its parameters need to be continuously 

updated (estimated) in order to minimize the error as the channel changes. If the receiver 

has a-priori knowledge of the information being sent over the channel, it can utilize this 

knowledge to obtain an accurate estimate of the impulse response of the channel. This 

method is simply called Training sequence based Channel estimation. It has the 

advantage of being used in any radio communications system quite easily. Even though 

this is the most popular method in use today, it still has its drawbacks. One of the obvious 

drawbacks is that it is wasteful of bandwidth. Precious bits in a frame that might have 

been otherwise used to transport information are stuffed with training sequences for 

channel estimation. This method also suffers due to the fact that most communication 

systems send information lumped frames. It is only after the receipt of the whole frame 

that the channel estimate can be extracted from the embedded training sequence. For fast 

fading channels this might not be adequate since the coherence time of the channel might 

be shorter than the frame time. 

Blind methods on the other hand require no training sequences. They utilize 

certain underlying mathematical information about the kind of data being transmitted. 

These methods might be bandwidth efficient but still have their own drawbacks. They are 

notoriously slow to converge (more than 1000 symbols may be required for an FIR 

channel with 10 coefficients). Their other drawback is that these methods are extremely 

computationally intensive and hence are impractical to implement in real-time systems. 

They also do not have the portability of training sequence-based methods. One algorithm 

that works for a particular system may not work with another due to the fact they send 

different types of information over the channel. 
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1.5 Thesis Overview:  

Consider a radio system in which training sequences are sent periodically over the 

channel to produce data based estimates. Sending training sequences over the channel 

instead of information is a waste (in terms of throughput) of the available bandwidth. 

This thesis presents a method of improving on these data based estimates without 

increasing the bandwidth usage. 

We assume that the receiver is moving at a constant velocity and the Omni-

directional antenna receives an infinite number of reflected waves, with a uniformly 

distributed angle of arrival. Under these assumptions the received signal will have a 

spectrum known as the Jakes spectrum [2]. This enables us to adopt the Jakes channel 

model for the time varying tap-gain functions. The Jakes channel model allows us to 

predict the state of the channel, independent of the data based estimate. Instead of having 

only a single snapshot estimate of the channel, in the case of the data-only estimator, we 

now have two independent estimates of the channel.  

The Kalman estimator combines the two independent estimates of the channel 

into a LMMSE estimate. The current data estimate of the channel is combined with the 

predicted (from the model) estimate. This current estimate is then projected through the 

channel model to predict the next state of the channel. Both these steps are combined into 

a concise form by using the Kalman filter.  

As a result of using the Jakes model in conjunction with the data estimates, the 

Kalman filter based channel estimation procedure drastically improves on the 

performance of the data-only estimator. We are also able to predict the next state of the 

channel with some accuracy before the availability of the data-estimate. Lastly as a 

consequence of using the Kalman filter, we can also improve on previous estimates, as 

more data is available. 

This thesis is organized into two main sections. The first section below provides a 

thorough theoretical foundation for the concepts to follow. It explains the different types 

of multipath models and in particular the derivation of the Jakes Radio Model. In the next 

section, the channel estimation procedure is developed. It is developed first, for a simple 

Gauss-Markov channel and finally for the Jakes channel. 



2 Theoretical formulation: 
 In this chapter we will lay down the basic theoretical groundwork necessary for us 

to be able to model the channel. 

 

2.1 The general Multipath Radio Channel Model: 

Signal multipath occurs when the transmitted signal arrives at the receiver via 

multiple propagation paths. Each of these paths may have a separate phase, attenuation, 

delay and Doppler frequency associated with it. Due to the random phase shift associated 

with each received signal, they might add up destructively, resulting in a phenomenon 

called Fading.  

Base Station

Tall Buildings

Mobile Terminal

Path 2

Path 3

Direct Path

Building

 

Figure 2-1: Illustration of a Multipath channel in an urban environment 

Depending on the nature of the multiple paths received, there are two types of 

multipath channels [3]: 
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2.2 Discrete Multipath: 

When the paths between the transmitter and the receiver are discrete, each with a 

different attenuation and delay, the channel is called a discrete multipath channel.  
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Figure 2-2: The Discrete Multipath Radio Channel 

 

As shown in the figure above, the discrete multipath channel can be modeled as follows: 

 ∑
=

−=
N

i
ii ttsty

1

))(()( τα  (2-1) 

Where 

  N is the number of rays impinging on the receiver,  

 s(t) is the bandpass input signal,  

 αi is the path attenuation,  

 τi is the path delay. 
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It can be seen that a natural representation of the discrete multipath channel is a 

tapped delay line with time varying coefficients and possibly time varying tap spacing. 

 

If we express s(t) as: 

 { }tfj Cetsofpartalts π2)(~  Re)( =  (2-2)   

We can express the complex channel output as: 

 ∑
=

−=
N

i
ii ttsty

1

))((~~)(~ τα  (2-3)   

where: 

 Cf : the frequency of the carrier. 

tfj
ii

Ce παα 2~ =  (2-4)   

Thus we see that we can describe the time varying discrete multipath channel by a 

time varying complex impulse response: 

 ∑
=

−=
N

i
ii ttth

1

))((~);(
~ τδατ  (2-5)   

Where iα~ is the time varying complex attenuation of each path. 

We can already see that for a fixed number of paths, (N) and path delays iτ , if we 

were to specify the properties of the complex attenuation iα~ , for each path, we would be 

able to characterize the time varying channel.  

2.3 Diffuse Multipath: 

In some channels it is more appropriate to view the received signal as consisting 

of a continuum of multipath components[3]. This is called a diffuse multipath channel.  

The received signal is given by: 

 ∫
∞

∞−

−= t)dt(tst(ta(t)y ~);~~  (2-6)   

where ),(~ ta τ  is the attenuation at delay τ  and time t . 

The Low pass, time variant, impulse response is: 

 τπτατ Cfjetth 2);();(
~ =  (2-7)   
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If the signal is band-limited, then the time varying diffuse multipath channel can 

be represented by a tap-delayed line with time varying coefficients and fixed tap spacing 

as shown in the figure below [3]. 
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Figure 2-3: The Tap-Delay line radio model 

In the figure above, ST  is the symbol time and the taps are symbol spaced. 

The output signal can be written as: 

 ∑ −=
m

m W
m

tstgty )(~)(~)(~  (2-8)   

where: 

 );(
~1)(~ t

W
mh

W
tgm =  (2-9)   

 )(~ tgm : is the sampled (in the τ domain ) complex  

low-pass equivalent impulse response. 

 W: is the Bandwidth of the Bandpass Signal. It has a low pass equivalent  



 17

Bandlimited to 
2

W  

Using WSSUS(Wide Sense Stationary Uncorrelated Scattering) assumptions, the 

Delay Cross Power Spectral density is defined as: 

 [ ]),(
~

),(
~

2
1);(  * tththEtRC ∆+=∆ τττ  (2-10)   

When  ∆t = 0  

 )();(  ττ CC RtR =∆  (2-11)   

This describes the average power as a function of path delay. The function RC(τ) 

is known as Multipath Intensity Profile or Delay Power Spectrum. The range of τ for 

which RC(τ) is essentially non zero is called the Multipath Delay Spread. 

Another important characterization of the channel is the Scattering function. It 

describes the relationship between the power spectrum and the path delays. It is 

represented by:  

 ∫
∞

∞−

∆− ∆∆=∆= )();()];([);( 2 tdetRtRFvS tvj
CC

πτττ  (2-12)   

where F[] is the Fourier transform operator. For fixed τ, the scattering function describes 

the power spectral density in the frequency variable v referred to as the  Doppler 

Frequency. 

Returning to the tap delay line model, if we assume that the number of scatterers 

in each path is infinitely large, as a consequence of the central limit theorem, we will see 

later, that we can model );(
~

th τ  as a complex gaussian process. If this process is assumed 

to be zero mean then the envelope, );(
~

th τ  is Rayleigh distributed and the channel is said 

to be a Rayleigh Fading channel.  If part of the signal reaches directly while the rest 

reaches the receiver through a continuum of paths, then );(
~

th τ can be modeled as a non-

zero mean gaussian process. The channel is called a Ricean Fading Channel. So, to 

represent the impulse response of a multipath radio channel, we have to choose our tap 

gains as sampled versions of a complex gaussian process. 

 

With this information, the tapped delay model takes the following form: 
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• Number of taps are TMW+1. (2-13)   

 Where TM is the delay spread and W is the information bandwidth. 

• Tap spacing is: 1/W.  (2-14) 

 This is the resolution of the multipath channel model. 

• Tap gain functions )(~ tg : A discrete time complex Gaussian processes with the  

 variance of each component given by: 

 )(1
2

2

W
mR

W Cm =σ  (2-15)   

• PSD of the )(~ tg : 

 );(1
2 v

W
mS

W
S gg =  (2-16)   

As in the discrete case, once the number of taps and tap spacing has been 

specified, it only remains to track (or estimate) the time varying complex tap gain 

functions. If we can track the tap gain functions, we are then able to track the time 

varying physical channel itself as represented by the tap delay model in Figure 2-3. 

We can characterize the tap gain functions by their power spectrum and relative 

variance. The channel power delay profile ( )(τCR ) provides us the relative variance for 

the tap gain functions. In the next section we study the Jakes Radio Model which 

provides us the required power spectrum for the complex gaussian, tap gain processes. 
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2.4 Jakes Radio Model: 

In order to produce a second independent estimate of the channel, we need an 

underlying model of the channel tap-gain process. If we assume that the receiver is 

moving at a constant velocity and its Omni-direction antenna receives an infinite number 

of scattered waves at uniformly distributed angles of arrival, then the received power 

spectrum has the shape of the Jakes spectrum. Under these assumptions we choose the 

Jakes model to represent the tap gain processes. A more detailed explanation of the 

observed spectrum at the receiver is presented below.   

One easily observable property of the signal transmitted over a mobile channel, is 

the variation in its amplitude as the mobile is moved. Recordings made over the 

frequency range from 50 to 11.2 GHz have shown the envelope of the mobile radio signal 

to be Rayleigh distributed when measured over distances of a few tens of wavelengths 

where the mean signal remains constant. This suggests the assumption that any point  [2] 

the received field is made up of horizontally travelling plane waves with random 

amplitudes and angles of arrivals for different locations. The phases are uniformly 

distributed on [0,π] and the phases and amplitudes are assumed to be independent. 

Base Station

Vehicle Velocity

Propagation
Path

9

Mobile

a

 
Figure 2-4: Doppler Shift as a function of velocity and angle 
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 A diagram of this simple model is shown above in Error! Reference source not 

found. with plane waves from stationary scatterers (or directly from the receiver) 

incident on the mobile travelling in the x-direction  with a velocity v. 

The Doppler Shift df in every wave is given by: 

 ( )α
λ

cosvfd =  (2-17)   

where  v: Vehicle velocity, 

 λ: Wavelength of the carrier. 

The electric field component at the receiver is given by: 

 ∑
=

+=
N

n
ncn tCEE

1
0 )cos( θω  (2-18)   

where ndn tf φπθ += 2  (2-19) 

 nφ : Random phase Uniformly distributed on [ ]π,0 , 

 cω : The carrier frequency, 

 nCE0 : the real amplitude of the nth wave in the field. 

We note from Equation (2-17) that the Doppler shift is bounded by λ/vfm = , 

which in general will be much less than the carrier frequency. The figure below shows 

the measured spectrogram at a moving receiver [2]. We can clearly see that the  Doppler 

shift is bounded. 



 21

 
Figure 2-5: Measured Frequency Spectrogram of the RF Signal at 910 MHz 

 Since the Doppler spectrum at the receiver is bounded by λ/vfm = , the electric 

field component at the receiver may then be described as a narrowband random process. 

As a consequence of the central limit theorem, i.e. as ∞→N (as the number of scatterers 

approaches infinity), the received electric field is approximately a gaussian random 

process. We can now apply all our knowledge of Gaussian random processes to model 

the received signal. 

RF Spectra of the Electric field at the receiver. 

 Assuming that the electric  field at the receiver may be represented by the sum of 

N incident waves received at angles uniformly distributed on [0,2π]. As Nà∞ , we would 

expect the incident power included in an angle between α and α+dα would approach a 

continuous distribution. Denote p(α)dα as a fraction of the incoming power contained 

within dα. Assume that the antenna gain of the Omni-directional antenna is )(αG . 
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Factoring in the antenna gain at the receiver, the differential variation of received  

power with angle is: 

 bG p d( ) ( )α α α .1 (2-20)   

The maximum Doppler frequency is given by: 

 f
v

m = λ (2-21)   

Where  

 v: Vehicle velocity 

 λ: Wavelength of the carrier. 

Note the relationship of frequency with angle: 

 f f fm C( ) cos( )α α= +  (2-22)   

Where  

 Cf  : The Carrier frequency. 

Since )()( αα −= ff , the differential variation of power with frequency may be 

expressed as follows: 

 S f df b p G p G d( ) [ ( ) ( ) ( ) ( )] | |= + − −α α α α α  (2-23)   

But 

 df f d f f f dm m C= − = − −| sin( ) | ( ) | |α α α2 2  (2-24)   

thus 

 S f
b

f f f
p G p G

m C

( )
( )

[ ( ) ( ) ( ) ( )]=
− −

+ − −
2 2

α α α α  (2-25)   

and 0)( =fS if mC fff >− || . 

The angle of arrival is given by: 

 α = −





−cos 1 f f

f
C

m

  (2-26)   

 

                                                

1 b is the average power that would be received by an isotropic antenna, i.e. G(α)=1 
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 The electrical field in the z-direction is sensed with a vertical whip antenna with 

5.1)( =αG . Then the spectrum is: 

 S f
b

f f f
p p

m C

( )
.

( )
[ ( ) ( )]=

− −
+ −15

2 2
α α  (2-27)   

The simplest assumption for the distribution of the power with arrival angle α , is 

a uniform distribution: 

 p( )α π π α π= ≤ ≤1
2

              -  (2-28)   

The normalized power spectrum is then given by: 

 

2/12

1
3
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−












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


 −−=



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

=′
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C

m

f
ff

b
fS

fS

ω

 (2-29)   

Its form is as follows: 

Title:
/.automount/devnull/filez/users/rupul/research/data_kalman/figs/J_spec.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

 
Figure 2-6:   Jakes Spectrum at Baseband. 
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The Jakes power spectrum can be synthesized by using a shaping filter driven by 

gaussian white noise. The impulse response of the Jakes shaping filter is given by: 

 )2()2()
4
3(2)( 4/1

4/14/1 tfJtffth mmmj ππ −Γ=  (2-30)  

where: 

 Γ: is the Gamma function, 

 mf : is the Doppler Bandwidth of the channel,  

 4/1J : is the fractional Bessel  function.  

Given the power spectrum as described in Equation (2-29), the channel 

autocorrelation as derived by Jakes [2],[4]is: 

 )2(2))(()( 0
1 τππτ mfJfSFa == −  (2-31)   

where  

 J0 is the 0’th order Bessel function 

This autocorrelation is shown in the figure below: 
Title:
/.automount/devnull/filez/users/rupul/research/data_kalman/figs/J_corr.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

 

Figure 2-7: Jakes Autocorrelation. 
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 Comparing Figure 2-5and Figure 2-6, we can see that the Jakes spectrum is a 

representation of the true spectrogram at the receiver. Assuming an infinite number of 

scatterers and a uniform angle of arrival, the Jakes model is then a good model for the 

radio channel. Thus the Jakes spectrum is assigned to the tap-gain processes.  

 



3  The Channel Estimation algorithm: 
3.1  Introduction: 

The channel estimation procedure considers a Radio communication system in 

which training sequences are sent periodically to form data based estimates of the 

channel. The channel is assumed to be invariant over the time span of the training 

sequence being sent over the channel. The performance of the data estimator is 

proportional to the length of the training sequence sent (if channel noise remains 

constant). Any desired improvement in performance is gained by increasing the length of 

the training sequence. This, in general is undesirable since any such increase would result 

in more waste of channel bandwidth, which is better utilized for sending data rather than 

training information. The channel estimation algorithm presented in this section improves 

on the data based estimate without decreasing channel throughput. 

The channel estimation procedure utilizes the underlying channel model in 

conjunction with the available data based estimate. As explained previously, under the 

assumptions of uniform angle of arrival and infinite scatterers, we adopt the Jakes model 

for the channel. The Jakes model assigns an autocorrelation and power spectral density to 

the time varying tap gain processes of the channel. The Jakes model is represented as an 

auto-regressive process where the current value of the process is a weighted sum of 

previous values plus plant noise. The weights for the AR Jakes model can be calculated, 

by solving the Yule-Walker set of equations (derived from the autocorrelation of the 

process) or from a shaping filter (derived from the spectrum). This AR Jakes model 

enables us to predict the tap gain process independently of the data based estimator. 

Once the Jakes model has been represented in AR form, along with the data based 

estimator we have two independent estimates of the channel. We first express the Jakes 

AR model in the form of a system equation. By viewing the data estimate as a noisy 

observation of the true tap-gain process, we can represent the data estimator as an 

observation equation. The system equation and the observation equation jointly form a 

State-Space representation of the dynamics of the tap-gain process. This state-space 

representation of the overall process is used to formulate the parameters of a Kalman 
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filter. The channel estimation algorithm in the form of a Kalman filter produces LMMSE 

(Linear Minimized Mean Squared Error) estimates of the tap-gain process. Since it uses 

both the data estimator and the Jakes channel model, we will show through simulations 

that it performs better than the data-only estimator. 

First we use the Kalman filter based channel estimation algorithm to track a 

simple Gauss-Markov channel. Then we simulate for a single-ray channel as described by 

a Jakes model. Finally we simulate for the multipath channel driven by the Jakes model. 

In each of these cases results are presented showing the improvement on the data-only 

estimate. 
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3.2 Modeling the channel tap gain as an Auto-regressive process. 

In order to develop a model for the tap-gain process, we must first explain how a 

complex gaussian random process can be represented by a general auto-regressive (AR) 

model. 
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Figure 3-1: The General Auto-regressive process model. 

Any stationary random process can be represented as an infinite tap AR process 

[8]. Of course an infinite tap AR process model is impractical. It is truncated to an N-tap 

form. We will use the truncated AR process model to represent the underlying model 

driving the tap-gain process. 

An AR process has the form in the figure above and is represented by a difference 

equation of the form: 

 )()()(
1

nwinSnS
N

i
i +−= ∑

=
φ   (3-1)   

Where 

 S(n): is a complex gaussian process,  

 φi  are the parameters of the model. 

 N:  is the number of delays in the autoregressive model. 

 w(n): A sequence of identically distributed zero-mean Complex Gaussian  

  random variables. 

In other words: 
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 The sequence w(n) is called white Gaussian noise because its spectrum is broad 

and uniform over an infinite frequency range. Thus the AR process is simply another 

name for a linear difference equation model, driven by white gaussian noise.  

This Nth order difference equation can easily be reduced to a state model in the 

vector form: 

 (n)W)(nSF(n)S +−= 1  (3-5)   

where S and (n)W are column vectors of size )(N 1×  and F is an N)(N ×  matrix 

 

We now find the mean, variance and autocorrelation of the autoregressive process [5]: 

Mean: 
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Variance:  
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Autocorrelation: 
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The autocorrelation coefficient is: 
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X
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 Equation (3-10) is an N’th order difference equation that can be solved for the 

desired AR coefficients [5]. Expressing the difference equation in the form of a matrix: 
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This matrix equation is known as the Yule – Walker equation. Its matrix form is: 

 SSrR =φ  (3-12)   

Since  R is invertible, we can obtain: 

 SSrR 1−=φ  (3-13)   

This is the matrix of AR coefficients that models the complex gaussian process. If 

we are given the autocorrelation of the process, using the Yule-Walker equations, we can 

calculate the appropriate AR coefficients. This will allow us to express the underlying 

process model in a state-space form allowing us to formulate a Kalman filter to 

track/estimate the process. 
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3.3 Data Based Channel Estimator formulation: 

The data based estimator uses training sequences sent over the channel to estimate 

the impulse response of the channel. We now describe how channel estimation is 

performed using the correlation method. 

A training sequence of length M, known to the receiver is sent over the channel. It 

is assumed that the channel does not change over the span of the data sent 

 Its vector form is: 

 [ ]TMxxxx 110 ................. −=   (3-14) 

where ‘T’ is the transpose operator. 

This bit sequence has been  mapped  to unit energy symbols as follows: 
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to simulate a BPSK modulation.  

Let the channel impulse response at the snapshot when the training sequence is 

sent over the channel be: 

 [ ]TLh......hhhh 1210
~~~~

−=  (3-16) 

where L is the channel impulse response length or the number of processes to be tracked. 

 The signal received will then be the convolution sum of the signal sent and the 

impulse response received in the presence of channel noise: 

 cnhxy +∗=  (3-17) 

The convolution sum is given by: 
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m
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This can be written in matrix form as follows: 



 32

 



























+























































=

−+

−

−

−

−

21

1

0

.

.

.

.

.

.00
..0.
..0

..

...
0..
..
0.0

1

1

0

1

1

11

0

1

01

0

MLc

c

c

L

M

M

M

n

n
n

h

h
h

x

x
xx
x

x
xx

x

y  (3-19) 

Or in its vector form: 

 cnhXY +=   (3-20) 

where Y is an ( )12×−+ NL  received signal vector. 

 X is an ( )LNL ×−+ 1  Toeplitz matrix containing delayed versions of the  

  training sequence sent. 

 h  is the channel impulse response. 

 cn  is the zero mean additive white gaussian channel noise of variance 2
cσ . 

By anchoring 1=bE , the SNR of the channel is then given by: 
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Following the general linear regression method given in [5], the estimate of the channel 

is given by: 

 )()(ˆ 1 YXXXh TT −=  (3-22)    

We now calculate the error of the data based estimator. Since the received signal 

is given by  

 cnhXY +=   (3-23)   

its performance will vary depending on the current channel noise. Using the actual noisy 

and distorted  received signal, we can see the error in estimation is: 
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Thus the error is: 

   

 
)()(   

ˆ~

1
c

TT nXXX

hhh
−=

−=  (3-25)  

Properties of the data estimator: 

Taking expextations on both sides of the estimation error, we get: 
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Since the channel noise is zero mean, we get: 
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Thus we see that the estimator is unbiased.  

 

The error covariance is defined as follows [7]: 
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Simplifying, we get: 
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We need to explain the significance of 1)( −XX T  before going any further.  

                                                

2 H is the hermetian transpose of a matrix. It is defined as the complex conjugate of the standard transpose. 



 34

 























=



















































=

∑∑∑

∑∑∑

−

=

−

=
−

−

=
+−

−

=
+−

−

=
−

−

=

−

−

−

−

−

−

.

.

....

....

.

            

.00
..0.
..0

..

...
0..
..
0.0

..0.0
........
00..0
0.0..

)(

1

0

2
1

0
1

1

0
1

1

0
1

1

0
1

1

0

2

1

1

11

0

1

01

0

110

110

110

M

i
i

M

i
ii

M

i
Lii

M

i
Lii

M

i
ii

M

i
i

M

M

M

M

M

M

T

xxxxx

xxxxx

x

x
xx
x

x
xx

x

xxx

xxx
xxx

XX

 

  (3-30)  

Since 1±=ix , Mx
M

i
i =∑

−

=

1

0

2  

 























=























=

∑∑

∑∑

∑∑

∑∑

−

=
−

−

=
+−

−

=
+−

−

=
−

−

=
−

−

=
+−

−

=
+−

−

=
−

.

1
1

.
1

....

....

1
.

1
1

.

.

....

....

.

)(

1

0
1

1

0
1

1

0
1

1

0
1

1

0
1

1

0
1

1

0
1

1

0
1

M

i
ii

M

i
Lii

M

i
Lii

M

i
ii

M

i
ii

M

i
Lii

M

i
Lii

M

i
ii

T

xx
M

xx
M

xx
M

xx
M

M

Mxxxx

xxxxM

XX

 (3-31)  

Since  ∑∑
−

=
−

−

=
− ==

1

0

1

0

1
)0(

1)(
M

i
kii

M

i
kii

xx
xx xx

M
xx

R
kr  (3-32)  

Thus )( XX T is nothing but an ( )LL× matrix containing delayed versions of the training 

sequence autocorrelation. 



 35

 



















−

−

= .

1)1(.)1(
....
....

)1(.)1(1

)(

xxxx

xxxx

T

rLr

Lrr

MXX  (3-33) 

Thus 

 

1

1 .

1)1(.)1(
....
....

)1(.)1(1

1)(

−

−



















−

−

=

xxxx

xxxx

T

rLr

Lrr

M
XX  (3-34) 

where )(τxxr is the normalized training sequence autocorrelation. 

Thus the error covariance is given by: 
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For the case of an ideal auto correlation, the equation above simplifies to: 

 []I
M

P c
D

2σ=  (3-36) 

where []I  is the ( )LL× identity matrix. 

It is interesting to note that for a single process estimate )(L 1= , the error covariance is 

given by: 

 
M

P c
D

2σ=  (3-37)  

The result above shows the inverse relationship between the length of the training 

sequence and the covariance of the data estimate. As expected, it also shows that the data 

estimate worsens as noise in the channel increases. 
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3.4  Tracking a single tap-gain process. 

Consider a point-to-point radio link. Training sequences are sent over this channel 

to produce data based estimate every frame. The channel is assumed to be invariant for 

the frame time. This is only a snapshot estimate of the channel for the time that the frame 

is sent. We intend to track this channel with the help of the underlying channel model. By 

projecting the estimates through the channel model and combining the predicted estimate 

with the data estimate, we intend to improve on the data-only estimate of the channel. 

We will track two different channels. The first one is a simple Gauss-Markov 

(GM), channel represented as a first order AR process. The second channel is represented 

by the Jakes model in the form of a higher order AR process. In both the cases we 

develop a Kalman filter to track the tap-gain process. For the GM case this will be a 

scalar Kalman filter. For the Jakes model case we will develop a vector Kalman filter to 

track the process.  
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3.4.1 Tracking a Gauss-Markov tap gain process. 

A Gauss-Markov process is described by an exponential autocorrelation function. 

Its form is shown in the figure below. 
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Figure 3-2: Autocorrelation for a Gauss-Markov process. 

3.4.1.1 Kalman filter derivation. 

In order to track this process with a Kalman filter, we will need to represent the 

AR model and the data estimation in a State-Space form. This requires the autoregressive 

model to be expressed as a system equation and the data estimate as an observation 

equation. 
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System Model: 

As a consequence of the exponential autocorrelation, a Gauss-Markov process can 

be described as a first order auto-regressive process. In other words, the current state of 

the process is dependent upon the previous state alone. For a first order process the 

system model is simply: 

 )()1()( 1 nwnSnS +−= φ  (3-38) 

Where 

 )(nS : is the complex gaussian tap-gain process.  

 1φ is the parameter of the AR model assumed. 

 )(nw : A sequence of identically distributed zero-mean Complex Gaussian  

  random variables with variance 2
wσ . 

Observation Model: 

 The data based estimator produces ‘estimates’ of the process. It can therefore can 

be looked upon as a noisy version of the process. 

The observation model can be written as: 

 )()()( nvnSnX +=  (3-39)  

where:  S(n) : The  process at time n. 

 X(n): The data based estimate of S(n) 

  v(n) : Error of the data based estimate. 

 
M
s
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2
2 =  from equation (3-22) (3-40) 

 

 M : Number of training sequence bits in each frame. 
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Kalman filter for the first order AR process 

 Given the state space formulation for the process to be tracked, we can use the 

standard scalar Kalman filter equations to track the process. The scalar Kalman filter is 

defined by the following equations [7],[10],[5],[6]: 

• The initial conditions are: 

 { } 00ˆ =S(n))=E(S  (3-41)  

 { }22)1( vandwP σσ≥  (3-42)  

• The Kalman gain is given by: 
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)()( 2 nnP
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vσ+
=  (3-43)  

• The current estimate of the process, after receiving the data estimate is given by: 

 )]ˆ[ˆˆ (nSX(n)-k(n)(n)S(n)=Scurr +  (3-44)  

• The predicted estimate of the process is given by: 

 { }(n)S)=(nS curr
ˆ1ˆ

1φ+  (3-45)  

• The current error covariance is given by: 

 [ ] )()(1)( nPnknPcurr −=  (3-46)  

• The prediction error covariance (MSE in this case) is given by: 

 { } 22
1 )()1( wcurr nPnP σφ +=+  (3-47)  

 These equations define the scalar Kalman filter. Its actual implementation as an 

algorithm is explained next. 

3.4.1.2 Simulation and Results: 

In this section the scalar Kalman filter is used to track the Gauss-Markov process. 

The Kalman algorithm is explained in more detail and its performance is analyzed. 
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Simulation Parameters: 

The parameters for the simulation are as follows: 

• System equation:  w(n))S(n.S(n) +−= 19  

• Observation Equation:  )()()( nvnSnX +=  

• The frame rate is : sec105 4 Frames/RF ×= . The simulation is run at the frame rate. 

• 8=M : The length of the training sequence. The channel is assumed to be invariant 

for these M  bits. 

• The signal to noise ratio of the channel, for 1=BE  is: 

 dB
E

N
E

c

B

O

B 6
2 2 ==
σ  

 Thus 1256.2 =cσ  

• The data estimator variance 0.0157s
2

2
V ==

M
cσ

 (3-48) 

• The variance of the tap gain plant noise is 0314.02s 22
w == Vσ  (3-49) 

 

 The first order Kalman filter is used to track the process using the above parameters. 

In order to simulate the performance of the Kalman filter we must first create a first order 

process. 
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Process Synthesis: 
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Figure 3-3: Synthesizing the Gauss-Markov process. 

The figure above is a representation of the algorithm below for synthesizing a GM 

process: 

Initializations: 0=tempS ; []=S ; 

Start Iteration { Create complex white Gaussian noise ‘w ’ of variance 2
wσ  

 wSS temptemp +×= 1φ  

 







=
tempS

S
S  

  } End Iteration 

In this simulation we will use the Kalman filter to track the process synthesized above. 

Algorithm Implementation: 

 Previously, only the equations for the scalar Kalman filter were presented. The 

Kalman algorithm is described below in more detail. 

The channel estimation algorithm is as follows: 

{ Initiallize: 
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)Time:(n 1=  

• 11 =)P( . Assume initial predicted error covariance. 

• 0)1(̂ =S . Assume initial prediction. 

• {Start Iteration: 

• Perform data based estimation, i.e. get X(n). 

• Calculate Kalman gain: 

 
1)(

)()(
+

=
nP

nPnk  

• Calculate current estimate: 

 ]ˆ[ˆˆ (n)SX(n)-k(n)(n)S(n)=Scurr +   

• Calculate current error covariance: 

 [ ] )()(1)( nPnknPcurr −=  

• Predict ahead: 

 { }(n)S)=.(nS curr
ˆ91ˆ +  

• Predict the error covariance: 

 ( ) [ ]{ } 1)()(19.)1( 2 +−=+ nPnknP    

• )nTime: (n 1+=  

End loop } 
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Results: 

 A first order process was created as described above and the Kalman algorithm 

was used, to track the process. The figure below shows the results of the simulation. 
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Figure 3-4: Channel estimation for a first order process. 

MSE for the estimator: 

The mean square error is defined as follows: 

The current MSE is: 

 [ ][ ]{ }H

currcurrcurr (n)SS(n)(n)SS(n)EP ˆˆ −−=  (3-50) 

The prediction MSE is: 

 [ ][ ]{ }H
(n)SS(n)(n)SS(n)EP ˆˆ −−=  (3-51) 

Note the relationship between the current and the prediction error covariance: 
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 { }currPP 2
1φ=  (3-52) 

 It is important to remember that the Kalman gain and the error covariance 

equations are independent of the actual observations. The covariance equation alone is all 

that is required for characterizing the performance of the filter. This is done by solving 

for the steady state covariance for the given filter.  

When the covariance matrix reaches steady state: 

 [ ]{ } 22
1 )1()1(1             

)()1(

wnPnk

nPnP

σφ +−−−=
=+

 (3-53)  

This equation is known as the Ricatti equation. The solution to this equation is the steady 

state error covariance SSP . We can attempt to solve this analytically. But since the error 

covariance actually converges quite quickly to its steady state value, it can be easily 

calculated by iteration.  

The steady state co-variances for this system are: 

• The steady state current error covariance is: 

 0113.=
SScurrP  (3-54)  

• The steady state prediction error covariance is: 

 0406.=SSP  (3-55)  

The actual error covariances for the simulation were calculated by averaging the results 

over 100 Monte Carlo runs. The following are the results: 

• The simulated current error covariance is: 

 0113.=
SimcurrP  (3-56)  

• The simulated prediction error covariance is: 

 0406.=SimP  (3-57)  

We can see that there is an appreciable increase in the accuracy of the data based 

estimate. The percentage in crease is: 
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  %282

2

=
−

V

currV SS
P

σ
σ

 (3-58)  

 By using the underlying model for the channel in conjunction with the data based 

estimate, we have drastically improved upon the snapshot estimate available. Not only 

this, we can also predict the next state of the channel, with a MSE of .0406. The GM case 

served as a demonstration for the capabilities of this channel estimation algorithm. The 

Kalman filter was easily able to improve the data estimate for this simple channel model. 

We now turn our attention towards the higher order Jakes model. 

3.4.2 Tracking a Jakes tap-gain process 

Now consider a line of sight, single ray  radio channel.  The underlying channel 

model is no longer a simple GM process. Instead we use a higher order Jakes model for 

this channel. Similar to the previous section where we expressed the first order AR 

process in a state-space form and used the scalar Kalman filter to track the process, we 

will express the Jakes process in a state-space form too and track it with a Kalman filter. 

The Jakes tap-gain process is stationary and can be represented as an auto-

regressive process. In the GM case, the model turned out to be a simple first order AR 

model. For the Jakes process, we need to calculate the autoregressive model parameters. 

As we had stated earlier in section (3.2), we can derive this from the auto-correlation of 

the process by solving  the Yule-walker equations. We can also derive the AR 

coefficients from the Jakes power spectrum by using the closed form expression of the 

Jakes channel-shaping filter. 

3.4.2.1 Auto-Regressive Form for the Jakes model. 

In section (2.4) the power spectrum of the Jakes process was given. The AR 

parameters for this process will be derived from the knowledge of this spectrum. The 

process can be synthesized by using a noise-shaping filter as given by equation (2-30). 

We will use this shaping filter to derive the AR form of the process. The closed form 

expression for a shaping filter that synthesizes the Jakes spectrum from Gaussian white 

noise is: 
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 )2()2()
4
3(2)( 4/1

4/14/1 tfJtffth mmmj ππ −Γ=  (3-59)  

where: 

 Γ: is the Gamma function.  

 mf : is the Doppler Bandwidth of the channel.  

 4/1J : is the fractional Bessel  function.  

Its form is as follows: 
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Figure 3-5: Impulse response of the Jakes channel-shaping filter. 

This filter is used  to synthesize the Jakes tap gain process.  In order to derive the 

AR coefficients from this filter, we sample it. The sampling frequency is chosen to be 16 

times the Doppler bandwidth. This is done to avoid any aliasing or frequency warping 

[3]. 
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 ( ) 10 M-..........   n
F
n

hnh
S

jj =



=  (3-60)  

Where M (in this case) is the number of taps in the FIR Jakes shaping filter. 

 mS fF ×= 16  (3-61)  

If the input of this filter is gaussian white noise then the output of the shaping 

filter is simply the convolution sum: 

 ∑
−

=
−=

1

0

)()()(
M

m
j mnwmhnS  (3-62)  

Where w(n) is gaussian white noise. 

The convolution sum itself is nothing but a weighted moving average of the white 

noise inputs. A moving average model has the following form: 
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Figure 3-6: Convolution as a moving average. 

We will convert the MA form of the Jakes process into its equivalent AR form. 

We will do this using the method described in [8]. 
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In order to convert the convolution equation to its equivalent AR form, we define 

the delay operator 1−z  as: 

 
( ) ( )
( ) ( )jnSnSz

nSnSz
j −=

−=
−

− 11

 (3-63)  

Using the delay operator, equation  (3-63) can be written as: 

 ( ) )()()(
1

0

1 nwzmhnS
M

m

m
j 





= ∑

−

=

−  (3-64)  

 )()()( 1 nwznS −= ψ  (3-65)  

Where ( )∑
−

=

−− =
1

0

11 )()(
M

m

m
j zmhzψ  (3-66)  

 )( 1−zψ can be regarded as polynomials in the powers of ( )1−z . This allows us to 

rewrite (3-65) as: 

 )()(
)(

1
1 nwnS

z
=−ψ

 (3-67)  

In order to further simplify the equation above, we need to simplify 
)(

1
1−zψ

 first. 

 ( ) 11
1

2
2

1
10

1
.......

1
)(

1
−−

−
−−− ++

= M
M zhzhzhhzψ

 (3-68)  

This rational function can be expanded using partial functions as follows: 

 ( ) 11
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1
2

2
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1

1

1
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 (3-69)  

Since  
( )

( ) ( )[ ]∞+++=
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−
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31211

0

1
1

pzpzpz
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pz i

i

 (3-70)  

We can write equation (3-69) as: 
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 (3-71)  

Simplifying the equation above we get: 
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 (3-72)  

This is an infinite series sum. Truncating this to N+1 terms we get: 

 ∑∑∑∑
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 (3-73)  

For conciseness, we denote the summation terms in the equation above as follows: 

 N
Nzzz

z
ΠΠ+Π+Π= −−−

− ..........
)(

1
2

2
1

1
01ψ

 (3-74)  

Where  ∑
−

=
=Π

1

1

M

i

n
iin pr  (3-75)  

Inserting equation (3-74) into (3-67) we get: 

 ( ) )()(..........2
2

1
1

0 nwnSzzz N
N =ΠΠ+Π+Π −−−  (3-76)  

Recall that Nz −  is the delay operator. Simplifying the equation above,  we get: 

 )()(......).........2()1()( 210 nwNnSnSnSnS N +−Π−−Π−−Π−=Π  (3-77) 

 { })()(......).........2()1(1)( 21
0

nwNnSnSnSnS N +−Π−−Π−−Π−
Π

=  (3-78) 

Compare this equation to the auto-regressive system equation, restated here. 

 )()()(
1

nwinSnS
N

i
i +−= ∑

=
φ  (3-79)   
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Or )()(........)2()1()( 21 nwNnSnSnSnS N +−+−+−= φφφ  (3-80)   

We can clearly see the relationship between the moving average and auto-

regressive coefficients. By comparison, we get the following expression for the auto-

regressive coefficients derived from the moving average model: 

 
0Π

Π−= n
nφ  (3-81)   

We must note here that for a moving average system driven by unity variance gaussian 

noise is equivalent to an autoregressive process where the plant noise driving the 

autoregressive system is given by: 

 
2

0

2 1





Π

=wσ  (3-82)   

The figure below summarizes the two equivalent forms for representing a linear process. 
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Figure 3-7: Two equivalent representations of the tap gain system. 

This procedure is used to calculate the parameters for the autoregressive model 

from the Jakes shaping filter. 

Model validation 

 The MA model of the FIR Jakes shaping filter is used to calculate the AR 

parameters. But a finite length MA model is represented by an infinite length AR model. 

An infinite length model is of course impractical and is truncated to a finite length. The 
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length of the AR model effects the spectrum of the process modeled. The true Jakes 

spectrum is modeled by an infinite order AR process. We will study how faithfully lower 

order AR models represent the Jakes model. 

Consider the following parameters for the channel: 

• Hzfm 50= . This is the Doppler bandwidth of the channel. 

• mS fF ×= 16 . This is the Jakes-shaping-filter sampling rate. 

• HzsamplesF
PSDS /105 3×= . This is the Jakes spectrum sampling frequency. 

• 64=MAN . This is the FIR shaping filter length. 

• N is the length of the truncated AR model. 

We will compare the analytical autocorrelation and the power spectral density of 

the Jakes model with the calculated autocorrelation and spectrum for different length AR 

processes. 

 Once having calculated the parameters of the AR model, the power spectrum and 

the autocorrelation are calculated as follows: 

• 2

1

2

2

1

)(

∑
=

−−
=

N

i

fij
i

W
SS

e

fS
πφ

σ
 (3-83) 

where 2
Wσ  is the AR model plant noise. 

• It is not easy to derive an analytical expression for the autocorrelation. So we estimate 

it from the process created using the AR models of different length. In each case a 

process 4096 samples long was created.  

 The figures below show how truncated AR processes of different length compare 

with the true Jakes spectrum. 
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Figure 3-8: Jakes spectrum compared with truncated AR processes’ spectrum. 

The next figure shows the actual Jakes autocorrelation as compared to the those 

derived from truncated AR processes. 
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Figure 3-9: Jakes autocorrelation compared to those from truncated AR processes. 
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As expected, the longer AR model is a more faithful representation of the Jakes 

model. But this must of course be balanced against a longer startup time (in the channel 

estimation procedure since N taps  have to be initialized) and a higher computational 

load. 

3.4.2.2 Kalman filter derivation. 

Once more, in order to track this process with a Kalman filter, we will need to 

represent the AR model and the data estimate in a State-Space form. In the previous 

section we tracked the process with a scalar Kalman filter. We will track the Jakes 

process with a vector Kalman filter. 

System Model: 

In section (3.4.2.1), we derived a method of calculating the AR form of the Jakes 

process from the shaping filter. Now, the autoregressive coefficients are used to form a 

concise system equation for the tap gain process. 

The auto-regressive form of the tap gain process is as follows: 

 )()()(
1

nwinSnS
N

i
i +−= ∑

=
φ  (3-84)   

where  
0?

? i
i −=φ  are the coefficients of the auto-regressive process derived from  

  the Jakes spectrum. 

 N: The number of taps in the auto-regressive model. 

The matrix form of this equation is: 
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 (3-85)  

Expressed more concisely as vectors, the system equation defining the Jakes 

autoregressive process is: 
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 )()1()( nWnSAnS +−=  (3-86)   

where: 
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and the plant noise covariance matrix is given by: 
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Observation Model: 

The data based estimator produces ‘estimates’ of the process. It can therefore can 

be looked upon as a noisy version of the process. The data estimate at any time can be 

written as: 

 )()()( nvnSnX +=  (3-89)  

where:  S(n): The process at time n. 

 X(n): The data based estimate of S(n) 

 v(n): Error of the data based estimate. 

 
M

s c
v

2
2 σ=  from equation (3-22). (3-90) 

 M: Number of training sequence bits in each frame. 

In order to be consistent with the matrix form of the system equation. we can write 

equation (3-89) as: 
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Or expressed concisely in the form of vectors the equation above becomes: 

 )()()( nvnSHnX +×=  (3-92)  

where H is an N)(N ×  identity matrix (3-93)  

and the observation noise covariance is given by: 
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Kalman filter for the higher order AR process 

 Given the state space formulation above, for the Jakes tap gain processes, we can 

use the vector Kalman filter to track them. The vector Kalman filter equations are as 

follows [6],[5].[10]: 

• The initial conditions are: 

 { }S(n))=E(S 0ˆ =zero matrix of length L)  (N × 3 (3-95)  

 [] []{ }IvandIwP 22)1( σσ≥  (3-96)  

• The Kalman gain is given by: 

 1])([)()( −+= RHnHPHnPnK TT  (3-97)  

• The current estimate of the process, given  the data estimate is given by: 

                                                

3 From now on all variables are vectors unless otherwise stated. The overbar representation for a 

vector is dropped for the sake of readability. 
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 ]ˆ[ˆˆ (n)SX(n)-HK(n)(n)S(n)=Scurr +  (3-98)  

• The predicted estimate of the process, is given by: 

 { }(n)S)=A(nS curr
ˆ1ˆ +  (3-99)  

• The current error covariance is given by: 

 [ ] )()()( nPHnKInPcurr −=  (3-100) 

• The predicted error covariance is given by: 

 { } QAnPAnP T
curr +=+ )()1(  (3-101) 

 These equations define the vector Kalman filter. Its actual implementation as an 

algorithm is explained next. 

3.4.2.3 Simulation and Results: 

In this section the vector Kalman filter is used to track the Jakes process. The 

Kalman algorithm is explained in more detail and its performance is analyzed. 

Simulation Parameters: 

• System equation:    

 )()1()( nWnSAnS +−=   (3-102)  

Where  

• N=5. This is the number of taps in the AR model. 

•  [ ]040900486005480059009086 .,.,.,.,. −−−−=φ  (3-103)  

•  20.120 =Π  (3-104) 

•  
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• Observation Equation:  

 )()()( nvnSHnX +×=  (3-106) 

Where matrix identity  an  is : N)(NH ×  (3-107) 

• The Doppler bandwidth is Hzfm 500=  

• The frame rate is : sec105 4 Frames/RF ×= . The simulation is run at the frame rate. 

• 8=M : The length of the training sequence. The channel is assumed to be invariant 

for these M  bits. 

• The signal to noise ratio of the channel, for 1=BE  is: 
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• The variance of the tap gain plant noise is 0314.02s 22
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• The data estimator variance 0.0157s
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 (3-110) 
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The vector Kalman filter defined above is to be used to track the 5=N AR 

process. For simulation purposes we must first create this process before we can track it. 

Process Synthesis: 

 The Jakes process is synthesized using the shaping filter. As we have seen 

previously, a moving average system driven by unity variance gaussian noise is 



 58

equivalent to an autoregressive process where the plant noise driving the autoregressive 

system is given by: 2
0

2 )/1( Π=wσ . This relationship can be reversed in our case to 

produce a process whose equivalent AR process is driven by unity variance noise. The 

figure below illustrates this idea: 
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Figure 3-10: Jakes Process synthesis. 

 We use the Jakes shaping filter driven by gaussian noise of variance 

( )2
0

2 Π=Jakesσ to produce the tap gain process desired. 

Algorithm Implementation: 

 The channel estimation algorithm utilizing the Vector Kalman filter is as follows: 

{ Initiallize: 

)Time:(n 1=  

• N) (N)P( ×=1 identity. Assume initial predicted error covariance. 

• TS ]0....0[)1(̂ = . Assume initial prediction is an ) (N 1× zero vector. 

• {Start Iteration: 

• Perform data based estimation, i.e. get X(n). 

• Calculate Kalman gain: 

 1])([)()( −+= RHnHPHnPnK TT  
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• Calculate current estimate: 

 ]ˆ[ˆˆ (n)SX(n)-HK(n)(n)S(n)=S curr +   

• Calculate current error covariance: 

 [ ] )()()( nPHnKInPcurr −=  

• Predict ahead: 

 { }(n)S)=A(nS curr
ˆ1ˆ +  

• Predict the error covariance: 

 { } QAnPAnP T
curr +=+ )()1(    

• )nTime: (n 1+=  

End loop } 



 60

Results: 

 The Jakes process created above is tracked with a vector Kalman filter. The figure 

below shows the results of the simulation: 
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Figure 3-11: Channel estimation of a Jakes process. 

Error Covariance 

The error covariance matrices are defined as follows: 

The current error covariance is: 

 [ ][ ]{ }H

currcurrcurr (n)SS(n)(n)SS(n)EP ˆˆ −−=  (3-112) 

Recalling the state-space formulation, we can expand the previous equation as: 
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We can then interpret the diagonal elements as follows: 
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where  )/( nnMSE : the MSE of the current state's estimate. 

 )/1( nnMSE − : the MSE of the previous states estimate etc. 

Similarly, the prediction error covariance is defined as: 
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We can then interpret the diagonal elements as follows: 
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where  )/1( nnMSE + : the MSE of the prediction. 

 )/( nnMSE : the MSE of the current state's estimate. 

 We thus see that we are performing prediction, filtering and smoothing all in one 

filter. We now present the diagonal elements of the steady state covariances: 

• The diagonal elements for the steady state current error covariance are: 
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• The steady state prediction error covariance is: 
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The actual error co-variances for the simulation were calculated by averaging the 

results over 100 Monte Carlo runs. The following are the results: 

• The simulated current error covariance is: 
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• The simulated prediction error covariance is: 
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 We can see from the results above that if the data based estimate has a MSE of 

0157.0s 2
V = , and [ ]  .   ),)(diag(PSim 0112012 =  then the Kalman filter has significantly 

improved the current estimate as compared to the data estimate. 
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The percentage increase is: 

  %29
)1,2)((

2

2

=−
V

SimV Pdiag
σ

σ  (3-122) 

 

In this simulation we have shown that with the help of the underlying Jakes 

channel model, we can improve the estimate of the channel by a significant amount. We 

no longer have to wait for the data estimate to arrive either, we can predict the state of the 

channel with a MSE of 03820. . 
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3.5 Tracking Multiple Jakes tap-gain processes. 

We now consider a radio system in which the signal arrives at the receiver from 

multiple paths. Training sequences are sent regularly over the channel to estimate its 

impulse response. The data based estimator only gives us a snapshot of the channel for 

the time that the training sequence is sent. By utilizing the underlying channel model on 

each of these paths, we intend to improve on the data-only channel estimate without 

increasing the length of the training sequence.  

In section (3.4.2), we had assumed a Jakes channel model for the single path 

channel. In the multipath case, on each path of the channel, we assume the same 

underlying Jakes channel model. The Jakes channel model is assumed under the 

assumptions that the mobile is moving with a constant velocity, there are an infinite 

number of scatterers on each path and that the angle of arrival for each of these paths is 

uniformly distributed. Previously, we had expressed the data estimator and the channel 

model in the state-space form and had derived the vector Kalman filter from that form. 

For the multipath case, we present a modification on the state space-form to derive the 

vector Kalman filter based multipath channel estimation algorithm. 

3.5.1 Kalman filter derivation 

The state-space representation requires us to express the channel model in the 

form of a system equation and the data based estimator in the form of an observation 

equation. We sill then use this form to derive the appropriate Kalman filter. 

System model: 

If we assume that the tap-gain processes are independent, but have the same Jakes 

spectrum, we will have multiple tap-gain processes but with the same underlying Jakes 

model. Their auto-regressive representations are: 
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where: )(nS l  is the thl process to be tracked. 

  iφ is  the AR model parameters. These were calculated in section  

  (3.4.2.1)and are the same for each process. 

 )(nwl  is the plant noise driving the tap gain function. The relative  

  variance is determined by the power delay profile of the  

  channel. 

 L is the number of taps (or the number of processes to track) in the radio  

  model. 

The matrix form of equation (3-84) for ‘L’ processes (i.e. L radio channel model taps) is 
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Expressed in vector form, the system equation defining the multipath tap-gain 

processes is: 

 )()1()( nWnSAnS +−=  (3-125)  

where: 
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and the( LL× ) plant noise covariance matrix is given by: 
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Observation Model: 

The data based estimate for each process is independent of the other, so we are 

justified in the following data based estimate model: 
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where:  )(nS l : The l’th process at time n. 

 )(nX l : The l’th  data based estimate of S(n)  

 )(nvl : Error of the l’th  data based estimate. 
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  explained below. 

 M: Number of training sequence bits in each frame. 

We can write equation (3-89) as: 
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Or expressed concisely in the form of vectors the equation above becomes: 

 )()()(
___

nvnSHnX +×=  (3-130) 

where: 

 matrix identity  an  is : N)(NH ×  (3-131) 

and the observation noise covariance is given by: 

 ( ) ][)(])()([ 2 ILnvnvER v
H ×== σ  (3-132) 

where ][I is an )( NN × identity matrix. 

 We have assumed here that the autocorrelation of the training sequence is ideal. 

The MSE of the data estimation on all the paths will then be the same. 
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Kalman filter for multiple AR processes 

 Using the state space equations above, we derive a vector Kalman filter to track 

the tap-gain processes. The vector Kalman filter structure will be the same as for the 

single path case but the parameters of the filter are different. 

• The initial conditions are: 

 { }S(n))=E(S 0ˆ =zero vector of length )  (N 1× 4 (3-133) 

 [] []{ }IvandIwP 22)1( σσ≥  (3-134) 

• The Kalman gain is given by: 

 1])([)()( −+= RHnHPHnPnK TT  (3-135) 

• The current estimate of the process, given  the data estimate is given by: 

 ]ˆ[ˆˆ (n)SX(n)-HK(n)(n)S(n)=S curr +  (3-136) 

• The predicted estimate of the process, is given by: 

 { }(n)S)=A(nS curr
ˆ1ˆ +  (3-137) 

• The current error covariance is given by: 

 [ ] )()()( nPHnKInPcurr −=  (3-138) 

• The predicted error covariance is given by: 

 { } QAnPAnP T
curr +=+ )()1(  (3-139) 

 These equations define the vector Kalman filter. Its actual implementation as an 

algorithm is explained next. 

                                                

4 All variables are vectors unless otherwise stated. The overbar representation for a vector is 

dropped for the sake of readability. 
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3.5.2 Simulation and Results: 

In this section the vector Kalman filter is used to track the Jakes processes. The 

parameters for the Kalman algorithm are explained in more detail and its performance is 

analyzed. 

Simulation Parameters: 

• System equation as defined in the previous section: 

 )()1()( nWnSAnS +−=  (3-140)  

Where  

• N=5. This is the number of taps in the AR model. 

• L=3: This is the number of tap-gain processes being tracked. 

•  [ ]040900486005480059009086 .,.,.,.,. −−−−=φ  (3-141)  

•  20.120 =Π  (3-142) 

•  
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• Observation Equation:  

 )()()(
___

nvnSHnX +×=  (3-144) 

Where matrix identity  an  is : N)(NH ×  (3-145) 

• The Doppler bandwidth is Hz500f m =  

• The frame rate is : sec105 4 Frames/RF ×= . The simulation is run at the frame rate. 

• 8=M : The length of the training sequence. The channel is assumed to be invariant 

for these M  bits. 

• The signal to noise ratio of the channel, for 1=BE  is: 



 70

 dB
E

N
E

c

B

O

B 6
2 2 ==
σ  

 Thus 1256.2 =cσ  

• The power delay profile ]81.0,9.0,1[0314.0)(2
ws ×=l  (3-146) 

• The covariance of the plant noise is:  
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• The data estimator variance 0.0157s
2

2
V ==

M
cσ

. Here the assumption is made that the 

training sequence has an ideal thumbtack autocorrelation.
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Process Synthesis: 

 In the single process case, the process was synthesized from the Jakes filter. In the 

multiple tap case, we have to synthesize L processes with relative variances scaled by the 

power delay profile of the channel. 

We are given that the power delay profile ]81.0,9.0,1[0314.0)(2
ws ×=l . The 

processes are easily created, by scaling the input noise of the Jakes filter by the power 

delay profile. Thus the input noise variance for the Jakes filter is given by: 

 )()( 222 ll WoJakes σσ Π=  (3-149) 

Algorithm Implementation: 
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 The channel estimation algorithm utilizing the Vector Kalman filter changes very 

slightly for the multipath case: 

{ Initiallize: 

)Time:(n 1=  

• )()1( NNP ×=  identity. Assume initial predicted error covariance. 

• 

T

S
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












=

0......0
.

0......0
0......0

)1(̂  Assume initial prediction is an (NxL) zero matrix. 

• {Start Iteration: 

• Perform data based estimation, i.e. get X(n). 

• Calculate Kalman gain: 

 1])([)()( −+= RHnHPHnPnK TT  

• Calculate current estimate: 

 ]ˆ[ˆˆ (n)SX(n)-HK(n)(n)S(n)=S curr +   

• Calculate current error covariance: 

 [ ] )()()( nPHnKInPcurr −=  

• Predict ahead: 

 { }(n)S)=A(nS curr
ˆ1ˆ +  

• Predict the error covariance: 

 { } QAnPAnP T
curr +=+ )()1(    

• )nTime: (n 1+=  

End loop } 
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Results: 

 The multiple Jakes processes are tracked by a single Kalman filter. The figures 

below show the results of the simulation. 

Title:
/net/devnull/filez/users/rupul/research/data_kalman2/results3/jakesm/track1.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

 

Figure 3-12: Channel estimation of the first process 
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Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

 

Figure 3-13: Channel estimation of the second process 
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Figure 3-14: Channel estimation of the third process 

Error Covariance: 

 The error covariance matrices are defined as follows: 

The current error covariance is: 

 [ ][ ]{ }H
nSnSEP (n)Ŝ)((n)Ŝ)( currcurrcurr −−=  (3-150) 

Recalling the state-space formulation, we can expand the previous equation as: 
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We can then interpret the diagonal elements as follows: 
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where  ∑
l (n/n)

(l)MSE : the sum of the MSE of the current state's estimate on all  

  processes. 

 ∑
−l /n)(n
(l)MSE

1
: the MSE of the previous states estimate etc. on all  

  processes. 

Similarly, the prediction error covariance is defined as: 

 [ ][ ]{ }H
)(nS)S(n)(nS)S(nEP 1ˆ11ˆ1 +−++−+=  (3-153) 

We can then interpret the diagonal elements as follows: 
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where  ∑
+l nn
lMSE

)/1(
)( : the sum of the MSE of the predicted state estimate on all  

  processes. 

 ∑
l (n/n)

(l)MSE : the MSE of the current states estimate etc. on all  

  processes. 

 Finally the following are the steady state and simulated error covariances. The 

actual error covariances for the simulation were calculated by averaging the results over 

100 Monte Carlo runs.  
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1 2 3
0.0384 0.0351 0.0321 0.1056 0.1111
0.0112 0.0109 0.0106 0.0327 0.0321
0.0098 0.0097 0.0097 0.0292 0.0169
0.0105 0.0105 0.0105 0.0315 0.0122
0.0112 0.0111 0.0112 0.0335 0.0096

0.0112 0.0109 0.0106 0.0327 0.0321
0.0098 0.0097 0.0097 0.0292 0.0169
0.0105 0.0105 0.0105 0.0315 0.0122
0.0112 0.0111 0.0112 0.0335 0.0096
0.0117 0.0117 0.0117 0.0351 0.008

)ocess # (lPr

)(
SSCurrPdiag)(

SimCurrPdiag))(( lPdiag
SimCurr

))(( lPdiag Sim )( SimPdiag )( SSPdiag

 

The first three columns show the process by process error covariance for the 

current and the next state. These MSE are then added up in the fourth column to produce 

the simulated error covariance (prediction) and the current error covariance. We can see 

that the simulated performance is close to the expected performance. 

The goal of this channel estimation algorithm was to perform better than the data 

based estimate by using the underlying channel model. We have already proved that the 

Kalman filter based estimator does this for the single process case. We now analyze the 

results for the multiple tap case. 

• The data based estimate has a MSE of 0157.0s 2
V =  on each path. 

• Comparing this to the individual path MSE (i.e. )1,1)((
simcurrPdiag  for each path), the 

improvement is given by 2

2 )1,1)((

V

currV sim
Pdiag

σ
σ −

. 

• The improvement for each path is: 

• Path 1 improvement: %66.28100
0157.

0112.0157.)1,1)((
2

2

=×−=
−

V

currV sim
Pdiag

σ
σ

 

• Path 2 improvement: %57.30100
0157.

0109.0157. =×−
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• Path 3 improvement: %48.32100
0157.

0106.0157. =×−
 

We can see that there is an almost 30% gain in MSE performance compared to the 

data-only  estimator. The Kalman filter based estimator has accomplished this by 

utilizing the underlying channel model without increasing the length of the training 

sequence sent. 
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4 Conclusions 

The main contribution of this thesis is the development of a Kalman filter based 

channel estimation algorithm. We considered a multipath radio channel with a time 

varying impulse response. Training sequences are sent periodically to produce snapshot 

estimates of the channel. The performance of this data based estimator is dependent upon 

the length of the training sequence. Moreover we have estimates of the channel available 

only at the instants when the data estimate is available. The Kalman filter based channel 

estimator addressed both these issues. 

We assumed a Jakes model for the channel. This, in conjunction with the data 

estimator allowed us to formulate the Kalman algorithm. As a consequence of using the 

underlying channel model, we can now predict the state of the channel (with lesser 

accuracy of course) without having to wait for the data estimate to arrive. The Kalman 

estimator improved upon the performance of the data estimator by almost thirty percent 

on each path. Since the only way (assuming channel noise is not under the operators 

control) to increase the accuracy of the data estimate is to increase the length of the 

training sequence, the Kalman estimator provides an efficient technique of improving the 

channel estimate without wasting anymore bandwidth. In radio systems where bandwidth 

is prohibitively expensive or there is just no more room on the frame for any more 

training sequence information, the Kalman estimator solution becomes even more 

attractive. 
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5 Future Work 

The work presented in this thesis can be extended various ways including the 

following: 

• Use of multiple sampling rates[10] : In this thesis it is assumed that data estimates are 

available at the end of every frame. The channel is assumed to be a constant for the 

duration of this frame. The Kalman filter based estimator provides current estimates 

after processing the data based estimate and hence at the end of each frame received.  

We can increase the usefulness of the method presented in this thesis by 

running the Kalman filter at a higher rate than the frame rate. In the intervals that no 

data estimate has arrived, we can perform only the time-update portion of the Kalman 

filter. When data is received, we perform the measurement update portion of the 

Kalman algorithm. Estimates can then be made available on as fine a division of the 

time line as we desire. The second advantage is that the data arrival times need not be 

uniform. For a-periodically available data we merely perform time updates until a 

data estimate is received. 

• Different Models on each Path: In this thesis we have assumed that on each path, the 

underlying process model is the same. In case the model varies from path to path, the 

Kalman filter can still be used but with a few modifications. The system matrix will 

be as follows: 
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
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
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φφφ

...
....
.....

.

1

2322212

12111

 

with the system equation suitably modified. 

• Correlated paths: In this work, we have assumed that the multipaths are not 

correlated. Correlated multipaths can still be tracked using this Kalman algorithm but 

further work needs to be done to modify the Kalman filter to track correlated paths. A 
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good starting point is reference [11] where a Cholesky decomposition is used to 

generate correlated multipath waves. 

• Actual Implementation: This algorithm is very well suited for implementation on a 

live system. The discrete Kalman filter is well documented as a robust algorithm. It 

will be very interesting to compare the theoretical and actual performance of the 

algorithm.  
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