
University of Kansas

Sean B House
shouse@kualumni.org

Thesis Defense for the Degree of
Master of Science in Computer Engineering

Department of Electrical Engineering & Computer Science
University of Kansas

December 8, 2000

Proportional Time Emulation and 
Simulation of ATM Networks



University of Kansas

Agenda
• Overview & Motivation

• What is the problem?

• Related work
• What other solutions to the problem exist?

• Proportional Time Emulation and Simulation
• How did we choose to solve the problem?

• Evaluation of ProTEuS
• How well did we solve the problem?

• Conclusions and future work
• What improvements could be made to our solution?



University of Kansas

Overview & Motivation
• The problem is how to enable efficient simulations 

of large networks for long periods of simulated time
• Performance evaluation criteria

• Execution time
• Verity
• Scalability
• Accessibility

• Relevance of each varies with application
• Efficient network simulations justify specialized 

system support to improve simulation performance
• Fine-grained scheduling and embedded system support



University of Kansas

Overview & Motivation
• Sequential discrete event simulations 

• Don’t scale well with respect to size nor simulated time
• Faster single processors are not sufficient to offset scaling

• Parallel discrete event simulations
• Scale better in both dimensions
• Generally suffer performance deterioration when the 

application is fine-grained
– ATM network simulations are fine-grained, CPU bound 

computations
• Optimistic synchronization increases concurrency, but

– Permits temporal violation
– Requires significant overhead to detect and recover



University of Kansas

Overview & Motivation
• ProTEuS treats Linux workstations as embedded 

components of a distributed simulation
• KU Real-Time (KURT) controls synchronized distributed 

simulations of ATM networks
– Increases scheduling granularity
– Increases CPU utilization
– Simplifies synchronization of distributed entities

• Physical ATM network provides an essentially error-free, 
low-latency communication medium between hosts

• The methods employed by ProTEuS ATM network 
simulations are applicable to other synchronous 
distributed applications as well



University of Kansas

Sequential Discrete Event Simulation
• BONeS, OPNET, Extend, Ns/VINT…
• Scale poorly in network size and simulated time

• Limited to performance improvement of single processors
• Requires re-implementation of network algorithms

• Opportunity for error
• Encourages simplifying abstractions

– Simpler generally easier to create
– Simpler generally faster
– Simpler often less accurate

• Ns/VINT chooses abstraction over parallelization
• Some recent work by GA Tech PADS to parallelize Ns



University of Kansas

Parallel Discrete Event Simulation
• Fundamental rule of discrete event simulation

• Events must be executed in order of non-decreasing 
virtual time

– Sequential simulations utilize a single sorted event queue
– Parallel simulations need synchronization to enforce temporal 

causality amongst processors

• Conservative synchronization
– Events executed in virtual timestamp order without exception
– May unnecessarily impede the progress of a simulation

• Optimistic synchronization
– Events executed at time of arrival, perhaps resulting in violation
– Stragglers events must be detected and corrected through rollback



University of Kansas

Parallel Discrete Event Simulation
• GTW, WARPED, ParaSol, ParSEC…

• Based on Jefferson’s Time Warp principle
• Utilize optimistic concurrency control

– State-saving and rollback overhead dominate performance
• GTW arguably the most popular rendition of Time Warp

– Optimized for fine-grained applications
• ParaSol includes Ariadne user-level threading

– Increases simulation control over execution

• WARPED includes many Time Warp optimizations
– Cancellation (anti-messages and rollback)
– Check-pointing (state-saving)
– Message aggregation (communication overhead)



University of Kansas

Parallel Discrete Event Simulation
• Scalable Simulation Framework (SSF)

• Utilizes conservative concurrency control
– Boundary synchronization similar to ProTEuS

• Includes its own user-level pseudo-thread implementation
– Makes the scheduler simulation aware

• Requires re-implementation of network algorithms
• Encourages simplifying abstractions

• Improving performance can entail significant tuning
• Synchronization, state-saving, GVT update, etc.

• Favors shared memory multiprocessors
• NOWs are viable, but performance suffers



University of Kansas

ProTEuS
• Essentially configures a rack of Linux workstations 

as an embedded system
• Provides the ability to use real system code

– Virtual network devices localize virtual time line control
– E.g., requires modifying only the timer handling in TCP layer

• Real-time control (KURT)
• Fine-grained system-level scheduling control (UTIME)
• Real-Time scheduling synchronizes at primary level

– Application determines the sufficiency
– Simple secondary synchronization ensures correctness

• Global synchronization avoids state-saving and rollback



University of Kansas

ProTEuS
• Virtual Network Device layer

• Maps the simulated network onto the physical network
• Provides simulated network device functionality

– ATM Traffic shaping
– Segmentation and Re-assembly (SAR)

• Virtual ATM Software Switch
• Provides cell- and packet-level ATM switching
• Provides Available Bit Rate (ABR) congestion feedback

• NetSpec controls simulation execution
• Distributes jobs to simulation hosts and collects results



University of Kansas

ProTEuS



University of Kansas

ProTEuS

• Epoch is the fundamental unit of virtual time
• Represented proportionally by real-time period
• Computation: Receive, Produce, and Transmit messages
• Slack: Allows remote messages to arrive

• KURT coarsely synchronizes epoch execution
• Application semantics determine sufficiency
• Secondary synchronization protocol ensures correctness



University of Kansas

Challenges
• Scheduling jitter

• Linux bottom halves
• Interrupt service

– Especially for ProTEuS messages (multiplexing)
• Impact depends on epoch length

• Clock synchronization
• Epoch boundaries not synchronized in absolute time
• Rate of increment (frequency) not synchronized

• Application semantics may help offset
• Messages produced in epoch N are used in epoch N+?
• Application determines ?



University of Kansas

Virtual Network Devices
• Linux pseudo device driver (module)
• Kernel-level abstraction

• Creates a virtual device associated with a physical device
• Comprised of configurable layers

– SAR, PT, QoS, etc.
• To the protocol stack, it looks like a physical device
• To the physical device, it looks like a protocol

• Virtual device need not implement the same network 
medium as the physical device
• Virtual ATM over Ethernet
• Virtual ATM over ATM



University of Kansas

Virtual ATM Software Switch
• Linux pseudo device driver (module)
• Maps an incoming (Port, VC) to outgoing (Port, VC)
• Implements three output port queueing disciplines

• Per-class
• Per-VC
• Shared backlog

• ABR feedback provided by EPRCA or ERICA
• Operates in one of two modes

• Best-effort implemented as a Linux bottom half
• Periodic real-time service under KURT control



University of Kansas

Virtual Network Devices



University of Kansas

NetSpec
• Distributed network performance evaluation tool
• Block-oriented script describes an experiment

• Blocks describe jobs that are distributed to hosts
• Daemon processes on hosts perform jobs and report results

• Virtual Network Device Daemon (nsvdevd)
• Creates/configures virtual devices

– Including control of Proportional Time

• Virtual ATM Software Switch Daemon (nsvswitchd)
• Creates/configures switch ports &ATM VC routing entries

• Test daemon (nstestd)
• Sources/sinks ATM, UDP or TCP traffic



University of Kansas

ATM Network Simulation
• Virtual device layer maps a virtual ATM network 

onto a physical ATM network
• Mapping is extremely flexible – almost arbitrary

– IP loop back and (monolithic) software switch only restrictions

• Real-time scheduling imposes a correspondence 
between virtual time and real-time
• ATM cell time is the basic virtual time unit
• Real-time period depends on the load on the busiest host

• Multiplexing simulated network connections across 
physical network connections minimizes interrupts
• Number of interrupts strongly influences epoch time



University of Kansas

Evaluation
• Experimental setup

• BONeS – 300 MHz Sun UltraSPARC-II, 512 MB RAM
• GTW – 168 MHz 8-proc Sun UltraEnterprise, 1GB RAM
• ProTEuS – 200 MHz Intel x86, 128 MB RAM

• Properties of synchronous distributed applications
• Load balancing, slack time, delta values (synchronization 

tolerance), waiting for missing data, and bottom halves
• Faithfulness of ProTEuS for ATM simulation
• ProTEuS vs. GTW

• Scaling vs. network size and simulated time
• Scaling vs. round-trip time



University of Kansas

Distributed Synchronous Computation
• Generic distributed topology with a fixed 

computation component per element, per epoch
• Two distributions with a fixed number of total elements

– Balanced – roughly equal work per host, per epoch
– Unbalanced – most heavily loaded host has 2x work per epoch

• Two granularities of computation
– 25?s per element per epoch – aggressive fine-grained needs
– 200?s per element per epoch – coarse granularity, high utilization

• Epoch computation interval is ? of components
• Investigate the effects of load balancing, slack time 

choice, synchronization tolerance (?), waiting for 
missing data, and Linux bottom halves



University of Kansas

Distributed Synchronous Computation
• Balanced topology

• Unbalanced topology



University of Kansas

Load Balancing

• Balancing load achieves a smaller minimum execution time
• Occurs at a different number of missed epochs in each topology

• Missing a greater number of smaller epochs can reduce total 
execution time



University of Kansas

Load Balancing

• if ((? ET * N) > (? ME * ET)) ? Improvement
• ? ET: Change in epoch time, N: Total number of epochs, ? ME: 

Change in missed epochs, ET: New epoch time

• Network dependent minimum slack time required



University of Kansas

Slack Time

• Roughly 2% of epochs (21,084 out of 1,000,000) missed at a 
utilization of 40% and a granularity of 800? s
• Roughly 8% the granularity of standard Linux (10ms)
• Within the constraints of many synchronous distributed applications



University of Kansas

Slack Time

• Minimum slack time in the neighborhood of 150? s required
• Dependent on network latency and its associated variation 
• Dependent on the ISRs (frequency and associated length)
• Dependent on clock synchronization in absolute time



University of Kansas

Delta Values

• Allowing hosts to get out of synch by even a single epoch has 
profound effects on performance
• ?=1 reduces the number of missed epochs from 437,763 to 19,360 

(1/20) and decreases total execution time by nearly 30%



University of Kansas

Delta Values

• Masks some clock synchronization issues
• In network simulations, ProTEuS can utilize virtual network 

delay to raise ? values without affecting simulation results
• Data produced in epoch N is consumed in epoch N+delay



University of Kansas

Wait Time

• Give data a “second chance” to arrive
• Helps offset network delay variation and clock synchronization

• Waiting too long can cause execution to overlap into the next 
scheduled epoch and actually degrade performance



University of Kansas

Wait Time

• Generally beneficial to simulation performance
• Diminishing returns as wait time approaches the epoch length

• Although waiting appears to have beneficial effects on 
performance, no ProTEuS results herein utilize it



University of Kansas

Bottom Halves

• Not all results tabulated here – most occurrences < 50? s
• Two biggest culprits we essentially inactive

• SCSI bottom half
• Network bottom half (ATM does not use a bottom half)

• Latency between KURT 
timer interrupt and the actual 
start of the epoch over a 60 
second wall clock period

• Several hundred times per 
second latency approaches 
100? s
• Basically offsets the slack time 

of the epoch, causing epoch 
misses



University of Kansas

Faithfulness

• Compare verity of BONeS, GTW and ProTEuS
• Link utilization on links A and B
• Mean queueing delay on each ABR stream
• ABR queue length at the output port on the bottleneck
• ABR source rate for ABR source 1



University of Kansas

Link Utilization

• All three simulation platforms sufficiently close
• In general, lower RTT delay on RM cell feedback 

should produce higher link utilizations
• Utilization should decrease down the columns on Link A
• Utilization should increase down the columns on Link B
• Experiment 1 – Link A should have higher utilization
• Experiment 2 & 3 – Link B should have higher utilization

– Link B always exhibits higher utilization in BONeS

Link A Link B
Experiment BONeS GTW ProTEuS BONeS GTW ProTEuS

A: 5ms B: 20ms 0.495 0.502 0.503 0.505 0.498 0.499
A: 15ms B: 15ms 0.494 0.498 0.499 0.506 0.502 0.501
A: 20ms B: 5ms 0.493 0.498 0.499 0.507 0.502 0.501



University of Kansas

Mean Queueing Delay

• All three simulation platforms sufficiently close
• In general, lower RTT delay on RM cell feedback 

should produce lower mean queueing delays
• Delay should increase down the columns on ABR 1
• Delay should decrease down the columns on ABR 2
• Experiment 1 – ABR 1 should have lower delay
• Experiment 2 & 3 – ABR 2 should have lower delay

– Delay gap isn’t growing in both directions in BONeS experiments

ABR 1 (seconds) ABR 2 (seconds)
Experiment BONeS GTW ProTEuS BONeS GTW ProTEuS

A: 5ms B: 20ms 0.143 0.159 0.156 0.147 0.164 0.163
A: 15ms B: 15ms 0.149 0.165 0.163 0.148 0.161 0.160
A: 20ms B: 5ms 0.154 0.167 0.165 0.147 0.159 0.157



University of Kansas

ABR Queue Length

• Both GTW and ProTEuS produce very similar results
• Definite differences, but they are essentially insignificant

• Small differences around 1.5s and 5s, but
• Virtually indistinguishable during ramp-up and between 2s and 4s



University of Kansas

ABR Source Rate

• Very similar, largely indistinguishable, results
• Ramp-up period is particularly close
• Discrepancy between 4.5s and 6s certainly deserves due 

attention, but is not significant enough to conclude anything



University of Kansas

Scenario A



University of Kansas

Scenario A
• 6 switch, 40 host edge-core ATM network
• VBR and ABR traffic

• Uni-directional ABR
• Bi-directional ABR
• Uni-directional TCP over ABR
• Bi-directional TCP over ABR

• Fill the pipe at the bottleneck without causing congestion
• Serves to keep the event load high

• Use three virtual to physical mappings – 2, 4 & 6 processors
• VBR sources are 50% duty-cycle square waves
• ABR/TCP sources are greedy
• Run for 10 simulated seconds



University of Kansas

Scenario A

• ProTEuS is achieving essentially no speedup
• Depends on the virtual to physical mappings
• “Floor function” prevents the real-time period from getting any 

smaller, even though the computation interval of the epoch decreases



University of Kansas

Scenario A

• Doubling the load roughly doubles the GTW execution time
• ProTEuS takes only a marginal performance penalty

• TCP has a non-trivial impact on GTW, but not ProTEuS
• In GTW, TCP increases the state-saving overhead



University of Kansas

Scenario B



University of Kansas

Scenario B
• 16 switch, 120 host edge-core ATM network
• VBR and ABR/TCP traffic

• Same four traffic pattern scenarios
• Routing changes

– Edge networks are peered together
– Exchange traffic exclusively with their peer

• Traffic parameters (PCR, ICR, TCP window, etc.) changed to 
reflect the new topology
• Preserves high utilizations on bottleneck links

• Use three virtual to physical mappings –2, 4 & 6 processors
• ProTEuS utilizes a fourth mapping across 16 processors

• Run for 1 simulated second
• GTW unable to simulate all scenarios for a full ten seconds



University of Kansas

Scenario B

• ProTEuS now achieves scaling, even across 16 processors
• ProTEuS performing better the more heavily loaded it becomes

• GTW doubles its execution time when load doubles
• GTW performance tightly coupled to the event rate



University of Kansas

Scenario B

• Difficult to make heads-on comparisons in simulation time 
because of hardware differences

• In bi-directional cases, however, ProTEuS execution time is 
less than half of GTW across all mappings



University of Kansas

Scaling with Network Size

• Scenario A vs. Scenario B
• Scenario B is roughly 3 times larger than Scenario A

• 6 processor virtual to physical mapping only
• 10 simulated seconds (Scenario B originally 1 second)



University of Kansas

Scaling with Network Size

• Very clear that ProTEuS exhibits superior scaling tendencies 
for these models

• GTW unable to complete the 10 second bi-directional TCP 
experiment due to insufficient memory (1GB)



University of Kansas

Scaling with Simulated Time
• E.g., uni-directional ABR experiment

• 6 processor virtual to physical mapping

• From Scenario B results
• GTW: 1 second simulation = 298.47 seconds
• ProTEuS: 1 second simulation = 178.87 seconds

• From Network Size results
• GTW: 10 second simulation = 3520.28 seconds
• ProTEuS: 10 second simulation = 1754.40 seconds

• GTW scales super-linearly, ProTEuS scales linearly
• GTW execution time increases by a factor of nearly 12
• ProTEuS increases by slightly less than a factor of 10



University of Kansas

Scaling with Round-Trip Time

• Scenario A, 6 processor virtual to physical mapping 
• Vary the round-trip time on the network from 10ms to 400ms
• Simulation stops when a specified number of cells are sent by 

each ABR/TCP source



University of Kansas

Scaling with Round-Trip Time

• ABR scenarios show ProTEuS has little dependency on RTT, 
while GTW is clearly dependent 
• State-saving overhead increases

• It is the simulated system that depends on RTT, not ProTEuS



University of Kansas

Conclusions
• Efficient network simulations are an important 

application area
• Need to scale in network size and simulated time
• Faster single processors are not sufficient to offset scaling
• Current parallelization techniques are not entirely 

satisfactory, and suffer performance degradation in some 
applications, such as ATM network simulation

• Justify specialized system support to improve simulation 
performance when possible

• ProTEuS uses real-time and embedded system 
techniques to support parallel simulations executing 
in proportional time



University of Kansas

Conclusions
• NOW-based ProTEuS shows certain potential

• Able to produce results largely analogous (arguably 
identical) to those of a conventional discrete event 
simulation platform

• Compares favorably to SMMP based GTW and shows 
superior scaling tendencies in both network size and 
simulated time – at least for the applications herein

• Does so without the loss of generality or verity and 
without the prohibitive hardware costs of other systems

• Other application areas may benefit from the same 
Proportional Time approach to synchronous 
distributed computation



University of Kansas

Future Work
• Uncouple the ATM-specific implementation

• QoS layer for ATM traffic shaping and QoS
• PT layer for generic proportional time

• Improved control structure
• Dynamic adjustment of epoch lengths
• Dynamic simulation control (start, pause, stop, etc.)

• Low level master-slave clock synchronization
• Absolute time and frequency

• Creation of advanced tools for specifying and 
configuring large simulation models

• Code optimizations



University of Kansas

Future Work
• Take control of scheduling jitter

• KURT scheduling of Linux bottom halves
• Minimize interrupt service routine execution

• Application to other distributed applications
• Proportional Time simulation of IP networks
• Distributed virtual environments

• Virtualization of more of the system timeline
• Process run frequency and copy to/from user space

• ATM specific enhancements
• Supporting mismatched line rates
• ATM Software switch traffic policing


