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Abstract

This thesis proposes and studies novel modifications to the least mean squares (LMS) and

weighted recursive least squares (WRLS or weighted RLS) adaptive algorithms to estimate the

impulse response of a wireless communications channel blindly without the aid of a training or

probe sequence. Specifically, we use knowledge of receiver decision quality to weight the LMS

and WRLS estimators to increase their robustness to hard decision errors and channel noise. We

propose two classes of these decision weighted algorithms: 1) soft decision weighted, where

algorithm weights are a function of receiver soft decisions; and 2) ideal decision weighted,

where algorithm weights are a function of decision error knowledge. We compared the perfor-

mance of these decision weighted estimators to their non-weighted blind and non-blind coun-

terparts through simulations over free-space propagation three path (Rummler) and mobile

radio channel models. Our results show that the decision weighted LMS (DWLMS) has signifi-

cant advantages over ordinary LMS in environments with low signal-to-noise ratios (SNR) and

high symbol error rates (SER). The decision weighted recursive least squares, however, had

mixed results. The soft decision weighted RLS (SDWRLS) had poorer performance than other

WRLS algorithms, but the ideal decision weighted RLS (IDWRLS) had similar performance to

other WRLS. To improve the performance of the SDWRLS, we also propose and simulate mod-

ifications to its estimator update structure. These modifications allow the SDWRLS to perform

similar to the soft decision weighted LMS.
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Chapter 1

Introduction

1.1 What is an Adaptive Algorithm?

In its most general form, an adaptive algorithm is a procedure that changes its parameters

as it gains more knowledge of its possibly changing environment. Preferably the algorithm

will change its parameters in a fashion that optimizes some criteria such as the mean squared

difference between two given signals.

The simplest form of an adaptive algorithm is illustrated in Figure 1.1. In this system, a

human-being adjusts the parameters of an adjustable filter to try to minimize or maximum

some aspect of the system’s performance. In this manual approach the adaptive algorithm is

implemented in the person’s brain based on observations through their five senses. A more

automated approach is shown in Figure 1.2. In this configuration, a computer or signal pro-

cessor performs the adjustments based on an adaptive algorithm and a set of input signals.

This thesis describes two such classes of algorithms, least squares (LS) and least mean squares

(LMS), and modifications to them to provide better performance in the application of system

identification.

1.2 What is System Identification?

In its broadest definition, system identification is the characterization of the input-output rela-

tionship of a system. If the system is linear and time-invariant, the problem reduces to finding

the system’s impulse response, or equivalently, its transfer function. If this transfer function is

rational, i.e. it can be written as the ratio of two polynomials, then the problem becomes the

estimation of the polynomial coefficients.

1
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Figure 1.1: Illustration of a manual adaptive algorithm
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Figure 1.2: Illustration of an automatic adaptive algorithm
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Adaptive algorithms are commonly1 used to perform system identification ([34], pg. 7), [8],

([22], Ch. 9-10). Figure 1.3 illustrates how adaptive algorithms and adjustable filters are applied

to the problem of system identification. For this application, the reference signal is the input

to the system and the desired signal is the output of the system. The algorithm usually tries to

adjust the adaptive filter in such a way as to drive the mean squared error signal to zero. If this

mean squared error signal is zero, then the adjustable filter, whose parameters are completely

known, replicates the system in question whose parameters are unknown. In other words, the

parameters of the adjustable model or filter provide a good estimate of the parameters of the

unknown system.

w +

x(n) d(n)

e(n)

Reference
Signal

Desired
Signal

-

Error
Signal

Adaptive
Algorithm

Adjustable Filter

d(n)
^

(Accepts x(n), d(n),
d(n), and e(n) as input)

^

Channel

Figure 1.3: An adaptive filter applied to the problem of system identification

1.3 Benefits of Channel Estimation

The problem of system identification when applied to telecommunication media or channels

is often called channel estimation [40], [6], [3]. In general, more accurate knowledge of a com-

munication system’s environment leads to better performance. Specifically, RAKE receivers

[27] use knowledge of the channel impulse response to adapt a matched filter to the response

1Other system identification methods include sounding or cross-correlation techniques ([34], pg. 7), [39].
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of the pulse shaping filters and the channel. In addition, maximum likelihood sequence de-

tector receivers [25] rely on channel estimates to detect a sequence of symbols in such a way

as to minimize the probability of making an error. Furthermore, adaptive channel equalizers

use channel estimates to implement the inverse of the channel [23], [7], ([28], pg. 265). Other

benefits of channel estimation include the possibility of a communication system to adaptively

change its data rate or modulation scheme to reduce the intersymbol interference caused by

transmitting data too quickly through the band-limited channel.

1.4 Training Sequence Versus Blind Estimation

In most communication systems, considerable distances separate the transmitter and receiver;

therefore, the estimator at the receiver does not have practical access to the transmitted signal

that enters the channel. Blind algorithms are those that do not rely upon this knowledge of

the transmitted signal. A popular class of blind algorithms are decision directed or decision

feedback algorithms. These algorithms rely upon the demodulated and detected sequence

at the receiver to reconstruct the transmitted signal. Unlike in Figure 1.3, they then use this

reconstructed signal as if it were the actual transmitted signal. An obvious downfall of these

methods is that a decision or bit error at the receiver will cause the construction of an incorrect

transmitted signal. In the case of channel estimation, this decision error will introduce a bias

in the channel estimate, making it less accurate. In this thesis, we propose modifications to

standard adaptive algorithms to make them less susceptible to these decision errors.

Although the receiver might not have direct access to the transmitted signal, if the transmit-

ter periodically sends a known training or probe sequence, the receiver can use this training

sequence to reconstruct the transmitted waveform. While this method will produce more ac-

curate estimates of the channel during the training interval, these estimates become out of date

between these intervals, unlike the continually updated estimates of the blind techniques. An-

other drawback of training sequence methods is that the training sequence occupies valuable

bandwidth, reducing the throughput of the communication system. For example, training se-

quences account for 22% of GSM’s [6] and 9% of IS-54’s [11] total bandwidth.

1.5 Thesis Overview

This thesis is structured as follows. Chapter 2 describes the theoretical development of the

channel estimation problem. It starts by formulating the general channel estimation problem

4



then proceeds to describe multiple phase shift keying (MPSK), the modulation technique used

in later simulations. We then characterize wireless communication channels as linear systems.

The next section provides background on representing real bandpass systems as complex low-

pass systems using Hilbert transformation techniques. Next, we explore properties of two

popular adaptive algorithms, linear estimators and least mean squares (LMS) estimators. We

consider both training and decision directed applications, making modifications to the deci-

sion directed techniques to reduce their susceptibility to decision errors and noise. Chapter 3

describes the methodology used to simulate the algorithms described in Chapter 2. Chapter 4

presents the results of the simulations, and Chapter 5 discusses each algorithm’s performance.
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Chapter 2

Theoretical Development

This chapter develops the theory necessary to understand the channel estimation problem. It

starts by formulating the problem of channel estimation, then proceeds to describe multiple

phase shift keying (MPSK) modulation. Next, we show how to model a wireless channel as a

transversal or tap-delay line filter. We then describe how to model a real bandpass channel as

a complex low-pass channel, a conversion that greatly eases simulation. Finally, we introduce

linear and least mean squares estimators and derive some of their properties.

2.1 Problem Formulation

A conceptual block diagram illustrating the wireless communication channel estimation is

shown in Figure 2.1. A symbol source generates symbols (information) that pass through a

modulator to produce the transmitted signal. The transmitted signal passes through the chan-

nel where it becomes distorted and corrupted with noise. The demodulator reduces the re-

ceived signal to a single sample for each symbol interval. Based on this sample, the decision

block decides which symbol the transmitter sent. The symbols then flow into the symbol sink,

a symbolic representation of the remaining information path.

The goal of the estimator blocks is to estimate the impulse response of the channel. The

training sequence estimator has the luxury of knowing the transmitted signal while the deci-

sion directed estimator must reconstruct it from the detected symbols (hard decisions). The

decision weighted estimator is a special case of the decision directed estimator. In its non-

realizable ideal form, decision weighted estimators use knowledge of decision errors to reduce

their vulnerability to these errors. In its implementable form, they rely upon soft decision in-

formation to reduce this vulnerability.
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Modulator
Symbol
Source

Channel Demod

Decision
Directed
Estimator

Training
Sequence
Estimator

Channel Estimate

Channel Estimate

Symbol
Sink

Modulator

Tx Symbols

Tx Signal

Rx Signal

Rx  Symbols (Hard Decisions)

Reconstructed Tx Signal

Decision

Soft Decisions

Figure 2.1: Conceptual block diagram of the wireless communication channel estimation prob-
lem
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2.2 Multiple Phase Shift Keying (MPSK)

Although estimation algorithms are not inherently dependent upon the modulation scheme,

we will consider multiple phase shift keying (MPSK) modulation for implementation and sim-

ulation purposes. This section provides an overview of MPSK modulation and demodulation

techniques ([33],pp. 142-144).

2.2.1 Modulation

An MPSK modulator takes a symbol i 2 f1; � � � ;Mg where M is the number of possible sym-

bols and produces the signalling waveform during its symbol interval

si(t) =

r
2E

T
cos

�
2�fct+

2�i

M

�
for 0 � t < T (2.1)

where T is the symbol interval duration, E is the energy of si(t) over the symbol interval, and

fc is the carrier frequency.

We can rewrite 2.1 as

si(t) =

r
2E

T
cos

�
2�i

M

�
cos (2�fct)�

r
2E

T
sin

�
2�i

M

�
sin (2�fct)

= ai1 1(t) + ai2 2(t) (2.2)

where

 1(t) =

r
2

T
cos (2�fct) (2.3)

 2(t) = �
r

2

T
sin (2�fct) (2.4)

ai1 =
p
E cos (�i) (2.5)

ai2 =
p
E sin (�i) (2.6)

�i =
2�i

M
(2.7)

We make the following remarks about MPSK modulation based on its signalling waveform

when T is an integer multiple of 1=2fc, or in practice when T � 1=2fc.

Remark 2.1 The signals  1(t) and  2(t) have unit energy.
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Proof.

Z T

0

 21(t)dt =
2

T

Z T

0

1

2
(1 + cos (2�2fct)) dt

= 1 +
1

T

Z T

0

cos (2�2fct) dt

� 1

Similarly,

Z T

0

 22(t)dt � 1

Remark 2.2 (Orthogonality) The signals  1(t) and  2(t) are orthogonal.

Proof.

Z T

0

 1(t) 2(t)dt = � 2

T

Z T

0

cos (2�fct) sin (2�fct) dt

= � 1

T

Z T

0

sin (2�2fct) dt

� 0

Remark 2.3 (Orthonormal Basis) From the previous two remarks and (2.2),  1(t) and  2(t)

form an orthonormal basis for the signal space fsi(t) j i = 1; � � � ;M ; 0 � t < Tg.

Figure 2.2 shows (2.2) in a block diagram implementation. The function of the baseband

MPSK modulator block is to calculate (2.5) and (2.6) for each symbol.

2.2.2 Coherent Demodulation

Because  1(t) and  2(t) form an orthonormal basis for the signaling set, performing an inner

product with the modulated signal si(t) and  j(t) yields the jth coordinate, aij , for symbol i.

Figure 2.3 shows this geometric interpretation of MPSK modulation and demodulation. Notice

that the angle �i is nothing more than the arctan(ai2=ai1). Using this observation, an MPSK

demodulator can be implemented as shown in Figure 2.4 ([33],pg. 144). The demodulation

process begins with inner product of each basis function with the received signal ri(t). The
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i

MPSK
Baseband
Modulator

X

X

+

~

~
ϕ (t)1

ϕ (t)2

a i1

ai2

s(t)i

Figure 2.2: Block diagram of an MPSK modulator

angle of the resulting coordinate �i is then computed and compared to the known set of possible

signal coordinate angles f�iji = 1; � � � ;Mg. The receiver then chooses the symbol i whose

coordinate is angularly closest to the received angle �i.

2.3 Characterizing Wireless Communication Channels

In its most general definition the channel represents everything between the information source

and sink. Because the designer of a wireless communication system usually specifies most of

its elements between the source and sink, with the exception of the free-space medium, we will

restrict our definition of channel to this free-space medium. A number of models have been

proposed to account for free-space effects [31], [32], [30], [17]. These models try to emulate the

most severe distortion caused by wireless channels, which is multipath distortion. For a more

complete description of modeling communication channels please refer to ([18],pp. 362-386).

As seen in Figure 2.5, several paths can exist between the transmitter and receiver of a wire-

less communication system. These paths are caused by the reflections, refractions, and scat-

tering of the electromagnetic waves carrying the information off of objects such as buildings,

trees, ground, atmospheric layers, etc. These multiple paths create the multipath phenomenon,

characterized further by a combination of two types of multipath, specular and diffuse.
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ϕ (t)1

ϕ (t)2

ai1

ai2

s(t)i

φ
i

Figure 2.3: Geometric interpretation of MPSK signalling

X
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~
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T

0
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Choose
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Compute
| φ − θ |

i i

X

Y

θir (t)i Detected
Symbol

Figure 2.4: Block diagram of an MPSK demodulator
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Transmitter Receiver

path n

path 3

path 2

path 1

path 0 (line-of-sight)

...

Figure 2.5: The wireless channel multipath phenomenon

2.3.1 Specular Multipath

When the paths between the transmitter and receiver are discrete, each with its own attenua-

tion and time delay, the multipath is called specular. The signal at the receiver, y(t), can then

be modeled as the summation of scaled and delayed versions of the transmitted signal, s(t),

written

y(t) =
X
n

�n(t)s(t� �n(t)) (2.8)

where �n(t) and �n(t) are time-varying attenuations and delays for each discrete path. Because

of its form in (2.8), discrete multipath is naturally represented as a tapped delay line with time-

varying coefficients and possibly time-varying tap spacings.

The differential delay (or delay spread) is defined as the difference between the largest and

smallest path delays. If the differential delay of the channel is on the order of the reciprocal of

the information bandwidth, then frequency selective fading of the information signal is notice-

able. Frequency selective fading manifests itself in the time domain as intersymbol interference,

or the “bleeding” of previous symbol interval energy into the current symbol interval.
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2.3.2 Diffuse Multipath

When the paths between the transmitter and receiver form a continuum, the multipath is called

diffuse. In this case, the received signal y(t) is related to the transmitted signal s(t) by

y(t) =

Z +1

�1

�(� ; t)s(t � �)d� (2.9)

where �(� ; t) is the channel response at time t to an impulse transmitted at time � . Under

widesense stationary uncorrelated scattering (WSSUS) assumptions [2], the delay cross-power

spectral density is defined as

Rc(� ; �t) =
1

2
E
neh�(�; t)eh(�; t+�t)

o
(2.10)

where � denotes complex conjugation and

eh(�; t) = �(� ; t)e�j2�fc� (2.11)

is the low-pass time variant impulse response of the channel. Evaluating Rc(� ; �t) at �t = 0

yields the delay power spectrum or multipath intensity profile,Rc(�) = Rc(� ; 0). The range of �

for which Rc(�) is approximately non-zero is called the multipath delay spread. The scattering

function, S(�; v), is defined as the Fourier transform of Rc(� ; �t) with respect to �t.

S(�; v) =

Z +1

�1

Rc(� ; �t)e
�j2�v�td(�t) (2.12)

Although represented here as a time-varying phenomenon, if the bandwidth of the scattering

function for each delay � is small with respect to the reciprocal of the symbol interval duration,

the channel can be modeled as a linear time-invariant (LTI) system for that duration.

If we assume that the signal is band-limited, then using results from [19], the time-varying

diffuse multipath channel can be described as a tapped-delay line with time-varying coeffi-

cients and fixed tap spacings ([18], pg. 376). We can then express the low-pass complex enve-

lope of the output signal as

ey(t) =X
m

1

W
eh�m

W
; t
�es�t� m

W

�
(2.13)

where W is the bandwidth of the input signal and es(t) is the low-pass complex envelope of

the transmitted signal. The number of taps in the delay line is ceil(TmW ) + 1, where Tm is the
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multipath delay spread ([18], pg. 377), ([25], pg. 137).

2.4 Conversion of Real Bandpass Signals and Systems to Com-

plex Low-Pass Signals and Systems

For simulation purposes, complex low-pass systems are preferable to real bandpass systems

because they are easier to sample. The purpose of this section is to convert a real bandpass

system into a complex low-pass system. Consider a carrier modulated signal x(t) with slowly

varying amplitude r(t) and phase �(t) described by

x(t) = r(t) cos (2�fct+ �(t))

= Re
n
r(t)ej�(t)ej2�fct

o

= Re
�
v(t)ej2�fct

	

where Refzg denotes the real part of z and

v(t) = r(t)ej�(t)

The complex low-pass signal v(t) is often called the complex low-pass equivalent or complex

envelope of the signal x(t). If the bandwidth of x(t) is less than or equal to the carrier frequency

then we will show via Hilbert transformation techniques an equivalent relationship between

bandpass filtering x(t) and low-pass filtering v(t) ([18], pp. 36-45).

Definition 2.4 (Hilbert Transform) The Hilbert transform, denoted by bx(t), of a signal x(t) is

defined by the relationship

bx(t) = Hfx(t)g = �jF�1 fX(f)sgn(f)g

where X(f) is the Fourier transform of x(t), sgn(f) is the signum function, and F�1 is the

inverse Fourier transform operator.

Definition 2.5 (Preenvelope) Define the preenvelope or analytic signal of x(t) as

zx(t) = x(t) + jbx(t)

Denote the the Fourier transform of zx(t) as Zx(f).
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Definition 2.6 (Complex Envelope) Define the complex envelope of a signal x(t) as

ex(t) = zx(t)e
�j2�fct

Remark 2.7 Notice the relationship between x(t), zx(t), and ex(t) when x(t) is real.

x(t) = Re fzx(t)g (2.14)

= Re
�ex(t)ej2�fct	 (2.15)

Lemma 2.8 (Preenvelope of an Amplitude and Phase Modulated Signal) Let x(t) be an am-

plitude and phase modulated signal described by

x(t) = p(t) cos (2�fct)� q(t) sin (2�fct)

where p(t) and q(t) are low-pass signals with absolute bandwidths less than or equal to fc.

Then the preenvelope of x(t) is

zx(t) = [p(t) + jq(t)]ej2�fct

Proof. Denote the Fourier transforms of p(t) and q(t) as P (f) and Q(f), respectively. Then

bX(f) = �jX(f)sgn(f)

= �j
�
1

2
[P (f � fc) + P (f + fc)]� 1

2j
[Q(f � fc)�Q(f + fc)]

�
sgn(f)

= �j
�
1

2
[P (f � fc)� P (f + fc)]� 1

2j
[Q(f � fc) +Q(f + fc)]

�

=
1

2j
[P (f � fc)� P (f + fc)] +

1

2
[Q(f � fc) +Q(f + fc)]

Taking the inverse Fourier transform yields

bx(t) = p(t) sin (2�fct) + q(t) cos (2�fct)
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Hence,

zx(t) = x(t) + jbx(t)
= p(t) cos (2�fct)� q(t) sin (2�fct) + jp(t) sin (2�fct) + jq(t) cos (2�fct)

= p(t) cos (2�fct) + jp(t) sin (2�fct) + j (q(t) cos (2�fct) + jq(t) sin (2�fct))

= (p(t) + jq(t)) ej2�fct

Lemma 2.9 (Fourier Transform of the Preenvelope) Let zx(t) be the preenvelope of x(t) with

respective Fourier transforms Zx(f) and X(f). Then

Zx(f) = 2X(f)u(f)

where u(f) is the unit step function.

Proof. Denote the Fourier transform of bx(t) as bX(f). Then

Zx(f) = X(f) + j bX(f)

= X(f) +X(f)sgn(f)

= 2X(f)u(f)

where we have used

jF fbx(t)g = X(f)sgn(f)

and

2u(f) = 1 + sgn(f)

Theorem 2.10 (Preenvelope Convolution) Let zh(t) and zx(t) be the preenvelopes of signals

h(t) and x(t), respectively. If

y(t) =

Z +1

�1

h(t� �)x(�)d�
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then

zy(t) =
1

2

Z +1

�1

zh(t� �)zx(�)d�

where zy(t) is the preenvelope of y(t).

Proof. From Lemma 2.9 write

Zx(f) = 2X(f)u(f)

Zh(f) = 2H(f)u(f)

Zy(f) = 2Y (f)u(f)

Because

Y (f) = H(f)X(f)

we can write

2Y (f)u(f) =
1

2
(2H(f)u(f)) (2X(f)u(f))

Hence,

Zy(f) =
1

2
Zh(f)Zx(f)

Taking the inverse Fourier transform gives the desired result.

Corollary 2.11 (Complex Envelope Convolution) Let h(t) be the impulse response of a band-

pass LTI system centered at fc. Then passing x(t) through this system yields y(t) with a com-

plex envelope given by

ey(t) =
Z +1

�1

eh(t� �)ex(�)d�
where ex(t) is the complex envelope of x(t) and eh(t) is the complex envelope of h(t) scaled by

one-half.
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Proof. From Theorem 2.10 write

zy(t) =
1

2

Z +1

�1

zh(t� �)zx(�)d�

=

Z +1

�1

eh(t� �)ej2�fc(t��)ex(�)ej2�fc�d�
= ej2�fct

Z +1

�1

eh(t� �)ex(�)d�

Hence

ey(t) = zy(t)e
�j2�fct =

Z +1

�1

eh(t� �)ex(�)d�

Corollary 2.12 (Amplitude and Phase Modulated Signal Through a Bandpass System) Passing

an amplitude and phase modulated signal x(t), described by

x(t) = p(t) cos (2�fct)� q(t) sin (2�fct)

where the absolute bandwidths of q(t) and p(t) are less than or equal to fc, through a bandpass

LTI system with impulse response h(t) produces an output y(t) whose complex envelope is

ey(t) = Re
neh(t)o
 p(t)� Im

neh(t)o
 q(t) + j
�
Im

neh(t)o
 p(t) +Re
neh(t)o
 q(t)

�

where ex(t) is the complex envelope of x(t), eh(t) is the complex envelope of h(t) scaled by one-

half, and 
 denotes the convolution operation.

Proof. From Lemma 2.8 and Definition 2.6 we have

ex(t) = p(t) + jq(t)

Applying Corollary 2.11 gives

ey(t) = eh(t)
 ex(t)
=

�
Re

neh(t)o + jIm
neh(t)o�
 (p(t) + jq(t))

= Re
neh(t)o
 p(t)� Im

neh(t)o
 q(t) + j
�
Im

neh(t)o 
 p(t) +Re
neh(t)o
 q(t)

�

18



Remark 2.13 (Low-Pass MPSK Modulation and Demodulation) Applying Lemma 2.8 to the

MPSK signalling waveform in (2.1) yields the complex envelope

esi(t) =
r

2E

T
cos

�
2�i

M

�
+ j

r
2E

T
sin

�
2�i

M

�

Furthermore, the mixing stage of the MPSK demodulator is built into the bandpass to low-pass

conversion process. Notice that the output of the top integrator in Figure 2.2 when T � 1=fc

is

X =

r
2

T

Z +1

�1

r(t) cos (2�fct) dt

=

r
2

T

Z +1

�1

Re
�er(t)ej2�fct	 cos (2�fct) dt

=

r
1

2T

Z +1

�1

Re
�er(t)ej2�fct �ej2�fct + e�j2�fct

�	
dt

=

r
1

2T

Z +1

�1

Re fer(t)g dt+
r

1

2T

Z +1

�1

Re
�er(t)ej2�2fct	 dt

�
r

1

2T

Z +1

�1

Re fer(t)g dt

Similarly,

Y �
r

1

2T

Z +1

�1

Im fer(t)g dt

Thus, when simulating a baseband MPSK system (or in general, a quadrature multiplexing

system) the real component of the received complex envelope is the in-phase component of the

received signal and the imaginary component is the quadrature component.

2.5 Adaptive Algorithms

We will consider two classes of adaptive algorithms for the purpose of estimating the impulse

response of the channel: linear estimators and least mean squares (LMS) estimators.
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2.5.1 Linear Estimators

2.5.1.1 Training Sequence Estimation

2.5.1.1.1 The System Identification Problem When the receiver has access to the transmit-

ted signal, or when the receiver and transmitter prenegotiate a training sequence, the estima-

tion of the channel is the classical system identification problem ([22],pp. 169-228),[8]. A block

diagram of this problem’s structure is shown in Figure 2.6.

b

β

+

+

u(n)

w(n)

e(n)

y(n)

Unknown System

Model

-y(n)^

Figure 2.6: A block diagram of the training sequence system identification problem

From Figure 2.6 define the following relationships:

y(n) = b1u1(n) + � � �+ bMuM (n) + w(n) (2.16)

by(n) = �1u1(n) + � � �+ �MuM (n) (2.17)

e(n) = y(n)� by(n) = y(n)� (�1u1(n) + � � �+ �MuM (n)) (2.18)

where ui(n) , i = 1; : : : ;M are real-valued discrete-time random processes, b1; � � � ; bM ; �1; � � � ; �M 2
R where R is the set of real numbers, M is a positive integer, and w(n) is a mean zero real-

valued discrete-time random process. After observing the system for N sample periods we can

20



write the collected data in matrix form as

y =
h
y(1) y(2) � � � y(N)

iT
(2.19)

w =
h
w(1) w(2) � � � w(N)

iT
(2.20)

e =
h
e(1) e(2) � � � e(N)

iT
(2.21)

b =
h
b1 b2 � � � bM

iT
(2.22)

� =
h
�1 �2 � � � �M

iT
(2.23)

U =

2
6664

u1(1) � � � uM (1)

...
. . .

...

u1(N) � � � uM (N)

3
7775 (2.24)

with

y = Ub+w (2.25)

e = y �U� (2.26)

where T is the matrix transpose operator. Define the error or loss function J(�) as

J(�) = eTRe = (y �U�)TR (y �U�) (2.27)

where R is a positive definite symetric N x N matrix of weighting coefficients, possibly func-

tions of U. The choice of R depends on the desired application and estimator properties. For

example, when

� R = diag(a1; � � � ; aN ) 1 with ai 2 R; i = 1 : : :N then (2.27) is the loss function for

weighted least squares estimators [4], [12]

� R = diag(�N�1; � � � ; �; 1) where 0 < � < 1, then (2.27) is the loss function for exponen-

tially weighted least squares estimators ([34], pp. 96-98)

� R = I then (2.27) is the loss function for ordinary least squares estimators ([22], pg. 189)

� R =W�1 where W = E �wwT	 is the covariance of the noise process, then (2.27) is the

loss function for Markov estimators ([8], pg. 189)

1diag(a1; � � � ; aN ) is defined as an N x N matrix whose diagonal elements are a1; � � � ; aN
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2.5.1.1.2 Estimator Derivation We now derive the general form for linear estimators.

Theorem 2.14 (Training Sequence Linear Estimator) The estimator b� of the system defined by

(2.16) to (2.26) that minimizes the loss function (2.27) satisfies the so-called “normal” equation

UTRUb� = UTRy

and if UTRU is non-singular then

b� =
�
UTRU

��1
UTRy

Proof. Simplify (2.27) to get

J(�) = (y �U�)TR (y �U�)
= yTRy� yTRU� � �TUTRy + �TUTRU�

= yTRy� 2�TUTRy + �TUTRU�

Differentiating with respect to � yields

@J(�)

@�
= �2UTRy+ 2UTRU� (2.28)

For some vector b� we set this gradient equal to zero, leading to an expression for b� at which an

extremum of J occurs.

UTRUb� = UTRy (2.29)

Because R is positive definite, the extremum at b� is a minimum. IfUTRU is non-singular then

b� =
�
UTRU

��1
UTRy (2.30)

Recall that forR = diag(a1; � � � ; aN ) the estimator (2.30) is the weighted least squares (WLS)

estimator, and for R = diag(�N�1; � � � ; �; 1) where 0 < � < 1 it is an exponentially weighted

least squares estimator (EWLS). The form for these estimators in (2.30) is not desirable for

implementation because it requires the storage of all the past data of the system. We will now

derive a recursive form for these estimators that is suitable for digital implementation. For
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further analysis of the WLS estimator refer to [12] and [4], and for the EWLS refer to ([22], pg.

191) and ([34],pp. 96-98).

Corollary 2.15 (Recursive Weighted Least Squares Estimator) Let

u(n) =
h
u1(n) u2(n) � � � uM (n)

iT

and

R =

2
66666666664

�N�1a1 0 � � � 0

0 �N�2a2
...

...
. . .

0 �aN�1 0

0 � � � 0 aN

3
77777777775

where ai 2 R and 0 < � � 1 such that R is positive definite. If UTRU is non-singular, then

(2.30) is valid and can be written recursively1 as

b�n = b�n�1 + anH
�1
n u(n)e(n) (2.31)

Hn = �Hn�1 + anu(n)u
T (n) (2.32)

e(n) = y(n)� u(n)T b�n�1 (2.33)

Proof. With

u(n) =
h
u1(n) u2(n) � � � uM (n)

iT
(2.34)

U becomes

U =

2
6664
uT(1)

...

uT(N)

3
7775 (2.35)

1Applying the matrix inversion lemma can further reduce computational complexity by eliminating the matrix
inverse ([22], pp. 190-191), ([34], pg. 98).
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For R = diag(�N�1a1; � � � ; �aN�1; aN), define Hn to be the product UTRU after collecting n

intervals of data (i.e. N = n). Expanding this product yields

Hn =
h
u(1) � � �u(n)

i

2
66666664

�n�1a1 0 � � � 0

0 �n�2a2
...

...
. . . 0

0 � � � 0 an

3
77777775

2
6664
uT (1)

...

uT (n)

3
7775

=
h
�n�1a1u(1) � � � anu(n)

i
2
6664
uT (1)

...

uT (n)

3
7775

=

nX
k=1

�n�kaku(k)u
T (k)

= anu(n)u
T (n) + �

n�1X
k=1

�n�1�kaku(k)u
T (k)

= anu(n)u
T (n) + �Hn�1 (2.36)

Similarly, define sn to be the product of UTRy after collecting n intervals of data (i.e. N = n).

Expanding this product yields

sn =
h
u(1) � � �u(n)

i

2
66666664

�n�1a1 0 � � � 0

0 �n�2a2
...

...
. . . 0

0 � � � 0 an

3
77777775

2
6664
y(1)

...

y(n)

3
7775

=
h
�n�1a1u(1) � � � anu(n)

i
2
6664
y(1)

...

y(n)

3
7775

=

nX
k=1

�n�kaku(k)y(k)

= anu(n)y(n) + �

n�1X
k=1

�n�1�kaku(k)y(k)

= anu(n)y(n) + �sn�1 (2.37)
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Hence, we can write (2.30) after collecting n intervals of data as

b�n = H�1
n sn (2.38)

and (2.29) as

Hn
b�n = sn (2.39)

From (2.36), (2.37), (2.38), and (2.39) we derive a recursive form of the WLS estimator.

b�n = H�1
n sn

= H�1
n (anu(n)y(n) + �sn�1)

= H�1
n

�
anu(n)y(n) + �Hn�1

b�n�1
�

= anH
�1
n u(n)y(n) +H�1

n �Hn�1
b�n�1

= anH
�1
n u(n)y(n) +H�1

n

�
Hn � anu(n)u

T (n)
� b�n�1

= b�n�1 + anH
�1
n u(n)

�
y(n)� u(n)T b�n�1

�

= b�n�1 + anH
�1
n u(n)e(n)

where

e(n) = y(n)� u(n)T b�n�1

2.5.1.1.3 Properties of Training Sequence Linear Estimators We will now derive several

properties of linear estimators. ([8], pp. 185-190)

Definition 2.16 (Linearity) An estimator b� is linear if for some matrix Q

b� = Qy

Proposition 2.17 (Linearity of Linear Estimators) As the name suggests, linear estimators are

linear because they fit the form

b� = Qy (2.40)
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where Q in this case is

Q =
�
UTRU

��1
UTR (2.41)

Definition 2.18 (Unbiasness) An estimator b� is unbiased if its expectation equals the true pa-

rameter, i.e.

E
nb�o = b

Notation 2.19 Denote the joint probability density function of the three stochastic processes

y(n), u(n), and w(n) as p. This distribution is a function of the true parameter b. Denote the

expectation with respect to p as E .

Proposition 2.20 (Unbiasness of Training Sequence Linear Estimators) If

E fwjUg = 0 (2.42)

then

E
nb�o = b (2.43)

Proof. Substitute (2.25) into (2.30) and simplify to get

b� =
�
UTRU

��1
UTR (Ub+w)

= b+
�
UTRU

��1
UTRw

Taking the expectation conditioned upon U gives

E
nb� j Uo = b+ E

n�
UTRU

��1
UTRw j U

o

= b+
�
UTRU

��1
UTRE fw j Ug

= b

Again taking the expectation yields

E
nb�o = E

n
E
nb� j Uoo

= b
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Proposition 2.21 (Covariance of Linear Unbiased Estimators) If

E fwjUg = 0

Then the covariance of (2.30) is

cov
nb�o = E

��b� � E nb�o��b� � E nb�o�T
�

(2.44)

= E �QWQT
	

(2.45)

where

Q =
�
UTRU

��1
UTR (2.46)

W = E �wwT j U	 (2.47)

Proof. Simplify the argument of the covariance expression to get

�b� � E nb�o��b� � E nb�o�T =
�b� � E nb�o��b� � E nb�o�T

=
�
Qy � E

nb�o��Qy � E nb�o�T

=
��
QUb� E

nb�o�+Qw
���

QUb� E
nb�o�+Qw

�T

=
�
QUb� E

nb�o��QUb� E nb�o�T

+
�
QUb� E

nb�o� (Qw)
T

+Qw
�
QUb� E

nb�o�T

+Qw (Qw)
T

Taking the conditional expectation upon U gives

E
��b� � E nb�o��b� � E nb�o�T j U

�
=

�
QUb� E

nb�o��QUb� E nb�o�T

+QWQT
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Again taking the expectation yields

E
��b� � E nb�o��b� � E nb�o�T

�
= E

�
E
��b� � E nb�o��b� � E nb�o�T j U

��

= E
��
QUb� E

nb�o��QUb� E nb�o�T
�

+E �QWQT
	

(2.48)

Substituting (2.46) and (2.43) gives

E
��b� � E nb�o��b� � E nb�o�T

�
= E

���
UTRU

��1
UTRUb� b

���
UTRU

��1
UTRUb� b

�T�

+E �QWQT
	

(2.49)

= E �QWQT
	

(2.50)

Definition 2.22 (Consistency) An estimator b� is consistent if it converges in probability to the

true parameter, i.e.

lim
n!+1

Pr
n
jb�n � bj � �

o
= 0

Proposition 2.23 (Consistency of the Markov Estimators) If R =W�1 where

W = E �wwT j U	

then the estimator (2.30) is a Markov estimator. If

E fwjUg = 0

then the Markov estimator is a consistent estimator.

Proof. By substituting R =W�1 into (2.45) we get

cov
nb�o = E

��
UTW�1U

��1
UTW�1W

��
UTW�1U

��1
UTW�1

�T�

= E
n�
UTW�1U

��1
UTW�1U

��
UTW�1U

��1�o

=
�E �UTW�1U

	��1
(2.51)

Eykhoff shows in ([8], pg. 189) that if limN!+1

PN
n=1 Efu(n)Tu(n)g =1 then by Chebyshev’s

inequality, the Markov estimator converges in probability to the true parameter.
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Definition 2.24 (Efficiency) An estimator b� is efficient if for any other linear estimator b�

cov
nb�o � covnb�o

Proposition 2.25 (Efficiency of the Markov Estimators) If R =W�1 where

W = E �wwT j U	

then the estimator (2.30) is a Markov estimator. If

E fwjUg = 0

then the Markov estimator is an efficient estimator.

Proof. Eykhoff shows in ([8], pg. 190) the efficiency of the Markov estimator using Schwarz’s in-

equality for matrices.

Remark 2.26 Notice that the least squares estimate is a special case of the Markov estimate

when the noise is white. Hence, the least squares estimate is consistent and efficient in white

noise environments. ([8], pg. 190)

2.5.1.2 Decision Directed Estimation

2.5.1.2.1 The System Identification Problem When the receiver does not have knowledge

of the transmitted signal, it must use blind estimation. If it uses the detected symbols to recon-

struct the transmitted signal, and then uses this signal in place of the original signal, then it is

using a subclass of blind estimation called decision directed estimation ([34], pg. 7), [26], [16],

[6], [5], [20]. A block diagram of this problem’s structure is shown in Figure 2.7.

From Figure 2.7 define the following relationships:

y(n) = b1u1(n) + � � �+ bMuM (n) + w(n) (2.52)

by(n) = �1x1(n) + � � �+ �MxM (n) (2.53)

e(n) = y(n)� by(n) = y(n)� (�1x1(n) + � � �+ �MxM (n)) (2.54)

where ui(n); i = 1; : : : ;M are real-valued discrete-time random processes, xi(n); i = 1; : : : ;M

are the detected ui(n), b1; � � � ; bM ; �1; � � � ; �M 2 R, M is a positive integer, and w(n) is a mean
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b β+

+

u(n)

w(n)

e(n)

Unknown System ModelDecision

y(n) x(n)

y(n)^

-

Figure 2.7: A block diagram of the decision directed system identification problem

zero real-valued discrete-time random process. After observing the system for N sample peri-

ods we can write the collected data in matrix form as

y =
h
y(1) y(2) � � � y(N)

iT
(2.55)

w =
h
w(1) w(2) � � � w(N)

iT
(2.56)

e =
h
e(1) e(2) � � � e(N)

iT
(2.57)

b =
h
b1 b2 � � � bM

iT
(2.58)

� =
h
�1 �2 � � � �M

iT
(2.59)

U =

2
6664

u1(1) � � � uM (1)

...
. . .

...

u1(N) � � � uM (N)

3
7775 (2.60)

X =

2
6664

x1(1) � � � xM (1)

...
. . .

...

x1(N) � � � xM (N)

3
7775 (2.61)

with

y = Ub+w (2.62)

e = y �X� (2.63)
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Define the error or loss function J(�) as

J(�) = eTRe = (y �X�)TR (y �X�) (2.64)

where R is a positive definite symetric N x N matrix of weighting coefficients, possibly de-

pendent on X andU. Again, the choice ofR depends on the desired application and estimator

properties. The decision weighted linear estimators are a subclass decision directed linear estima-

tors where R is a function of the decision quality, which we can measure through mechanisms

such as error-detecting codes or soft decisions. We call the non-realizable idealized choice ofR

such that XTRX = XTRU, ideal decision weighted linear estimation.

2.5.1.2.2 Estimator Derivation

Theorem 2.27 (Decision Directed Linear Estimator) The estimator b� of the system defined by

(2.52) to (2.63) that minimizes the loss function (2.64) satisfies the so-called “normal” equation

XTRXb� = XTRy

and if XTRX is non-singular then

b� =
�
XTRX

��1
XTRy (2.65)

Proof. The proof is identical to the proof of Theorem 2.14 with U replaced with X.

Corollary 2.28 (Decision Directed Recursive Weighted Least Squares Estimator) Let

x(n) =
h
x1(n) x2(n) � � � xM (n)

iT

and

R =

2
66666666664

�N�1a1 0 � � � 0

0 �N�2a2
...

...
. . .

0 �aN�1 0

0 � � � 0 aN

3
77777777775

(2.66)
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where ai 2 R and 0 < � � 1 such that R is positive definite. If XTRX is non-singular, then

(2.65) is valid and can be written recursively as

b�n = b�n�1 + anH
�1
n x(n)e(n) (2.67)

Hn = �Hn�1 + anx(n)x
T (n) (2.68)

e(n) = y(n)� x(n)T b�n�1 (2.69)

Proof. The proof is identical to that of Corollary 2.15 using the detected sequence x(n) instead

of the input sequence u(n).

Definition 2.29 (Ideal Decision Weighted Linear Estimator) The ideal decision weighted lin-

ear estimator is defined as the decision directed linear estimator in Theorem 2.27 withR chosen

such that XTRX = XTRU.

2.5.1.2.3 Properties of Decision Directed Linear Estimators

Proposition 2.30 (Linearity of Decision Directed Linear Estimators) Decision directed linear

estimators are linear because they fit the form

b� = Sy (2.70)

where S in this case is

S =
�
XTRX

��1
XTR (2.71)

Proposition 2.31 (Bias of Decision Directed Linear Estimators) If

E fwjX;Ug = 0 (2.72)

then

E
nb�o = E

n�
XTRX

��1
XTRU

o
b (2.73)
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Proof. Substitute (2.62) into (2.65) and simplify to get

b� =
�
XTRX

��1
XTR (Ub+w)

=
�
XTRX

��1
XTRUb+

�
XTRX

��1
XTRw

Taking the expectation conditioned upon X;U gives

E
nb� j X;Uo =

�
XTRX

��1
XTRUb+ E

n�
XTRX

��1
XTRw j X;U

o

=
�
XTRX

��1
XTRUb+

�
XTRX

��1
XTRE fw j X;Ug

=
�
XTRX

��1
XTRUb

Again taking the expectation yields

E
nb�o = E

n
E
nb� j X;Uoo

= E
n�
XTRX

��1
XTRU

o
b

Proposition 2.32 (Unbiasness of Ideal Decision Weighted Linear Estimators) If

E fwjX;Ug = 0 (2.74)

and R is chosen such that XTRX = XTRU then

E
nb�o = b (2.75)

Proof. This proposition follows from (2.73).

Proposition 2.33 (Covariance of Decision Directed Linear Estimators) If

E fwjX;Ug = 0

Then the covariance of (2.65) is

cov
nb�o = E

��b� � E nb�o��b� � E nb�o�T
�

(2.76)

= cov fSUbg+ E �SVST	 (2.77)
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where

S =
�
XTRX

��1
XTR (2.78)

V = E �wwT j X;U	 (2.79)

Proof. Rederive (2.48) by replacingQwith S and addingX to the conditional expectation to get

E
��b� � E nb�o��b� � E nb�o�T

�
= E

��
SUb� E

nb�o��SUb� E nb�o�T
�

+E �SVST	 (2.80)

Substituting (2.78) and (2.73) gives

cov
n b�o = E

n��
XTRX

��1
XTRUb� E

n�
XTRX

��1
XTRU

o
b
�

��
XTRX

��1
XTRUb� E

n�
XTRX

��1
XTRU

o
b
�T�

+E �SVST	
= cov fSUbg+ E �SVST	

Proposition 2.34 (Covariance of Ideal Decision Weighted Linear Estimators) If

E fwjX;Ug = 0

and R is chosen such that XTRX = XTRU then then the covariance of (2.65) is

cov
nb�o = E

��b� � E nb�o��b� � E nb�o�T
�

= E �SVST	

where

S =
�
XTRX

��1
XTR

V = E �wwT j X;U	
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Proof. From Prop. 2.33

cov
nb�o = cov fSUbg+ E �SVST	 (2.81)

But

SU =
�
XTRX

��1
XTRU

= I

by assumption, where I is the identity matrix.

2.5.1.2.4 More on Ideal Decision Weighted Linear Estimators As mentioned previously,

ideal decision weighted linear estimators are a subclass of decision directed linear estimators

that have the property XTRX = XTRU. Furthermore, implicit to this assumption is that

XTRX must be invertible. Are these two conflicting assumptions? Furthermore, what proper-

ties ofR are required forXTRX = XTRU? The answer to the first question is no, and we will

propose an example of R that satisfies both conditions. The answer to the second question is

answered in the following proposition and theorem.

Proposition 2.35 Let1 R 2 RNxN and X;U 2 RNxM such that X = U except for a single

element, say xij 6= uij for some row i and column j. Then XTRX = XTRU if and only if the

ith column of R is orthogonal2 to each column in X.

1RNxM denotes the vector space of all realN byM matrices;RN denotes the vector space of all real N by 1 vectors
2Two vectors x;y 2 RN are orthogonal if xT y = yT x =

P
N

k=1
xkyk = 0.
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Proof. Suppose xij � uij = aij 6= 0 for a fixed row i and column j. Then

XTR (X�U) =

2
6666664

x11 x21 � � � xN1

x12 x22
...

. . .
...

x1M � � � xNM

3
7777775

2
6666664

r11 r12 � � � r1N

r21 r22
...

. . .
...

rN1 � � � rNN

3
7777775

2
66666666666666664

0 � � � 0 0 0 � � � 0

...
. . .

...
...

0 0 0 0 0

0 � � � 0 aij 0 � � � 0

0 0 0 0 0

...
...

. . .
...

0 � � � 0 0 0 � � � 0

3
77777777777777775

= aij

2
6666664

x11 x21 � � � xN1

x12 x22
...

. . .
...

x1M � � � xNM

3
7777775

2
66666666666666664

0 � � � 0 r1i 0 � � � 0

...
... r2i

...
...

0 0 0 0

0 � � � 0
... 0 � � � 0

0 0 0 0

...
...

...
...

0 � � � 0 rNi 0 � � � 0

3
77777777777777775

= aij

2
66666666666666664

0 � � � 0
PN

k=1 rkixk1 0 � � � 0

...
...

PN
k=1 rkixk2

...
...

0 0 0 0

0 � � � 0
... 0 � � � 0

0 0 0 0

...
...

...
...

0 � � � 0
PN

k=1 rkixkM 0 � � � 0

3
77777777777777775

The above quantity equals zero if and only if the ith column of R is orthogonal to each column

of X.

We now generalize this result in the following theorem.

Theorem 2.36 Let R 2 RNxN and X;U 2 RNxM such that X = U except for q elements with

row/column coordinates (r1; c1); : : : ; (rq ; cq). If the fr1; : : : ; rqg columns of R are orthogonal

to every column of X, then XTRX = XTRU.
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Proof. Let D = XTR(X�U). Then the ith row, jth column element is

dij =

NX
z=1

NX
l=1

xlirlz (xzj � uzj) (2.82)

Now suppose that in the jth column, k � q elements with coordinates (�1; j); : : : ; (�k; j) in X

do not equal the corresponding elements in U. Define Rj = f�1; : : : ; �kg as the set of row

coordinates in the jth column where X and U differ. Then (2.82) becomes

dij =
X
z2Rj

NX
l=1

xlirlz (xzj � uzj)

=
X
z2Rj

(xzj � uzj)

NX
l=1

xlirlz

= 0

by assumption that the f�1; : : : ; �kg � fr1; : : : ; rqg columns of R are orthogonal to every col-

umn of X.

We will now propose a weighting matrix R that satisfies XTRX = XTRU, and under cer-

tain conditions, XTRX non-singular1. But first, we will need the following lemmas concerning

dimensionality and singularity.

Lemma 2.37 Let B and A be linear transformations from vector spaces V to W and W to Z,

respectively. Let F be the field over which V , W , and Z are defined. Then the rank2 of the

composition A � B is less than or equal to the minimum of the rank of A and the rank of B. In

other words,

rank(A �B) � minfrank(A); rank(B)g

Proof. Because B(V ) � W , we get A(B(V )) � A(W ). By ([14], pg. 182), the dimension of

A(B(V )) is less than or equal to the dimension of A(W ), i.e. rank(A � B) � rank(A). Now

let q = rank(B). Then by definition, B(V ) has a basis of q elements, say w1; : : : ;wq 2 W .

Then for x 2 V , B(x) = x1w1 + : : : + xqwq for some xi 2 F; i = 1; : : : ; q. Hence, A(B(x)) =

1A non-singular mapping is an invertible mapping.
2The rank of linear transformation is the dimension of its range or image ([29], pg. 228). We will denote the image

or range of a linear transformation B from vector spaces V to W as B(V ) = fw 2 W jB(v) = w for some v 2 V g.
Notice that B(V ) �W , and consequently rank(B) � dim(W ) ([14], pg. 182).
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x1A(w1) + : : : + xqA(wq). Therefore, A(B(V )) has a basis of at most q elements, implying

rank(A �B) � rank(B).

Lemma 2.38 Let B and A be linear transformations from vector spaces V to W and W to Z,

respectively. If rank(B) < dim(Z) then A �B is singular.

Proof. By Lemma 2.37, rank(A�B) � rank(B) < dim(Z). Hence,A�B is not an onto1 mapping,

and therefore is not invertible.

Lemma 2.39 Let B and A be linear transformations from vector spaces V to W and W to Z,

respectively. If dim(W ) < dim(Z) then A �B is singular.

Proof. Because B(V ) �W , we have rank(B) � dim(W ) < dim(Z). Thus, by Lemma 2.38A �B
is singular.

Proposition 2.40 Let X;U 2 RNxM such that X = U except for q elements with row/column

coordinates (r1; c1); : : : ; (rq ; cq). LetR be anNxN identity matrix with the fr1; : : : ; rqg columns

set to zero. A necessary condition for
�
XTRX

��1 to exist is N � M + Q, where Q is the

number of unique elements of fr1; : : : ; rqg. If
PN

n=1 �nxnx
T
n is invertible, where �n = 0 if

n 2 fr1; : : : ; rqg and 1 otherwise, and xTn is the nth row of X, then XTRX is invertible.

Proof. First, if N < M , then by Lemma 2.39 XTRX is singular because XTR is a linear

transformation from RN to RM and X is a linear transformation from RM to RN . But if

rank(R) = N � Q, by Lemma 2.38 and 2.37, N � Q must be greater than or equal to M for

XTRX to be invertible.

We can write XTRX as

XTRX =

NX
n=1

�nxnx
T
n

where �n = 0 if n 2 fr1; : : : ; rqg and 1 otherwise, and xTn is the nth row of X. Hence, if

in the rows that decision errors did not occur, the input sequence is rich enough so that this

summation is invertible, then XTRX is invertible.

1An onto mapping f : X ! Y has the property that for every y 2 Y there exists an x 2 X such that f(x) = y. If
the image of f , or equivalently the rank of f , has a dimension smaller than the dimension of Y , then the mapping is
not onto. A mapping must be one-to-one and onto to be invertible ([14], pg. 15)
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2.5.1.3 Extension to Complex Signals and Systems

Up to this point we have only considered adaptive algorithms for real signals and systems.

These previous results extend nicely to complex signals and systems by representing complex

numbers as elements of R2. For example, from Figure 2.6 we redefine the following relation-

ships:

y(n) = b1u1(n) + � � �+ bMuM (n) + w(n) (2.83)

by(n) = �1u1(n) + � � �+ �MuM (n) (2.84)

e(n) = y(n)� by(n) = y(n)� (�1u1(n) + � � �+ �MuM (n)) (2.85)

where ui(n); i = 1; : : : ;M are complex-valued discrete-time random processes, b1; � � � ; bM ; �1; � � � ; �M 2
C where C is the set of complex numbers, M is a positive integer, and w(n) is a mean zero

complex-valued discrete-time random process. We can then write the real part of y(n) as

Re fy(n)g = Re fb1u1(n)g+ � � �+Re fbMuM (n)g+Re fw(n)g
= Re fb1gRe fu1(n)g � Im fb1g Im fu1(n)g+ � � �

+Re fbMgRe fuM (n)g � Im fbMg Im fuM (n)g+Re fw(n)g

=
h
Re fu1(n)g � � � Re fuM (n)g

i
2
6664

Re fb1g
...

Re fbMg

3
7775

�
h
Im fu1(n)g � � � Im fuM (n)g

i
2
6664

Im fb1g
� � �

Im fbMg

3
7775+Re fw(n)g

which further reduces to

Re fy(n)g = �
Re fu1(n)g � � � Re fuM (n)g �Im fu1(n)g � � � �Im fuM (n)g

�

2
66666664

Re fb1g

...

Re fbMg

Im fb1g

� � �

Im fbMg

3
77777775
+Re fw(n)g
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Similarly, the imaginary part of y(n) is

Im fy(n)g = Im fb1u1(n)g+ � � �+ Im fbMuM (n)g+ Im fw(n)g
= Re fb1g Im fu1(n)g+ Im fb1gRe fu1(n)g+ � � �

+Re fbMg Im fuM (n)g+ Im fbMgRe fuM (n)g+ Im fw(n)g

=
h
Im fu1(n)g � � � Im fuM (n)g

i
+

2
6664

Re fb1g
...

Re fbMg

3
7775

h
Re fu1(n)g � � � Re fuM (n)g

i
2
6664

Im fb1g
� � �

Im fbMg

3
7775+ Im fw(n)g

=
h
Im fu1(n)g � � � Im fuM (n)g Re fu1(n)g � � � Re fuM (n)g

i

2
6666666666664

Re fb1g
...

Re fbMg
Im fb1g
� � �

Im fbMg

3
7777777777775

+Im fw(n)g

Writing y(n) as an element of R2 gives

2
4 Re fy(n)g
Im fy(n)g

3
5 =

2
4 Re fu1(n)g � � � Re fuM (n)g �Im fu1(n)g � � � �Im fuM (n)g
Im fu1(n)g � � � Im fuM (n)g Re fu1(n)g � � � Re fuM (n)g

3
5

2
6666666666664

Re fb1g
...

Re fbMg
Im fb1g
� � �

Im fbMg

3
7777777777775

+

2
4 Re fw(n)g
Im fw(n)g

3
5 (2.86)
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We can now extend this result to a collection of data.

2
666666664

Re fy(1)g

...

Re fy(N)g

Im fy(1)g

...

Im fy(N)g

3
777777775

=

2
666666664

Re fu1(1)g � � � Re fuM (1)g �Im fu1(1)g � � � �Im fuM (1)g

...
. . .

...
...

. . .
...

Re fu1(N)g � � � Re fuM (N)g �Im fu1(N)g � � � �Im fuM (N)g

Im fu1(1)g � � � Im fuM (1)g Re fu1(1)g � � � Re fuM (1)g

...
. . .

...
...

. . .
...

Im fu1(N)g � � � Im fuM (N)g Re fu1(N)g � � � Re fuM (N)g

3
777777775

2
666666664

Re fb1g

...

Re fbMg

Im fb1g

...

Im fbMg

3
777777775

+

2
666666664

Re fw(1)g

...

Re fw(N)g

Im fw(1)g

...

Im fw(N)g

3
777777775

(2.87)

If once again we let

y =
h
y(1) y(2) � � � y(N)

iT

w =
h
w(1) w(2) � � � w(N)

iT

e =
h
e(1) e(2) � � � e(N)

iT

b =
h
b1 b2 � � � bM

iT

� =
h
�1 �2 � � � �M

iT

U =

2
6664

u1(1) � � � uM (1)

...
. . .

...

u1(N) � � � uM (N)

3
7775

X =

2
6664

x1(1) � � � xM (1)

...
. . .

...

x1(N) � � � xM (N)

3
7775

then we can write (2.87) as

2
4 Re fyg
Im fyg

3
5 =

2
4 Re fUg �Im fUg
Im fUg Re fUg

3
5
2
4 Re fbg
Im fbg

3
5+

2
4 Re fwg
Im fwg

3
5 (2.88)

We extend this result in the following proposition to rephrase the training sequence and blind

estimation problems.
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Proposition 2.41 (The Complex Estimation Problem) Define1

ey =

2
4 Re fyg
Im fyg

3
5

ew =

2
4 Re fwg
Im fwg

3
5

ee =

2
4 Re feg
Im feg

3
5

eb =

2
4 Re fbg
Im fbg

3
5

e� =

2
4 Re f�g
Im f�g

3
5

eU =

2
4 Re fUg �Im fUg
Im fUg Re fUg

3
5

eX =

2
4 Re fXg �Im fXg
Im fXg Re fXg

3
5

with

ey = eUeb+ ew (2.89)

The error for the training sequence estimation problem is

ee = ey � eUe� (2.90)

While that for the decision directed estimation is

ee = ey � eXe� (2.91)

The redefined error or loss function is then

eJ(e�) = eeT eRee (2.92)

1The tilde notation in this proposition does not denote the complex envelope as in previous sections
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where eR is a 2N x 2N matrix of weighting coefficients. Using these modified vectors and

matrices, the previous lemmas and propositions on linear estimators apply.

2.5.2 Least Mean Squares (LMS) Estimators

We now explore an alternative to the linear estimators presented in the previous section. This

alternative is the stochastic gradient or least mean squares (LMS) method ([34],pg. 77), [15],

[38], ([8], pp. 155-157, pg. 241). The training sequence and decision directed problem state-

ments are identical to their linear estimator counterparts except only the most recent data point

is of interest.

2.5.2.1 Training Sequence Estimation

2.5.2.1.1 The System Identification Problem From Figure 2.6 define the following relation-

ships:

y(n) = b1u1(n) + � � �+ bMuM (n) + w(n) (2.93)

by(n) = �1u1(n) + � � �+ �MuM (n) (2.94)

e(n) = y(n)� by(n) = y(n)� (�1u1(n) + � � �+ �MuM (n)) (2.95)

where ui(n); i = 1; : : : ;M are a real-valued discrete-time random processes, b1; � � � ; bM ; �1; � � � ; �M 2
R, M is a positive integer, and w(n) is a mean zero real-valued discrete-time random process.

We also define

b =
h
b1 b2 � � � bM

iT
(2.96)

� =
h
�1 �2 � � � �M

iT
(2.97)

u(n) =
h
u1(n) u2(n) � � � uM (n)

iT
(2.98)

(2.99)

Thus,

y(n) = u(n)Tb+ w(n) (2.100)

by(n) = u(n)T� (2.101)

e(n) = y(n)� by(n) = y(n)� u(n)T� (2.102)
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The error or loss function is defined as

J(�) = �ne(n)
T e(n) (2.103)

where �n 2 R is a weighting sequence. Although e(n) is a scalar, we will treat it as a vector as

it will be when we extend these results to complex signals and systems.

2.5.2.1.2 Estimator Derivation The LMS algorithm is a steepest decent algorithm, meaning

it adjusts b� in the direction of maximum change of J(�). The algorithm has the form

b�n = b�n�1 � 1

2
�
@J

@�

>>>>>>>
�=b�n�1

(2.104)

We present the final form of the LMS algorithm in the following theorem.

Theorem 2.42 The LMS algorithm satisfying (2.104) is

b�n = b�n�1 + ��nu(n)e(n) (2.105)

e(n) = y(n)� u(n)T b�n�1 (2.106)

Proof. The gradient was previously found in (2.28) where here U = u(n)T . Substituting this

into (2.104) and factoring out �nu(n) gives the desired result.

2.5.2.1.3 Properties of Training Sequence LMS Estimators

Definition 2.43 (Asymptotic Unbiasness) An estimator b�n is asymptotically unbiased if

lim
n!+1

E
nb�n

o
= b (2.107)

where b is the true parameter.

Proposition 2.44 (Asymptotic Unbiasness of the LMS Estimator) LetRu = E �u(n)u(n)T 	 be

the auto-correlation matrix of the u(n). Assume that u(n) is white and �n does not depend on

u(n). Restrict � and �min to the ranges

0 < �min (2.108)

� < 2=�max (2.109)
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where �min and �max are the minimum and maximum eigenvalues of Ru, respectively. Also

restrict �n to

0 � �n � 1 (2.110)

for all n with �n not converging to zero. If fu(n)g and fw(n)g are statistically independent,

with Efw(n)g = 0, then the LMS estimate in (2.105) is asymptotically unbiased.

Proof. Substituting (2.100) into the LMS algorithm gives

b�n = b�n�1 + ��nu(n)
�
u(n)Tb+ w(n) � u(n)T b�n�1

�

= b�n�1 � ��nu(n)u(n)
T
�b�n�1 � b

�
+ ��nu(n)w(n)

Subtracting b from both sides gives

�b�n � b
�
=
�b�n�1 � b

�
� ��nu(n)u(n)

T
�b�n�1 � b

�
+ ��nu(n)w(n) (2.111)

Take the expectation of both sides conditioned upon fu(k); w(k); k < ng to get

E
nb�n � b j u(k); w(k); k < n

o
=

�b�n�1 � b
�
� ��nE

�
u(n)u(n)T j u(k); w(k); k < n

	�b�n�1 � b
�

+��nE fu(n)w(n) j u(k); w(k); k < ng
=

�b�n�1 � b
�
� ��nRu

�b�n�1 � b
�

Take the expectation again to get

E
nb�n � b

o
= E

nb�n�1 � b
o
� ��nRuE

nb�n�1 � b
o

(2.112)

Cn = Cn�1 � ��nRuCn�1 (2.113)

where we define Cn = E
nb�n � b

o
. Then the convergence of b�n to b in expectation is equiva-

lent to the convergence of Cn to zero. We will show this convergence by spectrally decompos-

ing Ru then examining each component of Cn.

For simplicity1, letRu have distinct eigenvalues and corresponding unit eigenvectors �1; : : : ; �M

and v1; : : : ;vM, respectively. Define V = [v1; : : : ;vM ] 2 RMxM and � = diag(�1; : : : ; �M ) 2
RMxM . BecauseRu is symmetric, it has an eigenvalue or spectral decompositionRu = V�VT =

1While it may be true that Ru is not guaranteed to have distinct eigenvalues, the result of the proposition is still
true [36], [37], [9].
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PM
k=1 �kvkv

T
k ([34], pg. 285).

Cn = Cn�1 � ��n

MX
k=1

�kvkv
T
kCn�1 (2.114)

Because the �1; : : : ; �M are distinct, v1; : : : ;vM are orthogonal and form a basis for RM ([21],

pg. 410), ([34], pg. 285). Define Dr;n = vTr Cn to be the component of Cn in the direction of vr,

r = 1; : : : ;M . Then

vTr Cn = vTr Cn�1 � ��n

MX
k=1

�kv
T
r vkv

T
kCn�1

= vTr Cn�1 � ��n�rv
T
r Cn�1

Dr;n = Dr;n�1 � ��n�rDr;n�1

= (1� ��n�r)Dr;n�1

Writing this iteratively gives

Dr;2 = (1� ��2�r)Dr;1

Dr;3 = (1� ��3�r)Dr;2 = (1� ��3�r) (1� ��2�r)Dr;1

... =
...

Dr;n = (1� ��n�r) � � � (1� ��2�r)Dr;1

A sufficient condition for the convergence of Dr;n to zero is that for all n, j1� ��n�rj < 1, and

j1 � ��n�rj does not converge to 1. This condition is met by requiring 0 < �min, � < 2=�max,

0 � �n � 1, and �n not converging to zero. Under these conditions each component of Cn

converges to zero.

Remark 2.45 Other properties of the LMS algorithm, such as covariance and tightness, are

derived in [34].

2.5.2.2 Decision Directed Estimation

The decision directed LMS algorithm is like other decision directed algorithms in the respect

that it uses detected symbols to reconstruct the transmitted sequence. Its form is identical to

that of (2.105) with the exception that u(n) is replaced with its reconstructed version x(n).
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Theorem 2.46 (Decision Directed LMS) The decision directed LMS algorithm is

b�n = b�n�1 + ��nx(n)e(n) (2.115)

e(n) = y(n)� x(n)T b�n�1 (2.116)

2.5.2.3 Extension to Complex Signals and Systems

Similar to the development in Section 2.5.1.3, the LMS can be extended to complex signals

and systems by representing complex numbers as two-dimensional vectors. For an alternate

derivation of the complex LMS algorithm see [38]. Using matrix and vector notation, the LMS

algorithms extend to complex signals and systems as described in the following proposition.

Proposition 2.47 (The Complex Estimation Problem) Define1

ey(n) =

2
4 Re fy(n)g
Im fy(n)g

3
5

ew(n) =

2
4 Re fw(n)g
Im fw(n)g

3
5

ee(n) =

2
4 Re fe(n)g
Im fe(n)g

3
5

eb =

2
4 Re fbg
Im fbg

3
5

e�n =

2
4 Re f�ng
Im f�ng

3
5

eu(n) =

2
4 Re fu(n)g Im fu(n)g
�Im fu(n)g Re fu(n)g

3
5

ex(n) =

2
4 Re fx(n)g Im fx(n)g
�Im fx(n)g Re fx(n)g

3
5

Then

ey(n) = eu(n)Teb+ ew(n) (2.117)

1The tilde notation in this proposition does not denote the complex envelope as in previous sections
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The error for the training sequence estimation problem is

ee(n) = ey(n)� eu(n)T e� (2.118)

while that for the decision directed estimation is

ee(n) = ey(n)� ex(n)T e� (2.119)

The redefined error or loss function is then

eJ(�) = �nee(n)Tee(n) (2.120)

where �n 2 R is a weighting sequence. Using these modified vectors and matrices, the lemmas

and propositions of this section on LMS estimators apply.

Proof. The proof follows from the development in Section 2.5.1.3 with U replaced with u(n)T .

2.5.3 Soft Decision Weighted Algorithms

The conditions for choosing the weights of the ideal decision weighted linear estimator is an

idealization because it assumes perfect knowledge of the decision errors. We will use this ide-

alization, however, as motivation for using functions of the receiver soft decisions as weights,

reasoning that the receiver soft decisions reflect, in a crude sense, the accuracy of these deci-

sions. This soft decision weighting scheme can then be used to weight the decision directed

LMS and RLS algorithms, making them less susceptible to both fluctuations due to noise and

decision errors (See Figures 4.1 to 4.9 for the effects of a BPSK decision error and noise on chan-

nel estimates). We describe in the following remark one possible way to derive these weights

for an MPSK receiver.

Remark 2.48 Recall from Section 2.2.2 that the MPSK demodulation process produces an angle

�i that is then compared to a set of known possible signal angle coordinates. The soft decision

in this case is �i, while the hard decision (in terms of angle) is the angle �i closest to �i. For this

decision, we define the weight pi as the distance between �i and �i, normalized to the range

[0; 1],

pi = 1� j�i � �ij
�=S

(2.121)
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where S is the number of possible symbol choices.

In Section 2.3 wireless communication channels were modeled as tapped delay line or

transversal filters. Hence, for linear and LMS estimators, u(n) and x(n) take the form

u(n) =
h
u(n) u(n� 1) � � � u(n�M + 1)

iT
(2.122)

x(n) =
h
x(n) x(n� 1) � � � x(n�M + 1)

iT
(2.123)

Consequently, the algorithm weight at time n needs to reflect the accuracy of the past M deci-

sions. One possible choice for this weight is

an = pnpn�1 � � � pn�M+1 (2.124)

Soft decision recursive least squares estimators use (2.124) in (2.66), while soft decision weighted

LMS algorithms use (2.124) in place of �n in (2.115). We will call these weighting schemes for

decision directed estimation, soft decision weighted estimation.
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Chapter 3

Simulation Methodology

In this chapter we present a description of the simulation methodology used to verify the

performance of decision weighted algorithms. We begin with a summary of the algorithms

simulated, then proceed by describing the wireless channel models. We then revisit MPSK de-

modulation, but from a simulation point of view. Next, we describe the performance criteria to

evaluate the algorithms. Finally, we outline the details of the simulation procedure.

3.1 Summary of Algorithms

We evaluated the performance of both blind and non-blind algorithms. These ten algorithms

are described as follows:

� Training Sequence LMS (TLMS): Uses (2.105) - (2.106) with �n = 1

� Blind LMS (BLMS): Uses (2.115) - (2.116) with �n = 1

� Soft Decision Weighted LMS (SDWLMS): Uses (2.115) - (2.116) with �n = an from

(2.124)

� Ideal Decision Weighted LMS (IDWLMS): Uses (2.115) - (2.116) with �n = 1 if x(n) =

u(n) and zero otherwise

� Training Sequence RLS (TRLS): Uses Corollary 2.15 with an = 1

� Blind RLS (BRLS): Uses Corollary 2.28 with an = 1

� Soft Decision Weighted RLS (SDWRLS): Uses Corollary 2.28 with an from (2.124)
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� Ideal Decision Weighted RLS (IDWRLS): Uses Corollary 2.28 with an = 1 if x(n) = u(n)

and zero otherwise (see also Proposition 2.40)

� Modified1 Soft Decision Weighted RLS (MSDWRLS): Uses Corollary 2.28 with an from

(2.124); however, we modify the matrix update Hn by removing the weight an, resulting

in Hn = �Hn�1 + x(n)x
T (n).

� Modified Ideal Decision Weighted RLS (MSDWRLS): Uses Corollary 2.28 with an = 1 if

x(n) = u(n) and zero otherwise; however, we modify the matrix updateHn by removing

the weight an, resulting in Hn = �Hn�1 + x(n)x
T (n).

3.2 Wireless Channel Models

We simulate two different channel environments, a fixed LOS microwave link and a mobile

radio channel as described in ([18], pp. 379-384). In general, the number of multipath compo-

nents for an HF channel are on the order of 2 to 8 [40], [24], [1].

3.2.1 The Radio Relay Three-Path (Rummler) Model

The Rummler model [30] is a popular model used for LOS links in the 6 GHz frequency band.

Although it is a three path model, the first two paths are assumed to be very close in time delay.

Hence, the model reduces to two paths, the LOS and one reflected path. The model is described

probabilistically in ([18], pg. 379-382). The Matlab code to implement it is in Appendix A.1.1.

3.2.2 The Mobile Radio Channel Model

Unlike the Rummler model, which has an impulse scattering function (i.e. the channel does not

vary with time), each tap of the mobile radio channel has a scattering function approximated

by a single pole low-pass filter response ([18],pg. 382), [17], ([15], pg. 110)

S(v) = A
�
1� (v=fm)2

��1=2
(3.1)

where A is the attenuation of the tap and fm = s=� where s is the speed of the mobile and

� is the wavelength of the transmitted carrier. This 3 dB frequency of this response, fm, is

1After preliminary simulations, we observed that SDWRLS performed poorly. We examined the update structure
of (2.68) and observed that for small Hn�1 , the weight an cancels itself in the estimator update equation (2.67). This
motivated removing the weight an from (2.68) to produce the “modified” decision weighted RLS algorithms.
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sometimes referred to as the Doppler frequency. The above equation was derived by Jakes [17]

under assumptions that the mobile is moving at a constant velocity receiving infinitely many

reflected waves from all directions uniformly. We implemented each tap of the mobile channel

model by passing mean zero circularly symmetric complex white Gaussian noise through a

filter with response (3.1). The impulse response derived from (2.8) consists of a direct LOS path

(A = 0 dB attenuation), a path delayed by 1 symbol interval (A = �20 dB attenuation), and a

path delayed by 2 symbol intervals (A = �25 dB attenuation). The code for implementing the

mobile radio channel is in Appendix A.1.2.

3.3 Multiple Phase Shift Keying (MPSK) Receiver Implemen-

tation

Synchronization is a difficult challenge in implementing a coherent MPSK receiver. In our

simulations, synchronization issues arose in two areas: synchronizing to the channel-induced

distortion of the constellation, and symbol delays. A common method to perform synchroniza-

tion is with phase lock loops (PLLs) [13], ([10], pg. 444). For simulation purposes, however, we

can emulate the behavior of PLLs in a coherent receiver by using knowledge of the channel to

our advantage as described in the next two sections.

3.3.1 Carrier (Phase) Synchronization

Because the channel is complex, the resulting MPSK constellation is a distorted version of the

original constellation. Figure 3.1 illustrates the effect of a Rummler channel on a QPSK con-

stellation. Although the original constellation has only 4 elements, the constellation after the

channel has 16. The reason for this increase is the sequence dependent intersymbol interference

(ISI). A Rummler channel consists of a LOS and a reflected path; therefore, the possible num-

ber of permutations that arise from 4 symbols combined from 2 paths is 42 = 16. A maximum

likelihood sequence detector would use a channel estimate to calculate these 16 permutations

and pick the point closest to the received point [25].

Although we did not implement a maximum likelihood sequence detector, we did use the

true channel response to align the angle decision boundaries in the detector to compensate for

a channel induced constellation rotation with no ISI. This emulates a simple PLL adjusting the

phase of its quadrature sinusoidal generator to achieve phase synchronization [13]. For the

mobile radio channel, the decision boundaries are adjusted at the beginning of each symbol in-
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Figure 3.1: Effect of a Rummler channel on a QPSK constellation

terval, similar to a PLL tracking the phase response of the channel. The program that calculates

these decision boundaries is listed in Appendix A.4.6.

3.3.2 Symbol Synchronization

The problem of symbol synchronization is to identify when a symbol interval begins and ends.

To make the solution to this problem easier, we restrict the taps of the channel impulse re-

sponses to be spaced integer multiples of the symbol interval length ([35], pg. 31). The prob-

lem now reduces to finding the number of symbol intervals the channel shifted the transmitted

sequence. To identify this shift we perform a binary cross correlation between the transmitted

symbols and the detected symbols. A binary cross correlation means to take an ordinary cross

correlation but replace the multiplication with a binary AND function, resulting in a 1 when

two symbols align and a 0 when they do not. The maximum number of shifts to test is the

length of the channel’s impulse response. The function that performs this symbol synchroniza-

tion is listed in Appendix A.4.7.
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3.4 Performance Criteria: Squared Distance from True Response

To compare the performance of the estimator algorithms we use the average squared absolute

difference between the true impulse response and their estimate. In other words, the estimation

error for a given simulation is

� =
1

N �N0 � 1

NX
n=N0

���� � b�n
���T
���� � b�n

��� (3.2)

where N0 is an integer greater than the initial transient response of the estimator. To evalu-

ate each estimator’s performance across several simulations, we use the median of estimation

errors from each simulation to reduce the effect of the best and worst simulations.

3.5 Delay Spread, SNR, and Doppler Frequency Performance

Test Methodology

3.5.1 General Methods

Common to all the performance tests are the parameters summarized below:

� LMS Gain: � = 0:3

� RLS Forgetting Factor: � = 0:99

� Sampling Rate: 1 sample per second

� Symbol Interval: 4 samples per symbol

� Modulation: QPSK

� Total Number of Symbols per Individual Simulation: 300 symbols

� Number of Individual Simulations to Perform per Iteration: 20 simulations; we used

the median estimation error over these 20 simulations to rank the estimators for a partic-

ular value of delay spread, SNR, or Doppler frequency.

� Maximum Symbol Error Rate (SER): 0.2 ; we repeated individual simulations if their

SER was higher than this threshold

� Number of Symbols to Skip Before Calculating Estimation Error (N0): 100 symbols; we

skip the initial symbols to observe the algorithms’ steady state behaviors
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� Initial Estimate: the true response; we used the true response as the initial estimate to

facilitate the simulation of steady state behavior

We now describe each performance test in more detail.

3.5.2 Performance Versus Delay Spread

In this performance test we held the SNR at the receiver fixed at 10 dB while varying the delay

spread of a Rummler channel from one to five symbol intervals in one interval increments. The

results of this simulation are shown in Figures 4.27 and 4.28. The code for this simulation is

listed in Appendix A.3.2.

3.5.3 Performance Versus SNR

This test fixed the delay spread of a Rummler channel to 1 symbol interval, then varied the

SNR entering the receiver from 0 to 30 dB in 3 dB increments. The results of this simulation are

shown in Figures 4.29 and 4.30. The code for this test is listed in Appendix A.3.3.

3.5.4 Performance Versus Normalized Doppler Frequency

The purpose of this test was to show the disadvantages of using soft decision weighted algo-

rithms. The soft decision weights act as an adaptive gain for the LMS algorithm. This adaptive

gain is always less than or equal to the gain of the fixed gain LMS for equal values of =mu. As a

result, the SDWLMS has a slower learning curve. When the channel is time-varying, we should

see poorer performance in the soft decision weighted algorithms for large Doppler frequencies.

In this performance test we held the SNR fixed at 10 dB and varied the Doppler frequency

(normalized to the sampling frequency) of a mobile radio channel at 15 points logarithmically

spaced between 10�16 to 10�2. Figures 4.31 and 4.32 show the results of this test. We then

repeated the test for 15 points logarithmically spaced between 10�10 to 10�2 for better resolu-

tion. Figures 4.33 and 4.34 show these results. The code for this performance test is listed in

Appendix A.3.4.
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Chapter 4

Simulation Results

4.1 Illustrating the Effect of a Decision Error

To illustrate the effect of a decision error on decision directed algorithms, we manually inserted

a symbol error at approximately 900 seconds as marked by a gray bar in Figures 4.1 through

4.11. In this BPSK simulation, the sampling frequency was 1 Hz with 4 samples per symbol

interval and a 10 dB SNR before entering the receiver. The channel model was a Rummler

channel with a delay spread of 1 symbol interval. The training sequence versions of each al-

gorithm are shown for comparison purposes.1 Appendix A.3.1 lists the Matlab code for this

simulation.

4.2 Illustrating the Behavior of the Adaptive Algorithms

To illustrate the general behavior of the adaptive algorithms, we performed a single simulation

with parameters identical to those in the previous section with the exception of using QPSK

modulation and a delay spread of 2 symbol intervals. The LMS gain and RLS forgetting factor

were � = 0:3 and � = 0:99, respectively. The eye and constellation diagrams for this simulation

are shown in Figure 4.12. The estimates from each algorithm are shown in Figures 4.13 through

4.22. We marked the symbol errors in the graphs by vertical gray bars. The symbol error rate

for this simulation was 0.04. The average squared distance under the estimation error curves

(Figures 4.23 and 4.24) in steady-state (after 100 symbol intervals) was

� TLMS - 0.87

1We assume that the symbol error does not cause improper recognition of the training sequence.
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� BLMS - 1.27

� SDWLMS - 0.12

� IDWLMS - 0.86

� TRLS - 0.36

� BRLS - 0.48

� SDWRLS - 2.47

� IDWRLS - 0.41

� MSDWRLS - 0.02

� MIDWRLS - 0.34

The weights pi and an in (2.121) and (2.124) are shown in Figures 4.25 and 4.26, respectively.

4.3 Performance Tests

Figures 4.27 through 4.34 show the simulated performance of the LMS and RLS algorithms as

a function of delay spread, SNR, and normalized Doppler frequency.
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Figure 4.1: Effect of a decision error on the training sequence LMS (TLMS) algorithm (� = 0:3)
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Figure 4.2: Effect of a decision error on the decision directed (blind) LMS (BLMS) algorithm
(� = 0:3)
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Figure 4.3: Effect of a decision error on the ideal decision weighted LMS (IDWLMS) algorithm
(� = 0:3)
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Figure 4.4: Effect of a decision error on the training sequence RLS (TRLS) algorithm (� = 0:99)
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Figure 4.5: Effect of a decision error on the decision directed (blind) RLS (BRLS) algorithm
(� = 0:99)

860 880 900 920 940 960
−0.4

−0.2

0

0.2

0.4

0.6

E
rr

or
 S

ig
na

l

Error Signal Feeding Adaptive Algorithm (BRLS)

860 880 900 920 940 960

−0.005800.0016

0.4598

t [s]

Estimated Channel Response Coefficients (BRLS)

Figure 4.6: Effect of a decision error on the decision directed (blind) RLS (BRLS) algorithm
(� = 0:9)
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Figure 4.7: Effect of a decision error on the ideal decision weighted RLS (IDWRLS) algorithm
(� = 0:99)

860 880 900 920 940 960
−0.4

−0.2

0

0.2

0.4

0.6

E
rr

or
 S

ig
na

l

Error Signal Feeding Adaptive Algorithm (MIDWRLS)

860 880 900 920 940 960

−0.005800.0016

0.4598

t [s]

Estimated Channel Response Coefficients (MIDWRLS)

Figure 4.8: Effect of a decision error on the modified ideal decision weighted RLS (MIDWRLS)
algorithm (� = 0:99)
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Figure 4.9: Comparison of a decision error’s effect on the LMS algorithms (� = 0:3)
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Figure 4.10: Comparison of a decision error’s effect on the RLS algorithms (� = 0:99)
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Figure 4.11: Comparison of a decision error’s effect on the RLS algorithms (� = 0:9)
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Figure 4.12: Eye and constellation diagram from a QPSK estimation example with a Rummler
Channel with a delay spread of 2 symbol intervals and a 10 dB SNR
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Figure 4.13: Example of TLMS estimates of a Rummler Channel with a delay spread of 2 symbol
intervals and a 10 dB SNR
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Figure 4.14: Example of BLMS estimates of a Rummler Channel with a delay spread of 2 symbol
intervals and a 10 dB SNR
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Figure 4.15: Example of SDWLMS estimates of a Rummler Channel with a delay spread of 2
symbol intervals and a 10 dB SNR
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Figure 4.16: Example of IDWLMS estimates of a Rummler Channel with a delay spread of 2
symbol intervals and a 10 dB SNR
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Figure 4.17: Example of TRLS estimates of a Rummler Channel with a delay spread of 2 symbol
intervals and a 10 dB SNR
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Figure 4.18: Example of BRLS estimates of a Rummler Channel with a delay spread of 2 symbol
intervals and a 10 dB SNR
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Figure 4.19: Example of SDWRLS estimates of a Rummler Channel with a delay spread of 2
symbol intervals and a 10 dB SNR
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Figure 4.20: Example of IDWRLS estimates of a Rummler Channel with a delay spread of 2
symbol intervals and a 10 dB SNR
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Figure 4.21: Example of MSDWRLS estimates of a Rummler Channel with a delay spread of 2
symbol intervals and a 10 dB SNR
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Figure 4.22: Example of MIDWRLS estimates of a Rummler Channel with a delay spread of 2
symbol intervals and a 10 dB SNR
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Figure 4.23: Example of LMS estimation error with a Rummler Channel with a delay spread of
2 symbol intervals and a 10 dB SNR
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Figure 4.24: Example of RLS estimation error with a Rummler Channel with a delay spread of
2 symbol intervals and a 10 dB SNR
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Figure 4.25: The decision weights for each hard decision (pi in (2.121))
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Figure 4.26: The algorithm soft decision weights (an in (2.124)) for the previous SDWLMS,
IDWLMS, SDWRLS, IDWRLS, MSDWRLS, and MIDWRLS examples
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Figure 4.27: Median of the average squared error of LMS algorithms as a function of delay
spread (SNR = 10 dB)
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Figure 4.28: Median of the average squared error of RLS algorithms as a function of delay
spread (SNR = 10 dB)
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Figure 4.29: Median of the average squared error of LMS algorithms as a function of SNR
(Delay Spread = 1 symbol interval)
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Figure 4.30: Median of the average squared error of RLS algorithms as a function of SNR (Delay
Spread = 1 symbol interval)
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Figure 4.31: Median of the average squared error of LMS algorithms as a function of Doppler
frequency (SNR = 10 dB)
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Figure 4.32: Median of the average squared error of RLS algorithms as a function of Doppler
frequency (SNR = 10 dB)
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Figure 4.33: Median of the average squared error of LMS algorithms as a function of Doppler
frequency (SNR = 10 dB)
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Figure 4.34: Median of the average squared error of RLS algorithms as a function of Doppler
frequency (SNR = 10 dB)
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Chapter 5

Conclusions

5.1 Performance of Decision Weighted Algorithms

Figures 4.27 through 4.34 illustrate the performance of the decision weighted algorithms as a

function of delay spread, SNR, and Doppler frequency in reference to their standard training

sequence and decision directed forms. From these graphs we can draw the following general

conclusions:

� The soft decision weighted LMS (SDWLMS) performed better than the other LMS algo-

rithms in the delay spread (by a factor of 2 to 100, Figure 4.27) and SNR (by a factor of 2,

Figure 4.29) tests.

� The soft decision weighted RLS (SDWRLS) performed worse than the other RLS algo-

rithms in the delay spread (by a factor of 2, Figure 4.28) and SNR (by a factor of 3, Figure

4.30) tests

� The modified soft decision weighted RLS (MSDWRLS) performed better than the other

RLS algorithms in the delay spread (by a factor of 2 to 20, Figure 4.28) and SNR (by a

factor of 2, Figure 4.28) tests.

� The SDWLMS performed better at normalized Doppler frequencies less than 10�5 and

worse at higher Doppler frequencies than the other LMS algorithms (Figures 4.31 and

4.33).

� The SDWRLS and MSDWRLS performed worse over all Doppler frequencies than the

other RLS algorithms (Figures 4.32 and 4.34).
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� The ideal decision weighted LMS and RLS (IDWLMS and IDWRLS) performed similar to

their training sequence versions in all the tests, and generally better than their ordinary

decision-directed counterparts (Figures 4.27 through 4.34).

The reason the SDWLMS algorithm performed better than the other LMS algorithms in high

SNR and large delay spread situations is because in these environments the soft decision weights

are small (see Figures 4.25 and 4.26 for an example of these weights), making the SDWLMS

sluggish; therefore, it is less susceptible to quick transients caused by noise and decision errors.

The SDWLMS, however, does not track the time varying channels as well as the other LMS

algorithms for normalized Doppler frequencies greater than 10�5 Hz (Figures 4.31 and 4.33)

for this same reason. The MSDWRLS exhibits behavior similar to the SDWLMS because of its

similar estimate update weighting structure.

While the ideal decision weighted algorithms (IDWLMS, IDWRLS, and MIDWRLS) exhib-

ited robustness to decision errors, they did not protect the estimate from noise as did the SD-

WLMS and MSDWRLS. We expected this because these ideal algorithms only react to bad de-

cisions and not to noise. On the other hand, the soft decision algorithms respond to the quality

of the decision, which degrades in the presense of noise. We do not fully understand why the

SDWRLS failed to perform as well as the blind RLS in any of the tests. This failure prompted

the creation of its “modified” version, which outperformed the other RLS algorithms in SNR

and delay spread tests. This modified estimator, however, is no longer a least squares estimator,

i.e. it does not minimize (2.27). It does exhibit nice properties, though, and warrants further

study.

In summary, this thesis demonstrated how RLS and LMS adaptive algorithms can estimate

the impulse response of a wireless communications channel using either training sequences or

decision feedback. It also proposed novel modifications to these algorithms to reduce their sus-

ceptibility to decision errors and noise. Of these modifications, the soft decision weighted LMS

(SDWLMS) has advantages over the standard decision directed and training sequence LMS if

the channel is slowly time-varying. The soft decision weighted RLS (SDWRLS) algorithm did

not perform as well as the other RLS algorithms in any of our tests; however, we proposed

and tested modifications to the SDWRLS that led to good performances similar to that of the

SDWLMS.

5.2 Unanswered Questions/Future Work

The work presented in this thesis could be extended in several ways, including the following:
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� Actual Channel Measurements: The radios of the Phase 2 Rapidly Deployable Radio Net-

work (RDRN) are capable of measuring the signals required to test the algorithms pre-

sented in this thesis. These measurements would allow further study of how practical

radio considerations such as automatic gain control (AGC), coherent PLL demodulation,

and quantization affect algorithm performance.

� Decision Weighted Algorithms in Equalizer and Maximum Likelihood Sequence Detector Appli-

cations: Decision directed channel estimation is an easier problem to analyze than appli-

cations where the decision process is dependent on the adaptive algorithm. In decision

directed adaptive equalizers, for example, a decision error will cause inaccuracies in the

equalizer, which in turn could cause more decision errors. These decision directed appli-

cations experience rapid degradation as decision errors increase. We suspect that decision

weighted algorithms would help reduce this degradation.

� Further Analysis of Soft Decision Weighted Algorithms: We motivated soft decision weighted

algorithm development through analysis of ideal decision weighted algorithms. We have

seen, however, that SDWLMS and MSDWRLS algorithms perform better than their ideal

counterparts. The reason for this performance improvement is due to the SDWLMS

and MSDWRLS estimator update structure. In low SNR environments, the soft deci-

sion weights are small because of the poor decision quality. As a result, the SDWLMS

and MSDWRLS algorithms clamp their current estimate close to their previous estimate.

We recommend further analysis of this property to quantify the estimation error of these

algorithms.

� Further Analysis of the Modified Decision Weighted RLS Algorithms: We modified the decision

weighted RLS algorithms with intent to improve the performance of the SDWRLS algo-

rithm. We succeeded, but at the same time developed an algorithms that are no longer

a least squares estimators (i.e. it does not minimize (2.27)). Further analysis of these

modified algorithms could clarify why they work better than the other RLS algorithms.
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Appendix A

Matlab Simulation Code

A.1 Channel Models

A.1.1 Rummler Model

function h = rummler(tau,Fs)

% desc: generates the impulse response of a radio relay three-path model (Rummler model)
% as described in Simulation of Communication Systems, Jeruchim (pg. 379-81). The
% model is popular for 6-GHz frequency band LOS microwave links.
%
% syntax: h = rummler(tau,Fs)
%
% inputs: tau = differential delay (delay spread) [s]
% Fs = sampling frequency [Hz]
% outputs: h = sampled impulse response
%
% prog: Shane M. Haas -- 1999

% generate B, an exponentially distributed RV with mean of 3.8 dB
B = expgen(3.8);

% generate A, a Gaussian distributed RV with mean 24.6*(Bˆ4 + 500)/(Bˆ4 + 800) dB and
% variance of 5 dB;
A = sqrt(5)*randn + 24.6*(Bˆ4 + 500)/(Bˆ4 + 800);

% generate the notch frequency f_o = theta/(2*pi*tau) where theta is a RV
% with a range [-pi pi] with constant densities on each section abs(theta) > pi/2
% and abs(theta) < pi/2 with P{abs(theta) < pi/2} = 5*P{abs(theta) > pi/2}

if rand > 5/6 % theta is uniform on abs(theta) > pi/2
if rand > 0.5 % theta is uniform on theta > pi/2

theta = rand*pi/2 + pi/2;
else % theta is uniform on theta < -pi/2

theta = rand*pi/2 - pi;
end

else % theta is uniform on abs(theta) < pi/2
theta = rand*pi - pi/2;

end
f_o = theta/(2*pi*tau);

% the channel is equally likely to be minimum or non-minimum phase
min_phase = rand;
if min_phase > 0.5 % minimum phase channel

a = exp(-A/20);
b = 1 - exp(-B/20);
if round(tau*Fs) - 1 >= 0

h = a*[1 zeros(1,round(tau*Fs) - 1) -b*exp(j*2*pi*f_o*tau)];
else

h = a;
end

else % non-minimum phase channel
ab = exp(-A/20);
b = 1/(1 - exp(-B/10));
if round(tau*Fs) - 1 >= 0

h = ab*[-1/b zeros(1,round(tau*Fs) - 1) exp(j*2*pi*f_o*tau)];
else

h = -ab/b;
end

end
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A.1.2 Mobile Radio Channel

function h = mob_rad_chan(doppler_freq,Fs,Tb,num_imp)

% desc: generates impulse responses for a mobile radio channel model;
% the model includes a direct path
% a path delayed by Tb, and a path delayed by 2*Tb; the paths
% have attenuations 0 dB, -20 dB, and -25 dB respectively; the model
% assumes a constant velocity mobile with doppler_freq = v/lambda
% where v = velocity of mobile, lambda = wavelength of carrier
% (ref: Jeruchim, Simulation of Communication Systems, pg. 382)
%
% syntax: h = mob_rad_chan(doppler_freq,Fs,Tb,num_imp)
%
% inputs: doppler_freq = (velocity of mobile)/(wavelength of carrier);
% the doppler frequency determines the rate at which the channel changes
% Fs = sampling frequency [1/s]
% Tb = bit duration [s] (Fs*Tb must be an integer)
% num_imp = number of impulse responses to generate
%outputs: h = matrix of column-wise impulse responses; h(:,k) = response at time k
%
% prog: Shane M. Haas -- 1999

if round(Fs*Tb) ˜= Fs*Tb
error(’ERROR in mob_rad_chan: Fs*Tb must ben an integer’)

end

% parameters
n_ss = 2000; %number of initial points to throw away to simulate steady state

% path attenuations on a linear scale
A0 = 10ˆ(0/10);
A1 = 10ˆ(-20/10);
A2 = 10ˆ(-25/10);
A = [A0 A1 A2];

% path delays in samples
%d1 = round(Tb*Fs/2);
%d2 = round(Tb*Fs);
d1 = round(Tb*Fs);
d2 = round(2*Tb*Fs);

% the time variation in the coefficients is modeled by passing complex
% Gaussian noise through a single-pole Butterworth filter

[b,a] = butter(1,doppler_freq/Fs*2);
h = [randn(num_imp + n_ss,1) + j*randn(num_imp + n_ss,1) , ...

randn(num_imp + n_ss,1) + j*randn(num_imp + n_ss,1) ,...
randn(num_imp + n_ss,1) + j*randn(num_imp + n_ss,1)];

h = filter(b,a,h);

% set variance on each tap
pwr = std(h);
h = h./pwr(ones(num_imp + n_ss,1),:).*sqrt(A(ones(num_imp + n_ss,1),:));

% set tap delays
h = [h(n_ss+1:n_ss + num_imp,1) zeros(num_imp,d1 - 1), ...

h(n_ss+1:n_ss + num_imp,2) zeros(num_imp,d2 - d1 - 1) ,...
h(n_ss+1:n_ss + num_imp,3)].’;

A.2 Adaptive Algorithms

A.2.1 Recursive Least Squares (RLS)

A.2.1.1 Ordinary (Training Sequence) Recursive Least Squares

function [e,w,y_hat] = crls_offline(x,y,w_o,ff)
% desc: given a complex primary signal y (signal + noise) and a
% complex reference signal x (noise) this function
% adapts the initial weight vector w_o to minimize the
% mean squared difference between y and the filtered x using the
% exponentially weighted recursive least squares estimator
%
% syntax: [e,w,y_hat] = crls_offline(x,y,w_o,ff)
%
% input: x = complex vector of reference signal data
% = x_i + j*x_q
% y = complex vector of primary signal data
% = y_i + j*y_q
% w_o = initial FIR filter weights
% ff = the forgetting factor (0 < ff < 1)
% output: e = vector of error signal = primary signal - filtered reference signal
% w = matrix of adaptive weights (column k contains the set of filter weights at step k; row 1 = w(1,k))
% y_hat = estimator of primary signal data = filtered reference signal
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%
% notes: the weights w(:,k) are not updated for the first length(w_o) iterations; hence,
% this implementation is not suitable for measuring the initial transient responses of
% the estimator
%
% prog: Shane Haas 1999
%

N_data = length(x);
if length(y) ˜= N_data

error(’ERROR in clms_offline: x and y must be the same length’)
end
N_FIR = length(w_o);
if N_FIR ˜= round(N_FIR)

error(’ERROR in clms_offline: w_o must have an even number of elements’)
end

% note: the rls estimator is implemented using 2x1 vectors to describe complex
% numbers

x = x(:);
y = y(:);
w = zeros(2*N_FIR,N_data);
e = zeros(2,N_data);
y_hat = zeros(2,N_data);

w0 = [real(w_o(:)); imag(w_o(:))];
w(:,1:N_FIR) = w0(:,ones(1,N_FIR));

H = .0001*eye(2*N_FIR);
for k = N_FIR+1:N_data

x_ik = flipud(real(x(k-N_FIR+1:k))); % x_k = [x(k) ... x(k-N_FIR+1)]
x_qk = flipud(imag(x(k-N_FIR+1:k)));
x_k = [x_ik x_qk;-x_qk x_ik];

y_hat(:,k) = x_k’*w(:,k-1);
e(:,k) = [real(y(k)); imag(y(k))] - y_hat(:,k);

H = ff*H + x_k*x_k’;

w(:,k) = w(:,k-1) + inv(H)*x_k*e(:,k);

end

% convert back to complex notation
y_hat = y_hat(1,:) + j*y_hat(2,:);
e = e(1,:) + j*e(2,:);
w = w(1:N_FIR,:) + j*w(N_FIR+1:end,:);

A.2.1.2 Decision Weighted Recursive Least Squares

function [e,w,y_hat,dw] = mpsk_dwcrls_offline(x_hat,dw_hard,y,w_o,ff)
% desc: performs the decision weighted complex recursive least squares estimate
% of a communications channel given an estimate of the transmitted sequence
% x_hat, x_hat’s decision weights (0 <= dw <= 1), and the output of the channel y.
%
% syntax: [e,w,y_hat,dw] = mpsk_dwcrls_offline(x_hat,dw_hard,y,w_o,ff)
%
% input: x_hat = complex vector of reference signal data
% = x_i_hat + j*x_q_hat
% dw_hard = decision weights for each hard decision in x_hat;
% (= 1 - abs(phase error in decision)/(pi/M) wher e M = number of symbols for soft decision weighting, e.g.)
% y = complex vector of primary signal data
% = y_i + j*y_q
% w_o = initial FIR filter weights
% ff = forgetting factor (0 < ff <= 1); setting ff closer to 0 emphasizes
% more recent measurements in the update of the weights
% output: e = vector of error signal; each row is y(k) - x_hat(k) filtered by w(:,k)
% w = matrix of adaptive weights (column k contains the set of filter weights at step k; row 1 = w(1,k))
% y_hat = estimator of primary signal data = filtered reference signal
% dw = decision weights calculated for each step of the WRLS algorithm
%
% prog: Shane Haas 1999
%

N_data = length(x_hat);
if length(y) ˜= N_data

error(’ERROR in dwcrls_offline: x and y must be the same length’)
end
N_FIR = length(w_o);
if N_FIR ˜= round(N_FIR)

error(’ERROR in dwcrls_offline: w_o must have an even number of elements’)
end

% note: the rls estimator is implemented using 2x1 vectors to describe complex
% numbers

x = x_hat(:);
y = y(:);
w = zeros(2*N_FIR,N_data);
e = zeros(2,N_data);
y_hat = zeros(2,N_data);

w0 = [real(w_o(:)); imag(w_o(:))];
w(:,1:N_FIR) = w0(:,ones(1,N_FIR));
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H = .01*eye(2*N_FIR);

for k = N_FIR+1:N_data

x_ik = flipud(real(x(k-N_FIR+1:k))); % x_k = [x(k) ... x(k-N_FIR+1)]
x_qk = flipud(imag(x(k-N_FIR+1:k)));
x_k = [x_ik x_qk;-x_qk x_ik];
dw_hard_k = flipud(dw_hard(k-N_FIR+1:k));

dw(k) = prod(dw_hard_k);

y_hat(:,k) = x_k’*w(:,k-1);
e(:,k) = [real(y(k)); imag(y(k))] - y_hat(:,k);

H = ff*H + dw(k)*x_k*x_k’;

w(:,k) = w(:,k-1) + dw(k).*(H\x_k*e(:,k));

end

% convert back to complex notation
y_hat = y_hat(1,:) + j*y_hat(2,:);
e = e(1,:) + j*e(2,:);
w = w(1:N_FIR,:) + j*w(N_FIR+1:end,:);

A.2.1.3 Modified Decision Weighted Recursive Least Squares

function [e,w,y_hat,dw] = mpsk_mdwcrls_offline(x_hat,dw_hard,y,w_o,ff)
% desc: performs the modified decision weighted complex recursive least squares estimate
% of a communications channel given an estimate of the transmitted sequence
% x_hat, x_hat’s decision weights (0 <= dw <= 1), and the output of the channel y.
%
% syntax: [e,w,y_hat,dw] = mpsk_mdwcrls_offline(x_hat,dw_hard,y,w_o,ff)
%
% input: x_hat = complex vector of reference signal data
% = x_i_hat + j*x_q_hat
% dw_hard = decision weights for each hard decision in x_hat;
% (= 1 - abs(phase error in decision)/(pi/M) wher e M = number of symbols for soft decision weighting, e.g.)
% y = complex vector of primary signal data
% = y_i + j*y_q
% w_o = initial FIR filter weights
% ff = forgetting factor (0 < ff <= 1); setting ff closer to 0 emphasizes
% more recent measurements in the update of the weights
% output: e = vector of error signal; each row is y(k) - x_hat(k) filtered by w(:,k)
% w = matrix of adaptive weights (column k contains the set of filter weights at step k; row 1 = w(1,k))
% y_hat = estimator of primary signal data = filtered reference signal
% dw = decision weights calculated for each step of the WRLS algorithm
%
% prog: Shane Haas 1999
%

N_data = length(x_hat);
if length(y) ˜= N_data

error(’ERROR in dwcrls_offline: x and y must be the same length’)
end
N_FIR = length(w_o);
if N_FIR ˜= round(N_FIR)

error(’ERROR in dwcrls_offline: w_o must have an even number of elements’)
end

% note: the rls estimator is implemented using 2x1 vectors to describe complex
% numbers

x = x_hat(:);
y = y(:);
w = zeros(2*N_FIR,N_data);
e = zeros(2,N_data);
y_hat = zeros(2,N_data);

w0 = [real(w_o(:)); imag(w_o(:))];
w(:,1:N_FIR) = w0(:,ones(1,N_FIR));

H = .01*eye(2*N_FIR);

for k = N_FIR+1:N_data

x_ik = flipud(real(x(k-N_FIR+1:k))); % x_k = [x(k) ... x(k-N_FIR+1)]
x_qk = flipud(imag(x(k-N_FIR+1:k)));
x_k = [x_ik x_qk;-x_qk x_ik];
dw_hard_k = flipud(dw_hard(k-N_FIR+1:k));

dw(k) = prod(dw_hard_k);

y_hat(:,k) = x_k’*w(:,k-1);
e(:,k) = [real(y(k)); imag(y(k))] - y_hat(:,k);

H = ff*H + x_k*x_k’;

w(:,k) = w(:,k-1) + dw(k).*(H\x_k*e(:,k));

end

% convert back to complex notation
y_hat = y_hat(1,:) + j*y_hat(2,:);
e = e(1,:) + j*e(2,:);
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w = w(1:N_FIR,:) + j*w(N_FIR+1:end,:);

A.2.2 Least Mean Squares (LMS)

A.2.2.1 Ordinary (Training Sequence) Least Mean Squares

A.2.2.1.1 Using Complex Numbers
function [e,w,y_hat] = clms_offline(x,y,w_o,gain)
% desc: given a complex primary signal y (signal + noise) and a
% complex reference signal x (noise) this function
% adapts the initial weight vector w_o to minimize the
% mean squared difference between y and the filtered x
%
% syntax: [e,w,y_hat] = clms_offline(x,y,w_o,gain)
%
% input: x = complex vector of reference signal data
% = x_i + j*x_q
% y = complex vector of primary signal data
% = y_i + j*y_q
% w_o = initial FIR filter weights
% output: e = vector of error signal = primary signal - filtered reference signal
% w = matrix of adaptive weights (column k contains the set of filter weights at step k; row 1 = w(1,k))
% y_hat = estimator of primary signal data = filtered reference signal
%
% prog: Shane Haas 1999
%

N_data = length(x);
if length(y) ˜= N_data

error(’ERROR in clms_offline2: x and y must be the same length’)
end
N_FIR = length(w_o);

x = x(:);
y = y(:);
w = zeros(N_FIR,N_data);
e = zeros(1,N_data);
y_hat = zeros(1,N_data);

w_o = w_o(:);
w(:,1:N_FIR) = w_o(:,ones(1,N_FIR));

for k = N_FIR:N_data

x_k = flipud(x(k-N_FIR+1:k));

y_hat(k) = w(:,k).’*x_k;
e(k) = y(k) - y_hat(k);
if k ˜= N_data

w(:,k+1) = w(:,k) + gain*(e(k))*conj(x_k);
end

end

A.2.2.1.2 Using Vectors to Represent Complex Numbers
function [e,w,y_hat] = clms_offline3(x,y,w_o,gain)
% desc: given a complex primary signal y (signal + noise) and a
% complex reference signal x (noise) this function
% adapts the initial weight vector w_o to minimize the
% mean squared difference between y and the filtered x
%
% syntax: [e,w,y_hat] = clms_offline3(x,y,w_o,gain)
%
% input: x = complex vector of reference signal data
% = x_i + j*x_q
% y = complex vector of primary signal data
% = y_i + j*y_q
% w_o = initial FIR filter weights
% output: e = vector of error signal = primary signal - filtered reference signal
% w = matrix of adaptive weights (column k contains the set of filter weights at step k; row 1 = w(1,k))
% y_hat = estimator of primary signal data = filtered reference signal
%
% prog: Shane Haas
%

N_data = length(x);
if length(y) ˜= N_data

error(’ERROR in clms_offline: x and y must be the same length’)
end
N_FIR = length(w_o);
if N_FIR ˜= round(N_FIR)

error(’ERROR in clms_offline: w_o must have an even number of elements’)
end
x = x(:);
y = y(:);
w = zeros(2*N_FIR,N_data);
e = zeros(2,N_data);
y_hat = zeros(2,N_data);

w(:,1) = [real(w_o(:)); imag(w_o(:))];
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for k = N_FIR:N_data

x_ik = flipud(real(x(k-N_FIR+1:k))); % x_k = [x(k) ... x(k-N_FIR+1)]
x_qk = flipud(imag(x(k-N_FIR+1:k)));
x_k = [x_ik x_qk;-x_qk x_ik];

y_hat(:,k) = x_k’*w(:,k);
e(:,k) = [real(y(k)); imag(y(k))] - y_hat(:,k);
if k ˜= N_data

w(:,k+1) = w(:,k) + gain*x_k*e(:,k);
end

end

y_hat = y_hat(1,:) + j*y_hat(2,:);
e = e(1,:) + j*e(2,:);
w = w(1:N_FIR,:) + j*w(N_FIR+1:end,:);

A.2.2.2 Decision Weighted Recursive Least Mean Squares

function [e,w,y_hat,dw] = mpsk_dwclms_offline(x_hat,dw_hard,y,w_o,gain)
% desc: performs the decision weighted complex least mean squares estimate
% of a communications channel given an estimate of the transmitted sequence
% x_hat, x_hat’s decision weights dw_hard for each hard decision, and the output of the channel y.
%
% syntax: [e,w,y_hat,dw] = mpsk_pwclms_offline(x_hat,dw_hard,y,w_o,gain)
%
% input: x_hat = complex vector of reference signal data
% = x_i_hat + j*x_q_hat
% dw_hard = decision weight for each hard decision in x_hat;
% (= 1 - abs(phase error in decision)/(pi/M) wher e M = number of symbols for MPSK, e.g.)
% y = complex vector of primary signal data
% = y_i + j*y_q
% w_o = initial FIR filter weights
% output: e = vector of error signal; each row is y(k) - x_hat(k) filtered by w(:,k)
% w = matrix of adaptive weights (column k contains the set of filter weights at step k; row 1 = w(1,k))
% y_hat = estimator of primary signal data = filtered reference signal
% dw = vector of calculated decision weights for each step of the lms algorithm
%
% prog: Shane Haas 1999
%

N_data = length(x_hat);
if length(y) ˜= N_data

error(’ERROR in mpsk_dwclms_offline: x_hat and y must be the same length’)
end
N_FIR = length(w_o);

x_hat = x_hat(:);
y = y(:);
w = zeros(N_FIR,N_data);
e = zeros(1,N_data);
y_hat = zeros(1,N_data);

w_o = w_o(:);
w(:,1:N_FIR) = w_o(:,ones(1,N_FIR));

for k = N_FIR:N_data

x_k = flipud(x_hat(k-N_FIR+1:k));
dw_hard_k = flipud(dw_hard(k-N_FIR+1:k));

y_hat(k) = w(:,k).’*x_k;
e(k) = y(k) - y_hat(k);

dw(k) = prod(dw_hard_k);

if k ˜= N_data
w(:,k+1) = w(:,k) + dw(k)*gain*(e(k))*conj(x_k);

end
end

A.3 Algorithm Comparison

A.3.1 Adaptive Channel Estimation Example

% Script for Blind Channel Estimation Example
% Shane M. Haas (1999)

%------------------------
% Simulation Parameters
%------------------------

% random number generator state vectors
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if exist(’LOCKSTATE’) == 1
rand(’state’,ustate);
randn(’state’,nstate);

else
rand(’state’,sum(100*clock));
ustate = rand(’state’);
randn(’state’,sum(101*clock));
nstate = randn(’state’);

end

% noise parameters
ISNR = 1000; %dB %SNR of noise to add to I channel
QSNR = 1000; %dB %SNR of noise to add to Q channel

% estimator parameters
lms_gain = .3; %LMS algorithm gain
ff = 0.99; %RLS algorithm forgetting factor

% simulation run parameters
N_data = 300; %number of symbols to generate in each simulation run
Fs = 1; %normalized sampling frequency
Tb = 4; %normalized symbol interval

% modulation parameters
M = 4; %number of symbols
Eb = 1; %energy per bit

% channel parameters
tau = 8; %delay spread of Rummler channel

% performance parameters
n_skip = 100*Tb*Fs; %number of initial points to skip to measure steady-state

% insert symbol error?
INSERT_ERROR = 0; % 1 = insert symbol error 3/4 way through simulation; 0 = don’t insert error

%------------------------
% Memory Allocation
%------------------------

err = zeros(6,round(Fs*Tb)*N_data);

%------------------------
% Simulation
%------------------------

% generate channel
h = rummler(tau,Fs);
h_o = h;
%h_o = zeros(size(h));

% synchronize receiver to channel’s rotation of constellation
figure(15); subplot(2,1,2)
mpsk_ang = mpsk_synch(M,Eb,h,Fs,Tb,1);

% generate signals
s = sym_gen(M,N_data);
[x,t] = mpsk_gen(s,Eb,M,Fs,Tb);

% generate output of channel
z = filter(h,1,x);

% estimate signal power entering receiver
s_pwr = (std(z)).ˆ2;
n_i = sqrt(s_pwr/(10ˆ(ISNR/10)))*randn(size(x));
n_q = sqrt(s_pwr/(10ˆ(QSNR/10)))*randn(size(x));
y = z + n_i + j*n_q;

% generated detected sequence
figure(15);hold on
[s_hat,phi_err] = mpsk_rcvr(y,mpsk_ang,Fs,Tb,1); hold off;
[s_hat,end_skip] = sym_synch(s,s_hat,ceil(length(h)/Tb));

% insert error (optional -- for testing purposes)
if INSERT_ERROR

if s(round(0.75*length(s))) == 1
s_hat(round(0.75*length(s))) = 2;

else
s_hat(round(0.75*length(s))) = 1;

end
end

% reconstruct transmitted signal
x_hat = mpsk_gen(s_hat,Eb,M,Fs,Tb);
t2 = t(1:end-end_skip*Fs*Tb);

% calculate soft decisions
x_soft = 1 - phi_err/(pi/M);
x_soft = x_soft(ones(1,round(Fs*Tb)),:); x_soft = x_soft(:);
dw_ideal = abs(x_hat - x) < 4*eps;

% calculate SER
n_sym = 1:N_data-end_skip;
n_smpl = 1:length(x) - end_skip*Fs*Tb;
se_loc = find(s(n_sym) ˜= s_hat(n_sym)); %symbol error locations
num_bad_det = length(se_loc);
SER = num_bad_det/(N_data - end_skip);
fprintf(’Avg SER = %1.4e (ds = %1.2e)\n’,SER,tau);

% call channel estimator algorithms

[e_tlms,w_tlms,y_hat_tlms] = clms_offline2(x(n_smpl),y(n_smpl),h_o,lms_gain); %training/probe sim
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[e_blms,w_blms,y_hat_blms] = clms_offline2(x_hat(n_smpl),y(n_smpl),h_o,lms_gain); %std blind sim
[e_sdwlms,w_sdwlms,y_hat_sdwlms,dw_sdwlms] = mpsk_dwclms_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,lms_gain); %soft dw blin d sim
[e_idwlms,w_idwlms,y_hat_idwlms,dw_idwlms] = mpsk_dwclms_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,lms_gain); %ideal dw b lind sim
[e_trls,w_trls,y_hat_trls] = crls_offline(x(n_smpl),y(n_smpl),h_o,ff); %training/probe sim
[e_brls,w_brls,y_hat_brls] = crls_offline(x_hat(n_smpl),y(n_smpl),h_o,ff); %std blind sim
[e_sdwrls,w_sdwrls,y_hat_sdwrls,dw_sdwrls] = mpsk_dwcrls_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,ff); %soft dw blind sim
[e_idwrls,w_idwrls,y_hat_idwrls,dw_idwrls] = mpsk_dwcrls_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,ff); %ideal dw blind si m
[e_msdwrls,w_msdwrls,y_hat_msdwrls,dw_msdwrls] = mpsk_mdwcrls_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,ff); %modified sof t dw blind sim
[e_midwrls,w_midwrls,y_hat_midwrls,dw_midwrls] = mpsk_mdwcrls_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,ff); %modified i deal dw blind sim

% calculate average distance from true channel response
h_true = h(:);

dist_tlms = mean((abs(h_true(:,ones(1,size(w_tlms,2)))-w_tlms)).ˆ2);
dist_blms = mean((abs(h_true(:,ones(1,size(w_blms,2)))-w_blms)).ˆ2);
dist_sdwlms = mean((abs(h_true(:,ones(1,size(w_sdwlms,2)))-w_sdwlms)).ˆ2);
dist_idwlms = mean((abs(h_true(:,ones(1,size(w_idwlms,2)))-w_idwlms)).ˆ2);
dist_trls = mean((abs(h_true(:,ones(1,size(w_trls,2)))-w_trls)).ˆ2);
dist_brls = mean((abs(h_true(:,ones(1,size(w_brls,2)))-w_brls)).ˆ2);
dist_sdwrls = mean((abs(h_true(:,ones(1,size(w_sdwrls,2)))-w_sdwrls)).ˆ2);
dist_idwrls = mean((abs(h_true(:,ones(1,size(w_idwrls,2)))-w_idwrls)).ˆ2);
dist_msdwrls = mean((abs(h_true(:,ones(1,size(w_msdwrls,2)))-w_msdwrls)).ˆ2);
dist_midwrls = mean((abs(h_true(:,ones(1,size(w_midwrls,2)))-w_midwrls)).ˆ2);

fprintf(’Simulations Complete\n’);

r = n_skip:(N_data - end_skip)*Fs*Tb; %indices of steady-state measurements
fprintf(’LMS - Training Cumulative Average Squared Distance from True Response = %1.2f\n’,sum(dist_tlms(r)));
fprintf(’LMS - Blind Cumulative Average Squared Error from True Response = %1.2f\n’,sum(dist_blms(r)));
fprintf(’SDWLMS Cumulative Average Squared Error from True Response = %1.2f\n’,sum(dist_sdwlms(r)));
fprintf(’IDWLMS Cumulative Average Squared Error from True Response = %1.2f\n’,sum(dist_idwlms(r)));
fprintf(’RLS - Training Cumulative Average Squared Error from True Response = %1.2f\n’,sum(dist_trls(r)));
fprintf(’RLS - Blind Cumulative Average Squared Error from True Response = %1.2f\n’,sum(dist_brls(r)));
fprintf(’SDWRLS - Cumulative Average Squared Error from True Response = %1.2f\n’,sum(dist_sdwrls(r)));
fprintf(’IDWRLS - Cumulative Average Squared Error from True Response = %1.2f\n’,sum(dist_idwrls(r)));
fprintf(’MSDWRLS - Cumulative Average Squared Error from True Response = %1.2f\n’,sum(dist_msdwrls(r)));
fprintf(’MIDWRLS - Cumulative Average Squared Error from True Response = %1.2f\n’,sum(dist_midwrls(r)));

%-----------------------
% Display the results
%-----------------------

N_plot = 40;

y_imin = min(real(y));
y_imax = max(real(y));
y_qmin = min(imag(y));
y_qmax = max(imag(y));

htick = union(sort([real(h) imag(h)]),sort([real(h) imag(h)]));

figure(1)
subplot(6,1,1)

plot(t,real(y));
nudgeaxis(1.1);
mark_error2(t,dw_ideal,’g’)
title(’Output Signal’)
ylabel(’y_i’)
%set(gca,’xlim’,[0 N_plot*Tb],’ylim’,[y_imin-0.5 y_imax+0.5]);
set(gca,’xticklabel’,[])

subplot(6,1,2)
plot(t,imag(y));
nudgeaxis(1.1);
mark_error2(t,dw_ideal,’g’);
ylabel(’y_q’)
%set(gca,’xlim’,[0 N_plot*Tb],’ylim’,[y_qmin-0.5 y_qmax+0.5]);
set(gca,’xticklabel’,[])

subplot(6,1,3)
stairs(t,real(x_hat));
nudgeaxis(1.1);
mark_error2(t,dw_ideal,’g’);
title(’Detected Signal’)
ylabel(’x_ihat’)
%set(gca,’xlim’,[0 N_plot*Tb],’ylim’,[min([s0(:);s1(:)])-0.5 max([s0(:);s1(:)])+0.5]);
set(gca,’xticklabel’,[])

subplot(6,1,4)
stairs(t,imag(x_hat));
nudgeaxis(1.1);
mark_error2(t,dw_ideal,’g’);
xlabel(’Time [s]’)
ylabel(’x_qhat’)
%set(gca,’xlim’,[0 N_plot*Tb],’ylim’,[min([s0(:);s1(:)])-0.5 max([s0(:);s1(:)])+0.5]);
set(gca,’xticklabel’,[])

subplot(6,1,5)
stairs(t,real(x))
nudgeaxis(1.1);
mark_error2(t,dw_ideal,’g’);
title(’Input Signal’)
ylabel(’x_i’)
%set(gca,’xlim’,[0 N_plot*Tb],’ylim’,[min([s0(:);s1(:)])-0.5 max([s0(:);s1(:)])+0.5]);
set(gca,’xticklabel’,[])

subplot(6,1,6)
stairs(t,imag(x));
nudgeaxis(1.1);
mark_error2(t,dw_ideal,’g’);
xlabel(’Time [s]’)
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ylabel(’x_q’)
%set(gca,’xlim’,[0 N_plot*Tb],’ylim’,[min([s0(:);s1(:)])-0.5 max([s0(:);s1(:)])+0.5]);

figure(2); clf
set(gcf,’name’,’TLMS’)
subplot(2,1,1)

plot(t2,real(e_tlms),’b’,t2,imag(e_tlms),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_tlms),’b’,t2,imag(e_tlms),’r’); hold off
%set(gca,’xlim’,[0 N_plot*Tb])
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (TLMS)’)

subplot(2,1,2)
plot(t2,real(w_tlms),’b’,t2,imag(w_tlms),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_tlms),’b’,t2,imag(w_tlms),’r’); hold off;
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (TLMS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(3); clf
set(gcf,’name’,’BLMS’)
subplot(2,1,1)

plot(t2,real(e_blms),’b’,t2,imag(e_blms),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_blms),’b’,t2,imag(e_blms),’r’); hold off
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (BLMS)’)

subplot(2,1,2)
plot(t2,real(w_blms),’b’,t2,imag(w_blms),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_blms),’b’,t2,imag(w_blms),’r’); hold off
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (BLMS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(4); clf
set(gcf,’name’,’SDWLMS’)
subplot(2,1,1)

plot(t2,real(e_sdwlms),’b’,t2,imag(e_sdwlms),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_sdwlms),’b’,t2,imag(e_sdwlms),’r’); hold off;
%set(gca,’xlim’,[0 N_plot*Tb])
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (SDWLMS)’)

subplot(2,1,2)
plot(t2,real(w_sdwlms),’b’,t2,imag(w_sdwlms),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_sdwlms),’b’,t2,imag(w_sdwlms),’r’); hold off
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (SDWLMS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(5); clf
set(gcf,’name’,’IDWLMS’)
subplot(2,1,1)

plot(t2,real(e_idwlms),’b’,t2,imag(e_idwlms),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_idwlms),’b’,t2,imag(e_idwlms),’r’); hold off ;
%set(gca,’xlim’,[0 N_plot*Tb])
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (IDWLMS)’)

subplot(2,1,2)
plot(t2,real(w_idwlms),’b’,t2,imag(w_idwlms),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_idwlms),’b’,t2,imag(w_idwlms),’r’); hold off ;
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (IDWLMS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(6); clf
set(gcf,’name’,’TRLS’)
subplot(2,1,1)

plot(t2,real(e_trls),’b’,t2,imag(e_trls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_trls),’b’,t2,imag(e_trls),’r’); hold off ;
%set(gca,’xlim’,[0 N_plot*Tb])
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (TRLS)’)

subplot(2,1,2)
plot(t2,real(w_trls),’b’,t2,imag(w_trls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_trls),’b’,t2,imag(w_trls),’r’); hold off ;
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (TRLS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(7); clf
set(gcf,’name’,’BRLS’)
subplot(2,1,1)

plot(t2,real(e_brls),’b’,t2,imag(e_brls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_brls),’b’,t2,imag(e_brls),’r’); hold off ;
%set(gca,’xlim’,[0 N_plot*Tb])
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (BRLS)’)

subplot(2,1,2)
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plot(t2,real(w_brls),’b’,t2,imag(w_brls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_brls),’b’,t2,imag(w_brls),’r’); hold off ;
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (BRLS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(8); clf
set(gcf,’name’,’SDWRLS’)
subplot(2,1,1)

plot(t2,real(e_sdwrls),’b’,t2,imag(e_sdwrls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_sdwrls),’b’,t2,imag(e_sdwrls),’r’); hold off ;
%set(gca,’xlim’,[0 N_plot*Tb])
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (SDWRLS)’)

subplot(2,1,2)
plot(t2,real(w_sdwrls),’b’,t2,imag(w_sdwrls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_sdwrls),’b’,t2,imag(w_sdwrls),’r’); hold off ;
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (SDWRLS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(9); clf
set(gcf,’name’,’IDWRLS’)
subplot(2,1,1)

plot(t2,real(e_idwrls),’b’,t2,imag(e_idwrls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_idwrls),’b’,t2,imag(e_idwrls),’r’); hold off ;
%set(gca,’xlim’,[0 N_plot*Tb])
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (IDWRLS)’)

subplot(2,1,2)
plot(t2,real(w_idwrls),’b’,t2,imag(w_idwrls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_idwrls),’b’,t2,imag(w_idwrls),’r’); hold off ;
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (IDWRLS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(10); clf
set(gcf,’name’,’MSDWRLS’)
subplot(2,1,1)

plot(t2,real(e_msdwrls),’b’,t2,imag(e_msdwrls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_msdwrls),’b’,t2,imag(e_msdwrls),’r’); hold off ;
%set(gca,’xlim’,[0 N_plot*Tb])
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (MSDWRLS)’)

subplot(2,1,2)
plot(t2,real(w_msdwrls),’b’,t2,imag(w_msdwrls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_msdwrls),’b’,t2,imag(w_msdwrls),’r’); hold off ;
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (MSDWRLS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(11); clf
set(gcf,’name’,’MIDWRLS’)
subplot(2,1,1)

plot(t2,real(e_midwrls),’b’,t2,imag(e_midwrls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(e_midwrls),’b’,t2,imag(e_midwrls),’r’); hold off ;
%set(gca,’xlim’,[0 N_plot*Tb])
ylabel(’Error Signal’)
title(’Error Signal Feeding Adaptive Algorithm (MIDWRLS)’)

subplot(2,1,2)
plot(t2,real(w_midwrls),’b’,t2,imag(w_midwrls),’r’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,real(w_midwrls),’b’,t2,imag(w_midwrls),’r’); hold off ;
xlabel(’t [s]’)
%set(gca,’xlim’,[0 N_plot*Tb])
title(’Estimated Channel Response Coefficients (MIDWRLS)’)
set(gca,’ytick’,htick,’ygrid’,’on’);

figure(12); clf
set(gcf,’name’,’Squared Distance (LMS)’)
plot(t2,dist_tlms,’-o’,t2,dist_blms,’-x’,t2,dist_sdwlms,’-+’,t2,dist_idwlms,’-h’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,dist_tlms,’-o’,t2,dist_blms,’-x’,t2,dist_sdwlms,’-+’,t2,dist_idwlms,’-h’)
title(’Distance Squared from True Response (LMS)’)
xlabel(’Time [s]’)
ylabel(’Squared Distance’)
legend(’tlms’,’blms’,’sdwlms’,’idwlms’)

figure(13); clf
set(gcf,’name’,’Squared Distance (RLS)’)
plot(t2,dist_trls,’-*’,t2,dist_brls,’-s’,t2,dist_sdwrls,’-d’,t2,dist_idwrls,’-ˆ’,t2,dist_msdwrls,’-v’,t2,dist_midwrls,’-p’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,dist_trls,’-*’,t2,dist_brls,’-s’,t2,dist_sdwrls,’-d’,t2,dist_idwrls,’-ˆ’,t2,dist_msdwrls,’-v’,t2,dist_midwrls,’-p’)
title(’Distance Squared from True Response (RLS)’)
xlabel(’Time [s]’)
ylabel(’Squared Distance’)
legend(’trls’,’brls’,’sdwrls’,’idwrls’,’msdwrls’,’midwrls’)

if INSERT_ERROR

96



figure(12); clf
set(gcf,’name’,’Squared Distance (LMS)’)
plot(t2,dist_tlms,’-o’,t2,dist_blms,’-x’,t2,dist_idwlms,’-h’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,dist_tlms,’-o’,t2,dist_blms,’-x’,t2,dist_idwlms,’-h’)
title(’Distance Squared from True Response (LMS)’)
xlabel(’Time [s]’)
ylabel(’Squared Distance’)
legend(’tlms’,’blms’,’idwlms’)

figure(13); clf
set(gcf,’name’,’Squared Distance (RLS)’)
plot(t2,dist_trls,’-*’,t2,dist_brls,’-s’,t2,dist_idwrls,’-ˆ’,t2,dist_midwrls,’-p’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,dist_trls,’-*’,t2,dist_brls,’-s’,t2,dist_idwrls,’-ˆ’,t2,dist_midwrls,’-p’)
title(’Distance Squared from True Response (RLS)’)
xlabel(’Time [s]’)
ylabel(’Squared Distance’)
legend(’trls’,’brls’,’idwrls’,’midwrls’)

end

figure(14); clf
set(gcf,’name’,’Weights’)
subplot(2,1,1)

plot(t,x_soft,’-x’,t,dw_ideal,’-o’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t,x_soft,t,dw_ideal); hold off;
title(’Weights of for Each Hard Decision’)
xlabel(’Time [s]’)
ylabel(’Weight’)
legend(’soft’,’ideal’)

subplot(2,1,2)
plot(t2,dw_sdwrls,’-x’,t2,dw_idwrls,’-o’)
mark_error2(t,dw_ideal,’g’); hold on;
plot(t2,dw_sdwrls,t2,dw_idwrls); hold off
title(’Weights for DWLMS and DWRLS Algorithms’)
xlabel(’Time [s]’)
ylabel(’Weight’)
legend(’soft’,’ideal’)

A.3.2 Performance Versus Delay Spread

% Script for Comparing Estimator Error vs Delay Spread
% MPSK Modulation
% Shane M. Haas -- 1999

%------------------------
% Simulation Parameters
%------------------------

% random number generator state vectors
if exist(’LOCKSTATE’) == 1

rand(’state’,ustate);
randn(’state’,nstate);

else
rand(’state’,sum(100*clock));
ustate = rand(’state’);
randn(’state’,sum(101*clock));
nstate = randn(’state’);

end

% noise parameters
ISNR = 10; %dB %SNR of noise to add to I channel
QSNR = 10; %dB %SNR of noise to add to Q channel

% estimator parameters
lms_gain = .3; %LMS algorithm gain
ff = 0.99; %RLS algorithm forgetting factor

% individual simulation run parameters
N_data = 300; %number of symbols to generate in each simulation run
Fs = 1; %normalized sampling frequency
Tb = 4; %normalized symbol interval

% modulation parameters
M = 4; %number of symbols
Eb = 1; %energy per bit

% start and stop simulation parameters
ds_start = Tb; %start delay spread
ds_step = Tb; %delay spread increment (must be a multiple of Tb for proper receiver synch)
ds_stop = 5*Tb; %stop delay spread
ds = ds_start:ds_step:ds_stop; %delay spreads to simulate

% other parameters
n_avg = 20; %number of simulation to average for each del spread
n_skip = 100*Fs*Tb; %number of initial points to skip to measure steady-state

% n_skip must be larger than 2 or 3 times the length
% of the channel impulse response

SER_thres = 2e-1; %repeat simulations with SER higher than this threshold
SER_count_thres = 10; %number of simulations to repeat with SER higher than SER_thres before proceeding

%------------------------
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% Memory Allocation
%------------------------
ds_iter = 0;
SER = zeros(n_avg,length(ds));
dist_tlms = zeros(n_avg,length(ds));
dist_blms = zeros(n_avg,length(ds));
dist_sdwlms = zeros(n_avg,length(ds));
dist_idwlms = zeros(n_avg,length(ds));
dist_trls = zeros(n_avg,length(ds));
dist_brls = zeros(n_avg,length(ds));
dist_sdwrls = zeros(n_avg,length(ds));
dist_idwrls = zeros(n_avg,length(ds));
dist_msdwrls = zeros(n_avg,length(ds));
dist_midwrls = zeros(n_avg,length(ds));

%------------------------
% Simulation
%------------------------

for tau = ds;

ds_iter = ds_iter + 1;
for sim_iter = 1:n_avg

SER_inst = inf;
SER_count = 0;
while (SER_inst > SER_thres) & (SER_count < SER_count_thres)

% generate channel
h = rummler(tau,Fs);
h_o = h;

% synchronize receiver to channel’s rotation of constellation
mpsk_ang = mpsk_synch(M,Eb,h,Fs,Tb,0);

% generate signals
s = sym_gen(M,N_data);
[x,t] = mpsk_gen(s,Eb,M,Fs,Tb);

% generate output of channel
z = filter(h,1,x);

% estimate signal power entering receiver
s_pwr = (std(z)).ˆ2;
n_i = sqrt(s_pwr/(10ˆ(ISNR/10)))*randn(size(x));
n_q = sqrt(s_pwr/(10ˆ(QSNR/10)))*randn(size(x));
y = z + n_i + j*n_q;

% generated detected sequence
[s_hat,phi_err] = mpsk_rcvr(y,mpsk_ang,Fs,Tb,0);
[s_hat,end_skip] = sym_synch(s,s_hat,ceil(length(h)/Tb));

% calculate SER
n_sym = 1:N_data-end_skip;
n_smpl = 1:length(x) - end_skip*Fs*Tb;
se_loc = find(s(n_sym) ˜= s_hat(n_sym)); %symbol error locations
num_bad_det = length(se_loc);
SER_inst = num_bad_det/(N_data - end_skip);
SER(sim_iter,ds_iter) = SER_inst;
fprintf(’Inst SER = %1.4e; Avg SER = %1.4e (ds = %1.2e)\n’,SER_inst,mean(SER(1:sim_iter,ds_iter)),tau);

if (SER_inst >= SER_thres) & (SER_count < SER_count_thres)
fprintf(’WARNING: High SER -- repeating simulation\n’)

elseif (SER_inst >= SER_thres) & (SER_count >= SER_count_thres)
fprintf(’WARNING: High SER but SER_count_thres exceeded; proceeding with simulation\n’)

end

end

% reconstructed transmitted signal
x_hat = mpsk_gen(s_hat,Eb,M,Fs,Tb);
t2 = t(1:end-end_skip*Fs*Tb);

% calculate soft decisions
x_soft = 1 - phi_err/(pi/M);
x_soft = x_soft(ones(1,round(Fs*Tb)),:); x_soft = x_soft(:);
dw_ideal = abs(x_hat - x) < 4*eps;

% call channel estimator algorithms

[e_tlms,w_tlms,y_tlms] = clms_offline2(x(n_smpl),y(n_smpl),h_o,lms_gain); %training/probe sim
[e_blms,w_blms,y_hat_blms] = clms_offline2(x_hat(n_smpl),y(n_smpl),h_o,lms_gain); %std blind sim
[e_sdwlms,w_sdwlms,y_hat_sdwlms,pw_sdwlms] = mpsk_dwclms_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,lms_gain); %soft dw blin d sim
[e_idwlms,w_idwlms,y_hat_idwlms,pw_idwlms] = mpsk_dwclms_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,lms_gain); %ideal dw b lind sim

[e_trls,w_trls,y_hat_trls] = crls_offline(x(n_smpl),y(n_smpl),h_o,ff); %training/probe sim
[e_brls,w_brls,y_hat_brls] = crls_offline(x_hat(n_smpl),y(n_smpl),h_o,ff); %std blind sim
[e_sdwrls,w_sdwrls,y_hat_sdwrls,pw_sdwrls] = mpsk_dwcrls_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,ff); %soft dw blind sim
[e_idwrls,w_idwrls,y_hat_idwrls,pw_idwrls] = mpsk_dwcrls_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,ff); %ideal dw blind si m
[e_msdwrls,w_msdwrls,y_hat_msdwrls,pw_msdwrls] = mpsk_mdwcrls_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,ff); %modified sof t dw blind sim
[e_midwrls,w_midwrls,y_hat_midwrls,pw_midwrls] = mpsk_mdwcrls_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,ff); %modified i deal dw blind sim

% calculate average error from true channel response
h_true = h(:);
r = n_skip:(N_data - end_skip)*Fs*Tb; %indices of steady-state measurements
dist_tlms(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_tlms(:,r),2)))-w_tlms(:,r))).ˆ2));
dist_blms(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_blms(:,r),2)))-w_blms(:,r))).ˆ2));
dist_sdwlms(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_sdwlms(:,r),2)))-w_sdwlms(:,r))).ˆ2));
dist_idwlms(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_idwlms(:,r),2)))-w_idwlms(:,r))).ˆ2));
dist_trls(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_trls(:,r),2)))-w_trls(:,r))).ˆ2));
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dist_brls(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_brls(:,r),2)))-w_brls(:,r))).ˆ2));
dist_sdwrls(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_sdwrls(:,r),2)))-w_sdwrls(:,r))).ˆ2));
dist_idwrls(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_idwrls(:,r),2)))-w_idwrls(:,r))).ˆ2));
dist_msdwrls(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_msdwrls(:,r),2)))-w_msdwrls(:,r))).ˆ2));
dist_midwrls(sim_iter,ds_iter) = mean(sum((abs(h_true(:,ones(1,size(w_midwrls(:,r),2)))-w_midwrls(:,r))).ˆ2));

end
fprintf(’Simulations for delay spread = %1.2e complete (%1.0f percent done)\n’,tau,100*ds_iter/length(ds));

end

%-------------------------
% Display the Results
%-------------------------

figure(1);clf
plot(ds,median(dist_tlms),’-o’,ds,median(dist_blms),’-x’,ds,median(dist_sdwlms),’-+’,ds,median(dist_idwlms),’-h’)
%plot(ds,mean(dist_tlms),’-o’,ds,mean(dist_blms),’-x’,ds,mean(dist_sdwlms),’-+’,ds,mean(dist_idwlms),’-h’)
title(’Estimation Error as a Function of Delay Spread’)
xlabel(’Delay Spread [s]’)
ylabel(’Median Average Squared Error from True Impulse Response’)
legend(’tlms’,’blms’,’sdwlms’,’idwlms’)
grid on

figure(2);clf
plot(ds,median(dist_trls),...

’-*’,ds,median(dist_brls),’-s’,ds,median(dist_sdwrls),’-d’,ds,median(dist_idwrls),’-ˆ’,ds,median(dist_msdwrls),’-v’,ds,median(d ist_midwrls),’-p’)
%plot(ds,mean(dist_trls),...

%’-*’,ds,mean(dist_brls),’-s’,ds,mean(dist_sdwrls),’-d’,ds,mean(dist_idwrls),’-ˆ’,ds,mean(dist_msdwrls),’-v’,ds,mean(dist_midwr ls),’-p’)
title(’Estimation Error as a Function of Delay Spread’)
xlabel(’Delay Spread [s]’)
ylabel(’Median Average Squared Error from True Impulse Response’)
legend(’trls’,’brls’,’sdwrls’,’idwrls’,’msdwrls’,’midwrls’)
grid on

A.3.3 Performance Versus SNR

% Script for Comparing Estimator Error vs SNR
% MPSK Modulation
% Shane M. Haas -- 1999

%------------------------
% Simulation Parameters
%------------------------

% random number generator state vectors
if exist(’LOCKSTATE’) == 1

rand(’state’,ustate);
randn(’state’,nstate);

else
rand(’state’,sum(100*clock));
ustate = rand(’state’);
randn(’state’,sum(101*clock));
nstate = randn(’state’);

end

% estimator parameters
lms_gain = .3; %LMS algorithm gain
ff = 0.99; %RLS algorithm forgetting factor

% individual simulation run parameters
N_data = 300; %number of symbols to generate in each simulation run
Fs = 1; %normalized sampling frequency
Tb = 4; %normalized symbol interval (Fs*Tb must be an integer)

% channel parameters
ds = 1*round(Tb*Fs);

% modulation parameters
M = 4; %number of symbols
Eb = 1; %energy per bit

% start and stop simulation parameters
snr_start = 0; %start SNR
snr_step = 3; %SNR increment
snr_stop = 30; %stop SNR
snr = snr_start:snr_step:snr_stop; %SNR to simulate

% other parameters
n_avg = 20; %number of simulation to average for each del spread
n_skip = 100*round(Fs*Tb); %number of initial points to skip to measure steady-state
SER_thres = 2e-1; %repeat simulations with SER higher than this threshold
SER_count_thres = 10; %number of simulations to redo with SER higher than SER_thres before proceeding

%------------------------
% Memory Allocation
%------------------------
snr_iter = 0;
SER = zeros(n_avg,length(snr));
dist_tlms = zeros(n_avg,length(snr));
dist_blms = zeros(n_avg,length(snr));
dist_sdwlms = zeros(n_avg,length(snr));
dist_idwlms = zeros(n_avg,length(snr));
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dist_trls = zeros(n_avg,length(snr));
dist_brls = zeros(n_avg,length(snr));
dist_sdwrls = zeros(n_avg,length(snr));
dist_idwrls = zeros(n_avg,length(snr));
dist_msdwrls = zeros(n_avg,length(snr));
dist_midwrls = zeros(n_avg,length(snr));

%------------------------
% Simulation
%------------------------

for IQSNR = snr;

snr_iter = snr_iter + 1;
for sim_iter = 1:n_avg

SER_inst = inf;
SER_count = 0;
while (SER_inst > SER_thres) & (SER_count < SER_count_thres)

SER_count = SER_count + 1;

% generate channel
h = rummler(ds,Fs);
h_o = h;

% synchronize receiver to channel’s rotation of constellation
mpsk_ang = mpsk_synch(M,Eb,h,Fs,Tb,0);

% generate signals
s = sym_gen(M,N_data);
[x,t] = mpsk_gen(s,Eb,M,Fs,Tb);

% generate output of channel
z = filter(h,1,x);

% estimate signal power entering receiver
s_pwr = (std(z)).ˆ2;
n_i = sqrt(s_pwr/(10ˆ(IQSNR/10)))*randn(size(x));
n_q = sqrt(s_pwr/(10ˆ(IQSNR/10)))*randn(size(x));
y = z + n_i + j*n_q;

% generated detected sequence
[s_hat0,phi_err] = mpsk_rcvr(y,mpsk_ang,Fs,Tb,0);
[s_hat,end_skip] = sym_synch(s,s_hat0,ceil(length(h)/Tb));

% calculate SER
n_sym = 1:N_data-end_skip;
n_smpl = 1:length(x) - end_skip*Fs*Tb;
se_loc = find(s(n_sym) ˜= s_hat(n_sym)); %symbol error locations
num_bad_det = length(se_loc);
SER_inst = num_bad_det/(N_data - end_skip);
SER(sim_iter,snr_iter) = SER_inst;
fprintf(’Inst SER = %1.4e; Avg SER = %1.4e (IQSNR = %1.2e)\n’,SER_inst,mean(SER(1:sim_iter,snr_iter)),IQSNR);

if (SER_inst >= SER_thres) & (SER_count < SER_count_thres)
fprintf(’WARNING: High SER -- repeating simulation\n’)

elseif (SER_inst >= SER_thres) & (SER_count >= SER_count_thres)
fprintf(’WARNING: High SER but SER_count_thres exceeded; proceeding with simulation\n’)

end

end

% reconstruct transmitted signal
x_hat = mpsk_gen(s_hat,Eb,M,Fs,Tb);
t2 = t(1:end-end_skip*Fs*Tb);

% calculate weights
x_soft = 1 - phi_err/(pi/M);
x_soft = x_soft(ones(1,round(Fs*Tb)),:); x_soft = x_soft(:);
dw_ideal = abs(x_hat - x) < 4*eps;

% call channel estimator algorithms
[e_tlms,w_tlms,y_tlms] = clms_offline2(x(n_smpl),y(n_smpl),h_o,lms_gain); %training/probe sim
[e_blms,w_blms,y_hat_blms] = clms_offline2(x_hat(n_smpl),y(n_smpl),h_o,lms_gain); %std blind sim
[e_sdwlms,w_sdwlms,y_hat_sdwlms,pw_sdwlms] = mpsk_dwclms_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,lms_gain); %soft dw blin d sim
[e_idwlms,w_idwlms,y_hat_idwlms,pw_idwlms] = mpsk_dwclms_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,lms_gain); %ideal dw b lind sim
[e_trls,w_trls,y_hat_trls] = crls_offline(x(n_smpl),y(n_smpl),h_o,ff); %training/probe sim
[e_brls,w_brls,y_hat_brls] = crls_offline(x_hat(n_smpl),y(n_smpl),h_o,ff); %std blind sim
[e_sdwrls,w_sdwrls,y_hat_sdwrls,pw_sdwrls] = mpsk_dwcrls_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,ff); %soft dw blind sim
[e_idwrls,w_idwrls,y_hat_idwrls,pw_idwrls] = mpsk_dwcrls_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,ff); %ideal dw blind si m
[e_msdwrls,w_msdwrls,y_hat_msdwrls,pw_msdwrls] = mpsk_mdwcrls_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,ff); %modified sof t dw blind sim
[e_midwrls,w_midwrls,y_hat_midwrls,pw_midwrls] = mpsk_mdwcrls_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,ff); %modified i deal dw blind sim

% calculate average error from true channel response
h_true = h(:);
r = n_skip:(N_data - end_skip)*Fs*Tb; %indices of steady-state measurements

dist_tlms(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_tlms(:,r),2)))-w_tlms(:,r))).ˆ2));
dist_blms(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_blms(:,r),2)))-w_blms(:,r))).ˆ2));
dist_sdwlms(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_sdwlms(:,r),2)))-w_sdwlms(:,r))).ˆ2));
dist_idwlms(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_idwlms(:,r),2)))-w_idwlms(:,r))).ˆ2));
dist_trls(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_trls(:,r),2)))-w_trls(:,r))).ˆ2));
dist_brls(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_brls(:,r),2)))-w_brls(:,r))).ˆ2));
dist_sdwrls(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_sdwrls(:,r),2)))-w_sdwrls(:,r))).ˆ2));
dist_idwrls(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_idwrls(:,r),2)))-w_idwrls(:,r))).ˆ2));
dist_msdwrls(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_msdwrls(:,r),2)))-w_msdwrls(:,r))).ˆ2));
dist_midwrls(sim_iter,snr_iter) = mean(sum((abs(h_true(:,ones(1,size(w_midwrls(:,r),2)))-w_midwrls(:,r))).ˆ2));

end
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fprintf(’Simulations for SNR = %1.2f [dB] complete (%1.0f percent done)\n’,IQSNR,100*snr_iter/length(snr));

end

%-------------------------
% Display the Results
%-------------------------

figure(1);clf
plot(snr,median(dist_tlms),’-o’,snr,median(dist_blms),’-x’,snr,median(dist_sdwlms),’-+’,snr,median(dist_idwlms),’-h’)
%plot(snr,mean(dist_tlms),’-o’,snr,mean(dist_blms),’-x’,snr,mean(dist_sdwlms),’-+’,snr,mean(dist_idwlms),’-h’,
title(’Estimation Error as a Function of SNR’)
xlabel(’SNR [dB]’)
ylabel(’Median Average Squared Error from True Impulse Response’)
set(gca,’ysca’,’log’)
legend(’tlms’,’blms’,’sdwlms’,’idwlms’)
grid on

figure(2);clf
plot(snr,median(dist_trls),...

’-*’,snr,median(dist_brls),’-s’,snr,median(dist_sdwrls),’-d’,snr,median(dist_idwrls),’-ˆ’,snr,median(dist_msdwrls),’-v’,snr,med ian(dist_midwrls),’-p’)
%plot(snr,mean(dist_trls),...
% ’-*’,snr,mean(dist_brls),’-s’,snr,mean(dist_sdwrls),’-d’,snr,mean(dist_idwrls),’-ˆ’,snr,mean(dist_msdwrls),’-v’,snr,mean(dist_ midwrls),’-p’)
title(’Estimation Error as a Function of SNR’)
xlabel(’SNR [dB]’)
ylabel(’Median Average Squared Error from True Impulse Response’)
set(gca,’ysca’,’log’)
legend(’trls’,’brls’,’sdwrls’,’idwrls’,’msdwrls’,’midwrls’)
grid on

A.3.4 Performance Versus Doppler Frequency

% Script for Comparing Estimator Error vs Doppler Frequency
% MPSK Modulation
% Shane M. Haas -- 1999

%------------------------
% Simulation Parameters
%------------------------

% random number generator state vectors
if exist(’LOCKSTATE’) == 1

rand(’state’,ustate);
randn(’state’,nstate);

else
rand(’state’,sum(100*clock));
ustate = rand(’state’);
randn(’state’,sum(101*clock));
nstate = randn(’state’);

end

% noise parameters
ISNR = 10; %dB %SNR of noise to add to I channel
QSNR = 10; %dB %SNR of noise to add to Q channel

% estimator parameters
lms_gain = .3; %LMS algorithm gain
ff = 0.99; %RLS algorithm forgetting factor

% individual simulation run parameters
N_data = 300; %number of symbols to generate in each simulation run
Fs = 1; %normalized sampling frequency
Tb = 4; %normalized symbol interval

% modulation parameters
M = 4; %number of symbols
Eb = 1; %energy per bit

% start and stop simulation parameters
df = logspace(-15,-3,10); % doppler frequencies to simulate

% other parameters
n_avg = 20; %number of simulation to average for each del spread
n_skip = 100*Fs*Tb; %number of initial points to skip to measure steady-state

% n_skip must be larger than 2 or 3 times the length
% of the channel impulse response

SER_thres = 2e-1; %repeat simulations with SER higher than this threshold
SER_count_thres = 10; %number of simulations to repeat with SER higher than SER_thres before proceeding

%------------------------
% Memory Allocation
%------------------------
df_iter = 0;
SER = zeros(n_avg,length(df));
z = zeros(1,N_data*Fs*Tb);
y = zeros(1,N_data*Fs*Tb);
s_hat = zeros(1,N_data*Fs*Tb);
phi_err = zeros(1,N_data*Fs*Tb);
mpsk_ang = zeros(M,N_data*Fs*Tb);

dist_tlms = zeros(n_avg,length(df));
dist_blms = zeros(n_avg,length(df));
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dist_sdwlms = zeros(n_avg,length(df));
dist_idwlms = zeros(n_avg,length(df));
dist_trls = zeros(n_avg,length(df));
dist_brls = zeros(n_avg,length(df));
dist_sdwrls = zeros(n_avg,length(df));
dist_idwrls = zeros(n_avg,length(df));
dist_msdwrls = zeros(n_avg,length(df));
dist_midwrls = zeros(n_avg,length(df));

%------------------------
% Simulation
%------------------------

for dop_freq = df;

df_iter = df_iter + 1;
for sim_iter = 1:n_avg

SER_inst = inf;
SER_count = 0;
while (SER_inst > SER_thres) & (SER_count < SER_count_thres)

% generate channel
h_tot = mob_rad_chan(dop_freq,Fs,Tb,N_data*Fs*Tb);
h_o = h_tot(:,1);
lh = length(h_o);

% generate signals
s = sym_gen(M,N_data);
[x,t] = mpsk_gen(s,Eb,M,Fs,Tb);

for k = lh:size(h_tot,2)
h = h_tot(:,k);

% generate output of channel
z(k) = h.’*fliplr(x(k - lh +1:k)).’;

% synchronize receiver to channel’s rotation of constellation
%figure(1); hold on
mpsk_ang(:,k) = mpsk_synch(M,Eb,h,Fs,Tb,0).’;
%drawnow

% estimate signal power entering receiver and generate noise
s_pwr = (std(z(lh:k))).ˆ2;
n_i = sqrt(s_pwr/(10ˆ(ISNR/10)))*randn;
n_q = sqrt(s_pwr/(10ˆ(QSNR/10)))*randn;
y(k) = z(k) + n_i + j*n_q;

end

% generated detected sequence
[s_hat0,phi_err] = mpsk_rcvr(y,mpsk_ang(:,[1:Tb*Fs:N_data*Tb*Fs]),Fs,Tb,0);

% synchronize symbols
[s_hat,end_skip] = sym_synch(s,s_hat0,ceil(length(h_o)/Tb));

% calculate SER
n_sym = ceil(lh/Fs/Tb):N_data-end_skip;
n_smpl = n_sym(1)*Fs*Tb+1:n_sym(end)*Fs*Tb;
se_loc = find(s(n_sym) ˜= s_hat(n_sym)); %symbol error locations
num_bad_det = length(se_loc);
SER_inst = num_bad_det/length(n_sym);
SER(sim_iter,df_iter) = SER_inst;
fprintf(’Inst SER = %1.4e; Avg SER = %1.4e (df = %1.2e)\n’,SER_inst,mean(SER(1:sim_iter,df_iter)),dop_freq);

if (SER_inst >= SER_thres) & (SER_count < SER_count_thres)
fprintf(’WARNING: High SER -- repeating simulation\n’)

elseif (SER_inst >= SER_thres) & (SER_count >= SER_count_thres)
fprintf(’WARNING: High SER but SER_count_thres exceeded; proceeding with simulation\n’)

end

end

% reconstruct transmitted sequence
x_hat = mpsk_gen(s_hat,Eb,M,Fs,Tb);
t2 = t(1:end-end_skip*Fs*Tb);

% calculate soft decisions
x_soft = 1 - phi_err/(pi/M);
x_soft = x_soft(ones(1,round(Fs*Tb)),:); x_soft = x_soft(:);
dw_ideal = abs(x_hat - x) < 4*eps;

% call channel estimator algorithms
[e_tlms,w_tlms,y_tlms] = clms_offline2(x(n_smpl),y(n_smpl),h_o,lms_gain); %training/probe sim
[e_blms,w_blms,y_hat_blms] = clms_offline2(x_hat(n_smpl),y(n_smpl),h_o,lms_gain); %std blind sim
[e_sdwlms,w_sdwlms,y_hat_sdwlms,pw_sdwlms] = mpsk_dwclms_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,lms_gain); %soft dw blin d sim
[e_idwlms,w_idwlms,y_hat_idwlms,pw_idwlms] = mpsk_dwclms_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,lms_gain); %ideal dw b lind sim
[e_trls,w_trls,y_hat_trls] = crls_offline(x(n_smpl),y(n_smpl),h_o,ff); %training/probe sim
[e_brls,w_brls,y_hat_brls] = crls_offline(x_hat(n_smpl),y(n_smpl),h_o,ff); %std blind sim
[e_sdwrls,w_sdwrls,y_hat_sdwrls,pw_sdwrls] = mpsk_dwcrls_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,ff); %soft dw blind sim
[e_idwrls,w_idwrls,y_hat_idwrls,pw_idwrls] = mpsk_dwcrls_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,ff); %ideal dw blind si m
[e_msdwrls,w_msdwrls,y_hat_msdwrls,pw_msdwrls] = mpsk_mdwcrls_offline(x_hat(n_smpl),x_soft(n_smpl),y(n_smpl),h_o,ff); %modified sof t dw blind sim
[e_midwrls,w_midwrls,y_hat_midwrls,pw_midwrls] = mpsk_mdwcrls_offline(x_hat(n_smpl),dw_ideal(n_smpl),y(n_smpl),h_o,ff); %modified i deal dw blind sim

% calculate average error from true channel response
r = n_skip:length(n_smpl); %indices of steady-state measurements
dist_tlms(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_tlms(:,r))).ˆ2));
dist_blms(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_blms(:,r))).ˆ2));
dist_sdwlms(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_sdwlms(:,r))).ˆ2));
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dist_idwlms(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_idwlms(:,r))).ˆ2));
dist_trls(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_trls(:,r))).ˆ2));
dist_brls(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_brls(:,r))).ˆ2));
dist_sdwrls(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_sdwrls(:,r))).ˆ2));
dist_idwrls(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_idwrls(:,r))).ˆ2));
dist_msdwrls(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_msdwrls(:,r))).ˆ2));
dist_midwrls(sim_iter,df_iter) = mean(sum((abs(h_tot(:,r)-w_midwrls(:,r))).ˆ2));

end
fprintf(’Simulations for doppler frequency = %1.2e complete (%1.0f percent done)\n’,dop_freq,100*df_iter/length(df));

end

%-------------------------
% Display the Results
%-------------------------

figure(1)
%plot(df,median(dist_tlms),’-o’,df,median(dist_blms),’-x’,df,median(dist_sdwlms),’-+’,df,median(dist_idwlms),’-h’)
plot(df,mean(dist_tlms),’-o’,df,mean(dist_blms),’-x’,df,mean(dist_sdwlms),’-+’,df,mean(dist_idwlms),’-h’)
set(gca,’xsca’,’log’)
title(sprintf(’Estimation Error as a Function of Doppler Frequency (SNR = %1.f dB)’,ISNR))
xlabel(’Doppler Frequency [Hz]’)
ylabel(’Median Average Squared Error from True Impulse Response’)
legend(’tlms’,’blms’,’sdwlms’,’idwlms’)
grid on

figure(2)
%plot(df,median(dist_trls),...
% ’-*’,df,median(dist_brls),’-s’,df,median(dist_sdwrls),’-d’,df,median(dist_idwrls),’-ˆ’,df,median(dist_msdwrls),’-v’,df,median( dist_midwrls),’-p’)
plot(df,mean(dist_trls),...

’-*’,df,mean(dist_brls),’-s’,df,mean(dist_sdwrls),’-d’,df,mean(dist_idwrls),’-ˆ’,df,mean(dist_msdwrls),’-v’,df,mean(dist_midwrl s),’-p’)
set(gca,’xsca’,’log’)
title(sprintf(’Estimation Error as a Function of Doppler Frequency (SNR = %1.f dB)’,ISNR))
xlabel(’Doppler Frequency [Hz]’)
ylabel(’Median Average Squared Error from True Impulse Response’)
legend(’trls’,’brls’,’sdwrls’,’idwrls’,’msdwrls’,’midwrls’)
grid on

A.4 Data Generation, Modulation, and Demodulation

A.4.1 Binary Data Generator

function data = bin_data_gen(data_length)

% desc: generates a binary (1 or 0) random data sequence
%
% syntax: data = bin_data_gen(data_length)
%
% inputs: data_length = length of random data sequence
% output: data = real sequence of binary (1 or 0) digits
%
% prog: Shane M. Haas 1999

data = (sign(randn(1,data_length))+1)/2;

A.4.2 Symbol Generator

function y = sym_gen(M,seq_len)

% desc: generates seq_len symbols (integers from 1 to M) randomly
%
% syntax: y = sym_gen(M,seq_len)
%
% inputs: M = number of symbols to choose from
% seq_len = number of symbols to generate
% outputs: y = sequence of symbols
%
% prog: Shane M. Haas

y = ceil(rand(1,seq_len)*M);
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A.4.3 MPSK Baseband Modulator

function [y,t] = mpsk_gen(sym_seq,Eb,M,Fs,Tb)

% desc: Multiple phase shift keying (mpsk) complex waveform generator
%
% syntax: [y,t] = mpsk_gen(sym_seq,Eb,M,Fs,Tb)
%
% inputs: sym_seq = symbol sequence to modulate (integers ranging from 1 to M)
% Eb = signal energy per symbol interval = sum(abs(y(1 symbol interval).ˆ2))
% M = number of symbols
% Fs = sampling frequency
% Tb = bit duration (note: num of samples per sym interval =
% Fs*Tb must be an integer)
% outputs: y = sampled complex baseband mpsk waveform
% t = time vector associated with y
%
% prog: Shane M. Haas -- 1999

num_sps = round(Fs*Tb);
if num_sps ˜= Fs*Tb

error(’ERROR in mpsk_gen: number of samples per symbol interval must be an integer’);
end

y = sym_seq(ones(1,num_sps),:);
for sym = 1:M

y(find(y == sym)) = sqrt(Eb/num_sps)*cos(2*pi*sym/M) + j*sqrt(Eb/num_sps)*sin(2*pi*sym/M);
end
y = y(:).’;

t = 0:1/Fs:Tb*length(sym_seq)-1/Fs;

A.4.4 MPSK Baseband Demodulator

function [s,phi_err] = mpsk_rcvr(r,mpsk_ang,Fs,Tb,plot_flag)

% desc: Multiple phase shift keying (mpsk) complex baseband demodulator
%
% syntax: [s,phi_err] = mpsk_rcvr(r,mpsk_ang,Fs,Tb,plot_flag);
%
% inputs: r = complex received signal
% mpsk_ang = angles of mpsk signal constellation (radians from -pi to pi)
% Fs = sampling frequency
% Tb = bit duration (note: num of samples per sym interval =
% Fs*Tb must be an integer)
% plot_flag = flag to plot the constellation
% and eye diagram (1 = plot , 0 = no plot)
% outputs: s = recovered symbols
% phi_err = abs error in radians for each symbol angle as specified in mpsk_ang
%
% prog: Shane M. Haas -- 1999

num_sps = Fs*Tb;
if num_sps ˜= round(num_sps)

error(’ERROR in mpsk_rcvr: number of samples per symbol interval must be an integer’);
end

num_sym = length(r)/num_sps;
if num_sym ˜= round(num_sym)

error(’ERROR in mpsk_rcvr: r must contain an integer number of symbol intervals’);
end

% reshape receive vector into symbol intervals
sym_matrix = reshape(r,num_sps,num_sym);

% integrate over symbol intervals
z = sum(sym_matrix);

% compute angle of resultant sum
phi_hat = angle(z);

% find minimum distance of each angle to true symbol angle

if size(mpsk_ang,2) == num_sym
ang_mat = mpsk_ang;
phi_mat = phi_hat(ones(1,size(mpsk_ang,1)),:);

else
phi_mat = phi_hat(ones(1,length(mpsk_ang)),:);
mpsk_ang = mpsk_ang(:);
ang_mat = mpsk_ang(:,ones(1,num_sym));

end

dist = ang_dist(phi_mat,ang_mat);
[phi_err,s] = min(dist);

% plot the eye diagram and constellation
if plot_flag

subplot(2,1,1)
num_sym_eye = min(factor(num_sym));
plot(real(reshape(r,num_sym_eye*num_sps,num_sym/num_sym_eye)),’-ob’);hold on
plot(imag(reshape(r,num_sym_eye*num_sps,num_sym/num_sym_eye)),’-or’);hold off
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title(’Eye Diagram of Received Sequence’)
xlabel(’Samples’)
subplot(2,1,2)
plot(z,’.’)
title(’Constellation Diagram of Received Sequence’)
xlabel(’I’)
ylabel(’Q’)
axis equal;

end

A.4.5 Angular Distance Function

function d = ang_dist(x,y)

% desc: finds the angular distance element-wise of x and y, two matrices containing
% containing angles from -pi to pi in radians
%
% syntax: d = ang_dist(x,y)
%
% inputs: x,y = matrices with elements from -pi to pi in radians
% outputs: d = anglular distance between elements of x and y
%
% prog: Shane M. Haas -- 1999

if size(x) ˜= size(y)
error(’ERROR in ang_dist: size(x) must equal size(y)’)

end

if any(abs(x) > pi | abs(y) > pi)
error(’ERROR in ang_dist: all elements of x and y must be between -pi and pi’)

end

d = zeros(size(x));

% case #1: (x > 0 an d y > 0) or (x < 0 and y < 0)
c1 = (x >= 0 & y >= 0) | (x <= 0 & y <= 0);
d(c1) = abs(x(c1) - y(c1));

% case #2: x > 0 and y < 0
c2 = x >= 0 & y <= 0;
d(c2) = min(abs(x(c2) - y(c2) - 2*pi),abs(x(c2) - y(c2)));

% case #3: x < 0 and y > 0
c3 = x <= 0 & y >= 0;
d(c3) = min(abs(y(c3) - x(c3) - 2*pi),abs(y(c3) - x(c3)));

A.4.6 MPSK Decision Threshold Generator

function mpsk_ang = mpsk_synch(M,Eb,h_chan,Fs,Tb,plot_flag)

% desc: multiple phase shift keying (mpsk) phase synchronizer
% for complex baseband demodulator mpsk_rcvr; passes each symbol
% through the channel to determine how the channel rotates the
% signal constellation
%
% syntax: mpsk_ang = mpsk_synch(M,Eb,h_chan,Fs,Tb,plot_flag)
%
% inputs: M = number of symbols
% Eb = energy of signalling waveform in each symbol interval
% h_chan = channel impulse response
% Fs = sampling frequency
% Tb = bit duration (note: num of samples per sym interval =
% Fs*Tb must be an integer)
% plot_flag = flag to plot the constellation (1 = plot, 0 = no plot)
%
% outputs: mpsk_ang = angles of mpsk signal constellation (radians from -pi to pi)
%
% prog: Shane M. Haas -- 1999

num_sps = Fs*Tb;
if num_sps ˜= round(num_sps)

error(’ERROR in mpsk_synch: number of samples per symbol interval must be an integer’);
end

% generate each symbol
r = mpsk_gen(1:M,Eb,M,Fs,Tb);

% reshape receive vector into symbol intervals
sym_matrix = reshape(r,num_sps,M);

% pass sym_matrix through the channel
sym_chan = filter(h_chan,1,[sym_matrix; zeros(length(h_chan)-1,M)]);

% integrate over symbol intervals
z = sum(sym_chan);

% compute angle of resultant sum
mpsk_ang = angle(z);
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% plot the constellation
if plot_flag

plot(z,’o’)
title(’Constellation Diagram of Symbols after the Channel’)
xlabel(’I’)
ylabel(’Q’)
for sym = 1:M

text(real(z(sym))+0.1,imag(z(sym))+0.1,num2str(sym))
end

end

A.4.7 Symbol Synchronizing Function

function [s_hat_out,sym_shift] = sym_synch(s,s_hat_in,max_shift)

% desc: symbol synchronizer; shifts s_hat_in to produce an s_hat_out that
% most closely aligns with s
%
% syntax: [s_hat_out,sym_shift] = sym_synch(s,s_hat_in);
%
% inputs: s = true symbol sequence
% s_hat_in = estimated symbol sequence (possibly delayed (right shifted) version of s)
% max_shift = maximum number of symbol intervals to shift in search
% (max_shift < size(s_hat_in)
% outputs: s_hat_out = shifted s_hat_in aligning with s; s_hat_out is padded with a sym_shift
% number of NaN’s to have the same number of elements as s
% sym_shift = number of symbols s_hat_in was shifted to the left to align it
% with s
%
% prog: Shane M. Haas

if max_shift > length(s_hat_in) - 1
error(’ERROR in sym_synch: max_shift must be less than the number of elements in s_hat_in’)

end
num_align = zeros(1,max_shift+1);

s_hat_in = s_hat_in(:).’;

for i = 0:max_shift
num_align(i+1) = length(find([s_hat_in(i+1:end) NaN*ones(1,i)] == s));

end
[max_corr,sym_shift] = max(num_align);

s_hat_out = [s_hat_in(sym_shift:end) NaN*ones(1,sym_shift-1)];
sym_shift = sym_shift - 1;

A.5 Miscellaneous Functions

A.5.1 Exponential Random Variable Generator

function z = expgen(mean)

% desc: generates a matrix of size size(mean) of independent exponentially distributed
% random variables with given means
%
% syntax: z = expgen(mean)
%
% inputs: mean = mean of rv’s (each element is the mean of the corresponding element in z)
% outputs: z = matrix of exponentially distributed RVs
%
% prog: Shane M. Haas -- 1999
%
% refr: Leon-Garcia, Probability and Random Processes for Electrical Engineering

u = rand(size(mean));
z = -log(u).*mean;

A.5.2 Decision Error Plotter

function mark_error2(x,err_loc,color)

% desc: plots patches that mark the errors designated by err_loc (does not draw top line like mark_error.m does)
%
% syntax: mark_error2(err_loc,color)
%
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% inputs: x = xaxis vector of plot
% err_loc = vector of 1’s and 0’s where err_loc(n) = 1 means no error and err_loc(n) = 0 means an error
% color = color to make patches
%
% prog: Shane M. Haas -- 1999

V = axis;
ymin = V(3);
ymax = V(4);

x = [x(:)’ x(end) + mean(diff(x))];
err_loc = err_loc(:)’;

err_start = find(diff(err_loc) < 0) + 1;
err_stop = find(diff(err_loc) > 0) ;

if (err_loc(1) ˜= 0) & (err_loc(end) == 0)
err_stop = [err_stop length(err_loc)];

end
if (err_loc(1) == 0) & (err_loc(end) ˜= 0)

err_start = [1 err_start];
end
if (err_loc(1) == 0) & (err_loc(end) == 0)

err_start = [1 err_start];
err_stop = [err_stop length(err_loc)];

end

bg = get(gca,’Color’);
for k = 1:length(err_start)

h = patch([x(err_start(k)) x(err_stop(k)+1) x(err_stop(k)+1) x(err_start(k))],[ymin ymin ymax ymax],color);
set(h,’EdgeColor’,bg);

end

A.5.3 Axis Nudger

function axis_out = nudgeaxis(frac)

% desc: nudges the vertical axices up and down by a given fraction
%
% syntax: axis_out = nudgeaxis(frac)
%
% inputs: frac = percent to expand vertical axis (1 = keep same)
% outputs: axis_out = resulting axis

if frac <= 0
error(’ERROR in nudgeaxis: frac must be strictly greater than zero’)

end

v = axis;

ymid = 0.5*(v(3)+v(4));
yrng = v(4)-v(3);

axis_out = [v(1) v(2) ymid-yrng*frac/2 ymid+yrng*frac/2];
axis(axis_out);
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