Directory Enabled Distributed Packet Filtration System

A Scalable and High Performance Security Architecture

Siddhartha Gavirneni
sgavirne@eeecs.ku.edu
Overview

- Motivation & Goals
- The Evolving Security Model
- The Distributed Firewall Architecture
- A Cost effective solution: Load Balancing
- Distributed Firewall Policy Management
- The DEN Initiative
- Directory Enabled Policy Management
- KU and the Distributed Security Architecture
- Conclusion and Future Work
Motivation & Goals - 1

Motivation:
Existing monolithic firewall architectures

Goal:
Analyze the concepts of a distributed security architecture for large enterprise networks
Motivation & Goals - 2

Motivation:
High cost commercial firewalls

Goal:
A low cost solution: Load balancing of non-commercial firewalls/packet filters
Motivation & Goals - 3

Motivation:

Maintaining the policies for all the firewalls in a distributed architecture, especially for a large network, is a mammoth task

Goal:

The Directory Enabled policy management system
Motivation & Goals – The Complete Picture
The Evolving Security Model

Stage 0: No Firewall

Stage 1: Single Firewall Architecture

- Single point of protection – at the border
- Good enough for extremely small networks
The Evolving Security Model

Stage 1: Single Firewall Architecture - Drawbacks

- Insider Threats

- Bandwidth Bottleneck
- Low Trust Level
The Evolving Security Model

Stage 2: Distributed Firewall Architecture

- Multiple points of protection
- Good for every network – small/large
The Distributed Firewall Architecture

“It is easier to secure a studio apartment than a mansion”

- Defense in Depth
- Numerous Choke Points
- Diversity of Defense
- Maintaining Simplicity
- Scalability
- High Performance
The Distributed Firewall Architecture

Major Issues

• Firewall Location: The network edge
 - Single host vs. Group of hosts

• Firewall Deployment:
 - Network topology vs. Security topology

• Firewall type
 - Commercial vs. Non Commercial
Low Cost Security: Load Balancing

- Firewall is a bandwidth bottleneck
- Solution:
 - Better processor: not scalable
 - Parallel processing: the real solution

- Load balancing for Non Commercial firewalls
 - Low Cost
 - High Performance
Load Balancing for Firewalls

• Performance of a single firewall

MTU vs. Bandwidth: Firewall with no rules

MTU vs. Bandwidth: Firewall with 160 rules

MTU vs. Bandwidth: Firewall with 2180 rules
Load Balancing for Firewalls

• Case – 1: Firewall selects the packets to be processed

<table>
<thead>
<tr>
<th>Processors</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.82</td>
</tr>
<tr>
<td>3</td>
<td>2.3989</td>
</tr>
<tr>
<td>4</td>
<td>2.9557</td>
</tr>
</tbody>
</table>

• Drawbacks:
 - Firewalls do more than what they are supposed to do
 - Half duplex mode of the hubs
 - High number of collisions
Load Balancing for Firewalls

- Case – 2: Firewall *gets* the packets to be processed

<table>
<thead>
<tr>
<th>Test</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>One connection</td>
<td>1.40217</td>
</tr>
<tr>
<td>Two parallel connections: one in each direction</td>
<td>2.28814</td>
</tr>
<tr>
<td>Two parallel connections: both in same direction</td>
<td>2.45722</td>
</tr>
</tbody>
</table>

Number of processors = 2, Route based load balancing

- Advantages:
 - Firewalls do what they are supposed to do
 - Overcomes the half duplex limitations
 - Number of collisions not as high
Distributed Firewall Policy Management

• Who creates/manages the policies?
 - A central policy management committee
 - cannot ASK
 - cannot keep everyone happy
 - Individual network administrators
 - can ASK
 - no coordination

• How are the policies managed?
 - A centralized policy management system
 - Synchronization of policies
 - Ease of maintenance

“Directory Enabled Policy Management System”
Directory Enabled Network (DEN) Initiative

- **What is a Directory?**
 - Central storage for information about people, groups, and resources
 - Access by multiple processes, for multiple purposes
 - Operational lynchpin of almost all middleware services

- **The DEN Initiative**
 - Industry-standard specification for constructing and storing information related to a network's users, applications, resources, and data in a central directory.
 - Directory enabled software allows your enterprise to do everything it did before, only *smarter*.

- **LDAP: Lightweight Directory Access Protocol**
 - Widely accepted open industry standard for directory access
Directory Enabled Policy Management

- LDAP schema for policy management
 - *Step-1*: Networked device registration
 - *Step-2*: Distributed firewall support

ObjectClasses:

1. IPPacketFilterHost
2. IPPacketFilter

- Interface names, MAC and IP addresses
- Protected Network’s DN
- System Administrator
- Type of firewall: forwarding / bridging
- Filtration: stateless / stateful
- Log files
- Default policy: allow / deny
- Protected internal IPs
- Internal TCP/UDP services allowed/denied
- External TCP/UDP services allowed/denied
- ICMP types allowed/denied
- Trusted internal/external IP addresses
- Traffic to be logged
Example (contd.)

IPPacketFilterHost

```
cn=NTS_protector,ou=protectors,ou=network,dc=ku,dc=edu
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>cn</td>
<td>NTS_protector</td>
</tr>
<tr>
<td>objectClass</td>
<td>top</td>
</tr>
<tr>
<td>objectClass</td>
<td>ieee8020Device</td>
</tr>
<tr>
<td>objectClass</td>
<td>IPPacketFilterHost</td>
</tr>
<tr>
<td>objectClass</td>
<td>systemAdministrator</td>
</tr>
<tr>
<td>protectedNetworkIDN</td>
<td>ou=NTS,ou=LTSS,ou=devices,ou=network,dc=ku,dc=edu</td>
</tr>
<tr>
<td>insideInterfaceName</td>
<td>en0</td>
</tr>
<tr>
<td>outsideInterfaceName</td>
<td>en1</td>
</tr>
<tr>
<td>typeForwarding</td>
<td>true</td>
</tr>
<tr>
<td>stateIFiltration</td>
<td>false</td>
</tr>
<tr>
<td>insideInterfaceMACAddress</td>
<td>00:03:ba:0e:2b:a7</td>
</tr>
<tr>
<td>outsideInterfaceMACAddress</td>
<td>00:05:ba:0e:64:ee</td>
</tr>
<tr>
<td>sysadmin</td>
<td>ou=LAN Support Services,ou=technicalcontacts,ou=network,dc=ku,dc=edu</td>
</tr>
<tr>
<td>description</td>
<td>Protector for NTS, Linux ipables, Kernel 2.4.20</td>
</tr>
<tr>
<td>createTimeStamp</td>
<td>200304292055542</td>
</tr>
<tr>
<td>modifyTimeStamp</td>
<td>20031017012216Z</td>
</tr>
<tr>
<td>creatorsName</td>
<td>cn=directory manager</td>
</tr>
<tr>
<td>modifiersName</td>
<td>cn=directory manager</td>
</tr>
<tr>
<td>subschemaSubentry</td>
<td>cn=schema</td>
</tr>
</tbody>
</table>
Example (contd.)

IPPacketFilter
Example (contd.)

- Host-centric policy specification
Directory Enabled Policy Management (contd.)

- The Directory and the System/Network Administrators

- Authentication/Authorization features
- Access Control Lists
- LDAP administration tools
Rule Generator

Policies in Directory Firewalls specific rules
Entries & Attributes iptables, Drawbridge, OpenBSD pf, ...

Two Phases

- Firewall independent directory support system
 - Connection establishment
 - Search, retrieval and modification operations
 - Entry list for which rules are to be created

- Firewall dependent rule creator
 - Rules in the firewall’s language

DirectoryServer
DirectoryServerConfigFile
DirectoryServerInfo
PacketFilterDirectorySupport
PacketFilterProtectedNodes

CreateIptablesRules
CreatePIXRules
Directory Enabled Policy Management (contd.)

Advantages

• Ease of management.
• Delegated management.
• Flexible hierarchical model
• A high granularity of the security system is possible.
• Ability to achieve host-level security.
• Ease of synchronization and coordination.
• Highly scalable: hosts or group of hosts can be added or removed without much effort.
• Common language for different types of firewalls, both commercial and non-commercial.
• Flexible LDAP administration client tools.
• High speed search and security audit capability.
• Encrypted communication on the network with LDAPS.
• Identification, Authentication, and Authorization take place before changes can be made.
• Encrypted user credentials are stored in the directory and on the underlying file system.
• Protocol oriented communication via LDAP with external systems, i.e., ModPerl, or Java JNDI, or OpenLDAP APIs.
• Replication agreements with peer directory servers.
• Easy to load-balance, and easy to make backups via LDIF export.
KU and the Distributed Security Architecture

• The University Network
 - Lack of control over users
 - Loose confederation of autonomous entities
 - Academic culture and tradition of open access to information
 - Complex trust relationships between departments at various Universities
 - Excellent platforms for launching attacks
 - high bandwidth Internet
 - sophisticated computing capacity
 - insecure systems in dorms

• The University of Kansas
 - Number of students, faculty and staff: ~35000
 - Number of buildings: ~100
 - Number of hosts: ~20000
 - Internet 1 link: 70Mbps rate limited on 100Mbps connection
KU and the Distributed Security Architecture

- Firewalls that can be used: Cost effective solution
 - Factors:
 - Number of rules
 - Size of packets
 - Type of filtration: stateless or stateful
 - Number of flows (connections) passing through the firewall

<table>
<thead>
<tr>
<th>At the Border</th>
<th>For a Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of rules: ~100</td>
<td>Number of rules: ~200</td>
</tr>
<tr>
<td>Packet size: ~200 to 500 bytes</td>
<td>Packet size: ~200 to 500 bytes, on an average</td>
</tr>
<tr>
<td>Type of filtration: Stateless</td>
<td>Type of filtration: Stateless or Stateful</td>
</tr>
<tr>
<td>Number of flows: not an issue</td>
<td>Number of unique flows: ~100 per minute</td>
</tr>
</tbody>
</table>
KU and the Distributed Security Architecture

- Proposed Setup
 - Linux `iptables`, 2.4GHz, 512MB RAM, 512KB L2 cache, Intel GigE cards
 - Route based load balancing (iproute2)

 Number of rules: **160**
 - MTU of 200 bytes: **85.5Mbits/s**
 - Default number of flows: **32760**
 - Speedup with 2 firewalls: **2.45722**

- At the Border
 - Non-commercial firewalls
 - Stateless filtration
 - Load balancing: at least 2 firewalls
 - Load balancer need not worry about state

- KU

- For a Department
 - Non-commercial firewalls
 - Stateless / Stateful filtration.
 - Load balancing: depends on department
 - Load balancer might have to keep track of state

- Policy Management – Already discussed in the examples

MTU vs. Bandwidth: Firewall with 160 rules

![MTU vs. Bandwidth Graph](chart.png)
KU and the Distributed Security Architecture

• Example - The recent W32.Nachi worm attack
 ✔ Scans the local class-b subnet (port 135), sends ICMP ping to potential victim
 ✔ Connects to the infected machine on TCP port, range 666-765
 ✔ Victim instructed to download the worm via TFTP

Problem faced with current architecture
• Few infected hosts in the internal network trying to infect other hosts
• Network flooded with ICMP ping packets
• Routers overloaded with excessively high number of flows

Steps taken
• Packet filter in the border router configured to block packets destined to TCP or UDP port 135
 ✔ Infected systems were identified and repaired

Did it really solve the problem?
• External ⟷ Internal infection was stopped
 ✔ Takes time to isolate and repair infected systems
 • In this time:
 ✔ Each system generated 100,000 flows per minute, still infecting other systems
 ✔ Backbone still flooded
 ✔ Routers still overloaded

Management “nightmare”
KU and the Distributed Security Architecture

• Example - The recent W32.Nachi worm attack (contd.)

- How would the Directory Enabled Architecture help?
 - Quick response to security incidents
 - Every Firewall can be immediately configured
 - Prevents worm from spreading to areas outside the firewall
 - Traffic generated by the infected system remains within the subnet of that department
 - Removes the “extra” time given to an infected system for infecting other hosts in the campus
 - Firewall for an infected system can be immediately identified by looking up the directory
 - The other usual advantages of the distributed architecture

- Steps involved
 - Enter the policy in the directory, for every firewall
 - Generate the rules for the firewalls
 - Inject the rules into the firewalls
 - Identify and repair the infected systems

Simple management
Conclusion

• Distributed Security Architecture is the MOST SECURE
• It can be a LOW COST architecture
• The Directory Enabled Framework
 - helps efficiently maintain a distributed security architecture
 - AND
 - retain the ability of the departmental administrators to make fine-grained decisions
Future Work

• More features for firewall maintenance
 - Timestamps
 - Rule distribution

• Rule generators for different types of firewalls

• Rule Minimization

• Managing firewall auditing
 - Logging facilities
 - Packet counters (netflow)
 - Usage based metering/ charging

• Integrating IDS into the firewall architecture
Acknowledgements

• First and foremost: NTS and everyone at NTS
• George Willard – An excellent supervisor
• Prof. Joseph Evans, Prof. Gary Minden, Prof. Victor Frost
• Brett Becker – the video setup, ITTC network information
• All my friends at KU