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Pervasive Computing
• Diverse computing environment 

• Myriad devices

• Storage and Computation distributed across 
heterogeneous network

• Robust and user-friendly 

• Devices, storage, computation processes transparent

• Research challenges
• Storage architecture, low-latency network protocols, etc
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ACE Project
• Solution to Pervasive computing
• Smart rooms
• Personal workspaces 
• Embedded devices
• ACE Services
• ASD – ACE Service Directory
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Persistent Store
• User contexts should survive failures

• Objects – uninterpreted bytes
• Text files, binary files, user contexts, etc

• Namespace – collection of objects

• Robust and highly available

• Consistent view 
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Background
• Replication of services
• Well-defined interface to clients
• Failures in parts of the system
• Data consistency
• Synchronization among servers
• Servers being aware of status of other servers
• Organization of stored data
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Consistency Model
• Data consistency in distributed systems

• Semantics of the abstraction provided by the store

• ‘read’ and ‘write’ operations

• Set of acceptable orderings

• Strong and weak consistency models
• Correctness vs Performance

• Examples



University of KansasSlide 9 of 46

Strong consistency models
• Strict Consistency

• Strongest consistency model
• Global clock
• Non-zero propagation delay. So, impractical

• Linearizability
• Operations ordered in some sequential fashion consistent with read-write 

semantics
• Non-overlapping operations ordered in the same way as real-time 

ordering

• Sequential Consistency
• Restriction on non-overlapping operations removed

• Desired programming model – deciding factor
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Failures
• Machine failures

• Crash failures

• Disk failures

• Denial of service attacks

• Network failures
• Message loss and corruption

• Network partitions

• Degree of robustness
• Types of failures that are detected 

• Recovery mechanisms
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Programming Model
• Concurrent execution of tasks
• Multithreaded model

• Different threads perform independent tasks
• Easier to design
• Difficult to debug

• Event-driven model
• Server behaves like a finite state machine
• Event handlers
• Difficult to design
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Issues in multithreading
• Mutual exclusion

• Locks to protect shared data structures
• Programmer’s responsibility

• Deadlock
• Circular wait
• Programmer’s responsibility

• Starvation
• Same thread keeps acquiring the lock
• Design of thread scheduler
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• Safety
• System does not do anything wrong

• Deadlock freedom

• Liveness
• System does something right

• Starvation freedom

• Behavior of the server

Properties
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Design
• Peer-to-peer server architecture
• Objects and Namespaces in store
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Client

• Services offered to client
• Object commands

– store_object 

– retrieve_object

– store_unique_object

– delete_object

– list_objects

• Namespace commands

– create_namespace 

– delete_namespace

– clear_namespace

– list_namespaces
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Server
• Client discovers server 

address from config. 
files 

• Client randomly selects 
a server

• Concurrent processing 
of multiple client and 
server requests



University of KansasSlide 18 of 46

Store
• Any non-volatile storage can be used
• Collection of objects and namespaces
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• store_object – store named object in the namespace
• namespace

• name

• object

• replication flag

• retrieve_object – retrieve named object from the namespace
• namespace

• name

• list_objects – list all objects in the namespace
• namespace

Object commands
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• store_unique_object – choose a unique name and store the 
object in the namespace
• namespace

• object

• replication flag

• delete_object – delete named object from the namespace
• namespace

• name

Object commands
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• create_namespace – create a namespace
• namespace

• clear_namespace – delete all objects, but namespace remains
• namespace 

• delete_namespace – delete the namespace and all objects
• namespace 

• list_namespaces – list all namespaces

Namespace commands
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Consistency Model
• Linearizability

• Example 1
– P1:     w(x)1
– P2:            r(x)0 r(x)1

• Example 2
– P1:     w(x)1
– P2:                r(x)0 r(x)1

• Local property
• Every object is linearizable => system is linearizable

• Two-phase commit protocol
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Restart Mechanism
• Recovery after failure
• Incarnation File

• stored in a specific location in the server machine
• contains incarnation number
• deleted during normal shutdown

• Incarnation Number
• set to 0 when file is created
• incremented after recovery
• included with every message for updating store
• checked before updating the store
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Server joining and leaving
• Joining

• has to be atomic
• two-phase commit needed
• client requests not processed during joining

• Leaving 
• crash detected by sigpipe handler
• two-phase commit not necessary
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Two-phase commit
Sender Receiver

Ready
Can operation be performed?

Decision
Commit  (Yes from all)

Abort  (No from at least one)

Response
Yes (locked object)

No  (can’t lock object)

Update (if Commit)
Perform operation on object
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Failure Detection
• Implementation using TCP/IP sockets

• Crash Failures
• EPIPE error with socket related system calls

• SIGPIPE handler invoked

• Disk Failures
• Unable to perform disk I/O operations

• Inform peer servers

• Status of peer servers updated
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Data Structures
• Namespace Hash table
• peer_attributes

• Peer identifier
• Peer state
• Socket id
• Thread id
• Incarnation number

• cond_var_array
• Condition variable
• Associated mutex variable
• Flag1 (used or not)
• Flag2 (status of two-phase 

commit)

• Object linked list
• client_request_list

• Request type
• Request parameters
• Object
• Incarnation number
• Index in cond_var_array
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Mutex and Condition variables
• Mutex variables

• mutex_peer_attributes
• mutex_client_request_list
• mutex_cond_var_array
• mutex_hash_table

• Condition variables
• cond_peer_join
• cond_var_array
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initialize peer_attributes

initialize array of condition variables

initialize hash table

install signal handlers

update incarnation file

create client_receive, peer_send and peer_receive threads

Main thread
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client receive
get requests from clients
parse the request
if server need not inform peers

do local i/o and respond to the client
else

add  the request to client_request_list  
wait for the result of two-phase commit
if signaled and two-phase commit is success

do local i/o and inform the client of success
else

inform the client of failure
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peer send
read client_request_list

initiate two_phase_commit 

wait for responses from peers (finite wait using select) 

receive two_phase_commit_yes or two_phase_commit_no

send commit message or abort message

signal condition variable

delete request from client_request_list      
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peer receive
check peer_attributes
start two_phase_commit if not already initiated by another server
create child thread

update peer_attributes 

forever
do
receive request from peer server
case request_type:

incarnation_number : update peer_attributes with incarnation number

i_am_dead :  update peer_attributes
terminate this thread

peer_server_dead : update peer_attributes
terminate receive thread corresponding to the dead peer
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peer receive
two_phase_commit_ready : 

- parse the request
- acquire lock for namespace or object 
- break ties based on server id
- send two_phase_commit_yes or two_phase_commit_no

two_phase_commit_commit :
- receive the object
- do local i/o
- if disk failure, send i_am_dead message.
- release lock for namespace or object

two_phase_commit_abort :
- release lock for namespace or object.

done
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Directory structure of the store
• Store - specific directory in the server machine 

• Namespaces – subdirectories

• Objects - files
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Assumptions
• Thread package (Linux pthreads library)

• The thread scheduler is starvation free

• Creating a child thread does not block

• Terminating a child thread does not block

• Communication mechanism (TCP/IP sockets)
• All messages that are sent are eventually delivered when there is no crash. 

Messages are not lost, corrupted or misdirected

• Every crash is eventually detected

• We have a perfect failure detector. So, all detected crashes are crashes
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Invariants
• All shared data structures are protected by 

locks.

• Deadlock does not occur
• No instance of circular wait in acquiring mutex variables

• Any thread that holds the lock does not block
• No thread does infinite wait 
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Invariants
• The number of ‘peer_receive’ threads will 

eventually be the same as the number of servers set 
'alive' in peer_attributes
• peer_receive thread updates peer_attributes
• peer_receive thread cancelled when peer server is set ‘dead’

• No server joins the group when a two-phase commit 
that has been initiated by a server for serving client 
request is in effect.
• peer_send does two-phase commit in a sequential order
• Processing either client requests or server joining requests
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Properties
• Client requests are eventually served if the mutexes

are starvation free and at least one server is alive and 
no server crashes
• peer_send does timed wait using ‘select’ call
• client_receive does timed wait on condition variable

• When there is a perfect failure detector and there are 
no network failures, the state of the persistent store 
including current state and pending commits, will be 
the same in all servers that are alive
• Pending commit – namespaces and objects locked
• State of the store changes only after successful two-phase commit 
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Properties
• Consistency is guaranteed by the two-phase commit 

protocol. Operations on the  persistent store are 
linearizable
• Linearizability is a local property
• Writes are in some sequential order, same in all servers
• Operations performed after acquiring locks
• Ties in acquiring locks are resolved based on IP address
• Commit is done in the same order in every server
• Sequence of writes same order in every server
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Limitations
• Network partitions

• ‘alive’ servers considered to be ‘dead’
• Results in inconsistencies

• Denial of service attacks
• Servers flooded with requests from clients
• Impairs performance of the server

• Two-phase commit protocol may block
• Server crashes at inopportune moments
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Conclusions and Future work
• Conclusions

• Persistent storage architecture designed and implemented
• Proved properties

• Future work
• Different Network Protocols
• Different Consistency Models
• Security Issues
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Related work
• Ninja 
• Nile
• Websphere
• Weblogic
• Local consistency (Ahamad et al)
• Linearizable objects (M.P. Herlihy and J. M. Wing)



University of KansasSlide 45 of 46

Response time
List Namespaces      611 usec

1542 usec 

List Objects    1560 usec

218  usec

Retrieve Object      601  usec (25 KB)

Create Namespace      46412 usec

17388 usec 

Clear Namespace       74148 usec 

Delete Namespace     21686  usec

Store Object     55771 usec (25 KB)

68872 usec (171 KB) 

63578 usec (25 KB)
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Questions


