
University of KansasSlide 1 of 46

Sivaprasath Murugeshan
MS Thesis Defense

Dec 3, 2002

A Robust Persistent Storage
Architecture for ACE

Committee:
Dr.Jerry James (Chair)
Dr.Arvin Agah
Dr.Susan Gauch

University of KansasSlide 2 of 46

Overview
• Pervasive Computing
• ACE project
• Background
• Design
• Implementation
• Properties of the system
• Conclusions and Future work
• Related work

University of KansasSlide 3 of 46

Pervasive Computing
• Diverse computing environment

• Myriad devices

• Storage and Computation distributed across
heterogeneous network

• Robust and user-friendly

• Devices, storage, computation processes transparent

• Research challenges
• Storage architecture, low-latency network protocols, etc

University of KansasSlide 4 of 46

ACE Project
• Solution to Pervasive computing
• Smart rooms
• Personal workspaces
• Embedded devices
• ACE Services
• ASD – ACE Service Directory

University of KansasSlide 5 of 46

Persistent Store
• User contexts should survive failures

• Objects – uninterpreted bytes
• Text files, binary files, user contexts, etc

• Namespace – collection of objects

• Robust and highly available

• Consistent view

University of KansasSlide 6 of 46

Overview
• Pervasive Computing
• ACE project

• Background
• Design
• Implementation
• Properties of the system
• Conclusions and Future work
• Related work

University of KansasSlide 7 of 46

Background
• Replication of services
• Well-defined interface to clients
• Failures in parts of the system
• Data consistency
• Synchronization among servers
• Servers being aware of status of other servers
• Organization of stored data

University of KansasSlide 8 of 46

Consistency Model
• Data consistency in distributed systems

• Semantics of the abstraction provided by the store

• ‘read’ and ‘write’ operations

• Set of acceptable orderings

• Strong and weak consistency models
• Correctness vs Performance

• Examples

University of KansasSlide 9 of 46

Strong consistency models
• Strict Consistency

• Strongest consistency model
• Global clock
• Non-zero propagation delay. So, impractical

• Linearizability
• Operations ordered in some sequential fashion consistent with read-write

semantics
• Non-overlapping operations ordered in the same way as real-time

ordering

• Sequential Consistency
• Restriction on non-overlapping operations removed

• Desired programming model – deciding factor

University of KansasSlide 10 of 46

Failures
• Machine failures

• Crash failures

• Disk failures

• Denial of service attacks

• Network failures
• Message loss and corruption

• Network partitions

• Degree of robustness
• Types of failures that are detected

• Recovery mechanisms

University of KansasSlide 11 of 46

Programming Model
• Concurrent execution of tasks
• Multithreaded model

• Different threads perform independent tasks
• Easier to design
• Difficult to debug

• Event-driven model
• Server behaves like a finite state machine
• Event handlers
• Difficult to design

University of KansasSlide 12 of 46

Issues in multithreading
• Mutual exclusion

• Locks to protect shared data structures
• Programmer’s responsibility

• Deadlock
• Circular wait
• Programmer’s responsibility

• Starvation
• Same thread keeps acquiring the lock
• Design of thread scheduler

University of KansasSlide 13 of 46

• Safety
• System does not do anything wrong

• Deadlock freedom

• Liveness
• System does something right

• Starvation freedom

• Behavior of the server

Properties

University of KansasSlide 14 of 46

Overview
• Pervasive Computing
• ACE project
• Background

• Design
• Implementation
• Properties of the system
• Conclusions and Future work
• Related work

University of KansasSlide 15 of 46

Design
• Peer-to-peer server architecture
• Objects and Namespaces in store

University of KansasSlide 16 of 46

Client

• Services offered to client
• Object commands

– store_object

– retrieve_object

– store_unique_object

– delete_object

– list_objects

• Namespace commands

– create_namespace

– delete_namespace

– clear_namespace

– list_namespaces

University of KansasSlide 17 of 46

Server
• Client discovers server

address from config.
files

• Client randomly selects
a server

• Concurrent processing
of multiple client and
server requests

University of KansasSlide 18 of 46

Store
• Any non-volatile storage can be used
• Collection of objects and namespaces

University of KansasSlide 19 of 46

• store_object – store named object in the namespace
• namespace

• name

• object

• replication flag

• retrieve_object – retrieve named object from the namespace
• namespace

• name

• list_objects – list all objects in the namespace
• namespace

Object commands

University of KansasSlide 20 of 46

• store_unique_object – choose a unique name and store the
object in the namespace
• namespace

• object

• replication flag

• delete_object – delete named object from the namespace
• namespace

• name

Object commands

University of KansasSlide 21 of 46

• create_namespace – create a namespace
• namespace

• clear_namespace – delete all objects, but namespace remains
• namespace

• delete_namespace – delete the namespace and all objects
• namespace

• list_namespaces – list all namespaces

Namespace commands

University of KansasSlide 22 of 46

Consistency Model
• Linearizability

• Example 1
– P1: w(x)1
– P2: r(x)0 r(x)1

• Example 2
– P1: w(x)1
– P2: r(x)0 r(x)1

• Local property
• Every object is linearizable => system is linearizable

• Two-phase commit protocol

University of KansasSlide 23 of 46

Restart Mechanism
• Recovery after failure
• Incarnation File

• stored in a specific location in the server machine
• contains incarnation number
• deleted during normal shutdown

• Incarnation Number
• set to 0 when file is created
• incremented after recovery
• included with every message for updating store
• checked before updating the store

University of KansasSlide 24 of 46

Server joining and leaving
• Joining

• has to be atomic
• two-phase commit needed
• client requests not processed during joining

• Leaving
• crash detected by sigpipe handler
• two-phase commit not necessary

University of KansasSlide 25 of 46

Overview
• Pervasive Computing
• ACE project
• Background
• Design

• Implementation
• Properties of the system
• Conclusions and Future work
• Related work

University of KansasSlide 26 of 46

Two-phase commit
Sender Receiver

Ready
Can operation be performed?

Decision
Commit (Yes from all)

Abort (No from at least one)

Response
Yes (locked object)

No (can’t lock object)

Update (if Commit)
Perform operation on object

University of KansasSlide 27 of 46

Failure Detection
• Implementation using TCP/IP sockets

• Crash Failures
• EPIPE error with socket related system calls

• SIGPIPE handler invoked

• Disk Failures
• Unable to perform disk I/O operations

• Inform peer servers

• Status of peer servers updated

University of KansasSlide 28 of 46

Data Structures
• Namespace Hash table
• peer_attributes

• Peer identifier
• Peer state
• Socket id
• Thread id
• Incarnation number

• cond_var_array
• Condition variable
• Associated mutex variable
• Flag1 (used or not)
• Flag2 (status of two-phase

commit)

• Object linked list
• client_request_list

• Request type
• Request parameters
• Object
• Incarnation number
• Index in cond_var_array

University of KansasSlide 29 of 46

Mutex and Condition variables
• Mutex variables

• mutex_peer_attributes
• mutex_client_request_list
• mutex_cond_var_array
• mutex_hash_table

• Condition variables
• cond_peer_join
• cond_var_array

University of KansasSlide 30 of 46

initialize peer_attributes

initialize array of condition variables

initialize hash table

install signal handlers

update incarnation file

create client_receive, peer_send and peer_receive threads

Main thread

University of KansasSlide 31 of 46

client receive
get requests from clients
parse the request
if server need not inform peers

do local i/o and respond to the client
else

add the request to client_request_list
wait for the result of two-phase commit
if signaled and two-phase commit is success

do local i/o and inform the client of success
else

inform the client of failure

University of KansasSlide 32 of 46

peer send
read client_request_list

initiate two_phase_commit

wait for responses from peers (finite wait using select)

receive two_phase_commit_yes or two_phase_commit_no

send commit message or abort message

signal condition variable

delete request from client_request_list

University of KansasSlide 33 of 46

peer receive
check peer_attributes
start two_phase_commit if not already initiated by another server
create child thread

update peer_attributes

forever
do
receive request from peer server
case request_type:

incarnation_number : update peer_attributes with incarnation number

i_am_dead : update peer_attributes
terminate this thread

peer_server_dead : update peer_attributes
terminate receive thread corresponding to the dead peer

University of KansasSlide 34 of 46

peer receive
two_phase_commit_ready :

- parse the request
- acquire lock for namespace or object
- break ties based on server id
- send two_phase_commit_yes or two_phase_commit_no

two_phase_commit_commit :
- receive the object
- do local i/o
- if disk failure, send i_am_dead message.
- release lock for namespace or object

two_phase_commit_abort :
- release lock for namespace or object.

done

University of KansasSlide 35 of 46

Directory structure of the store
• Store - specific directory in the server machine

• Namespaces – subdirectories

• Objects - files

University of KansasSlide 36 of 46

Overview
• Pervasive Computing
• ACE project
• Background
• Design
• Implementation

• Properties of the system
• Conclusions and Future work
• Related work

University of KansasSlide 37 of 46

Assumptions
• Thread package (Linux pthreads library)

• The thread scheduler is starvation free

• Creating a child thread does not block

• Terminating a child thread does not block

• Communication mechanism (TCP/IP sockets)
• All messages that are sent are eventually delivered when there is no crash.

Messages are not lost, corrupted or misdirected

• Every crash is eventually detected

• We have a perfect failure detector. So, all detected crashes are crashes

University of KansasSlide 38 of 46

Invariants
• All shared data structures are protected by

locks.

• Deadlock does not occur
• No instance of circular wait in acquiring mutex variables

• Any thread that holds the lock does not block
• No thread does infinite wait

University of KansasSlide 39 of 46

Invariants
• The number of ‘peer_receive’ threads will

eventually be the same as the number of servers set
'alive' in peer_attributes
• peer_receive thread updates peer_attributes
• peer_receive thread cancelled when peer server is set ‘dead’

• No server joins the group when a two-phase commit
that has been initiated by a server for serving client
request is in effect.
• peer_send does two-phase commit in a sequential order
• Processing either client requests or server joining requests

University of KansasSlide 40 of 46

Properties
• Client requests are eventually served if the mutexes

are starvation free and at least one server is alive and
no server crashes
• peer_send does timed wait using ‘select’ call
• client_receive does timed wait on condition variable

• When there is a perfect failure detector and there are
no network failures, the state of the persistent store
including current state and pending commits, will be
the same in all servers that are alive
• Pending commit – namespaces and objects locked
• State of the store changes only after successful two-phase commit

University of KansasSlide 41 of 46

Properties
• Consistency is guaranteed by the two-phase commit

protocol. Operations on the persistent store are
linearizable
• Linearizability is a local property
• Writes are in some sequential order, same in all servers
• Operations performed after acquiring locks
• Ties in acquiring locks are resolved based on IP address
• Commit is done in the same order in every server
• Sequence of writes same order in every server

University of KansasSlide 42 of 46

Limitations
• Network partitions

• ‘alive’ servers considered to be ‘dead’
• Results in inconsistencies

• Denial of service attacks
• Servers flooded with requests from clients
• Impairs performance of the server

• Two-phase commit protocol may block
• Server crashes at inopportune moments

University of KansasSlide 43 of 46

Conclusions and Future work
• Conclusions

• Persistent storage architecture designed and implemented
• Proved properties

• Future work
• Different Network Protocols
• Different Consistency Models
• Security Issues

University of KansasSlide 44 of 46

Related work
• Ninja
• Nile
• Websphere
• Weblogic
• Local consistency (Ahamad et al)
• Linearizable objects (M.P. Herlihy and J. M. Wing)

University of KansasSlide 45 of 46

Response time
List Namespaces 611 usec

1542 usec

List Objects 1560 usec

218 usec

Retrieve Object 601 usec (25 KB)

Create Namespace 46412 usec

17388 usec

Clear Namespace 74148 usec

Delete Namespace 21686 usec

Store Object 55771 usec (25 KB)

68872 usec (171 KB)

63578 usec (25 KB)

University of KansasSlide 46 of 46

Questions

