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Abstract 

In a pervasive computing environment, computation and storage are distributed 

across a heterogeneous network. A persistent data store is necessary to make the 

environment robust and to meet long-term storage requirements. It can be used to 

store personal workspaces of the users. It should provide reliable storage in spite of 

failures in parts of the system.  

 

The persistent storage architecture consists of servers that are robust and highly 

available. We use “peer-to-peer” server architecture. The servers are multithreaded in 

order to process requests from clients and peer servers concurrently. 

 

The clients send requests to the servers to perform desired operations on objects and 

namespaces. Objects are uninterpreted sequences of bytes. A namespace is a 

collection of objects. The persistent store provides multiple namespaces in which 

objects can be stored.  It provides a consistent view of objects and namespaces. 

 

The possible orders of interleaving of different atomic steps in different threads and 

the actions taken upon receiving different types of messages arriving from other 

clients or servers are studied. Robustness of the server is verified by proving that 

consistency is maintained irrespective of the interleaving of different atomic steps. 
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Chapter 1 

Introduction 
The tremendous advances made in the domains of computation, storage and 

communication technologies have diversified the computing environment with the 

introduction of myriad devices of different dimensions and capabilities. A wide 

variety of software is used to harness the power of these resources. In this scenario, it 

becomes necessary to explore ways to make such resources more accessible to the 

users in different physical locations without violating the security and privacy 

assurances given by stand-alone devices. The solution for this problem lies in 

pervasive computing. 

The idea of pervasive computing is to integrate myriad computational devices as 

diverse as a workstation and a PDA into a heterogeneous networked environment. In 

this environment, computation and storage are distributed across the network. The 

environment is more robust and user-friendly than traditional computing 

environments. New devices are easily accommodated in the network. Also, the 

devices are more accessible to remote users. The existence of different devices and 

the processes of computation and storage are transparent to the user. The users’ 

personal workspaces are stored across the network and are accessible after proper 

authentication.   
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Pervasive computing provides several research opportunities in various domains of 

computer science. Some of the challenges are illustrated here. 

Persistent workspaces that are accessible from different devices should be provided 

for users. These workspaces have to be stored across the network to ensure high 

availability and fault-tolerance. When storage is distributed across the network, 

ensuring data consistency is an important concern. Storage architectures for pervasive 

computing environments have to be designed to meet the requirements mentioned 

above, viz., fault tolerance, high availability and data consistency. This makes the 

computing environment more robust and useful.  

Communication across a pervasive computing environment involves a huge amount 

of data being transferred across the network. Conventional network protocols may 

introduce performance bottlenecks in such cases. Low latency network protocols that 

can be used with many devices help improve the performance of the network. User-

level network protocols provide better latency by reducing the processing overhead in 

the communication endpoints. Also, communication across the network has to be 

secure. Data encryption and user authentication methods are needed for ensuring 

security and privacy in the environment.  

A wide variety of services are provided for the users. Service discovery protocols are 

required to enable the user to utilize the services provided by the environment in an 

efficient manner. Face recognition and voice recognition help in authenticating users 



 3

to access services. Such capabilities make the pervasive computing environment more 

user-friendly. 

1.1 ACE 

1.1.1 ACE Overview 

The objective of Ambient Computational Environment (ACE) project is to make 

computing pervasive by embedding myriad devices into a heterogeneous network and 

providing services to users in different physical locations. Users are relieved from the 

burden of being in physical contact with all the devices they want to use. After proper 

authentication, users can access the services provided by ACE. 

The services provided by ACE include fingerprint identification, audio capture and 

play, video capture and play, projector control, etc. Services are the basic mechanisms 

for controlling the functioning of different devices. The services are registered in the 

ACE service directory. The ACE daemon is the software operating in the background 

that provides services to the user. Various services in the ACE environment are 

implemented as ACE daemons. 

The vision of the ACE project is to create ‘smart rooms’. In a smart room, the user 

can authenticate himself with a ‘smart device’ such as a fingerprint identifier, 

biometric identifier, etc., and get access to his workspace. His workspace contains 

snapshots of the applications that he had been running during his previous login 

session. From his workspace, he can run the desired applications. The ACE 
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infrastructure provides these services in such a way as to relieve the user from 

knowing the intricacies of the actual devices. 

1.1.2 Persistent store 

 In an ACE environment, several situations arise in which a persistent data store is 

desirable.  For example, user contexts should survive the termination of any particular 

program, machine failures, and network failures.  The persistent store should be 

robust, fault tolerant and highly available. The data that the users want to store can be 

anything; e.g., text files, binary files, user contexts, etc. We use the term ‘object’ to 

indicate an uninterpreted sequence of bytes. Each object is associated with a unique 

name. A namespace is a collection of objects. The persistent store consists of multiple 

namespaces.  

Objects are stored in different machines that act as servers. Redundancy of stored data 

makes it necessary to ensure data consistency. Operations on the persistent store are 

performed such that a consistent view of objects and namespaces is maintained across 

the environment. Failure detection and recovery mechanisms make the environment 

robust. A well-defined interface is provided to the clients for storing and retrieving 

data in the persistent store. 

1.2 Thesis Organization 

The thesis is organized as follows. 
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Chapter 2 describes the background and related work. Storage architectures that are 

relevant to pervasive computing, e-business and e-services are described. Research 

work in the areas of consistency models and analyzing properties of distributed 

systems are described. 

Chapter 3 describes the design issues. Various entities in the architecture of the 

persistent store and the interaction among those entities are discussed. Commands 

that are supported by the persistent store are discussed in detail. The consistency 

model chosen for the persistent store is explained. 

Chapter 4 describes the implementation details. The persistent store servers are 

multithreaded. The functions of different threads are discussed. Mutex variables and 

the data structures they protect are discussed. 

Chapter 5 describes the properties of the system. Assumptions about the network and 

software used, properties guaranteed by the system and the limitations of the system 

are discussed. 

Chapter 6 deals with the conclusions of this work and possible extensions to it. 
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Chapter 2 

Background and Related Work 

2.1 Background 

Replication of services is commonly used to achieve robustness, fault tolerance and 

high availability. Replicated servers can act as web servers, file servers, name servers, 

etc. Storage architectures for pervasive computing environments are based on the 

concept of service replication. This ensures that the storage is persistent and is 

available for clients’ access even when failures occur in parts of the environment. 

Servers that are kept in different physical locations perform the same task of storing 

and retrieving data. A well-defined interface is presented to the client for the services 

provided by the storage architecture. Clients are aware of the existence of multiple 

servers and have a complete list of servers. A server can be chosen at random and a 

service be requested. In case of failures, other servers can be contacted.  

2.1.1 Design considerations 

The serious issues that have to be considered during the design of a persistent storage 

architecture are consistency guarantees provided to the clients in the environment, 

synchronization among the servers, servers being aware of the status of other servers 

in the environment and the way stored data is organized in a disk. 
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2.1.2 Consistency model 

Servers that are distributed across a network perform operations as desired by the 

clients. While performing such operations, they synchronize among themselves to 

ensure that clients’ views of the store adhere to certain well-defined rules. The 

semantics of the abstraction provided by the store defines the consistency model. 

Each server performs different operations on stored data. Those operations fall under 

two categories: ‘read’ and ‘write’. A ‘read’ operation can be performed by a single 

server without consulting other servers. A ‘write’ operation has to be performed after 

consulting other servers. The sequence of ‘read’ and ‘write’ operations in different 

servers may give different results. A consistency condition can be thought of as a set 

of acceptable results considering the ordering of operations in a single server and the 

ordering of operations in real-time.  

Strong consistency models typically give an abstraction that is easy for the clients to 

understand. The set of acceptable orderings are limited. The protocols implementing 

strong consistency models lay emphasis on perceived ‘correctness’ rather than 

performance of the system when operations are performed. 

Weak consistency models have the advantage of giving better performance. More 

orderings are considered acceptable. In some cases, programmers find the server 

semantics difficult to comprehend. 
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Strict consistency is the strongest consistency model that we can think of. This model 

assumes the existence of a global clock. The real-time ordering of the events is the 

only acceptable ordering. Every read operation should return the result of the most 

recent write performed. This is possible only when write operations on servers are 

informed to other servers instantaneously. Propagation delay for a message 

transmission across a network is always non-zero.  So, this model is impractical. 

Strict consistency is just a conceptual idea that is not implemented in any distributed 

shared memory system so far. 

Strict consistency is not absolutely necessary for distributed applications in general. 

Programmers can afford to use weaker consistency models for meeting the 

requirements of the system. If operations performed are seen in the same order by 

every server, it will be sufficient for many systems. Synchronization primitives may 

be used when a particular ordering is absolutely necessary. The perceived ordering 

need not conform to the real-time ordering. Let us consider two consistency models: 

linearizability and sequential consistency.  

Linearizability [1] is weaker than strict consistency. In a linearizable system, an 

acceptable ordering is one in which the operations are ordered in some sequential 

fashion consistent with read-write semantics and non-overlapping operations are 

ordered in the same way as the real-time ordering. Two operations are overlapping if 

each operation starts before the other operation ends.  All ‘write’ operations are seen 
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in the same order by all servers. When each object satisfies the condition for 

linearizability, the system as a whole is linearizable [1].  

Sequential consistency [2] is weaker than linearizability. In a sequentially consistent 

system, operations have to be consistent with some sequential order seen by every 

server, but need not conform to the real-time ordering. The restriction on non-

overlapping operations that exists for a linearizable system is relaxed in this model. 

The trade-off between desired degree of correctness and performance is the deciding 

factor for a particular consistency model to be chosen for the distributed storage 

architecture. 

2.1.3 Failures 

The degree of robustness of the persistent storage architecture very much depends on 

the types of failures the system is able to detect and the recovery mechanisms the 

system has. The system should function correctly even when failures occur in parts of 

the system. Different kinds of machine or network failures may occur in the system.  

Machine failures include crash failures, disk failures, denial of service attacks, etc. 

Crash failure occurs when the machine acting as a server crashes. Disk failure occurs 

when a machine is alive, but is unable to read or write to the disk successfully. 

‘Denial of service’ attack occurs when a server is flooded with requests from clients 

in such a way as to impair its performance.  These are common problems that can 

occur in any machine.  
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Messages sent across a network may be lost or corrupted. Network partitions occur 

when a network is divided into multiple partitions such that machines in one partition 

are unable to communicate with those in other partitions. The existence of network 

partitions may result in inconsistencies among objects stored across the network. 

Network partitions are very difficult to detect.  

2.1.4 Programming model 

A server responding to requests from multiple clients and servers needs to perform 

several tasks concurrently. The programming model for such an application is usually 

based on either multithreading or event driven programming. In multithreading, 

concurrency is achieved by allowing different threads to perform independent tasks. 

In event driven programming, the server behaves like a finite state machine with the 

transitions to different states being based on the requests received from various clients 

or servers. Event handlers are invoked to handle different requests. Processing 

specific requests is the function of the handlers. Generally, event handlers are short-

lived. 

The multithreaded model is easier to design. Debugging multithreaded programs is 

difficult because of the limitations of the existing debugger tools. Event driven 

software often proves difficult to design because of the complex finite state machine 

that simulates the threads [3]. The choice between the multithreaded model and the 

event driven model can be decided on the basis of whether the tasks are CPU bound 

or I/O bound. In the case of multithreading, when one thread is doing I/O operations, 
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another thread can utilize the CPU. Context-switching and locks increase the 

overhead with threads. For a program that is either mostly CPU bound or mostly I/O 

bound, the performance gain due to multithreading may be overshadowed by the 

context-switching overhead. Under such circumstances, all threads wait for the same 

resource which defeats the purpose of multithreading. 

2.1.5 Issues in multithreaded programs 

The general issues in multithreaded programs are mutual exclusion, deadlock and 

starvation. Data structures that are shared by different threads have to be protected by 

locks to ensure that operations on such data are atomic. When locks are used to 

ensure mutual exclusion, the possibility of ‘hold and wait’ or ‘circular wait’ may 

result in the occurrence of deadlock.  Starvation occurs when the same thread keeps 

acquiring the lock leaving the other threads waiting for long periods of time to 

execute. The issue of starvation has to do with the design of the thread scheduler 

whereas it is the responsibility of the programmer to ensure mutual exclusion and 

deadlock freedom. 

2.1.6 Properties of the system 

‘Safety’ properties of a system state that the system does not do anything wrong. An 

example is deadlock freedom. This property ensures that deadlock does not occur in a 

multithreaded program where shared data is protected using locks. ‘Liveness’ 

properties give guarantees about the way certain functions are performed by the 
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program. An example is starvation freedom. This property ensures that acquiring 

locks is equally likely for all threads. Safety and liveness properties characterize the 

behavior of the server. 

2.2 Related work 

 Ninja [4] is a pervasive computing architecture that consists of services that are 

available across the Internet. Ninja is designed for a heterogeneous network with 

myriad services available for users that can access them through myriad devices. The 

architecture of Ninja consists of three basic components: bases, devices and active 

proxies. ‘Bases’ are the units that store persistent state and that provide scalable 

services to the users. ‘Active proxies’ store the ‘soft state’ and serve as interfaces 

between bases and unintelligent devices. Devices can include simple devices with 

limited intelligence and functionality. Ninja’s communication mechanism is based on 

Jaguar VIA. This is based on user-level network protocols that achieve low latency 

communication. Ninja facilitates a solution for robust storage architecture for a 

pervasive computing environment. 

 

Nile [5] is a distributed computing solution for computationally intensive tasks in 

high-energy physics. The Nile architecture takes advantage of the parallel nature of 

the computation involved. The assigned job is divided into subjobs that are allocated 

to a large number of processors. Process failures, disk failures and network failures 
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are some of the failures that are taken care of by the system. Nile is an example of a 

distributed computational environment that tolerates failures in parts of the system. 

 

E-speak from Hewlett-Packard, WebSphere from IBM and Weblogic from BEA 

provide a basic infrastructure for e-business applications. A scalable infrastructure 

that can support several applications makes it easier for application developers as they 

can concentrate on specific functionalities of the applications rather than issues that 

are common to many applications. These systems facilitate developing scalable, fault-

tolerant Internet services. 

Mustaque Ahamad and Rammohan Kordale [6] propose “local consistency” based on 

which scalable consistency protocols can be developed. Two protocols for 

implementing strong consistency are illustrated. Correctness of the protocols 

implementing the specified consistency model is explained.  

 

Marios Mavronicolas and Don Roth [7] study the implementation of linearizable 

read/write objects. Time complexity analysis for read/write operations is done based 

on different assumptions on timing of the operations. This provides a good 

understanding of the working of linearizable systems. 
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Chapter 3 

Design 
 

The persistent store provides reliable storage even if some part of it is not 

functioning. It consists of a set of servers that present a consistent view of storage to 

the clients. It provides multiple namespaces within which named objects can be 

stored.  

 

The fundamental unit of storage in the persistent store is referred to as an object. An 

object is an uninterpreted sequence of bytes. Every object has a unique name within 

its namespace. The object may be a file, a snapshot of the user context or any data 

that the client wants to store. It need not adhere to any particular format. A 

namespace is a collection of objects. Every namespace has a unique name. The 

persistent store consists of multiple namespaces, which in turn may contain multiple 

objects. 

 

Clients contact the persistent store in order to store or retrieve objects by name. The 

client sends a message requesting that some operation be performed on the objects or 

namespaces. The server performs the operation and returns the result to the client. 

While performing such operations, the server makes sure that a consistent view of 

objects and namespaces is maintained across the set of servers.  



 

 
 
 

The relationship among the various entities is illustrated in the following diagram. 
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3.1 Client 

Any machine that is part of an ACE environment is referred to as a client.  The clients 

discover the addresses of persistent store servers from configuration files. The 

requests processed by a server are as follows: 

a) store_object – store a named object in a namespace. 

b) retrieve_object – read a named object from a namespace. 

c) list_objects – list all objects in a namespace. 

d) delete_object – delete a named object from a namespace. 
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e) store_unique_object – choose a unique name for the object and store that in a 

namespace. 

f) create_namespace – create a namespace in the store. 

g) list_namespace – list all namespaces in the store. 

h) delete_namespace – delete a namespace from the store. 

i) clear_namespace – delete all objects in a namespace. 

The client selects any server and sends the request. The server processes the request 

and sends the result back to the client  

3.2 Server 

The main function of the persistent store server is to provide a mechanism for storing 

and retrieving objects. The persistent store server is fault-tolerant and highly 

available. It provides a consistent view of the stored objects to the clients. The server 

is randomly selected by the client to increase the likelihood of a balanced load. 

The servers are peer servers. The servers are multithreaded in order to process 

requests from clients and peer servers concurrently. The server has the following 

threads: 

a) ‘main’ thread  - initializes data structures, creates other threads and updates data 

structures. 
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b) ‘client_receive’ thread – creates multiple child threads that process requests from 

multiple clients concurrently. There is one child thread for every client. 

c) ‘peer_send’ thread – sends updates to peer servers. 

d) ‘peer_receive’ thread – creates multiple child  threads that process requests from 

multiple peer servers concurrently. There is one child thread for every peer server. 

The interaction among multiple threads in the persistent store server is illustrated in 

the diagram given below.  
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3.3 Store 

The store is a collection of objects and namespaces. Any non-volatile storage device 

can be used as the store. Every namespace has a unique name. Namespaces contain 

named objects. The relationship among the various entities in the store is as shown 

below. 

 

 
3.4 Object Commands 

 The persistent store supports the following object commands, i.e. the operations that 

can be performed on objects. 
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a) store_object 

The ‘store_object’ command is issued by the client to store an object in a specified 

namespace. The object may be replicated if desired by the client. The replication flag 

indicates whether the object has to be replicated or not. The default value for 

replication flag is ‘true’ which indicates full replication.  

 
Command Name: store_object 
 
Arguments: 
 
Namespace - The namespace in which the given object is to be stored. 
Value Data Type: string 
 
Name - The name of the object to be stored. 
Value Data Type: string 
 
Object - The object to be stored. 
Value Data Type:  uninterpreted bytes 
 
Replication flag - The flag that indicates whether replication is desired or not. 
Value Data Type:  boolean 
 
Response:  The server stores the given object in the specified namespace. The object 

is replicated if desired by the client. The client is notified of success. 
Otherwise, an error message is returned. 

 
 
b) retrieve_object 

The ‘retrieve_object’ command is issued by the client to retrieve an object specified 

by the given name from the specified namespace.  

 
Command Name: retrieve_object 
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Arguments: 
 
Namespace - The namespace from which the object is to be retrieved. 
Value Data Type:  string 
 
Name - The name of the object to be retrieved 
Value Data Type:  string 

 
Response:  The server retrieves the object from the specified namespace and returns it 

to the client, if the namespace and the object exist. Otherwise, an error 
message is returned. 

 

c) list_objects  

The ‘list_objects’ command is issued by the client to list all objects within the 

specified namespace.  

Command Name: list_objects 
 
Arguments: 
 
Namespace – The namespace to list. 
Value Data Type: string 
 
Response:  The server returns a list of all objects within the specified namespace. 
 

d) delete_object  

The ‘delete_object’ command is issued by the client to delete an object with a 

specified name in the specified namespace. 

 
Command Name: delete_object 
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Arguments: 
 
Namespace - The namespace from which the specified object is to be deleted. 
Value Data Type: string 
 
Name – The name of the object to delete.  
Value Data Type: string 
 
Response: The server deletes the object specified by the name and namespace, if it 

exists. The client is notified of success. Otherwise, an error message is 
returned. 

 

e) store_unique_object  

The ‘store_unique_object’ command is issued by the client to store an object with a 

name distinct from all the existing names in the specified namespace. This command 

can be used when the client is not interested in storing the object with a specific 

name. Any distinct name is enough. The server chooses and returns the name. The 

default value for replication flag is ‘true’ which indicates full replication.  

 
Command Name: store_unique_object 
 
Arguments: 
 
Namespace - The namespace in which the object is to be stored. 
Value Data Type: string 

 
Object - The object to be stored. 
Value Data Type: uninterpreted bytes 
 
Replication flag - The flag that indicates whether replication is desired or not. 
Value Data Type:  boolean 
 
Response: The server responds with the name selected for the object in the specified 

namespace. The object is replicated if desired by the client. An error 
message is returned if the server is unable to satisfy this request. 
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3.5 Namespace Commands 

The persistent store supports the following namespace commands, i.e. the operations 

that can be performed on namespaces 

 

a) create_namespace  

The ‘create_namespace’ command is issued by the client to create a namespace.  

Command Name: create_namespace 
 
Arguments: 
 
Namespace - The identifier of the namespace to be created by the server.  
Value Data Type: string 
 
Response: The server creates the namespace if there is no existing namespace with 

the same identifier.  The client is notified of success. Otherwise, an error 
message is returned. 

 

b) list_namespaces 

The ‘list_namespaces’ command is issued by the client to list all namespaces in the 

server.  

Command Name: list_namespaces 
 
Arguments: 
None. 
 
Response:  A list of all namespaces existing in the server. 
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c) delete_namespace 

The ‘delete_namespace’ command is issued by the client to delete the specified 

namespace.  All objects in the specified namespace shall be deleted as well. 

Command Name: delete_namespace 
 
Arguments: 
 
Namespace – The namespace to be deleted.  
Value Data Type: string 
 
Response: The server deletes all objects in the specified namespace and the 

namespace, if it exists. The client is notified of success. Otherwise, an 
error message is returned. 

 

d) clear_namespace 

The ‘clear_namespace’ command is issued by the client to clear the specified 

namespace.  All objects in the specified namespace shall be deleted, but the 

namespace continues to exist.  

 
Command Name: clear_namespace 
 
Arguments: 
 
Namespace – The namespace to be cleared. 
Value Data Type: string 
 
Response: The server deletes all objects of the specified namespace, if it exists. The 

client is notified of success. Otherwise, an error message is returned. 
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3.6 Consistency model 

The consistency model provided by a persistent store determines the set of guarantees 

that the client can expect when a read or write operation is performed on the store. 

Choosing a consistency model for a concurrent system is based on the tradeoff 

between the degree of correctness and the performance of the system when it 

performs read or write operations.  

A concurrent system is sequentially consistent if the results of any execution are the 

same as if the operations of all the machines were executed in some sequential order 

and the operations of each individual machine appear in this sequence in the order 

specified by its program. If this sequential order is in accordance with the real time 

order for non-overlapping operations, the system is said to be linearizable. 

The view provided by the persistent store to the clients is linearizable. The only 

consistency model that is stronger than linearizability is strict consistency, which is 

practically impossible in any distributed system. To implement linearizability, the 

two-phase commit algorithm is used.  

3.7 Restart mechanism 

The restart mechanism defines actions to be taken upon recovery after a machine or 

network failure. It works as follows. 
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The incarnation file to be used at the time of restart is kept in a specific location and 

the incarnation number is stored in the file.  

An incarnation number indicates the incarnation of the server. When a server recovers 

from a fault, the incarnation number is modified to differentiate between the 

messages sent before the fault and after the fault. The incarnation number of the 

server is included in every message sent to peer servers. 

The server checks for the existence of the incarnation file when it restarts. If the file 

already exists, the incarnation number is incremented and stored. Otherwise, the file 

is created and the incarnation number is set to 0. Whenever the server starts, its 

incarnation number is sent to all peer servers. The file is deleted when the server 

undergoes a normal shutdown. 

 
3.8 Server joining 

A new server joining the set of servers that are alive has to be atomic. Every server 

that is alive should be aware of the new server joining. When a new server comes 

alive, the server that receives a connection request from the new server initiates a 

two-phase commit. Other peer servers that participate in two-phase commit will not 

initiate another two-phase commit when they receive connection requests from the 

new server. Only after the two-phase commit succeeds, the new server can send 

messages to the other servers. The actions taken upon receiving connection requests 

from the new server are explained in Chapter 4. 
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Processing client requests when the new server is joining may introduce 

inconsistencies in the persistent store. So, we ensure that no new server joins the 

group when client request processing involving many servers is in effect. This 

property of the persistent store is explained in Chapter 5. 

 

3.9 Server leaving 

A crash failure occurring in a server is detected by SIGPIPE handler. When a crash 

failure of a server is detected, all peer servers that are alive are informed about the 

failure. Two phase commit is not necessary in this case. If a server is not aware of a 

peer server crashing, the crash will be detected when trying to send a message. So, 

there will not be any inconsistency among the servers because of a server leaving and 

other servers not agreeing with one another about that. A server may opt to terminate 

because of disk failures. In that case, it sends a message to all peer servers indicating 

failure. 
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Chapter 4 

Implementation details 
The persistent store server is multithreaded. Multithreading is implemented using the 

‘pthreads’ library in Linux. TCP/IP sockets are used for communication among 

servers and between client and server. 

4.1 Two phase commit 

The operations on the persistent store are linearizable. To implement linearizability, 

the two-phase commit algorithm is used. The two-phase commit algorithm works as 

follows. 

Before doing an operation involving all servers in the system, the server that is 

processing the client request sends a “Ready” message to all peer servers that are 

alive. The servers, which are ready to perform the requested operation, send a “Yes” 

message. The servers that are unable to perform the requested operation send a “No” 

message. When two peer servers request operations to be performed on the same 

object, the server sends a ‘Yes’ message to one peer server and a ‘No’ message to 

another peer server. Such ties are resolved based on the IP address of the server that 

has sent the request. The server that initiated the two-phase commit waits for a finite 

amount of time to get responses from its peers. The waiting time can be varied by the 

administrator before compilation. The server should either get  “Yes” messages from 

its peers or detect a machine fault of its peers to proceed with committing. If this 
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condition is satisfied, the server sends a “Commit” message and its peers should 

commit the operation. Otherwise the server sends an “Abort” message and the 

operation will be aborted. The operation will not be performed in any of the servers 

and an error message will be returned to the client. 

In the next section, we explain how the two-phase commit algorithm guarantees the 

linearizability property of the persistent store. 

4.2 Failure Detection 

A network fault or a machine fault may occur in any part of the server environment. 

The following faults can be detected. 

4.2.1 Crash failures 

When a server tries to send a message using a TCP/IP socket to another server that is 

dead, a SIGPIPE signal is triggered. A SIGPIPE handler that handles server crashes is 

implemented. Upon detecting a server crash, no further messages are sent to the 

server till it recovers. All peer servers that are alive are informed about the server 

crash. 

4.2.2 Disk failures 

If a server is unable to do local I/O successfully, it will inform its peers about the 

failure. Messages will not be sent to the server till it recovers. When the server 

restarts after recovering from failure, peer servers are informed. 
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4.3 Important data structures  

The following are the important data structures used in the server. 

1) namespace_hash_table  

The hash table stores the names of namespaces in the persistent store. Each entry in 

the table consists of the following fields. 

name – name of the namespace 

lock_holder – identifier of the server that is performing an operation on this 

namespace 

object – pointer to a linked list containing the attributes of the objects belonging to 

this namespace. 

 

2) list of objects  

Each entry in the list of objects contains the following fields. 

name – name of the object 

lock_holder – identifier of the server that is performing an operation on this object. 

 

3) peer_attributes 

This is an array containing the attributes of the peer servers. It is initialized after 

discovering the addresses of peer servers from the configuration file. Initialization 

takes place when the server starts. It is updated when server crashes are detected or 

when servers come alive. 
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Each element in the array has 

- peer identifier  

         IP address of the server is used as the identifier 

- state of the peer server 

The state of the peer server can be any of the following 

         ALIVE – peer server is sending and receiving messages 

         DEAD – peer server is dead 

         JOINING – peer server wants to join. A two-phase commit that has been   

initiated by another peer server is going on. When the two-phase commit succeeds, 

the state of the peer server will be ALIVE. 

         TO_JOIN – a request has been received from the peer server for joining. A two-

phase commit has to be initiated. When the two-phase commit succeeds, the state of 

the peer server will be ALIVE. 

   -    socket id that will be used to send messages to the peer server  

- thread id of the peer_receive thread that receives updates from the peer server. 

- incarnation number  

      The incarnation number indicates current incarnation of the peer server. 

 

4) client_request_list 

 This is a linked list containing requests that have arrived from clients. Only those 

requests that need to be known by other peer servers are stored here. Those requests 

that can be processed without contacting other peer servers are not updated in this list. 
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The client_receive thread adds requests from clients to the tail of the list. The 

peer_send thread processes requests from the head of the list.  

 

Each element in the list has 

- request to be processed 

This may be the operation requested by the client or the information that a new 

server is joining. These operations will be performed after doing a two-phase 

commit. 

- request parameters 

These are the parameters for the request to be processed. The list of parameters is in 

accordance with the syntax of the commands as specified in the previous chapter. 

- object  

For requests involving objects, this field contains the object to be stored in servers. 

This field is valid only for the requests ‘store_object’ and ‘store_unique_object’. 

- incarnation number of the server 

The incarnation number is included with every message so that peer servers can 

distinguish between messages from different incarnations. 

- index in the array of condition variables 

The ‘peer_send’ thread notifies the condition variable as identified by this index so 

that ‘client_receive’ thread knows the status of operation in other peer servers and 

takes appropriate action. 
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5) cond_var_array 

Each client request is updated in the client_request_list. The request will be 

performed only when it can be performed in all peer servers. So, each thread 

processing a client request sets a condition variable and waits for that variable to be 

signaled by the ‘peer_send’ thread. cond_var_array is a variable sized array that 

contains condition variables and associated mutex variables.  

Each element in the array has 

   -    condition variable 

- associated mutex variable 

- flag to indicate if the condition variable has been used or not 

- flag to indicate the status of two-phase commit 

 
 
4.4 Mutex variables 

The data structures that are accessed by multiple threads are protected by mutex 

variables. The following are the mutex variables used. 

 
1) mutex_peer_attributes 
 
This mutex protects the ‘peer_attributes’ data structure.  
 
2) mutex_client_request_list 
 
This mutex variable protects the linked list ‘client_request_list’. 
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3) mutex_cond_var_array 
 
‘cond_var_array’ is accessed by multiple threads processing client requests. This 

mutex variable protects ‘cond_var_array’. 

4) mutex_hash_table 
 
The hash table that stores the attributes of namespaces is accessed by multiple threads 

processing client requests. This mutex variable protects ‘hash_table’. 

 
 
4.5 Condition variables 

1) cond_peer_join 
 
This condition variable is set when a peer server asks to join and two phase commit 

has already been started by a peer server that is alive. The variable is signaled when 

two phase commit succeeds. 

 
2) cond_var_array 
 
This is the variable sized array of condition variables as described earlier. 
 
 
 4.6 Thread Structure 

The server process has the following threads. 
 

1) ‘main’ thread 

2) ‘client_receive’ thread 

3) ‘peer_send’ thread 

4) ‘peer_receive’ thread 
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The functions performed by various threads are explained as follows. 

 
4.6.1 ‘main’ thread  

The functions of this thread are to initialize many data structures and to create other 

threads. From the configuration file, it discovers the addresses of the peer servers and 

initializes ‘peer_attributes’. It updates incarnation files and sets the 

‘incarnation_number’ value. The SIGPIPE handler, which helps detect server crashes, 

is installed.  Mutex variables and condition variables are initialized. This thread 

creates the client_receive, peer_send and peer_receive threads. 

  

Pseudocode: 

   initialize peer_attributes 
   install sigpipe handler 
   initialize thread_sig_mask 
   update incarnation file 
   initialize mutex variables 
   initialize array of condition variables 
   initialize hash table 
   create client_receive, peer_send and peer_receive threads. 
   wait for other threads to terminate  
   exit 
 
4.6.2 ‘client_receive’ thread 

The ‘client_receive’ thread waits for connection requests from clients.  Client 

requests are sent to a specified port. On receiving a connection request, a child thread 

is created. It is the child thread that actually processes the requests and returns the 

status of the operation to the client.  Client requests are processed concurrently by 
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multiple child threads. Each child thread processes requests from a particular client in 

sequential order till the client notifies the server that no more requests need to be 

processed. 

 

The child thread receives the request, i.e., the operation to be performed on the 

persistent store. The request is parsed and parameters are identified. For operations 

that involve only reading the contents of the store, other peer servers need not be 

contacted. Those requests are performed immediately and the result is returned to the 

client. Those operations that involve writing to the persistent store are performed after 

agreeing with other peer servers. The incarnation number of the server is included in 

the entry to be added to the client_request_list. The index in the cond_var_array that 

has to be updated by peer_send thread is calculated after searching cond_var_array. 

This thread waits for notification of the specified condition variable. After 

discovering the status of two-phase commit, either the operation is performed or the 

client is informed that it failed. 

   
Pseudocode: 
 
block signals  (that are in thread_sig_mask). 
listen for connection requests from client receive port 
accept connection and create a child thread that will receive requests. 
 
(the child thread is created in the detached mode) 
 
The child thread does the following. 
 
forever 
  do 
      get requests from clients 
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      parse the request 
      if request is end_of_requests, terminate the thread.  
      receive the object (for store_object and store_unique_object commands) 
      if server need not inform peers 
         do local i/o and respond to the client 
     else 
       begin 
         get index of cond_var_array 
         create a client_request 
         add  the request to client_request_list along with incarnation number 
         timed wait for the result of two-phase commit 
         if sigalled  
             do local i/o and inform the client of success 
         else (if timeout) 
             inform the client of failure. 
         update cond_var_array 
      end  
  done 
 
4.6.3 ‘peer_send’ thread  

The peer_send thread reads client_request_list and sends the requests to peer servers. 

The two-phase commit algorithm is applied before operations are committed. The 

status of two-phase commit is updated in cond_var_array and the corresponding 

condition variable is signaled. 

Pseudocode: 
 
forever 
  do 
    read client_request_list 
 
    for each entry in client_request_list 
      do 
          call two_phase_commit  
          wait for responses from peers (finite wait using select)  
          receive two_phase_commit_yes or two_phase_commit_no 
           if it returns commit, send commit message and object (if necessary) 
           signal condition variable (read client_request_list and signal the 
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             condition variable corresponding to the client_receive_thread). 
           else send abort message to peers 
           if EPIPE is returned for all peers 
           (other servers think i'm dead. so, die and come back alive) 
             begin  
               reset peer_attributes 
               init_peer_attributes 
             end                    
           delete request from client_request_list 
      done 
 
done 
 
 
4.6.4 ‘peer_receive’ thread 

The ‘peer_receive’ thread waits for connection requests from peer servers.  On 

receiving a connection request, coordination with other peer servers takes place to 

ensure that the operation of a new server joining is atomic. After two phase commit 

succeeds, a child thread is created. It is the child thread that actually processes the 

requests from the peer server. There are n child threads for n peer servers. Requests 

from peer servers are processed concurrently by these child threads. 

 

When a connection request is received from a peer server, the status of the other peer 

servers is discovered from ‘peer_attributes’. The following cases may occur. 
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1) All peer servers are dead  

In this case, this is the only server that is alive. When a connection request arrives 

from another server, server joining is atomic. So, the two-phase commit protocol is 

unnecessary. A child thread is created and ‘peer_attributes’ is updated. 

 

2) Peer server is already alive 

In this case, the server is getting a connection request from a server that is already 

alive. This server is joining an existing group of servers. A child thread is created and 

‘peer_attributes’ is updated. 

 

3) Peer server is joining 

The server is getting a connection request that wants to join the group. Another 

server, that is alive, has received a connection request from the same server and has 

initiated two phase commit. This server is waiting for the two-phase commit protocol 

to complete. This thread waits on a condition variable. The variable is signaled by the 

child thread, which receives requests from a peer server. A child thread is created and 

‘peer_attributes’ is updated. 

 

4) Peer server is yet to join 

 The server is getting a connection request from a server that wants to join the group. 

The two-phase commit protocol is initiated. After the successful completion of two-

phase commit, a child thread is created and ‘peer_attributes’ is updated. 
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The child thread receives updates from peer servers and processes them. The 

following types of requests are processed. 

 

1) Incarnation number 

The incarnation number of the peer server is updated in peer_attributes. 

 

2) Peer server dead 

The state of the peer server is changed in peer_attributes. The child thread receiving 

updates from the server is terminated. 

 

3)  I am dead 

This message is received when the peer server is facing some problems with disk 

operations. The state of the peer server is changed in peer_attributes and this thread is 

terminated. 

 

4) New server joining 

When a message is received from a peer server regarding a new server joining, the 

status of the server in peer_attributes is modified. A condition variable is set. The 

variable is signaled when all servers agree on the joining of a new server.  
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5) Two-phase commit ready 

This message is sent when two phase commit is initiated. The type of request and 

parameters are sent along with this message. The list of parameters is parsed to get 

namespace name and object name. The current lock holder for the specified 

namespace or object is found. If no server holds the lock, the lock holder is set to the 

IP address of this server and two_phase_commit_yes message is sent. 

 

When the lock is already held by some other server, the tie is broken using the 

server’s IP address. The server with the smaller IP address value gets higher priority. 

Consider the following scenario. Servers A and B try to update the same object. A 

sends the request to B, C and D. B sends the request to A, C and D. Let us assume C 

gets the request from A first, locks the object and sets the lock holder to A. D gets the 

request from B first, locks the object and sets the lock holder to B. C gets B’s request 

and D gets A’s request. Let us assume A’s IP address is smaller than B’s IP address. 

After getting B’s request, C sends two_phase_commit_no. D waits for the release of 

lock for the object. The transaction initiated by B is aborted and the one initiated by A 

is committed. Thus, contentions are overcome and consistency is maintained in the 

persistent store. 

 

6) Two-phase commit abort 

When an abort message is received, the namespace and the object are unlocked. The 

request initiated by the peer server fails to take effect. 



 42

7) Two-phase commit commit 

When a commit message arrives, the request initiated by the server has to take effect. 

An object is received for the commands store_object and store_unique_object. If the 

request is to accept a new server into the group, the condition variable meant for 

server joining is signaled. Object and namespace commands work as described 

earlier. After successfully performing the operations, the object and the namespace 

are unlocked. 

 

Along with the request, the incarnation number of the server is also sent. If the 

request is from a previous incarnation, it is not honored. Otherwise, the requested 

operation takes place. 

 

Pseudocode: 

block signals  (that are in thread_sig_mask). 
listen for connection requests from peer receive port 
accept connection 
check peer_attributes 
 
case 'status of peer_attributes' 
 
all peers are dead : create a child receive thread 
                     (this is the first to join, 
                      so no need for two phase commit) 
 
server already set alive : create a child receive thread 
                           (joining other servers that are already alive) 
 
server is yet to join :  call two_phase_commit  
                                 create a child receive thread 
 
server joining : wait for peer_join condition variable to be signalled 
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                                   create a child receive thread 
 
The child thread does the following. 
 
update peer_attributes  
 
forever 
   do 
    receive messages from other servers 
 
    case request_type: 
 
    incarnation_number : update peer attributes with incarnation number 
    
    i_am_dead :  update_peer_attributes 
                          terminate this thread 
              
 
    peer_server_dead : update peer_attributes 
                                   terminate receive thread corresponding to the dead peer. 
 
   two_phase_commit_ready :  
            - parse the request 
            - get the object name and namespace name 
            - try to set lock for namespace and object  
            - if it is already locked and  
              server_id is greater than that of the lock holder   
                send two_phase_commit_no. 
              else if not locked  
                send two_phase_commit_yes 
              else 
                wait to acquire the lock and then send two_phase_commit_yes 
                          
    two_phase_commit_abort : reset lock for namespace and object. 
 
    two_phase_commit_commit : 
         - receive the object 
         - if request is new server joining, signal peer_join condition 
           variable  
        - else  
         -    begin 
         -      do local i/o 
         -      if disk failure, send i_am_dead message. 
         -   end 
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  done 
 
 
4.7 Directory structure of the persistent store  

The persistent store is a specific directory in the machine that acts as the server. It 

contains the subdirectories that are namespaces. Objects belonging to a particular 

namespace are stored as files in that directory. The type of the file can be anything, 

e.g., text file, binary file, C program, etc. 
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Chapter 5 

Properties of the system 

The properties of the persistent store implementation are discussed in this chapter. 

The assumptions regarding the thread package and communication mechanism are as 

follows. 

5.1 Assumptions 

5.1.1 Thread package 

The ‘pthreads’ library in Linux is used for implementing multithreading. 

Proposition 1: The thread scheduler is starvation free. 

Proposition 2: Creating a child thread does not block. 

Proposition 3: Terminating a child thread does not block. 

 

5.1.2 Communication mechanism 

TCP/IP sockets on Linux are used for communication between the client and the 

server and among the servers. 

Proposition 1: All messages that are sent are eventually delivered when there is no 

crash. Messages are not lost, corrupted or misdirected. 

Proposition 2: Every crash is eventually detected. 
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When the ‘send’ or ‘receive’ end of the connection is broken, the SIGPIPE signal is 

triggered in the other end. An EPIPE error is returned for any system call that uses the 

socket. 

Proposition 3: We have a perfect failure detector. So, all detected crashes are 

crashes. 

 

5.2 Invariants 

Invariants are the conditions that are always true, except when an atomic action is 

being performed. The following invariants are true in our implementation. 

 

Invariant 1: All shared data structures are protected by locks. 

This is a ‘safety’ property. All shared data structures and their associated mutex 

variables are explained in the previous chapter. This guarantees mutual exclusion in 

the multithreaded server. 

 

Invariant 2: Deadlock does not occur.  

Deadlock is a common problem that is possible in multithreaded programs where 

locks are used to guarantee mutual exclusion. The necessary conditions for a 

deadlock to occur are: mutual exclusion, no preemption, hold and wait and circular 

wait. 
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Here, we explain how circular wait does not occur in the program.  In peer_send 

thread, mutex_client_request_list is locked and then we try to acquire a lock for 

mutex_peer_attributes. This is the only instance of hold and wait. There is no instance 

where we acquire mutex_peer_attributes and try to acquire client_request_list. So, 

circular wait is avoided. Hence, deadlock is avoided. 

  

Invariant 3: The number of ‘peer_receive’ threads will eventually be the same as the 

number of servers set 'alive' in peer_attributes. 

 We create a peer_receive child thread only after receiving a connection request from 

a peer server. The child thread updates peer_attributes once it is created. During this 

update, the peer server is set ‘alive’ in peer_attributes. 

A server tries to connect to all peer servers when it starts up. During the initialization 

of peer_attributes, the peer server is set ‘alive’ if it is able to connect. The 

peer_receive thread receives a request from the peer server and creates a child thread.  

Whenever a peer server is detected as dead, peer_attributes is updated with the status 

of the peer server. The thread that is receiving requests from the respective peer 

server is terminated.  

So, the number of peer receive threads will eventually be equal to the number of peer 

servers set ‘alive’ in peer_attributes. 

 

Invariant 4: No server joins the group when a two-phase commit that has been 

initiated by a server for serving client request is in effect.  
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When a new server that wants to join the group sends a connection request, two phase 

commit is initiated. The new server joins the group after two phase commit succeeds. 

When this two-phase commit is going on, no other client request is sent to other 

servers. New server joining request and client request are processed in a sequential 

fashion by the peer_send thread. So, when a client request is served, no new server 

joins the group. 

When no other peer servers are alive, requests are served immediately without 

consulting peer servers. When a new server joins, two phase commit is not necessary. 

In this case, two phase commit is not necessary for both new server joining and 

serving client requests. 

 

Invariant 5: Any thread that holds the lock does not block. 

No thread does an infinite wait after acquiring a lock. Also, no thread cancels itself 

while holding a lock. So, threads do not block while holding the lock. 

 

5.3 Properties 

Theorem 1: Client requests are eventually served if the mutexes are starvation free 

and at least one server is alive and no server crashes.  
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Proof: If no peer server is alive or a request can be served without consulting peers, 

the client request is immediately served. 

 If peer servers are alive, they have to be consulted before a request is served. The 

client_receive thread that processes the client request adds the request to the 

client_request_list.  A condition variable that waits on the status of two-phase commit 

is set. This is a timed wait. 

The implementation of two-phase commit involves a 'select' system call with a 

timeout. If it does not get positive responses from the peer servers before it times out, 

the transaction is aborted. So, two-phase commit returns either commit or abort. The 

condition variable corresponding to the client request is signaled and the status of 

two-phase commit is also updated. 

The client_receive thread does not block. So, each request is served or an error 

message is sent to the client. 

Q.E.D. 

    

Theorem 2: When there is a perfect failure detector and there are no network 

failures, the state of the persistent store including current state and pending commits, 

will be the same in all servers that are alive. 

 

Proof: The current state of the server reflects the contents of the store with existing 

namespaces and objects. Pending commits refers to the namespaces and objects that 

are locked for committing an operation, but operations are not actually performed.  
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Operations on the persistent store, that modify the state of the store, are performed 

after a successful two-phase commit. During the first phase of two-phase commit, 

namespaces and objects on which operations will be performed are locked. During 

the second phase, if the operation is to be committed, the operation is performed and 

locks are released. 

Q.E.D. 

 

Theorem 3: Consistency is guaranteed by the two-phase commit protocol. 

Operations on the  persistent store are linearizable. 

 

Proof: The two-phase commit algorithm guarantees linearizability. Linearizability is 

a local property. If each individual object in a system is linearizable, then the entire 

system is linearizable. The operations on a single object replicated in many servers 

should follow some sequential order. The order should be the same in every server. 

Before performing any write operation on an object, a lock should be obtained. After 

completing the operation, the lock is released. So, there is no possibility for 

concurrent writes in a server. This makes sure that every server views sequences of 

‘write’ operations on the objects. When a server receives a request for locking an 

object that has already been locked, ties are broken on the basis of IP address of the 

server that initiated the transaction. Since this is done in all the servers, every server 

performs ‘writes’ on objects in the same order even if the order in which a server 
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receives ‘write’ requests is different from a peer server. So, the sequence of ‘write’ 

operations performed is the same in all servers. This guarantees that the system is 

linearizable.  

Q.E.D. 

5.4 Limitations 

Limitation 1: Network partitions 

Network partitions occur when servers that are considered to be ‘dead’ are actually 

‘alive’. Servers in one partition are not aware of the events in another partition. Client 

requests are processed in a manner such that inconsistencies may arise in the system. 

 

Limitation 2: Denial of service attacks. 

Denial of service attacks occur when servers are overloaded with requests from 

clients. Clients are compromised and requests are sent with the sole objective of 

impairing the performance of servers. 

 

Limitation 3: Two-phase commit protocol may block. 

The two-phase commit protocol may block when server crashes happen during 

inopportune moments. If the server initiating two-phase commit crashes after getting 

replies from peer servers, objects and namespaces that would have been locked 

during the first phase will remain so.  If other servers crash, it will be detected by the 
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server that initiates the requests. This is a limitation of the two-phase commit protocol 

that may affect the system. 
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Chapter 6 

Conclusions and Future work 

6.1 Conclusions 

A persistent storage architecture for the ACE environment has been designed and 

implemented. The services offered by the servers to the clients are explained.  The 

properties that are guaranteed by the servers are listed and explained. The 

assumptions regarding software packages used and the mode of communication over 

the network that are necessary for these properties to be true are explained.  

6.2 Contributions   

This work forms part of the ACE project. The persistent storage architecture that we 

have designed and implemented will meet the long-term storage requirements of the 

ACE environment. We have proved the properties of the system that we have 

implemented. The experiments that we have done by varying the sizes of the objects 

and the number of objects in the namespaces indicate that the time taken for servers 

to respond to various client requests is reasonable. 

6.3 Future work  

The persistent storage architecture can be implemented with different network 

protocols and different consistency models. Also, features that provide encryption and 
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decryption of data transmitted and user authentication features to access services can 

be added. 

6.3.1 Different network protocols 

The implementation for this work has been done using the TCP/IP protocol. User-

level network protocols are based on transferring functionalities provided by 

traditional protocols from kernel level to user level. Latency in communication 

between the two endpoints is the sum of system latency and wire latency. Of these, 

latency in the sender and receiver machines proves to be a limiting factor in 

performance. User level network protocols provide better performance when 

compared to traditional protocols. M-VIA [8], a user-level network protocol based on 

‘Virtual Interface Architecture’ [9] model, gives better performance than TCP and 

UDP. The experiments we conducted substantiate this claim [10]. 

 
6.3.2 Different consistency models 

The consistency model that we have implemented is linearizability. Weaker 

consistency models [11] generally give better performance, though the perceived 

notion of correctness of operations is blurred. A weaker consistency model such as 

‘causal consistency’ can be implemented for the same architecture [12]. 
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6.3.3 Security issues 

Communication between the client and the server and among the servers is based on 

insecure TCP/IP. Also, there is no mechanism to authenticate the clients before 

accessing services.  

 

A secure transmission protocol can be used instead of TCP/IP. Encryption and 

decryption can be performed for every data transfer. Encrypted data can be stored in 

persistent store. For encryption and decryption, Diffie and Hellman algorithm can be 

used. Authentication mechanisms can be used for clients before accessing services 

from the servers. The hierarchy of persistent store consisting of namespaces and 

objects can include different security and authentication mechanisms for different 

types of namespaces. 
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Appendix 

Test results 
The experiments were conducted with machines in the ITTC network. The machines 

that act as servers are 

1. alnitak (800 MHz  dual processor, 256 MB RAM, SCSI disk) 

2. tomato (800 MHz, 256 MB RAM) 

3. bubblegum (800 MHz, 256 MB RAM) 

 

The response time for the client from the machine ‘tomato’ is calculated for various 

object and namespace commands. The requests are processed by the server ‘alnitak’. 

For operations that involve writing to the persistent store, ‘alnitak’ sends the requests 

to the other two peer servers before responding to the client. 

The operations that are performed without consulting peer servers are Retrieve Object 

and List Namespaces. 

The operations that are performed after consulting peer servers are Store Object, 

Create Namespace, Clear Namespace and Delete Namespace.  
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The client requests processed and the corresponding response time are listed below. 

i) Retrieve Object 

The objects that are retrieved from the store include an image file of size 70KB and 

mp3 files of sizes 4.7MB, 9.8MB and 20.6MB. The response time for retrieving 

objects of different sizes are as follows. 

 

Object size  70KB 4.7MB 9.8MB 20.6MB 

Response 
time (sec) 0.00898 0.43588 0.914212 2.967225 
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ii) Store Object 

The objects that are stored are the same as the ones listed above. The response time 

for storing objects of different sizes are as follows. 

Object size  70KB 4.7MB 9.8MB 20.6MB 

Response 
time (sec) 0.042842 1.480014 2.81178 8.155889 
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iii) Create Namespace 

The average time taken for creating a namespace in this experimental setup is 

0.018212 sec. 

iv) List Namespaces 

The time taken for listing different number of namespaces is shown here. 

No. of 
objects  10 20 30 

Response 
Time (sec) 0.001596 0.001747 0.001368 
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v) Clear Namespace 

Clearing a namespace is tested with varying number of objects in the specified 

namespace. The number of objects in the namespace and the combined sizes of all 

objects are listed below. 

No. of 
objects  1 10 20 30 

Combined 
size of 
objects 

32KB 44.976MB 85.840MB 134.920MB 

Response 
time (sec) 0.015803 0.046947 0.074643 0.108779 
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vi) Delete Namespace 

Deleting a namespace is tested with varying number of objects in the specified 

namespace. The parameters used for this test are the same as the ones used for 

clearing a namespace. The number of objects in the namespace and the combined 

sizes of all objects are listed below. 

No. of 
objects  1 10 20 30 

Combined 
size of 
objects 

32KB 44.976MB 85.840MB 134.920MB 

Response 
time (sec) 0.0169539 0.0454645 0.0730274 0.1026457 
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