
A Robust Persistent Storage Architecture for ACE

By

Sivaprasath Murugeshan

Bachelor of Engineering
 Computer Science and Engineering

Anna University, Chennai, India, 1998

Submitted to the Department of Electrical Engineering and Computer Science and the
Faculty of the Graduate School of the University of Kansas in partial fulfillment of
the requirements for the degree of Master of Science in Computer Science

Dr. Jerry James

 (Committee Chair)

Dr. Arvin Agah

 (Committee Member)

Dr. Susan Gauch

 (Committee Member)

Date of Acceptance

 ii

Abstract

In a pervasive computing environment, computation and storage are distributed

across a heterogeneous network. A persistent data store is necessary to make the

environment robust and to meet long-term storage requirements. It can be used to

store personal workspaces of the users. It should provide reliable storage in spite of

failures in parts of the system.

The persistent storage architecture consists of servers that are robust and highly

available. We use “peer-to-peer” server architecture. The servers are multithreaded in

order to process requests from clients and peer servers concurrently.

The clients send requests to the servers to perform desired operations on objects and

namespaces. Objects are uninterpreted sequences of bytes. A namespace is a

collection of objects. The persistent store provides multiple namespaces in which

objects can be stored. It provides a consistent view of objects and namespaces.

The possible orders of interleaving of different atomic steps in different threads and

the actions taken upon receiving different types of messages arriving from other

clients or servers are studied. Robustness of the server is verified by proving that

consistency is maintained irrespective of the interleaving of different atomic steps.

 iii

Acknowledgements

I would like to express my sincere gratitude to Dr. Jerry James, my advisor, for

guiding me in my thesis work. He has been a source of inspiration all through my stay

in KU and the meetings that we had helped me to gain a good understanding of

Distributed Computing. I thank him for his timely suggestions and encouragement.

I would like to thank Dr. Arvin Agah and Dr. Susan Gauch for serving on my thesis

committee. I thank Dr. Gary Minden for providing resources for this work and

helping us with several useful suggestions during our team meetings.

Thanks to Kalicut Ramakrishnan for working with me in this project and the

discussions we had were very helpful. Thanks to Mangal Singh and Jedrzej

Miadowicz for helping me to understand the theoretical aspects of Distributed

Computing. Thanks to all the members of ACE team.

Finally, I would like to thank all those in ITTC for providing a wonderful to

atmosphere to work. Thanks to all my friends who made my stay in KU a memorable

one.

 iv

Table of Contents

Chapter 1

Introduction ... 1

1.1 ACE.. 3

1.1.1 ACE Overview .. 3

1.1.2 Persistent store... 4

1.2 THESIS ORGANIZATION .. 4

Chapter 2

Background and Related Work ... 6

2.1 BACKGROUND.. 6

2.1.1 Design considerations .. 6

2.1.2 Consistency model.. 7

2.1.3 Failures .. 9

2.1.4 Programming model... 10

2.1.5 Issues in multithreaded programs.. 11

2.1.6 Properties of the system ... 11

2.2 RELATED WORK ... 12

 v

Chapter 3

Design ... 14

3.1 CLIENT ... 16

3.2 SERVER .. 17

3.3 STORE .. 19

3.4 OBJECT COMMANDS... 19

a) store_object... 20

b) retrieve_object .. 20

c) list_objects... 21

d) delete_object ... 21

e) store_unique_object .. 22

3.5 NAMESPACE COMMANDS ... 23

a) create_namespace... 23

b) list_namespaces .. 23

c) delete_namespace ... 24

d) clear_namespace... 24

3.6 CONSISTENCY MODEL .. 25

3.7 RESTART MECHANISM .. 25

3.8 SERVER JOINING ... 26

3.9 SERVER LEAVING ... 27

 vi

Chapter 4

Implementation details ... 28

4.1 TWO PHASE COMMIT .. 28

4.2 FAILURE DETECTION.. 29

4.2.1 Crash failures... 29

4.2.2 Disk failures ... 29

4.3 IMPORTANT DATA STRUCTURES ... 30

4.4 MUTEX VARIABLES .. 33

4.5 CONDITION VARIABLES .. 34

4.6 THREAD STRUCTURE.. 34

4.6.1 ‘main’ thread.. 35

4.6.2 ‘client_receive’ thread ... 35

4.6.3 ‘peer_send’ thread ... 37

4.6.4 ‘peer_receive’ thread ... 38

4.7 DIRECTORY STRUCTURE OF THE PERSISTENT STORE... 44

Chapter 5

Properties of the system.. 45

5.1 ASSUMPTIONS .. 45

5.1.1 Thread package .. 45

5.1.2 Communication mechanism ... 45

5.2 INVARIANTS ... 46

 vii

5.3 PROPERTIES.. 48

5.4 LIMITATIONS .. 51

Chapter 6

Conclusions and Future work .. 53

6.1 CONCLUSIONS .. 53

6.2 CONTRIBUTIONS... 53

6.3 FUTURE WORK.. 53

6.3.1 Different network protocols ... 54

6.3.2 Different consistency models.. 54

6.3.3 Security issues .. 55

References .. 56

Appendix

Test results ... 58

 1

Chapter 1

Introduction
The tremendous advances made in the domains of computation, storage and

communication technologies have diversified the computing environment with the

introduction of myriad devices of different dimensions and capabilities. A wide

variety of software is used to harness the power of these resources. In this scenario, it

becomes necessary to explore ways to make such resources more accessible to the

users in different physical locations without violating the security and privacy

assurances given by stand-alone devices. The solution for this problem lies in

pervasive computing.

The idea of pervasive computing is to integrate myriad computational devices as

diverse as a workstation and a PDA into a heterogeneous networked environment. In

this environment, computation and storage are distributed across the network. The

environment is more robust and user-friendly than traditional computing

environments. New devices are easily accommodated in the network. Also, the

devices are more accessible to remote users. The existence of different devices and

the processes of computation and storage are transparent to the user. The users’

personal workspaces are stored across the network and are accessible after proper

authentication.

 2

Pervasive computing provides several research opportunities in various domains of

computer science. Some of the challenges are illustrated here.

Persistent workspaces that are accessible from different devices should be provided

for users. These workspaces have to be stored across the network to ensure high

availability and fault-tolerance. When storage is distributed across the network,

ensuring data consistency is an important concern. Storage architectures for pervasive

computing environments have to be designed to meet the requirements mentioned

above, viz., fault tolerance, high availability and data consistency. This makes the

computing environment more robust and useful.

Communication across a pervasive computing environment involves a huge amount

of data being transferred across the network. Conventional network protocols may

introduce performance bottlenecks in such cases. Low latency network protocols that

can be used with many devices help improve the performance of the network. User-

level network protocols provide better latency by reducing the processing overhead in

the communication endpoints. Also, communication across the network has to be

secure. Data encryption and user authentication methods are needed for ensuring

security and privacy in the environment.

A wide variety of services are provided for the users. Service discovery protocols are

required to enable the user to utilize the services provided by the environment in an

efficient manner. Face recognition and voice recognition help in authenticating users

 3

to access services. Such capabilities make the pervasive computing environment more

user-friendly.

1.1 ACE

1.1.1 ACE Overview

The objective of Ambient Computational Environment (ACE) project is to make

computing pervasive by embedding myriad devices into a heterogeneous network and

providing services to users in different physical locations. Users are relieved from the

burden of being in physical contact with all the devices they want to use. After proper

authentication, users can access the services provided by ACE.

The services provided by ACE include fingerprint identification, audio capture and

play, video capture and play, projector control, etc. Services are the basic mechanisms

for controlling the functioning of different devices. The services are registered in the

ACE service directory. The ACE daemon is the software operating in the background

that provides services to the user. Various services in the ACE environment are

implemented as ACE daemons.

The vision of the ACE project is to create ‘smart rooms’. In a smart room, the user

can authenticate himself with a ‘smart device’ such as a fingerprint identifier,

biometric identifier, etc., and get access to his workspace. His workspace contains

snapshots of the applications that he had been running during his previous login

session. From his workspace, he can run the desired applications. The ACE

 4

infrastructure provides these services in such a way as to relieve the user from

knowing the intricacies of the actual devices.

1.1.2 Persistent store

 In an ACE environment, several situations arise in which a persistent data store is

desirable. For example, user contexts should survive the termination of any particular

program, machine failures, and network failures. The persistent store should be

robust, fault tolerant and highly available. The data that the users want to store can be

anything; e.g., text files, binary files, user contexts, etc. We use the term ‘object’ to

indicate an uninterpreted sequence of bytes. Each object is associated with a unique

name. A namespace is a collection of objects. The persistent store consists of multiple

namespaces.

Objects are stored in different machines that act as servers. Redundancy of stored data

makes it necessary to ensure data consistency. Operations on the persistent store are

performed such that a consistent view of objects and namespaces is maintained across

the environment. Failure detection and recovery mechanisms make the environment

robust. A well-defined interface is provided to the clients for storing and retrieving

data in the persistent store.

1.2 Thesis Organization

The thesis is organized as follows.

 5

Chapter 2 describes the background and related work. Storage architectures that are

relevant to pervasive computing, e-business and e-services are described. Research

work in the areas of consistency models and analyzing properties of distributed

systems are described.

Chapter 3 describes the design issues. Various entities in the architecture of the

persistent store and the interaction among those entities are discussed. Commands

that are supported by the persistent store are discussed in detail. The consistency

model chosen for the persistent store is explained.

Chapter 4 describes the implementation details. The persistent store servers are

multithreaded. The functions of different threads are discussed. Mutex variables and

the data structures they protect are discussed.

Chapter 5 describes the properties of the system. Assumptions about the network and

software used, properties guaranteed by the system and the limitations of the system

are discussed.

Chapter 6 deals with the conclusions of this work and possible extensions to it.

 6

Chapter 2

Background and Related Work

2.1 Background

Replication of services is commonly used to achieve robustness, fault tolerance and

high availability. Replicated servers can act as web servers, file servers, name servers,

etc. Storage architectures for pervasive computing environments are based on the

concept of service replication. This ensures that the storage is persistent and is

available for clients’ access even when failures occur in parts of the environment.

Servers that are kept in different physical locations perform the same task of storing

and retrieving data. A well-defined interface is presented to the client for the services

provided by the storage architecture. Clients are aware of the existence of multiple

servers and have a complete list of servers. A server can be chosen at random and a

service be requested. In case of failures, other servers can be contacted.

2.1.1 Design considerations

The serious issues that have to be considered during the design of a persistent storage

architecture are consistency guarantees provided to the clients in the environment,

synchronization among the servers, servers being aware of the status of other servers

in the environment and the way stored data is organized in a disk.

 7

2.1.2 Consistency model

Servers that are distributed across a network perform operations as desired by the

clients. While performing such operations, they synchronize among themselves to

ensure that clients’ views of the store adhere to certain well-defined rules. The

semantics of the abstraction provided by the store defines the consistency model.

Each server performs different operations on stored data. Those operations fall under

two categories: ‘read’ and ‘write’. A ‘read’ operation can be performed by a single

server without consulting other servers. A ‘write’ operation has to be performed after

consulting other servers. The sequence of ‘read’ and ‘write’ operations in different

servers may give different results. A consistency condition can be thought of as a set

of acceptable results considering the ordering of operations in a single server and the

ordering of operations in real-time.

Strong consistency models typically give an abstraction that is easy for the clients to

understand. The set of acceptable orderings are limited. The protocols implementing

strong consistency models lay emphasis on perceived ‘correctness’ rather than

performance of the system when operations are performed.

Weak consistency models have the advantage of giving better performance. More

orderings are considered acceptable. In some cases, programmers find the server

semantics difficult to comprehend.

 8

Strict consistency is the strongest consistency model that we can think of. This model

assumes the existence of a global clock. The real-time ordering of the events is the

only acceptable ordering. Every read operation should return the result of the most

recent write performed. This is possible only when write operations on servers are

informed to other servers instantaneously. Propagation delay for a message

transmission across a network is always non-zero. So, this model is impractical.

Strict consistency is just a conceptual idea that is not implemented in any distributed

shared memory system so far.

Strict consistency is not absolutely necessary for distributed applications in general.

Programmers can afford to use weaker consistency models for meeting the

requirements of the system. If operations performed are seen in the same order by

every server, it will be sufficient for many systems. Synchronization primitives may

be used when a particular ordering is absolutely necessary. The perceived ordering

need not conform to the real-time ordering. Let us consider two consistency models:

linearizability and sequential consistency.

Linearizability [1] is weaker than strict consistency. In a linearizable system, an

acceptable ordering is one in which the operations are ordered in some sequential

fashion consistent with read-write semantics and non-overlapping operations are

ordered in the same way as the real-time ordering. Two operations are overlapping if

each operation starts before the other operation ends. All ‘write’ operations are seen

 9

in the same order by all servers. When each object satisfies the condition for

linearizability, the system as a whole is linearizable [1].

Sequential consistency [2] is weaker than linearizability. In a sequentially consistent

system, operations have to be consistent with some sequential order seen by every

server, but need not conform to the real-time ordering. The restriction on non-

overlapping operations that exists for a linearizable system is relaxed in this model.

The trade-off between desired degree of correctness and performance is the deciding

factor for a particular consistency model to be chosen for the distributed storage

architecture.

2.1.3 Failures

The degree of robustness of the persistent storage architecture very much depends on

the types of failures the system is able to detect and the recovery mechanisms the

system has. The system should function correctly even when failures occur in parts of

the system. Different kinds of machine or network failures may occur in the system.

Machine failures include crash failures, disk failures, denial of service attacks, etc.

Crash failure occurs when the machine acting as a server crashes. Disk failure occurs

when a machine is alive, but is unable to read or write to the disk successfully.

‘Denial of service’ attack occurs when a server is flooded with requests from clients

in such a way as to impair its performance. These are common problems that can

occur in any machine.

 10

Messages sent across a network may be lost or corrupted. Network partitions occur

when a network is divided into multiple partitions such that machines in one partition

are unable to communicate with those in other partitions. The existence of network

partitions may result in inconsistencies among objects stored across the network.

Network partitions are very difficult to detect.

2.1.4 Programming model

A server responding to requests from multiple clients and servers needs to perform

several tasks concurrently. The programming model for such an application is usually

based on either multithreading or event driven programming. In multithreading,

concurrency is achieved by allowing different threads to perform independent tasks.

In event driven programming, the server behaves like a finite state machine with the

transitions to different states being based on the requests received from various clients

or servers. Event handlers are invoked to handle different requests. Processing

specific requests is the function of the handlers. Generally, event handlers are short-

lived.

The multithreaded model is easier to design. Debugging multithreaded programs is

difficult because of the limitations of the existing debugger tools. Event driven

software often proves difficult to design because of the complex finite state machine

that simulates the threads [3]. The choice between the multithreaded model and the

event driven model can be decided on the basis of whether the tasks are CPU bound

or I/O bound. In the case of multithreading, when one thread is doing I/O operations,

 11

another thread can utilize the CPU. Context-switching and locks increase the

overhead with threads. For a program that is either mostly CPU bound or mostly I/O

bound, the performance gain due to multithreading may be overshadowed by the

context-switching overhead. Under such circumstances, all threads wait for the same

resource which defeats the purpose of multithreading.

2.1.5 Issues in multithreaded programs

The general issues in multithreaded programs are mutual exclusion, deadlock and

starvation. Data structures that are shared by different threads have to be protected by

locks to ensure that operations on such data are atomic. When locks are used to

ensure mutual exclusion, the possibility of ‘hold and wait’ or ‘circular wait’ may

result in the occurrence of deadlock. Starvation occurs when the same thread keeps

acquiring the lock leaving the other threads waiting for long periods of time to

execute. The issue of starvation has to do with the design of the thread scheduler

whereas it is the responsibility of the programmer to ensure mutual exclusion and

deadlock freedom.

2.1.6 Properties of the system

‘Safety’ properties of a system state that the system does not do anything wrong. An

example is deadlock freedom. This property ensures that deadlock does not occur in a

multithreaded program where shared data is protected using locks. ‘Liveness’

properties give guarantees about the way certain functions are performed by the

 12

program. An example is starvation freedom. This property ensures that acquiring

locks is equally likely for all threads. Safety and liveness properties characterize the

behavior of the server.

2.2 Related work

 Ninja [4] is a pervasive computing architecture that consists of services that are

available across the Internet. Ninja is designed for a heterogeneous network with

myriad services available for users that can access them through myriad devices. The

architecture of Ninja consists of three basic components: bases, devices and active

proxies. ‘Bases’ are the units that store persistent state and that provide scalable

services to the users. ‘Active proxies’ store the ‘soft state’ and serve as interfaces

between bases and unintelligent devices. Devices can include simple devices with

limited intelligence and functionality. Ninja’s communication mechanism is based on

Jaguar VIA. This is based on user-level network protocols that achieve low latency

communication. Ninja facilitates a solution for robust storage architecture for a

pervasive computing environment.

Nile [5] is a distributed computing solution for computationally intensive tasks in

high-energy physics. The Nile architecture takes advantage of the parallel nature of

the computation involved. The assigned job is divided into subjobs that are allocated

to a large number of processors. Process failures, disk failures and network failures

 13

are some of the failures that are taken care of by the system. Nile is an example of a

distributed computational environment that tolerates failures in parts of the system.

E-speak from Hewlett-Packard, WebSphere from IBM and Weblogic from BEA

provide a basic infrastructure for e-business applications. A scalable infrastructure

that can support several applications makes it easier for application developers as they

can concentrate on specific functionalities of the applications rather than issues that

are common to many applications. These systems facilitate developing scalable, fault-

tolerant Internet services.

Mustaque Ahamad and Rammohan Kordale [6] propose “local consistency” based on

which scalable consistency protocols can be developed. Two protocols for

implementing strong consistency are illustrated. Correctness of the protocols

implementing the specified consistency model is explained.

Marios Mavronicolas and Don Roth [7] study the implementation of linearizable

read/write objects. Time complexity analysis for read/write operations is done based

on different assumptions on timing of the operations. This provides a good

understanding of the working of linearizable systems.

 14

Chapter 3

Design

The persistent store provides reliable storage even if some part of it is not

functioning. It consists of a set of servers that present a consistent view of storage to

the clients. It provides multiple namespaces within which named objects can be

stored.

The fundamental unit of storage in the persistent store is referred to as an object. An

object is an uninterpreted sequence of bytes. Every object has a unique name within

its namespace. The object may be a file, a snapshot of the user context or any data

that the client wants to store. It need not adhere to any particular format. A

namespace is a collection of objects. Every namespace has a unique name. The

persistent store consists of multiple namespaces, which in turn may contain multiple

objects.

Clients contact the persistent store in order to store or retrieve objects by name. The

client sends a message requesting that some operation be performed on the objects or

namespaces. The server performs the operation and returns the result to the client.

While performing such operations, the server makes sure that a consistent view of

objects and namespaces is maintained across the set of servers.

The relationship among the various entities is illustrated in the following diagram.

The persistent storage

and store. There are

servers communicate

clients so that a con

different servers. The

components.

t

Client
Persistent

store server

Namespace 2

Namespace 1
Resul
Operation
15

architecture consists of three major components: client, server

multiple servers, each associated with a distinct store. The

among themselves when they perform the operations for the

sistent view is maintained across the stores associated with

 following diagram illustrates the relationship among these

 16

3.1 Client

Any machine that is part of an ACE environment is referred to as a client. The clients

discover the addresses of persistent store servers from configuration files. The

requests processed by a server are as follows:

a) store_object – store a named object in a namespace.

b) retrieve_object – read a named object from a namespace.

c) list_objects – list all objects in a namespace.

d) delete_object – delete a named object from a namespace.

 17

e) store_unique_object – choose a unique name for the object and store that in a

namespace.

f) create_namespace – create a namespace in the store.

g) list_namespace – list all namespaces in the store.

h) delete_namespace – delete a namespace from the store.

i) clear_namespace – delete all objects in a namespace.

The client selects any server and sends the request. The server processes the request

and sends the result back to the client

3.2 Server

The main function of the persistent store server is to provide a mechanism for storing

and retrieving objects. The persistent store server is fault-tolerant and highly

available. It provides a consistent view of the stored objects to the clients. The server

is randomly selected by the client to increase the likelihood of a balanced load.

The servers are peer servers. The servers are multithreaded in order to process

requests from clients and peer servers concurrently. The server has the following

threads:

a) ‘main’ thread - initializes data structures, creates other threads and updates data

structures.

 18

b) ‘client_receive’ thread – creates multiple child threads that process requests from

multiple clients concurrently. There is one child thread for every client.

c) ‘peer_send’ thread – sends updates to peer servers.

d) ‘peer_receive’ thread – creates multiple child threads that process requests from

multiple peer servers concurrently. There is one child thread for every peer server.

The interaction among multiple threads in the persistent store server is illustrated in

the diagram given below.

 19

3.3 Store

The store is a collection of objects and namespaces. Any non-volatile storage device

can be used as the store. Every namespace has a unique name. Namespaces contain

named objects. The relationship among the various entities in the store is as shown

below.

3.4 Object Commands

 The persistent store supports the following object commands, i.e. the operations that

can be performed on objects.

 20

a) store_object

The ‘store_object’ command is issued by the client to store an object in a specified

namespace. The object may be replicated if desired by the client. The replication flag

indicates whether the object has to be replicated or not. The default value for

replication flag is ‘true’ which indicates full replication.

Command Name: store_object

Arguments:

Namespace - The namespace in which the given object is to be stored.
Value Data Type: string

Name - The name of the object to be stored.
Value Data Type: string

Object - The object to be stored.
Value Data Type: uninterpreted bytes

Replication flag - The flag that indicates whether replication is desired or not.
Value Data Type: boolean

Response: The server stores the given object in the specified namespace. The object

is replicated if desired by the client. The client is notified of success.
Otherwise, an error message is returned.

b) retrieve_object

The ‘retrieve_object’ command is issued by the client to retrieve an object specified

by the given name from the specified namespace.

Command Name: retrieve_object

 21

Arguments:

Namespace - The namespace from which the object is to be retrieved.
Value Data Type: string

Name - The name of the object to be retrieved
Value Data Type: string

Response: The server retrieves the object from the specified namespace and returns it

to the client, if the namespace and the object exist. Otherwise, an error
message is returned.

c) list_objects

The ‘list_objects’ command is issued by the client to list all objects within the

specified namespace.

Command Name: list_objects

Arguments:

Namespace – The namespace to list.
Value Data Type: string

Response: The server returns a list of all objects within the specified namespace.

d) delete_object

The ‘delete_object’ command is issued by the client to delete an object with a

specified name in the specified namespace.

Command Name: delete_object

 22

Arguments:

Namespace - The namespace from which the specified object is to be deleted.
Value Data Type: string

Name – The name of the object to delete.
Value Data Type: string

Response: The server deletes the object specified by the name and namespace, if it

exists. The client is notified of success. Otherwise, an error message is
returned.

e) store_unique_object

The ‘store_unique_object’ command is issued by the client to store an object with a

name distinct from all the existing names in the specified namespace. This command

can be used when the client is not interested in storing the object with a specific

name. Any distinct name is enough. The server chooses and returns the name. The

default value for replication flag is ‘true’ which indicates full replication.

Command Name: store_unique_object

Arguments:

Namespace - The namespace in which the object is to be stored.
Value Data Type: string

Object - The object to be stored.
Value Data Type: uninterpreted bytes

Replication flag - The flag that indicates whether replication is desired or not.
Value Data Type: boolean

Response: The server responds with the name selected for the object in the specified

namespace. The object is replicated if desired by the client. An error
message is returned if the server is unable to satisfy this request.

 23

3.5 Namespace Commands

The persistent store supports the following namespace commands, i.e. the operations

that can be performed on namespaces

a) create_namespace

The ‘create_namespace’ command is issued by the client to create a namespace.

Command Name: create_namespace

Arguments:

Namespace - The identifier of the namespace to be created by the server.
Value Data Type: string

Response: The server creates the namespace if there is no existing namespace with

the same identifier. The client is notified of success. Otherwise, an error
message is returned.

b) list_namespaces

The ‘list_namespaces’ command is issued by the client to list all namespaces in the

server.

Command Name: list_namespaces

Arguments:
None.

Response: A list of all namespaces existing in the server.

 24

c) delete_namespace

The ‘delete_namespace’ command is issued by the client to delete the specified

namespace. All objects in the specified namespace shall be deleted as well.

Command Name: delete_namespace

Arguments:

Namespace – The namespace to be deleted.
Value Data Type: string

Response: The server deletes all objects in the specified namespace and the

namespace, if it exists. The client is notified of success. Otherwise, an
error message is returned.

d) clear_namespace

The ‘clear_namespace’ command is issued by the client to clear the specified

namespace. All objects in the specified namespace shall be deleted, but the

namespace continues to exist.

Command Name: clear_namespace

Arguments:

Namespace – The namespace to be cleared.
Value Data Type: string

Response: The server deletes all objects of the specified namespace, if it exists. The

client is notified of success. Otherwise, an error message is returned.

 25

3.6 Consistency model

The consistency model provided by a persistent store determines the set of guarantees

that the client can expect when a read or write operation is performed on the store.

Choosing a consistency model for a concurrent system is based on the tradeoff

between the degree of correctness and the performance of the system when it

performs read or write operations.

A concurrent system is sequentially consistent if the results of any execution are the

same as if the operations of all the machines were executed in some sequential order

and the operations of each individual machine appear in this sequence in the order

specified by its program. If this sequential order is in accordance with the real time

order for non-overlapping operations, the system is said to be linearizable.

The view provided by the persistent store to the clients is linearizable. The only

consistency model that is stronger than linearizability is strict consistency, which is

practically impossible in any distributed system. To implement linearizability, the

two-phase commit algorithm is used.

3.7 Restart mechanism

The restart mechanism defines actions to be taken upon recovery after a machine or

network failure. It works as follows.

 26

The incarnation file to be used at the time of restart is kept in a specific location and

the incarnation number is stored in the file.

An incarnation number indicates the incarnation of the server. When a server recovers

from a fault, the incarnation number is modified to differentiate between the

messages sent before the fault and after the fault. The incarnation number of the

server is included in every message sent to peer servers.

The server checks for the existence of the incarnation file when it restarts. If the file

already exists, the incarnation number is incremented and stored. Otherwise, the file

is created and the incarnation number is set to 0. Whenever the server starts, its

incarnation number is sent to all peer servers. The file is deleted when the server

undergoes a normal shutdown.

3.8 Server joining

A new server joining the set of servers that are alive has to be atomic. Every server

that is alive should be aware of the new server joining. When a new server comes

alive, the server that receives a connection request from the new server initiates a

two-phase commit. Other peer servers that participate in two-phase commit will not

initiate another two-phase commit when they receive connection requests from the

new server. Only after the two-phase commit succeeds, the new server can send

messages to the other servers. The actions taken upon receiving connection requests

from the new server are explained in Chapter 4.

 27

Processing client requests when the new server is joining may introduce

inconsistencies in the persistent store. So, we ensure that no new server joins the

group when client request processing involving many servers is in effect. This

property of the persistent store is explained in Chapter 5.

3.9 Server leaving

A crash failure occurring in a server is detected by SIGPIPE handler. When a crash

failure of a server is detected, all peer servers that are alive are informed about the

failure. Two phase commit is not necessary in this case. If a server is not aware of a

peer server crashing, the crash will be detected when trying to send a message. So,

there will not be any inconsistency among the servers because of a server leaving and

other servers not agreeing with one another about that. A server may opt to terminate

because of disk failures. In that case, it sends a message to all peer servers indicating

failure.

 28

Chapter 4

Implementation details
The persistent store server is multithreaded. Multithreading is implemented using the

‘pthreads’ library in Linux. TCP/IP sockets are used for communication among

servers and between client and server.

4.1 Two phase commit

The operations on the persistent store are linearizable. To implement linearizability,

the two-phase commit algorithm is used. The two-phase commit algorithm works as

follows.

Before doing an operation involving all servers in the system, the server that is

processing the client request sends a “Ready” message to all peer servers that are

alive. The servers, which are ready to perform the requested operation, send a “Yes”

message. The servers that are unable to perform the requested operation send a “No”

message. When two peer servers request operations to be performed on the same

object, the server sends a ‘Yes’ message to one peer server and a ‘No’ message to

another peer server. Such ties are resolved based on the IP address of the server that

has sent the request. The server that initiated the two-phase commit waits for a finite

amount of time to get responses from its peers. The waiting time can be varied by the

administrator before compilation. The server should either get “Yes” messages from

its peers or detect a machine fault of its peers to proceed with committing. If this

 29

condition is satisfied, the server sends a “Commit” message and its peers should

commit the operation. Otherwise the server sends an “Abort” message and the

operation will be aborted. The operation will not be performed in any of the servers

and an error message will be returned to the client.

In the next section, we explain how the two-phase commit algorithm guarantees the

linearizability property of the persistent store.

4.2 Failure Detection

A network fault or a machine fault may occur in any part of the server environment.

The following faults can be detected.

4.2.1 Crash failures

When a server tries to send a message using a TCP/IP socket to another server that is

dead, a SIGPIPE signal is triggered. A SIGPIPE handler that handles server crashes is

implemented. Upon detecting a server crash, no further messages are sent to the

server till it recovers. All peer servers that are alive are informed about the server

crash.

4.2.2 Disk failures

If a server is unable to do local I/O successfully, it will inform its peers about the

failure. Messages will not be sent to the server till it recovers. When the server

restarts after recovering from failure, peer servers are informed.

 30

4.3 Important data structures

The following are the important data structures used in the server.

1) namespace_hash_table

The hash table stores the names of namespaces in the persistent store. Each entry in

the table consists of the following fields.

name – name of the namespace

lock_holder – identifier of the server that is performing an operation on this

namespace

object – pointer to a linked list containing the attributes of the objects belonging to

this namespace.

2) list of objects

Each entry in the list of objects contains the following fields.

name – name of the object

lock_holder – identifier of the server that is performing an operation on this object.

3) peer_attributes

This is an array containing the attributes of the peer servers. It is initialized after

discovering the addresses of peer servers from the configuration file. Initialization

takes place when the server starts. It is updated when server crashes are detected or

when servers come alive.

 31

Each element in the array has

- peer identifier

 IP address of the server is used as the identifier

- state of the peer server

The state of the peer server can be any of the following

 ALIVE – peer server is sending and receiving messages

 DEAD – peer server is dead

 JOINING – peer server wants to join. A two-phase commit that has been

initiated by another peer server is going on. When the two-phase commit succeeds,

the state of the peer server will be ALIVE.

 TO_JOIN – a request has been received from the peer server for joining. A two-

phase commit has to be initiated. When the two-phase commit succeeds, the state of

the peer server will be ALIVE.

 - socket id that will be used to send messages to the peer server

- thread id of the peer_receive thread that receives updates from the peer server.

- incarnation number

 The incarnation number indicates current incarnation of the peer server.

4) client_request_list

 This is a linked list containing requests that have arrived from clients. Only those

requests that need to be known by other peer servers are stored here. Those requests

that can be processed without contacting other peer servers are not updated in this list.

 32

The client_receive thread adds requests from clients to the tail of the list. The

peer_send thread processes requests from the head of the list.

Each element in the list has

- request to be processed

This may be the operation requested by the client or the information that a new

server is joining. These operations will be performed after doing a two-phase

commit.

- request parameters

These are the parameters for the request to be processed. The list of parameters is in

accordance with the syntax of the commands as specified in the previous chapter.

- object

For requests involving objects, this field contains the object to be stored in servers.

This field is valid only for the requests ‘store_object’ and ‘store_unique_object’.

- incarnation number of the server

The incarnation number is included with every message so that peer servers can

distinguish between messages from different incarnations.

- index in the array of condition variables

The ‘peer_send’ thread notifies the condition variable as identified by this index so

that ‘client_receive’ thread knows the status of operation in other peer servers and

takes appropriate action.

 33

5) cond_var_array

Each client request is updated in the client_request_list. The request will be

performed only when it can be performed in all peer servers. So, each thread

processing a client request sets a condition variable and waits for that variable to be

signaled by the ‘peer_send’ thread. cond_var_array is a variable sized array that

contains condition variables and associated mutex variables.

Each element in the array has

 - condition variable

- associated mutex variable

- flag to indicate if the condition variable has been used or not

- flag to indicate the status of two-phase commit

4.4 Mutex variables

The data structures that are accessed by multiple threads are protected by mutex

variables. The following are the mutex variables used.

1) mutex_peer_attributes

This mutex protects the ‘peer_attributes’ data structure.

2) mutex_client_request_list

This mutex variable protects the linked list ‘client_request_list’.

 34

3) mutex_cond_var_array

‘cond_var_array’ is accessed by multiple threads processing client requests. This

mutex variable protects ‘cond_var_array’.

4) mutex_hash_table

The hash table that stores the attributes of namespaces is accessed by multiple threads

processing client requests. This mutex variable protects ‘hash_table’.

4.5 Condition variables

1) cond_peer_join

This condition variable is set when a peer server asks to join and two phase commit

has already been started by a peer server that is alive. The variable is signaled when

two phase commit succeeds.

2) cond_var_array

This is the variable sized array of condition variables as described earlier.

 4.6 Thread Structure

The server process has the following threads.

1) ‘main’ thread

2) ‘client_receive’ thread

3) ‘peer_send’ thread

4) ‘peer_receive’ thread

 35

The functions performed by various threads are explained as follows.

4.6.1 ‘main’ thread

The functions of this thread are to initialize many data structures and to create other

threads. From the configuration file, it discovers the addresses of the peer servers and

initializes ‘peer_attributes’. It updates incarnation files and sets the

‘incarnation_number’ value. The SIGPIPE handler, which helps detect server crashes,

is installed. Mutex variables and condition variables are initialized. This thread

creates the client_receive, peer_send and peer_receive threads.

Pseudocode:

 initialize peer_attributes
 install sigpipe handler
 initialize thread_sig_mask
 update incarnation file
 initialize mutex variables
 initialize array of condition variables
 initialize hash table
 create client_receive, peer_send and peer_receive threads.
 wait for other threads to terminate
 exit

4.6.2 ‘client_receive’ thread

The ‘client_receive’ thread waits for connection requests from clients. Client

requests are sent to a specified port. On receiving a connection request, a child thread

is created. It is the child thread that actually processes the requests and returns the

status of the operation to the client. Client requests are processed concurrently by

 36

multiple child threads. Each child thread processes requests from a particular client in

sequential order till the client notifies the server that no more requests need to be

processed.

The child thread receives the request, i.e., the operation to be performed on the

persistent store. The request is parsed and parameters are identified. For operations

that involve only reading the contents of the store, other peer servers need not be

contacted. Those requests are performed immediately and the result is returned to the

client. Those operations that involve writing to the persistent store are performed after

agreeing with other peer servers. The incarnation number of the server is included in

the entry to be added to the client_request_list. The index in the cond_var_array that

has to be updated by peer_send thread is calculated after searching cond_var_array.

This thread waits for notification of the specified condition variable. After

discovering the status of two-phase commit, either the operation is performed or the

client is informed that it failed.

Pseudocode:

block signals (that are in thread_sig_mask).
listen for connection requests from client receive port
accept connection and create a child thread that will receive requests.

(the child thread is created in the detached mode)

The child thread does the following.

forever
 do
 get requests from clients

 37

 parse the request
 if request is end_of_requests, terminate the thread.
 receive the object (for store_object and store_unique_object commands)
 if server need not inform peers
 do local i/o and respond to the client
 else
 begin
 get index of cond_var_array
 create a client_request
 add the request to client_request_list along with incarnation number
 timed wait for the result of two-phase commit
 if sigalled
 do local i/o and inform the client of success
 else (if timeout)
 inform the client of failure.
 update cond_var_array
 end
 done

4.6.3 ‘peer_send’ thread

The peer_send thread reads client_request_list and sends the requests to peer servers.

The two-phase commit algorithm is applied before operations are committed. The

status of two-phase commit is updated in cond_var_array and the corresponding

condition variable is signaled.

Pseudocode:

forever
 do
 read client_request_list

 for each entry in client_request_list
 do
 call two_phase_commit
 wait for responses from peers (finite wait using select)
 receive two_phase_commit_yes or two_phase_commit_no
 if it returns commit, send commit message and object (if necessary)
 signal condition variable (read client_request_list and signal the

 38

 condition variable corresponding to the client_receive_thread).
 else send abort message to peers
 if EPIPE is returned for all peers
 (other servers think i'm dead. so, die and come back alive)
 begin
 reset peer_attributes
 init_peer_attributes
 end
 delete request from client_request_list
 done

done

4.6.4 ‘peer_receive’ thread

The ‘peer_receive’ thread waits for connection requests from peer servers. On

receiving a connection request, coordination with other peer servers takes place to

ensure that the operation of a new server joining is atomic. After two phase commit

succeeds, a child thread is created. It is the child thread that actually processes the

requests from the peer server. There are n child threads for n peer servers. Requests

from peer servers are processed concurrently by these child threads.

When a connection request is received from a peer server, the status of the other peer

servers is discovered from ‘peer_attributes’. The following cases may occur.

 39

1) All peer servers are dead

In this case, this is the only server that is alive. When a connection request arrives

from another server, server joining is atomic. So, the two-phase commit protocol is

unnecessary. A child thread is created and ‘peer_attributes’ is updated.

2) Peer server is already alive

In this case, the server is getting a connection request from a server that is already

alive. This server is joining an existing group of servers. A child thread is created and

‘peer_attributes’ is updated.

3) Peer server is joining

The server is getting a connection request that wants to join the group. Another

server, that is alive, has received a connection request from the same server and has

initiated two phase commit. This server is waiting for the two-phase commit protocol

to complete. This thread waits on a condition variable. The variable is signaled by the

child thread, which receives requests from a peer server. A child thread is created and

‘peer_attributes’ is updated.

4) Peer server is yet to join

 The server is getting a connection request from a server that wants to join the group.

The two-phase commit protocol is initiated. After the successful completion of two-

phase commit, a child thread is created and ‘peer_attributes’ is updated.

 40

The child thread receives updates from peer servers and processes them. The

following types of requests are processed.

1) Incarnation number

The incarnation number of the peer server is updated in peer_attributes.

2) Peer server dead

The state of the peer server is changed in peer_attributes. The child thread receiving

updates from the server is terminated.

3) I am dead

This message is received when the peer server is facing some problems with disk

operations. The state of the peer server is changed in peer_attributes and this thread is

terminated.

4) New server joining

When a message is received from a peer server regarding a new server joining, the

status of the server in peer_attributes is modified. A condition variable is set. The

variable is signaled when all servers agree on the joining of a new server.

 41

5) Two-phase commit ready

This message is sent when two phase commit is initiated. The type of request and

parameters are sent along with this message. The list of parameters is parsed to get

namespace name and object name. The current lock holder for the specified

namespace or object is found. If no server holds the lock, the lock holder is set to the

IP address of this server and two_phase_commit_yes message is sent.

When the lock is already held by some other server, the tie is broken using the

server’s IP address. The server with the smaller IP address value gets higher priority.

Consider the following scenario. Servers A and B try to update the same object. A

sends the request to B, C and D. B sends the request to A, C and D. Let us assume C

gets the request from A first, locks the object and sets the lock holder to A. D gets the

request from B first, locks the object and sets the lock holder to B. C gets B’s request

and D gets A’s request. Let us assume A’s IP address is smaller than B’s IP address.

After getting B’s request, C sends two_phase_commit_no. D waits for the release of

lock for the object. The transaction initiated by B is aborted and the one initiated by A

is committed. Thus, contentions are overcome and consistency is maintained in the

persistent store.

6) Two-phase commit abort

When an abort message is received, the namespace and the object are unlocked. The

request initiated by the peer server fails to take effect.

 42

7) Two-phase commit commit

When a commit message arrives, the request initiated by the server has to take effect.

An object is received for the commands store_object and store_unique_object. If the

request is to accept a new server into the group, the condition variable meant for

server joining is signaled. Object and namespace commands work as described

earlier. After successfully performing the operations, the object and the namespace

are unlocked.

Along with the request, the incarnation number of the server is also sent. If the

request is from a previous incarnation, it is not honored. Otherwise, the requested

operation takes place.

Pseudocode:

block signals (that are in thread_sig_mask).
listen for connection requests from peer receive port
accept connection
check peer_attributes

case 'status of peer_attributes'

all peers are dead : create a child receive thread
 (this is the first to join,
 so no need for two phase commit)

server already set alive : create a child receive thread
 (joining other servers that are already alive)

server is yet to join : call two_phase_commit
 create a child receive thread

server joining : wait for peer_join condition variable to be signalled

 43

 create a child receive thread

The child thread does the following.

update peer_attributes

forever
 do
 receive messages from other servers

 case request_type:

 incarnation_number : update peer attributes with incarnation number

 i_am_dead : update_peer_attributes
 terminate this thread

 peer_server_dead : update peer_attributes
 terminate receive thread corresponding to the dead peer.

 two_phase_commit_ready :
 - parse the request
 - get the object name and namespace name
 - try to set lock for namespace and object
 - if it is already locked and
 server_id is greater than that of the lock holder
 send two_phase_commit_no.
 else if not locked
 send two_phase_commit_yes
 else
 wait to acquire the lock and then send two_phase_commit_yes

 two_phase_commit_abort : reset lock for namespace and object.

 two_phase_commit_commit :
 - receive the object
 - if request is new server joining, signal peer_join condition
 variable
 - else
 - begin
 - do local i/o
 - if disk failure, send i_am_dead message.
 - end

 44

 done

4.7 Directory structure of the persistent store

The persistent store is a specific directory in the machine that acts as the server. It

contains the subdirectories that are namespaces. Objects belonging to a particular

namespace are stored as files in that directory. The type of the file can be anything,

e.g., text file, binary file, C program, etc.

 45

Chapter 5

Properties of the system

The properties of the persistent store implementation are discussed in this chapter.

The assumptions regarding the thread package and communication mechanism are as

follows.

5.1 Assumptions

5.1.1 Thread package

The ‘pthreads’ library in Linux is used for implementing multithreading.

Proposition 1: The thread scheduler is starvation free.

Proposition 2: Creating a child thread does not block.

Proposition 3: Terminating a child thread does not block.

5.1.2 Communication mechanism

TCP/IP sockets on Linux are used for communication between the client and the

server and among the servers.

Proposition 1: All messages that are sent are eventually delivered when there is no

crash. Messages are not lost, corrupted or misdirected.

Proposition 2: Every crash is eventually detected.

 46

When the ‘send’ or ‘receive’ end of the connection is broken, the SIGPIPE signal is

triggered in the other end. An EPIPE error is returned for any system call that uses the

socket.

Proposition 3: We have a perfect failure detector. So, all detected crashes are

crashes.

5.2 Invariants

Invariants are the conditions that are always true, except when an atomic action is

being performed. The following invariants are true in our implementation.

Invariant 1: All shared data structures are protected by locks.

This is a ‘safety’ property. All shared data structures and their associated mutex

variables are explained in the previous chapter. This guarantees mutual exclusion in

the multithreaded server.

Invariant 2: Deadlock does not occur.

Deadlock is a common problem that is possible in multithreaded programs where

locks are used to guarantee mutual exclusion. The necessary conditions for a

deadlock to occur are: mutual exclusion, no preemption, hold and wait and circular

wait.

 47

Here, we explain how circular wait does not occur in the program. In peer_send

thread, mutex_client_request_list is locked and then we try to acquire a lock for

mutex_peer_attributes. This is the only instance of hold and wait. There is no instance

where we acquire mutex_peer_attributes and try to acquire client_request_list. So,

circular wait is avoided. Hence, deadlock is avoided.

Invariant 3: The number of ‘peer_receive’ threads will eventually be the same as the

number of servers set 'alive' in peer_attributes.

 We create a peer_receive child thread only after receiving a connection request from

a peer server. The child thread updates peer_attributes once it is created. During this

update, the peer server is set ‘alive’ in peer_attributes.

A server tries to connect to all peer servers when it starts up. During the initialization

of peer_attributes, the peer server is set ‘alive’ if it is able to connect. The

peer_receive thread receives a request from the peer server and creates a child thread.

Whenever a peer server is detected as dead, peer_attributes is updated with the status

of the peer server. The thread that is receiving requests from the respective peer

server is terminated.

So, the number of peer receive threads will eventually be equal to the number of peer

servers set ‘alive’ in peer_attributes.

Invariant 4: No server joins the group when a two-phase commit that has been

initiated by a server for serving client request is in effect.

 48

When a new server that wants to join the group sends a connection request, two phase

commit is initiated. The new server joins the group after two phase commit succeeds.

When this two-phase commit is going on, no other client request is sent to other

servers. New server joining request and client request are processed in a sequential

fashion by the peer_send thread. So, when a client request is served, no new server

joins the group.

When no other peer servers are alive, requests are served immediately without

consulting peer servers. When a new server joins, two phase commit is not necessary.

In this case, two phase commit is not necessary for both new server joining and

serving client requests.

Invariant 5: Any thread that holds the lock does not block.

No thread does an infinite wait after acquiring a lock. Also, no thread cancels itself

while holding a lock. So, threads do not block while holding the lock.

5.3 Properties

Theorem 1: Client requests are eventually served if the mutexes are starvation free

and at least one server is alive and no server crashes.

 49

Proof: If no peer server is alive or a request can be served without consulting peers,

the client request is immediately served.

 If peer servers are alive, they have to be consulted before a request is served. The

client_receive thread that processes the client request adds the request to the

client_request_list. A condition variable that waits on the status of two-phase commit

is set. This is a timed wait.

The implementation of two-phase commit involves a 'select' system call with a

timeout. If it does not get positive responses from the peer servers before it times out,

the transaction is aborted. So, two-phase commit returns either commit or abort. The

condition variable corresponding to the client request is signaled and the status of

two-phase commit is also updated.

The client_receive thread does not block. So, each request is served or an error

message is sent to the client.

Q.E.D.

Theorem 2: When there is a perfect failure detector and there are no network

failures, the state of the persistent store including current state and pending commits,

will be the same in all servers that are alive.

Proof: The current state of the server reflects the contents of the store with existing

namespaces and objects. Pending commits refers to the namespaces and objects that

are locked for committing an operation, but operations are not actually performed.

 50

Operations on the persistent store, that modify the state of the store, are performed

after a successful two-phase commit. During the first phase of two-phase commit,

namespaces and objects on which operations will be performed are locked. During

the second phase, if the operation is to be committed, the operation is performed and

locks are released.

Q.E.D.

Theorem 3: Consistency is guaranteed by the two-phase commit protocol.

Operations on the persistent store are linearizable.

Proof: The two-phase commit algorithm guarantees linearizability. Linearizability is

a local property. If each individual object in a system is linearizable, then the entire

system is linearizable. The operations on a single object replicated in many servers

should follow some sequential order. The order should be the same in every server.

Before performing any write operation on an object, a lock should be obtained. After

completing the operation, the lock is released. So, there is no possibility for

concurrent writes in a server. This makes sure that every server views sequences of

‘write’ operations on the objects. When a server receives a request for locking an

object that has already been locked, ties are broken on the basis of IP address of the

server that initiated the transaction. Since this is done in all the servers, every server

performs ‘writes’ on objects in the same order even if the order in which a server

 51

receives ‘write’ requests is different from a peer server. So, the sequence of ‘write’

operations performed is the same in all servers. This guarantees that the system is

linearizable.

Q.E.D.

5.4 Limitations

Limitation 1: Network partitions

Network partitions occur when servers that are considered to be ‘dead’ are actually

‘alive’. Servers in one partition are not aware of the events in another partition. Client

requests are processed in a manner such that inconsistencies may arise in the system.

Limitation 2: Denial of service attacks.

Denial of service attacks occur when servers are overloaded with requests from

clients. Clients are compromised and requests are sent with the sole objective of

impairing the performance of servers.

Limitation 3: Two-phase commit protocol may block.

The two-phase commit protocol may block when server crashes happen during

inopportune moments. If the server initiating two-phase commit crashes after getting

replies from peer servers, objects and namespaces that would have been locked

during the first phase will remain so. If other servers crash, it will be detected by the

 52

server that initiates the requests. This is a limitation of the two-phase commit protocol

that may affect the system.

 53

Chapter 6

Conclusions and Future work

6.1 Conclusions

A persistent storage architecture for the ACE environment has been designed and

implemented. The services offered by the servers to the clients are explained. The

properties that are guaranteed by the servers are listed and explained. The

assumptions regarding software packages used and the mode of communication over

the network that are necessary for these properties to be true are explained.

6.2 Contributions

This work forms part of the ACE project. The persistent storage architecture that we

have designed and implemented will meet the long-term storage requirements of the

ACE environment. We have proved the properties of the system that we have

implemented. The experiments that we have done by varying the sizes of the objects

and the number of objects in the namespaces indicate that the time taken for servers

to respond to various client requests is reasonable.

6.3 Future work

The persistent storage architecture can be implemented with different network

protocols and different consistency models. Also, features that provide encryption and

 54

decryption of data transmitted and user authentication features to access services can

be added.

6.3.1 Different network protocols

The implementation for this work has been done using the TCP/IP protocol. User-

level network protocols are based on transferring functionalities provided by

traditional protocols from kernel level to user level. Latency in communication

between the two endpoints is the sum of system latency and wire latency. Of these,

latency in the sender and receiver machines proves to be a limiting factor in

performance. User level network protocols provide better performance when

compared to traditional protocols. M-VIA [8], a user-level network protocol based on

‘Virtual Interface Architecture’ [9] model, gives better performance than TCP and

UDP. The experiments we conducted substantiate this claim [10].

6.3.2 Different consistency models

The consistency model that we have implemented is linearizability. Weaker

consistency models [11] generally give better performance, though the perceived

notion of correctness of operations is blurred. A weaker consistency model such as

‘causal consistency’ can be implemented for the same architecture [12].

 55

6.3.3 Security issues

Communication between the client and the server and among the servers is based on

insecure TCP/IP. Also, there is no mechanism to authenticate the clients before

accessing services.

A secure transmission protocol can be used instead of TCP/IP. Encryption and

decryption can be performed for every data transfer. Encrypted data can be stored in

persistent store. For encryption and decryption, Diffie and Hellman algorithm can be

used. Authentication mechanisms can be used for clients before accessing services

from the servers. The hierarchy of persistent store consisting of namespaces and

objects can include different security and authentication mechanisms for different

types of namespaces.

 56

References
[1] Maurice P. Herlihy and Jeannette M. Wing, “Linearizability: A Correctness

condition for Concurrent Objects”, ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 12, no. 3, July 1990, pp. 463 – 492.

[2] Leslie Lamport, “How to Make a Multiprocessor Computer that Correctly

Executes Multiprocess Programs”, IEEE Transactions on Computers vol. 28, no.

9, Sept. 1979, pp. 690-691.

[3] Andrew S. Tanenbaum, “Distributed Operating Systems”, pp. 169-178.

[4] Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David Culler,

N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao,

S. Ross, and B. Zhao, “The Ninja Architecture for Robust Internet-Scale Systems

and Services”, Computer Networks: the International Journal of Distributed

Informatique, vol. 35, no. 4, March 2001, pp.473-497. (Special Issue on Pervasive

Computing).

[5] M. Ogg, G. Obertelli, F. Handfield, and A. Ricciardi, “Nile: Large-scale

distributed processing and job control”. Proc. Int'l Conf on Computing in High

Energy Physics, Chicago, IL, September 1998.

[6] Mustaque Ahamad, Rammohan Kordale, “Scalable Consistency Protocols for

Distributed Services”, IEEE Transactions on Parallel and Distributed Systems vol.

10, no. 9, 1999, pp. 888-903.

[7] Marios Mavronicolas, Dan Roth, “Linearizable Read/Write Objects”, Theoretical

Computer Science, 220(1), 267-319 (1999).

 57

[8] “M-VIA, a modular high-performance implementation of the Virtual Interface

Architecture for Linux”, http://www.nersc.gov/research/FTG/via/.

[9] Don Cameron and Greg Regnier, “The Virtual Interface Architecture”, Intel

Press.

[10] “Performance comparison of TCP, UDP and M-VIA”, ITTC Technical Report.

[11] Raynal, M. and Mizuno, M. “How to find his way in the jungle of consistency

criteria for distributed shared memories (or how to escape from Minos'

labyrinth)”, Proc. of the 4th IEEE Workshop on Future Trends of Distributed

Computing Systems, pp. 340-346, 1993.

[12] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, Phillip W. Hutto,

“Causal Memory: Definitions, Implementation, and Programming. Distributed

Computing”, 9(1), pp. 37-49, 1995.

http://www.vidf.org/
http://www.vidf.org/

 58

Appendix

Test results
The experiments were conducted with machines in the ITTC network. The machines

that act as servers are

1. alnitak (800 MHz dual processor, 256 MB RAM, SCSI disk)

2. tomato (800 MHz, 256 MB RAM)

3. bubblegum (800 MHz, 256 MB RAM)

The response time for the client from the machine ‘tomato’ is calculated for various

object and namespace commands. The requests are processed by the server ‘alnitak’.

For operations that involve writing to the persistent store, ‘alnitak’ sends the requests

to the other two peer servers before responding to the client.

The operations that are performed without consulting peer servers are Retrieve Object

and List Namespaces.

The operations that are performed after consulting peer servers are Store Object,

Create Namespace, Clear Namespace and Delete Namespace.

 59

The client requests processed and the corresponding response time are listed below.

i) Retrieve Object

The objects that are retrieved from the store include an image file of size 70KB and

mp3 files of sizes 4.7MB, 9.8MB and 20.6MB. The response time for retrieving

objects of different sizes are as follows.

Object size 70KB 4.7MB 9.8MB 20.6MB

Response
time (sec) 0.00898 0.43588 0.914212 2.967225

Retrieve Object

0

0.5

1

1.5

2

2.5

3

3.5

70KB 4.7MB 9.8MB 20.6MB

Object Size

R
es

po
ns

e
Ti

m
e

(s
ec

)

 60

ii) Store Object

The objects that are stored are the same as the ones listed above. The response time

for storing objects of different sizes are as follows.

Object size 70KB 4.7MB 9.8MB 20.6MB

Response
time (sec) 0.042842 1.480014 2.81178 8.155889

Store Object

0

1

2

3

4

5

6

7

8

9

70KB 4.7MB 9.8MB 20.6MB

Object Size

R
es

po
ns

e
Ti

m
e

(s
ec

)

 61

iii) Create Namespace

The average time taken for creating a namespace in this experimental setup is

0.018212 sec.

iv) List Namespaces

The time taken for listing different number of namespaces is shown here.

No. of
objects 10 20 30

Response
Time (sec) 0.001596 0.001747 0.001368

List Namespaces

0
0.0002
0.0004
0.0006
0.0008
0.001

0.0012
0.0014
0.0016
0.0018
0.002

10 20 30

No. of objects

R
es

po
ns

e
Ti

m
e(

se
c)

 62

v) Clear Namespace

Clearing a namespace is tested with varying number of objects in the specified

namespace. The number of objects in the namespace and the combined sizes of all

objects are listed below.

No. of
objects 1 10 20 30

Combined
size of
objects

32KB 44.976MB 85.840MB 134.920MB

Response
time (sec) 0.015803 0.046947 0.074643 0.108779

Clear Namespace

0

0.02

0.04

0.06

0.08

0.1

0.12

1 10 20 30

No. of objects

R
es

po
ns

e
Ti

m
e

(s
ec

)

 63

vi) Delete Namespace

Deleting a namespace is tested with varying number of objects in the specified

namespace. The parameters used for this test are the same as the ones used for

clearing a namespace. The number of objects in the namespace and the combined

sizes of all objects are listed below.

No. of
objects 1 10 20 30

Combined
size of
objects

32KB 44.976MB 85.840MB 134.920MB

Response
time (sec) 0.0169539 0.0454645 0.0730274 0.1026457

Delete Namespace

0

0.02

0.04

0.06

0.08

0.1

0.12

1 10 20 30
No. of objects

R
es

po
ns

e
Ti

m
e

(s
ec

)

	Table of Contents
	C
	Chapter 1
	Introduction
	
	ACE

	1.1.1 ACE Overview
	1.1.2 Persistent store
	Thesis Organization

	Chapter 2
	Background and Related Work
	
	2.1 Background

	2.1.1 Design considerations
	2.1.2 Consistency model
	2.1.3 Failures
	2.1.4 Programming model
	2.1.5 Issues in multithreaded programs
	2.1.6 Properties of the system
	2.2 Related work

	Chapter 3
	Design
	
	3.1 Client
	3.2 Server
	3.3 Store
	3.4 Object Commands

	a) store_object
	b) retrieve_object
	c) list_objects
	d) delete_object
	e) store_unique_object
	3.5 Namespace Commands

	a) create_namespace
	b) list_namespaces
	c) delete_namespace
	d) clear_namespace
	3.6 Consistency model
	3.7 Restart mechanism
	3.8 Server joining
	3.9 Server leaving

	Chapter 4
	Implementation details
	
	4.1 Two phase commit
	4.2 Failure Detection

	4.2.1 Crash failures
	4.2.2 Disk failures
	4.3 Important data structures
	4.4 Mutex variables
	4.5 Condition variables
	4.6 Thread Structure

	‘main’ thread
	4.6.2 ‘client_receive’ thread
	4.6.3 ‘peer_send’ thread
	4.6.4 ‘peer_receive’ thread
	4.7 Directory structure of the persistent store

	Chapter 5
	Properties of the system
	
	5.1 Assumptions

	5.1.1 Thread package
	5.1.2 Communication mechanism
	5.2 Invariants
	5.3 Properties
	5.4 Limitations

	Chapter 6
	Conclusions and Future work
	
	6.1 Conclusions
	6.2 Contributions€
	6.3 Future work€

	6.3.1 Different network protocols
	6.3.2 Different consistency models
	6.3.3 Security issues

	References
	Appendix
	Test results
	
	
	i) Retrieve Object
	ii) Store Object
	iii) Create Namespace
	iv) List Namespaces
	v) Clear Namespace
	vi) Delete Namespace

