

Sparse Satellite Clusters

- Advantages of Space borne Radar
- Size-Weight-Power Tradeoff
- Ambiguity and Resolution
- Cluster of Satellites called Constellation
- >Advantages of Multiple Satellites
- Sparsely Populated Multiple Aperture Spaceborne Radar

Earlier Proposed Filters

- Matched or Correlation Filter
 Estimator Maximizes signal to noise
 Unable to Minimize error due to clutter
- Maximum Likelihood Estimator
 Able to Minimize error due to clutter
 Unable to minimize error due to noise
- Minimum Mean Square Estimator (MMSE) Reduces Interference (Clutter +Noise) Optimal estimate Computational load

	adar System nitial conditions iance matrix on parallel processors	g
Overview	ce Representation of the Racer Ter Implementation (KF) ter Implementation (KF) ter of the KF for different i the Rank of the error covari ation of Kalman Filtering of sites of the true for the true for the sites of the true for the true fo	S
	 Signal Spac MMSE Filt Problems Kalman Fil Convergend Reducing th Implementa Conclusion Future Wor 	Information and Technology Center

tion of the Radar System	 The received signal for the Radar Constellation can be modeled mathematically. 	 This response depends on radar system parameters, propagation, scattering 	characteristics of the surface.	 Signals can be approximately represented by sampled data and interpolation filters can be used to reconstruct the signal 	 The radar response model can thus be represented with vector-matrix relations. 	g
entai		,t)				9
Signal Space Represe		$r(\overline{x}, t) = \int_{A} \gamma_{0}(\overline{x}) \int_{T} h(\overline{x}, x, t, t') S(t') dt' dA + n(\overline{x}, t) = \sum_{i} \gamma_{0}(\overline{x}_{i}) p(\overline{x}_{i}, \overline{x}_{i}, t) \Delta A + n(\overline{x}_{i}, t)$	$\mathbf{r} = \mathbf{P} \boldsymbol{\gamma} + \mathbf{n}$	r = Entireset of Measurements P = Matrix of NormalizedResponsevectors γ = ScatteringCoefficients Vector n = Measurement Noise		Information and Telecommunication Technology Center

Juformation and			
(·) Is the conjugate transpose	(·) Is the conjugate transpose	(·) Is the conjugate transpose	(·) Is the conjugate transpose
$(\cdot)^{n}$ is the conjugate transpose	$(\cdot)^{n}$ is the conjugate transpose	$(\cdot)^{\text{H}}$ is the conjugate transpose	$(\cdot)^{n}$ is the conjugate transpose -Huge computational load involved due to inverse
$(\cdot)^{\mu}$ is the conjugate transpose	$(\cdot)^{\mu}$ is the conjugate transpose -Huge computational load involved due to inverse	$(\cdot)^{\mu}$ is the conjugate transpose -Huge computational load involved due to inverse	$(\cdot)^{\mu}$ is the conjugate transpose -Huge computational load involved due to inverse
$(\cdot)^{n}$ is the conjugate transpose -Huge computational load involved due to inverse	$(\cdot)^{n}$ is the conjugate transpose -Huge computational load involved due to inverse	$(\cdot)^{\mu}$ is the conjugate transpose -Huge computational load involved due to inverse	$(\cdot)^{n}$ is the conjugate transpose -Huge computational load involved due to inverse
$(\cdot)^{n}$ is the conjugate transpose -Huge computational load involved due to inverse	$(\cdot)^{n}$ is the conjugate transpose -Huge computational load involved due to inverse	$(\cdot)^{n}$ is the conjugate transpose -Huge computational load involved due to inverse	$(\cdot)^{n}$ is the conjugate transpose -Huge computational load involved due to inverse
$(\cdot)^{n}$ is the conjugate transpose -New La manual computational load involved due to inverse	$(\cdot)^{\mu}$ is the conjugate transpose - Negative to inverse a summation of the transpose - Huge computational load involved due to inverse	$(\cdot)^{\mu}$ is the conjugate transpose - Negeton to inverse a sum to a sum the transpose - Huge computational load involved due to inverse	$(\cdot)^{\mu}$ is the conjugate transpose - Negeton by the computational load involved due to inverse
 (.)ⁿ is the conjugate transpose Huge computational load involved due to inverse 	$(\cdot)^{\mu}$ is the conjugate transpose	$(\cdot)^{H}$ is the conjugate transpose	$(\cdot)^{\mu}$ is the conjugate transpose
 (.)^H is the conjugate transpose (.)^H is the conjugate transpose (.)^H and involved due to inverse 	 (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and involved due to inverse 	$(\cdot)^{H}$ is the conjugate transpose $(\cdot)^{H}$	$(\cdot)^{H}$ is the conjugate transpose $(\cdot)^{H}$
 K_n is the noise covariancematrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and involved due to inverse 	K_n is the noise covariance matrix $(\cdot)^{\mu}$ is the conjugate transpose $(\cdot)^{\mu}$ is the conjugate tran	 K_n is the noise covariancematrix Result is minimum estimation error. (.)ⁿ is the conjugate transpose Huge computational load involved due to inverse 	 K_n is the noise covariance matrix Result is minimum estimation error. (.)ⁿ is the conjugate transpose Huge computational load involved due to inverse
 K is the noise covariance matrix Result is minimum estimation error. (.)ⁿ is the conjugate transpose Huge computational load involved due to inverse 	 K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and involved due to inverse 	 K is the noise covariancematrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ are computational load involved due to inverse 	 K is the noise covariance matrix Besult is minimum estimation error. (.)ⁿ is the conjugate transpose Huge computational load involved due to inverse
 K_n is the noise covariance matrix Result is minimum estimation error. (.)ⁿ is the conjugate transpose Huge computational load involved due to inverse 	 K_n is the noise covariancematrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and the conjugate transpose (.)ⁿ is the conjugate transpose 	 K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and involved due to inverse 	 K_n is the noise covariance matrix (.)^{^u} is the conjugate transpose (.)^u is the conjugate transpose (.)^u and involved due to inverse
 K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and involved due to inverse 	 K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and involved due to inverse 	 K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and involved due to inverse 	 K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and involved due to inverse
 K is the noise covariance matrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and the co	 K_n is the noise covariance matrix (·)ⁿ is the conjugate transpose (·)ⁿ is the conjugate transpose (·)ⁿ and involved due to inverse 	 K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose Maximizes signal to interference (clutter +noise). Result is minimum estimation error. Huge computational load involved due to inverse 	 K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and the conjugate transpose
 K_n = E₁ W fis the error correlation matrix K_n is the noise covariancematrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and involved due to inverse 	 K_n = Ef W JIS the error correlation matrix K_n is the noise covariancematrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and the conjugate transpose 	 K_n = E(Y) fits the error correlation matrix K_n is the noise covariancematrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ and the conjugate transpose 	 K_n = E(W) is the error correlation matrix K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose
 K_r = E{ <i>Y</i>/} is the error correlation matrix K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose 	 K_r = E{ γ/} is the error correlation matrix K_n is the noise covariancematrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ Solution (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	 K_r = E{ γ/} is the error correlation matrix K_n is the noise covariancematrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose (.)ⁿ Solution (Content of the conjugate transpose) 	 K_r = E{ <i>Y</i>/} is the error correlation matrix K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose (.)ⁿ is the conjugate transpose Huge computational load involved due to inverse
$K_{r} = E\{ \gamma '\}$ is the error correlation matrix K_{n} is the noise covariance matrix $(\cdot)^{u}$ is the conjugate transpose $(\cdot)^{u}$ is the conjugate transpose	 K_r = E{ Y/} is the error correlation matrix K_n is the noise covariancematrix (.)ⁿ is the conjugate transpose 	 K_r = E{ Y/} is the error correlation matrix K_n is the noise covariancematrix (·)ⁿ is the conjugate transpose 	 K_n = E{ γ/} is the error correlation matrix K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose
$K_{v} = E\{ W' \}$ is the error correlation matrix K_{u} is the noise covariance matrix $(\cdot)^{n}$ is the conjugate transpose $(\cdot)^{n}$ is the conjugate trans	 K_n = E{ Y/} is the error correlation matrix K_n is the noise covariance matrix (·)ⁿ is the conjugate transpose 	$K_r = E\{\gamma r\}$ is the error correlation matrix K_n is the noise covariance matrix (.) ⁿ is the conjugate transpose (.) ⁿ is the conjugate transpose	$K_r = E\{\gamma r\}$ is the error correlation matrix K_n is the noise covariance matrix $(\cdot)^n$ is the conjugate transpose $(\cdot)^n$ is the conjugate transpose
 K_r = E{ W} is the error correlation matrix K_n is the noise covariancematrix (.)ⁿ is the conjugate transpose 	$\mathbf{K}_{x} = E\{\gamma'\}$ is the error correlation matrix \mathbf{K}_{a} is the noise covariance matrix (.) ^{III} is the conjugate transpose (.) ^{IIII} is the conjugate transpose $(\cdot)^{IIII}$ is the conjugate transpose $(\cdot)^{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	$\mathbf{K}_{r} = E\{ \gamma '\} \text{ is the error correlation matrix} \\ \mathbf{K}_{n} \text{ is the noise covariance matrix} \\ \textbf{(·)}^{n} \text{ is the conjugate transpose} \\ \textbf{(·)}^{n} \text{ the conjugate transpose} \\ \textbf{(·)}^{n} the conjugate trans$	 K_r = E{ γ/} is the error correlation matrix K_n is the noise covariance matrix (.)^u is the conjugate transpose (.)^u is the conjugate transpose (.)^u and the conjugate transpose (.)^u is the conjugate transpose (.)^u and the conjugate transpose
 K_x = E{ Y/} is the error correlation matrix K_a is the noise covariancematrix (.)^a is the conjugate transpose (.)^a is the conjugate transpose (.)^a is the conjugate transpose (.)^b is the conjugate transpose (.)^b is the conjugate transpose 	$\mathbf{K}_{r} = E\{\mathcal{M}\}$ is the error correlation matrix \mathbf{K}_{n} is the noise covariance matrix $(\cdot)^{n}$ is the conjugate transpose $(\cdot)^{n}$ is the conjugate	 K_r = E{ Y/} is the error correlation matrix K_n is the noise covariance matrix (·)^u is the conjugate transpose 	$\mathbf{K}_{r} = \mathrm{E}\{\gamma V\}$ is the error correlation matrix \mathbf{K}_{n} is the noise covariance matrix $(\cdot)^{n}$ is the conjugate transpose $(\cdot)^{n}$
$\mathbf{K}_{n} = \mathrm{E}\{ \mathcal{W} \}$ is the error correlation matrix \mathbf{K}_{n} is the noise covariance matrix $(\cdot)^{n}$ is the conjugate transpose $(\cdot)^{n}$ is the conj	$\mathbf{K}_{r} = \mathbf{E} \{ \gamma' \} \text{ is the error correlation matrix} \mathbf{K}_{n} \text{ is the noise covariance matrix} \mathbf{K}_{n} \text{ is the noise covariance matrix} (\cdot)^{n} \text{ is the conjugate transpose} \mathbf{E} \{ \gamma' \} \text{ is the conjugate transpose} \text{ matrix} \mathbf{K}_{n} \text{ is the noise covariance matrix} \mathbf{E} \text{ and involved due to inverse} \mathbf{E} \{ \gamma' \} \text{ is the conjugate transpose} \mathbf{E} \{ \gamma' \} \text{ is the conjugate transpose} \text{ and involved due to inverse} \mathbf{E} \{ \gamma' \} \text{ is the conjugate transpose} \mathbf{E} \{ \gamma' \} \text{ is the conjugate transpose} \}$	$\mathbf{K}_{n} = \mathbf{E} \{ \gamma' \} \text{ is the error correlation matrix} \mathbf{K}_{n} \text{ is the noise covariance matrix} \mathbf{K}_{n} \text{ is the noise covariance matrix} (\cdot)^{n} \text{ is the conjugate transpose} \text{ the conjugate transpose} \text{ and clutter.} \mathbf{K}_{n} \text{ is the noise covariance matrix} \mathbf{K}_{n} \text{ is the noise covariance matrix} \mathbf{K}_{n} \text{ is the conjugate transpose} \text{ and clutter.} \mathbf{K}_{n} \text{ is the conjugate transpose} \text{ and clutter.} \mathbf{K}_{n} \text{ is the noise covariance matrix} \mathbf{K}_{n} \text{ is the noise covariance matrix} \mathbf{K}_{n} \text{ is the noise covariance matrix} \mathbf{K}_{n} \text{ is the conjugate transpose} \text{ and clutter.} \mathbf{K}_{n} \text{ is the conjugate transpose} \text{ and clutter.} \mathbf{K}_{n} \text{ is the conjugate transpose} \text{ and clutter.} \text{ and clutter.} \mathbf{K}_{n} \text{ and clutter.} and $	$\mathbf{K}_{n} = \mathbf{E} \{ \gamma \} \text{ is the error correlation matrix} \mathbf{K}_{n} = \mathbf{E} \{ \gamma \} \text{ is the noise covariance matrix} \mathbf{E}_{n} \text{ is the noise covariance matrix} \mathbf{E}_{n} \text{ is the conjugate transpose} \mathbf{E}_{n} \text{ account to a compromise between noise}} \mathbf{K}_{n} \text{ is the noise covariance matrix}} \mathbf{E}_{n} \text{ account to a compromise between noise}} \mathbf{E}_{n} \text{ account to a compromise between noise}} \mathbf{E}_{n} \text{ account to a compromise}} \mathbf{E}_{n} \text{ account to a compromise} \mathbf{E}_{n} \text{ account to a compromise}} \mathbf{E}_{n} \text{ account to a compromise}} \mathbf{E}_{n} \text{ account to a compromise} \mathbf{E}_{n} \text{ account to a compromise} \mathbf{E}_{n} \text{ account to a complex account to a compromise} \mathbf{E}_{n} \text{ account to a compromise} \mathbf{E}_{n} account to a complex account to a c$
 K_x = E{ <i>W</i>] is the error correlation matrix K_a is the noise covariance matrix (.)ⁿ is the conjugate transpose Weight vector is a compromise between noise and clutter. Maximizes signal to interference (clutter +noise). Result is minimum estimation error. Huge computational load involved due to inverse 	 K_x = E{ <i>Y</i>/} is the error correlation matrix K_a is the noise covariance matrix (.)^u is the conjugate transpose 	 K_x = E{ Y/} is the error correlation matrix K_a is the noise covariancematrix (·)^u is the conjugate transpose • Weight vector is a compromise between noise and clutter. • Maximizes signal to interference (clutter +noise). • Result is minimum estimation error. • Huge computational load involved due to inverse 	 K_v = E{ Y/} is the error correlation matrix K_a is the noise covariance matrix (.)ⁿ is the conjugate transpose
 K_r = E{ <i>Y</i>/} is the error correlation matrix K_n is the noise covariance matrix (.)^u is the conjugate transpose (.)^u is the conjugate transpose 	$\mathbf{K}_{r} = \mathbf{E} \{ \mathcal{M} \}$ is the error correlation matrix $\mathbf{K}_{n} = \mathbf{E} \{ \mathcal{M} \}$ is the noise covariance matrix $\mathbf{K}_{n} $ is the noise covariance matrix $(\cdot)^{n}$ is the conjugate transpose $(\cdot)^{n}$ is the conjugate transpose $(\cdot)^{n}$ is the conjugate transpose $(\cdot)^{n} = \mathbf{E} \{ \mathcal{M} \}$	$\mathbf{K}_{r} = \mathbf{E} \{ \mathcal{M}^{r} \} \text{ is the error correlation matrix} \\ \mathbf{K}_{n} \text{ is the noise covariance matrix} \\ \textbf{(.)}^{m} \text{ is the conjugate transpose} \\ \textbf{(.)}^{m} \text{ transpose} \\ \textbf{(.)}^{$	$\mathbf{K}_{n} = \mathbf{E} \{ \gamma' \} \text{ is the error correlation matrix} \\ \mathbf{K}_{n} \text{ is the noise covariance matrix} \\ (.)^{\text{u}} \text{ is the conjugate transpose} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} \text{ -Huge computational load involved due to inverse} \\ \textbf{K}_{n} -Huge $
 K_n = E{ <i>Y</i>/} is the error correlation matrix K_n is the noise covariancematrix (·)ⁿ is the conjugate transpose Weight vector is a compromise between noise and clutter. Maximizes signal to interference (clutter +noise). Result is minimum estimation error. Huge computational load involved due to inverse 	 K_x = E{ <i>Y</i>} is the error correlation matrix K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose Weight vector is a compromise between noise and clutter. Maximizes signal to interference (clutter +noise). Result is minimum estimation error. Huge computational load involved due to inverse 	 K_v = E{ γ/} is the error correlation matrix K_n is the noise covariance matrix (.)ⁿ is the conjugate transpose Weight vector is a compromise between noise and clutter. Maximizes signal to interference (clutter +noise). Result is minimum estimation error. Huge computational load involved due to inverse 	$\mathbf{K}_{r} = \mathbf{E} \{ \mathcal{W}' \} \text{ is the error correlation matrix} \\ \mathbf{K}_{n} = \mathbf{E} \{ \mathcal{W}' \} \text{ is the noise covariance matrix} \\ \mathbf{K}_{n} \text{ is the noise covariance matrix} \\ (.)^{"} \text{ is the conjugate transpose} \\ \end{bmatrix} $ $ \textbf{-Weight vector is a compromise between noise and clutter. \\ \textbf{-Maximizes signal to interference (clutter +noise). \\ \textbf{-Huge computational load involved due to inverse} \\ $
 Weight vector is a compromise between noise and clutter. K_n = E{ <i>Y</i>/} is the error correlation matrix K_n is the noise covariancematrix (·)ⁿ is the conjugate transpose (·)ⁿ is the conjugate transpose 	$K_{v} = E\{ \mathcal{M} \} \text{ is the error correlation matrix} K_{n} = E\{ \mathcal{M} \} \text{ is the noise covariance matrix} (\cdot)^{n} \text{ is the conjugate transpose} + \text{Indifference} (clutter + noise) = 0.$	$\mathbf{K}_{\mathbf{y}} = \mathbf{E} \{ \gamma \mathbf{y} \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{y}} = \mathbf{E} \{ \gamma \mathbf{y} \}$ is the noise covariance matrix $\mathbf{K}_{\mathbf{u}} $ is the noise covariance matrix $(\cdot)^{\mathbf{u}} $ is the conjugate transpose $(\cdot)^{\mathbf{u}} $ is the conjugate transpose $(\cdot)^{\mathbf{u}} $ is the conjugate transpose and between noise and clutter. $(\cdot)^{\mathbf{u}} $ is the noise over a compromise between noise and clutter. $(\cdot)^{\mathbf{u}} $ is the noise over a compromise between noise and clutter. $(\cdot)^{\mathbf{u}} $ is the noise over a compromise between noise and clutter. $(\cdot)^{\mathbf{u}} $ is the noise over a compromise between noise and clutter. $(\cdot)^{\mathbf{u}} $ is the noise over a compromise between noise and clutter. The noise over a compromise between noise and clutter. The noise over a compromise between noise and clutter. The noise over a compromise between noise and clutter. The noise over a compromise between noise over a compromise between noise and clutter. The noise over a compromise between noise and clutter. The noise over a compromise between noise and clutter. The noise over a compromise between noise and clutter. The noise over a compromise between noise and clutter. The noise over a compromise between noise over a compromise between noise and clutter. The noise over a compromise between noise and clutter. The noise over a compromise between noise a compromise a compromise between noise a compromise a comprom	 Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter.
 MMDE T T T T T T T T T T T T T T T T T T T	$K_{y} = E\{ \gamma \} \text{ is the error correlation matrix} K_{x} = it \{ \gamma \} \text{ is the noise covariance matrix} K_{x} = it \{ \gamma \} \text{ is the noise covariance matrix} (.)^{u} \text{ is the conjugate transpose} = 0.$	MMDE $Y \ X_r = E\{ \gamma \}$ is the error correlation matrix K_r is the noise covariance matrix $(\cdot)^{\mu}$ is the conjugate transpose $(\cdot)^{\mu}$ is the conjugate t	MMDE $Y \ (Min X \ (Min X) \ (Min X$
 MMSE Y Y Y Y Y N MMSE Y Y Y Y N MMSE Y Y Y Y N Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Weight vector is a compromise between noise and clutter. Waximizes signal to interference (clutter +noise). Result is minimum estimation error. In is the conjugate transpose Huge computational load involved due to inverse 	$\mathbf{K}_{n} = \mathbf{E} \{ \gamma \} \text{ is the error correlation matrix} \\ \mathbf{K}_{n} \text{ is the noise covariance matrix} \\ (.)^{"} \text{ is the conjugate transpose} \\ \textbf{K}_{n} \text{ is the conjugate transpose} \\ \textbf{K}_{n$	$\mathbf{K}_{n} = \mathbf{E} \{ \gamma \gamma \} \text{ is the error correlation matrix} \\ \mathbf{K}_{n} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{K}_{n} \text{ is the noise covariance matrix} \\ (.)^{n} \text{ is the conjugate transpose} \end{cases}$ $\mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the error correlation matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the error correlation matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{W} =$	$\mathbf{K}_{x} = \mathbf{E} \{ \gamma \} \text{ is the error correlation matrix} \\ \mathbf{K}_{n} = \mathbf{E} \{ \gamma \} \text{ is the noise covariance matrix} \\ \mathbf{K}_{n} \text{ is the noise covariance matrix} \\ \textbf{()}^{n} \text{ is the conjugate transpose} \\ \textbf{()}^{n} is the conjugate $
$\mathbf{W}_{\mathbf{M}} \mathbf{M} \mathbf{E} = \mathbf{K}_{\mathbf{Y}} \mathbf{F}_{\mathbf{Y}} \mathbf{F}_{\mathbf{N}} \mathbf{F}_{\mathbf{N}}$ the MMSE filter. $\mathbf{K}_{\mathbf{y}} = \mathbf{E} \{ \boldsymbol{\gamma}' \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{x}} = \mathbf{E} \{ \boldsymbol{\gamma}' \}$ is the noise covariance matrix $(\cdot)^{\mathbf{u}}$ is the conjugate transpose $(\cdot)^{\mathbf{u}}$ is the conjugate transpose $(\cdot)^{\mathbf{u}}$ is the conjugate transpose $(\cdot)^{\mathbf{u}} = \mathbf{E} \{ \mathbf{v} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	$\mathbf{W}_{\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E}} = \mathbf{K}\gamma\mathbf{F}_{\mathbf{n}} \mathbf{F}\mathbf{K}\gamma\mathbf{F}_{\mathbf{n}} + \mathbf{K}n$ the MMSE litter. $\mathbf{K}_{\mathbf{n}} = \mathbf{E}\{\gamma'\} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{n}} \text{ is the noise covariance matrix}$ $(.)^{\mathbf{n}} \text{ is the conjugate transpose}$ $(.)^{\mathbf{n}} \text{ is the conjugate transpose}$ Huge computational load involved due to inverse	$\mathbf{W}_{\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E}} = \mathbf{K}\gamma\mathbf{F}^{\mathbf{n}} + \mathbf{K}n$ the MMSE filter. $\mathbf{K}_{\mathbf{r}} = \mathbf{E}\{\gamma'\}$ is the error correlation matrix $\mathbf{K}_{\mathbf{r}}$ is the noise covariance matrix $(\cdot)^{\mathbf{n}}$ is the conjugate transpose $(\cdot)^{\mathbf{n}}$ is the conju	$\mathbf{W}_{\mathbf{M}} \mathbf{M} \mathbf{E} = \mathbf{K} \mathbf{\gamma}^{\mathbf{P}} + \mathbf{K}_{\mathbf{n}}$ the MMSE filter. $\mathbf{K}_{\mathbf{v}} = \mathbf{E} \{ \gamma \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{n}}$ is the noise covariance matrix $(\cdot)^{\mathbf{n}}$ is the conjugate transpose $(\cdot)^{\mathbf{n}}$ is the
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} $ the MMSE filter. $\mathbf{K}_{\mathbf{v}} = \mathbf{E}\{\gamma \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{v}} = \mathbf{E}\{\gamma \}$ is the noise covariance matrix $\mathbf{K}_{\mathbf{n}} $ is the noise covariance matrix $(\cdot)^{\mathbf{n}} $ is the conjugate transpose $(\cdot)^{\mathbf{n}} $ is the conjugate transpose	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{N}} $ the \mathbf{MMSE} filter. $\mathbf{K}_{\mathbf{y}} = \mathbf{E} \{ \gamma ^{\mathbf{Y}} \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{x}} $ is the noise covariance matrix $(\cdot)^{\mathbf{u}} $ is the conjugate transpose $(\cdot)^{\mathbf{u}} $ is the conjugate transpose $\mathbf{W}_{\mathbf{x}} = \mathbf{K}_{\mathbf{y}} \mathbf{P}_{\mathbf{x}} + \mathbf{K}_{\mathbf{x}} \mathbf{N}$ $\mathbf{W}_{\mathbf{x}} = \mathbf{K}_{\mathbf{x}} \mathbf{P}_{\mathbf{x}} \mathbf{P}_{\mathbf{x}}$	$\mathbf{W}_{MMSE} = \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{N} $ the MMSE filter. $\mathbf{K}_{v} = \mathbf{E} \{ \gamma \} \text{ is the error correlation matrix} $ $\mathbf{K}_{n} \text{ is the noise covariance matrix} $ $\mathbf{K}_{n} \text{ is the noise covariance matrix} $ $\mathbf{(\cdot)}^{H} \text{ is the conjugate transpose} $ $\mathbf{H}_{U} \text{ is the conjugate transpose} $ $\mathbf{H}_{U} \text{ is the conjugate transpose} $	$\mathbf{W}_{\mathbf{M}\mathbf{MSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{N}} $ the MMSE filter. $\mathbf{K}_{\mathbf{y}} = \mathbf{E} \{ \gamma' \} $ is the error correlation matrix $\mathbf{K}_{\mathbf{y}} = \mathbf{E} \{ \gamma' \} $ is the noise covariance matrix $\mathbf{K}_{\mathbf{y}} $ is the noise covariance matrix $(\cdot)^{\mathbf{u}} $ is the conjugate transpose $(\cdot)^{\mathbf{u}} $ is the conjugate t
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \mathbf{J}$ the MMSE filter. $\mathbf{K}_{\gamma} = \mathbf{E} \{ \gamma \gamma \}$ is the error correlation matrix \mathbf{K}_{n} is the noise covariance matrix $(.)^{n}$ is the conjugate transpose $(.)^{n}$ is the conjugate transpose $(.)^{n$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} $ the MMSE filter. $\mathbf{K}_{\gamma} = \mathbf{E} \{ \gamma \}$ is the error correlation matrix \mathbf{K}_{n} is the noise covariance matrix $(\cdot)^{\mathbf{u}}$ is the conjugate transpose $(\cdot)^{\mathbf{u}}$ is the conjugate	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} - \mathbf{K}_{n}$ $\mathbf{K}_{\gamma} = \mathbf{E} \{ \gamma \}$ is the error correlation matrix \mathbf{K}_{n} is the noise covariancematrix $(.)^{\mathbf{u}}$ is the conjugate transpose $(.)^{\mathbf{u}}$ is t	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}}$ the MMSE filter. $\mathbf{K}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conservation matrix $\mathbf{K}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conservation matrix $\mathbf{K}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conservation matrix $\mathbf{K}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conservation matrix $\mathbf{V}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conservation matrix $\mathbf{V}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{V}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{V}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{V}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{V}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the conjugate transpose $\mathbf{E} = \mathbf{E} \{ \gamma \mathbf{v} \}$ is the c
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}_{-1}^{-1} \text{ the } \mathbf{MMSE} \text{ filter.}$ $\mathbf{K}_{\mathbf{\gamma}} = \mathbf{E} \{ \mathcal{M}^{\mathbf{\gamma}} \} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{\alpha}} \text{ is the noise covariance matrix}$ $(\cdot)^{\mathbf{n}} \text{ is the conjugate transpose}$ $(\cdot)^{\mathbf{n}} \text{ is the conjugate transpose}$ $(\cdot)^{\mathbf{n}} \text{ is the conjugate transpose}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{N}} \right]^{-1} $ the MMSE filter. $\mathbf{K}_{\mathbf{y}} = \mathbf{E} \left\{ \gamma \gamma' \right\} $ is the error correlation matrix $\mathbf{K}_{\mathbf{n}} $ is the noise covariance matrix $\mathbf{K}_{\mathbf{n}} $ is the noise covariance matrix $(\cdot)^{\mathbf{n}} $ is the conjugate transpose $(\cdot)^{\mathbf{n}} $ is the conjugate transpose $(\cdot$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \right]^{-1} $ the MMSE filter. $\mathbf{K}_{\gamma} = \mathbf{E} \left\{ \gamma \gamma' \right\}$ is the error correlation matrix \mathbf{K}_{α} is the noise covariancematrix $(\cdot)^{\mathbf{n}}$ is the conjugate transpose $(\cdot)^{\mathbf{n}}$ is the conjugat	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1}$ the MMSE filter. $\mathbf{K}_{\mathbf{\gamma}} = \mathbf{E} \{ \gamma \mathbf{\gamma} \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{n}}$ is the noise covariancematrix $(.)^{\mathbf{n}}$ is the conjugate transpose $(.)^{\mathbf{n}}$ i
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ the MMSE filter. $\mathbf{K}_{\alpha} = \mathrm{E} \{ \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{\alpha} \text{ is the noise covariance matrix}$ $\mathbf{K}_{\alpha} \text{ is the noise covariance matrix}$ $(\cdot)^{\mathrm{n}} \text{ is the conjugate transpose}$ $(\cdot)^{\mathrm{n}} \text{ is the conjugate transpose}$ $(\cdot)^{\mathrm{n}} \text{ is the conjugate transpose}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ the MMSE filter. $\mathbf{K}_{\gamma} = \mathbf{E} \{ \gamma \}$ is the error correlation matrix \mathbf{K}_{n} is the noise covariance matrix $(\cdot)^{n}$ is the conjugate transpose $(\cdot)^{n}$ is th	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ the MMSE filter. $\mathbf{K}_{\gamma} = \mathbf{E} \begin{bmatrix} \gamma \gamma \end{bmatrix}$ is the error correlation matrix $\mathbf{K}_{n} \text{ is the noise covariance matrix} $ $\mathbf{W}_{n} \text{ is the conjugate transpose} $ $(\cdot)^{u} \text{ is the conjugate transpose} $ $(\cdot)^{u} \text{ is the conjugate transpose} $ $(\cdot)^{u} \text{ is the conjugate transpose} $	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ the MMSE filter. $\mathbf{K}_{\gamma} = \mathbf{E} \{ \gamma ' \}$ is the error correlation matrix \mathbf{K}_{n} is the noise covariance matrix $(\cdot)^{\mathrm{u}}$ is the conjugate transpose $(\cdot)^{\mathrm{u}}$ is the conjugate tra
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{W}_{\mathbf{N}} = \mathbf{E} \begin{bmatrix} \gamma \gamma \end{bmatrix} $ $\mathbf{W}_{\mathbf{N}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ the MMSE filter. $\mathbf{K}_{\gamma} = \mathbf{E} \{ \gamma \gamma \}$ is the error correlation matrix \mathbf{K}_{n} is the noise covariance matrix $(\cdot)^{n}$ is the conjugate transpose $(\cdot)^{n}$ is th	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} $ the \mathbf{MMSE} filter. $\mathbf{K}_{\mathbf{\gamma}} = \mathbf{E} \{ \gamma \mathbf{\gamma} \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{n}} \text{ is the noise covariance matrix}$ (.) ^{n} is the conjugate transpose (.) ^{n} is the conjugate transpose	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} $ the \mathbf{MMSE} filter. $\mathbf{K}_{\mathbf{\gamma}} = \mathbf{E} \{ \gamma \mathbf{\gamma} \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{n}}$ is the noise covariance matrix $(\cdot)^{\mathbf{n}}$ is the conjugate transpose (·) ^{n} is the conjugate transpose
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\gamma} \end{bmatrix} \text{ is the error correlation matrix} \\ \mathbf{K}_{n} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\gamma} \end{bmatrix} \text{ is the error correlation matrix} \\ \mathbf{W}_{n} \text{ is the noise covariance matrix} \\ (.)^{u} \text{ is the conjugate transpose} \end{bmatrix} $ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} \text{ filter.}$ $\mathbf{K}_{\gamma} = \mathrm{E} \{ \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{\alpha} \text{ is the noise covariance matrix}$ $(\cdot)^{\mathrm{u}} \text{ is the conjugate transpose}$ $\mathbf{H}_{\mathbf{U}} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{U}} \text{ is the conjugate transpose}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} \text{ filter.}$ $\mathbf{K}_{\gamma} = \mathrm{E} \{ \gamma \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{n} \text{ is the noise covariance matrix}$ $(\cdot)^{n} \text{ is the conjugate transpose}$ $\mathbf{H}_{\mathbf{U}} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{U}} \text{ is the conjugate transpose}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} \text{ filter.}$ $\mathbf{K}_{\gamma} = \mathbf{E} \begin{bmatrix} \gamma \\ \gamma \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{K}_{n} \text{ is the noise covariance matrix}$ $(.)^{\mathrm{n}} \text{ is the conjugate transpose}$ $(.)^{\mathrm{n}} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{MMSE}} \text{ filter.}$
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} \text{ filter.}$ $\mathbf{K}_{\gamma} = \mathrm{E} \{ \gamma \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{\alpha} \text{ is the noise covariance matrix}$ $(\cdot)^{\mathrm{u}} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{MMSE}} \text{ filter.}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \{ \gamma \gamma \} $ is the error correlation matrix $\mathbf{K}_{\mathbf{r}} = \mathbf{E} \{ \gamma \gamma \} $ is the noise covariance matrix $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \{ \gamma \gamma \} $ W	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathrm{r}} = \mathbf{E} \begin{bmatrix} \gamma \gamma \end{bmatrix}$ is the error correlation matrix $\mathbf{K}_{\mathrm{r}} = \mathbf{E} \begin{bmatrix} \gamma \gamma \end{bmatrix}$ is the error correlation matrix $\mathbf{K}_{\mathrm{r}} = \mathbf{E} \begin{bmatrix} \gamma \gamma \end{bmatrix}$ is the onise covariance matrix $(\mathbf{j})^{\mathrm{n}}$ is the conjugate transpose $(\mathbf{j})^{\mathrm{n}}$ is the conjugate transpose $\mathbf{W}_{\mathrm{r}} = \mathbf{E} \begin{bmatrix} \gamma \gamma \mathbf{E} \mathbf{K}_{\mathrm{r}} \mathbf{E} \mathbf{E} \begin{bmatrix} \gamma \gamma \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{K}_{\mathrm{r}} \mathbf{E} \mathbf{E} \begin{bmatrix} \gamma \gamma \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{K}_{\mathrm{r}} \mathbf{E} \mathbf{E} \begin{bmatrix} \gamma \gamma \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \begin{bmatrix} \gamma \gamma \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} \text{ filter.}$ $\mathbf{K}_{s} = \mathrm{E} \{ \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{s} \text{ is the noise covariance matrix}$ $(.)^{u} \text{ is the conjugate transpose}$ $(.)^{u} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{MMSE}} \text{ filter.}$
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{W}_{\mathrm{r}} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\gamma} \end{bmatrix} $ $\mathbf{W}_{\mathrm{r}} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\tau} \end{bmatrix} $ \mathbf{W}_{r}	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{\eta} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} \text{ filter.}$ $\mathbf{K}_{\gamma} = \mathrm{E} \{ \gamma \rangle^{2} \text{ is the error correlation matrix}$ $\mathbf{K}_{\alpha} \text{ is the noise covariance matrix}$ $\mathbf{K}_{\alpha} \text{ is the noise covariance matrix}$ $(\cdot)^{m} \text{ is the conjugate transpose}$ $\mathbf{H}_{\mathbf{U}} \text{ computational load involved due to inverse}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\overset{A \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{K}_{\gamma} = \mathrm{E} \{ \gamma \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{\alpha} \text{ is the noise covariance matrix}$ $(\cdot)^{\mathrm{n}} \text{ is the conjugate transpose}$ $\overset{A \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\overset{A \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\overset{A \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\overset{A \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\overset{A \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\overset{A \text{ priori estimates of SNR can be used to construct the MMSE filter.}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{W}_{MMSE} \text{ filter.}$ $\mathbf{K}_{\gamma} = \mathrm{E} \{ \gamma \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{n} \text{ is the noise covariance matrix}$ $(\cdot)^{u} \text{ is the conjugate transpose}$ $\mathbf{W}_{r} = \mathrm{E} \{ \gamma \gamma \} \text{ is the conjugate transpose}$ $\mathbf{W}_{r} = \mathrm{E} \{ \gamma \gamma \} \text{ is the conjugate transpose}$ $\mathbf{W}_{r} = \mathrm{E} \{ \gamma \gamma \} \text{ is the conjugate transpose}$
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathbf{N}} \end{bmatrix}^{-1} $ the MMSE filter. $\mathbf{K}_{\mathbf{y}} = \mathbf{E} \{ \gamma \} \text{ is the error correlation matrix} $ $\mathbf{K}_{\mathbf{x}} \text{ is the noise covariance matrix} $ $(\cdot)^{\mathrm{u}} \text{ is the conjugate transpose} $ $(\cdot)^{\mathrm{u}} \text{ is the conjugate transpose} $ $(\cdot)^{\mathrm{u}} \text{ is the conjugate transpose} $	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{Y}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\mathbf{Y}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{Y}} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\mathbf{Y}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{Y}} = \mathbf{W}_{\mathbf{Y}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{Y}} = \mathbf{W}_{\mathbf{Y}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{Y}} = \mathbf{W}_{\mathbf{Y}} = \mathbf{W}_{\mathbf{Y}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{Y}} = \mathbf{W}_{\mathbf{Y}} = \mathbf{W}_{\mathbf{Y}} = \mathbf{W}_{\mathbf{Y}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{Y}} = \mathbf{W}_{\mathbf{Y}} = \mathbf{W}_$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{H} \mathbf{P} \mathbf{MNSE} \text{ filter.}$ $\mathbf{K}_{\gamma} = \mathbf{E} \begin{bmatrix} \gamma \gamma \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{K}_{n} \text{ is the noise covariance matrix}$ $\mathbf{V}_{n} \text{ is the conjugate transpose}$ $\mathbf{H} \text{ uge computational load involved due to inverse}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{H} \mathbf{P} \mathbf{MMSE} \text{ filter.}$ $\mathbf{K}_{\gamma} = \mathbf{E} \{ \gamma \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{n} \text{ is the noise covariance matrix}$ $(\cdot)^{n} \text{ is the conjugate transpose}$ $\mathbf{H} \text{ uge computational load involved due to inverse}$
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $\mathbf{W}_{\gamma} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\gamma} \end{bmatrix} $ $\mathbf{F}_{\gamma} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\gamma} \end{bmatrix} $ $\mathbf{W}_{\gamma} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\gamma} \end{bmatrix} $ $\mathbf{W}_$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\gamma} = \mathbf{E} \{ \gamma \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{\gamma} \text{ is the noise covariance matrix}$ $\mathbf{V}_{\gamma} \text{ is the noise covariance matrix}$ $\mathbf{U}^{\mathbf{H}} \text{ is the conjugate transpose}$ $\mathbf{U}^{\mathbf{H}} \text{ is the conjugate transpose}$ $\mathbf{W}_{\gamma} = \mathbf{E} \{ \gamma \gamma \} \text{ is the conjugate transpose}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\gamma} = \mathbf{E} \{ \gamma \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{s} = \mathbf{E} \{ \gamma \gamma \} \text{ is the noise covariance matrix}$ $\mathbf{K}_{s} \text{ is the noise covariance matrix}$ $(\cdot)^{\text{"}} \text{ is the conjugate transpose}$ $(\cdot)^{\text{"}} \text{ is the conjugate transpose}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \mathbf{K}_{\gamma} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \mathbf{K}_{\gamma} = \mathbf{E} \{ \gamma \gamma \}$ is the error correlation matrix $\mathbf{K}_{\alpha} = \mathbf{E} \{ \gamma \gamma \}$ is the noise covariance matrix $\mathbf{K}_{\alpha} = \mathbf{E} \{ \gamma \gamma \}$ is the noise covariance matrix $(\cdot)^{\mathbf{H}}$ is the conjugate transpose $(\cdot)^{\mathbf{H}}$ is the conjugate transpose $(\cdot)^{\mathbf{H}}$ is the conjugate transpose $(\cdot)^{\mathbf{H}}$
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{A}$ $\mathbf{P} \text{ if the indices of SNR can be used to construct the MMSE filter. \mathbf{K}_{\gamma} = \mathbf{E} \{ \gamma \gamma \} \text{ is the error correlation matrix} \mathbf{K}_{n} \text{ is the noise covariance matrix} (\cdot)^{u} \text{ is the conjugate transpose} \mathbf{H} \text{ uge computational load involved due to inverse}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\gamma} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{K}_{n} \text{ is the noise covariance matrix}$ $\mathbf{V}_{n} \text{ is the conjugate transpose}$ $\mathbf{U}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\mathbf{r}} \mathbf{P} \mathbf{H}_{\mathbf{r}} \mathbf{R}_{\mathbf{r}} \\ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\mathbf{r}} \mathbf{P} \mathbf{H}_{\mathbf{r}} \mathbf{R}_{\mathbf{r}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{r}} \text{ is the noise ovariance matrix}$ $\mathbf{U}_{n} \text{ is the conjugate transpose}$ $\mathbf{U}_{\mathbf{r}} \text{ is the conjugate transpose}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{F}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\mathbf{Y}} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{x}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\mathbf{Y}} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{x}} \text{ is the noise covariance matrix}$ $(.)^{\mathbf{H}} \text{ is the conjugate transpose}$ $\mathbf{H}_{\mathbf{U}} = \mathbf{C} \text{ computational load involved due to inverse}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\gamma} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\gamma} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{K}_{\sigma} \text{ is the noise covariance matrix}$ $\mathbf{K}_{\sigma} \text{ is the noise covariance matrix}$ $(.)^{\mathrm{u}} \text{ is the conjugate transpose}$ $\mathbf{H}_{\mathbf{U}} = \mathbf{C} = \mathbf{C} + C$
$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} \mathbf{H}_{\mathbf{P}} \mathbf{H}_{\mathbf{n}} = \mathbf{H}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} \mathbf{H}_{\mathbf{P}} \mathbf{H}_{\mathbf{N}} \mathbf{H}_{\mathbf{n}} = \mathbf{H}_{\mathbf{P}} \mathbf{H}_{\mathbf{n}} \mathbf{H}_{\mathbf{n}}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} \mathbf{I}_{\mathbf{\mu}} \mathbf{P} \mathbf{M} \mathbf{MSE}$ filter. $\mathbf{W}_{\mathbf{\mu}} = \mathbf{E} \{ \mathbf{\gamma}^{\mathbf{\gamma}} \}$ is the error correlation matrix $\mathbf{K}_{\mathbf{n}} = \mathbf{E} \{ \mathbf{\gamma}^{\mathbf{\gamma}} \}$ is the onise covariance matrix $\mathbf{K}_{\mathbf{n}} $ is the noise covariance matrix $\mathbf{V}_{\mathbf{n}} $ is the conjugate transpose $(\cdot)^{\mathbf{n}} $ is the conjugate transpose $\mathbf{H} \mathbf{u} \mathbf{g} $ computational load involved due to inverse $\mathbf{W}_{\mathbf{n}} = \mathbf{E} \{ \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ estimates of SNR can be used to construct $\mathbf{W}_{\gamma} = \mathbf{E} \{ \gamma \gamma \}$ is the error correlation matrix $\mathbf{K}_{\alpha} \text{ is the noise covariance matrix}$ $\mathbf{V}_{\alpha} \text{ is the noise covariance matrix}$	$\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{Y}} = \mathbf{E} \{ \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{x}} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{x}} \text{ is the noise covariance matrix}$ $(\cdot)^{\mu} \text{ is the conjugate transpose}$ $\mathbf{H}_{\mathbf{U}} \text{ is the conjugate transpose}$
$ \mathbf{\dot{\gamma}} = \mathbf{W} \mathbf{r} $ estimator matrix w $ \mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I} $ estimates of SNR can be used to construct the MMSE filter. $ \mathbf{K}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the error correlation matrix $ \mathbf{K}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the error correlation matrix $ \mathbf{K}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the noise covariance matrix $ \mathbf{V}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the noise covariance matrix $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the conjugate transpose $ \mathbf{V}_{\mathbf{v}} = \mathbf{W} = \mathbf{E} \left\{ \gamma \gamma \right\} $ where $\mathbf{E} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the noise covariance matrix $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the conjugate transpose $ \mathbf{V}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the conjugate transpose $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $	$ \vec{\gamma} = \mathbf{W} \mathbf{r} $ estimator matrix w $ \mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \right]^{-1} $ $ \mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{n} \right]^{-1} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the error correlation matrix $ \mathbf{K}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the noise covariance matrix $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the noise covariance matrix $ (\cdot)^{\mathbf{u}} $ is the conjugate transpose $ (\cdot)^{\mathbf{u}} $ is the conjugate transpose $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \mathbf{W} \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{v}} = \mathbf$	$ \vec{\gamma} = \mathbf{W} \mathbf{r} $ where $\mathbf{V} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ estimator matrix w $ \mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \gamma \end{bmatrix} $ is the error correlation matrix $ \mathbf{K}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \gamma \end{bmatrix} $ is the error correlation matrix $ \mathbf{K}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \gamma \end{bmatrix} $ is the conjugate transpose $ (\cdot)^{n} \text{ is the conjugate transpose} $ $ \mathbf{H}_{\mathbf{Q}} = \text{Computational load involved due to inverse} $	$ \vec{\gamma} = \mathbf{W} \mathbf{r} $ $ \mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} $ $ \mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the error correlation matrix $ \mathbf{K}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ is the noise covariance matrix $ (\cdot)^{\mathrm{u}} $ is the conjugate transpose $ (\cdot)^{\mathrm{u}} $ is the conjugate transpose $ \mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}} \mathbf{E} \left\{ \mathbf{W}_{\mathbf{r}} \mathbf{E} \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}} \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} $ $ \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right$
$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\mathbf{W} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} W$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ estimator matrix w $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathrm{r}} = \mathbf{E} \left\{ \gamma \gamma^{2} \right\}$ is the error correlation matrix $\mathbf{K}_{s} = \mathbf{E} \left\{ \gamma \gamma^{2} \right\}$ is the noise covariance matrix $\langle \cdot \rangle^{\mathrm{u}}$ is the conjugate transpose $\langle \cdot \rangle^{\mathrm{u}}$ is the conjugate transpose $\mathbf{H}_{\mathrm{uge}}$ computational load involved due to inverse	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\boldsymbol{n}} \end{bmatrix}^{-1}$ estimator matrix w $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\boldsymbol{n}} \end{bmatrix}^{-1}$ $\stackrel{\bullet}{=} \mathbf{K}_{\boldsymbol{\gamma}} = \mathbf{E} \begin{bmatrix} \boldsymbol{\gamma}_{\boldsymbol{\gamma}} \end{bmatrix}$ is the error correlation matrix $\mathbf{K}_{\mathrm{u}} = \mathbf{E} \{ \boldsymbol{\gamma}_{\boldsymbol{\gamma}} \}$ is the noise covariancematrix $(.)^{\mathrm{u}}$ is the conjugate transpose $(.)^{\mathrm{u}}$ is the conjugate transpose $(.)^{\mathrm{u}}$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{N}} = \mathbf{F} \begin{bmatrix} \mathbf{Y}_{\mathbf{\gamma}} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{n}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\mathbf{\gamma}} \end{bmatrix} \text{ is the noise covariance matrix}$ $\mathbf{K}_{\mathbf{n}} \text{ is the noise covariance matrix}$ $(\cdot)^{\mathbf{n}} \text{ is the conjugate transpose}$ $\mathbf{H}_{\mathbf{U}} = \text{computational load involved due to inverse}$
$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{r}^{1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{r}^{1}$ $\mathbf{W}_{\mathbf{P}} = \mathbf{F} \left\{ \gamma \mathbf{r} \right\} \text{ is the error correlation matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise covariance matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of noise of \mathbf{r} \right\} = \mathbf{E} \left\{ \gamma \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} \text{ is the noise of random matrix } \mathbf{P} \left\{ \mathbf{r} \right\} is the noise of random matrix$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{r}^{1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{r}^{1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{r}^{1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{r}^{1}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix} \mathbf{K}_{\mathbf{a}} \text{ is the noise covariance matrix} \mathbf{r}^{-1} \mathbf$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\mathbf{\gamma}} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\mathbf{\gamma}} \end{bmatrix} \text{ is the noise covariance matrix}$ $\mathbf{K}_{\mathbf{r}} \text{ is the noise covariance matrix}$ $(.)^{u} \text{ is the conjugate transpose}$ $\mathbf{H}_{\mathbf{U}} \text{ computational load involved due to inverse}$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} \mathbf{r}^{1}$ estimator matrix w $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} \mathbf{r}^{1}$ $\mathbf{P} \mathbf{W}_{\mathbf{p}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{P}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{P}} \mathbf{P}^{\mathbf{H}} \mathbf{P} \mathbf{K}_{\mathbf{n}} = \mathbf{F}_{\mathbf{P}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{p}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{P}} \mathbf{P}^{\mathbf{H}} \mathbf{P} \mathbf{R}_{\mathbf{n}} \mathbf{P}^{\mathbf{H}} \mathbf{P}^{H$
$\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix w}$ $\mathbf{K}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \mathbf{W}_{\mathbf{r}} =$	$\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\mathbf{\gamma}} \end{bmatrix} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\mathbf{\gamma}} \end{bmatrix} \text{ is the onise covariance matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \begin{bmatrix} \mathbf{Y}_{\mathbf{r}} \end{bmatrix} \text{ is the conjugate transpose}$ $(.)^{u} \text{ is the conjugate transpose}$ $(.)^{u} \text{ is the conjugate transpose}$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\mathbf{W} \mathbf{MMSE} = \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{\boldsymbol{M}} \right]^{-1} \mathbf{I}$ $\mathbf{W} \text{ estimator matrix w}$ $\mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{W} \text{ is the error correlation matrix}$ $\mathbf{W} \text{ is the noise covariance matrix}$ $\mathbf{W} \text{ is the conjugate transpose}$ $\mathbf{W} \text{ end to conjugate transpose}$ $\mathbf{W} \text{ end to construct the transpose}$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix W}$ $\mathbf{K}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix W}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$
$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\boldsymbol{n}} \right]^{-1} \mathbf{I}$ where $\mathbf{R}_{\mathrm{F}} = \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\boldsymbol{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W} = \mathbf{E} \left[\mathbf{W} \right] \mathbf{E} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{E} = \mathbf{E} \left\{ \mathbf{W} \right\} \mathbf{E} \mathbf{R}_{\boldsymbol{\gamma}} \mathbf{E} \mathbf{R}_{\mathrm{F}} \mathbf{R}_{\mathrm{H}} \mathbf{R}_{\boldsymbol{\mu}} \mathbf{R}_{\boldsymbol{\mu}}$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\boldsymbol{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the noise covariance matrix } \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the onise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}} \text{ is the noise covariance matrix } \mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}} \text{ is minimum estimation error.}$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\boldsymbol{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{F} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{F} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{F} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{F} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{F} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{F} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{r}} \mathbf{P}^{\mathbf{H}} \mathbf{P} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} R$	$\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\boldsymbol{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{r}$ $\boldsymbol{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \{ \gamma \} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{r}} = \mathbf{E} \{ \gamma \} \text{ is the error correlation matrix}$ $\mathbf{W}_{\mathbf{r}} \text{ is the noise covariance matrix}$ $(.)^{u} \text{ is the conjugate transpose}$ $\mathbf{H}_{\mathbf{U}} \text{ computational load involved due to inverse}$
$\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathrm{eight vector is a compromise between noise and cutter.}$ $\mathbf{K}_{*} = \mathrm{E} \{ \gamma \gamma \}$ is the error correlation matrix $\mathbf{K}_{*} = \mathrm{E} \{ \gamma \gamma \}$ is the conjugate transpose $(.)^{\mathrm{m}}$ is the conjugate transpose $(.)^{\mathrm{m}}$ is the conjugate transpose $\mathbf{W}_{\mathrm{m}} = \mathbf{W}_{\mathrm{m}} \mathbf{W}_{\mathrm{m}} = \mathbf{W}_{\mathrm{m}} = \mathbf{W}_{\mathrm{m}} \mathbf{W}_{\mathrm{m}} = \mathbf{W}_$	$\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W} = \mathbf{W}\mathbf{r}$ $\mathbf{W} = \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\boldsymbol{M}} \end{bmatrix}^{-1}$ $\mathbf{W} = \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\boldsymbol{M}} \end{bmatrix}^{-1}$ $\mathbf{W} = \mathbf{E} \{ \mathcal{M} \} \text{ is the error correlation matrix W}$ $\mathbf{W} = \mathbf{E} \{ \mathcal{M} \} \text{ is the error correlation matrix}$ $\mathbf{W} = \mathbf{E} \{ \mathcal{M} \} \text{ is the onise covariance matrix}$ $\mathbf{W} = \mathbf{E} \{ \mathcal{M} \} \text{ is the conjugate transpose}$ $\mathbf{W} = \mathbf{E} \{ \mathcal{M} \} \text{ is the conjugate transpose}$ $\mathbf{W} = \mathbf{E} \{ \mathcal{M} \} \text{ is the conjugate transpose}$ $\mathbf{W} = \mathbf{E} \{ \mathcal{M} \} \text{ is the conjugate transpose}$ $\mathbf{W} = \mathbf{E} \{ \mathcal{M} \} \text{ is the conjugate transpose}$	$\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{NMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{NMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{NMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{NMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1}$ $\mathbf{W}_{\mathbf{NMSE}} = \mathbf{E} \left\{ \mathbf{W}_{\mathbf{\gamma}} \right\} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{n}} \text{ is the noise covariance matrix}$ $(.)^{\mathbf{n}} \text{ is the conjugate transpose}$ $(.)^{\mathbf{n}} \text{ is the conjugate transpose}$ $(.)^{\mathbf{n}} \text{ is the conjugate transpose}$	$\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{E} \left\{ \mathbf{W}_{\mathbf{\gamma}} \right\} \text{ is the error correlation matrix}$ $\mathbf{K}_{a} \text{ is the noise covariance matrix}$ $(.)^{u} \text{ is the conjugate transpose}$ $(.)^{u} \text{ is the conjugate transpose}$ $(.)^{u} \text{ is the conjugate transpose}$
$\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{E} \{ \mathbf{M}^{\mathbf{T}} \} \text{ is the error correlation matrix}$ $\mathbf{K}_{\mathbf{n}} = \mathbf{E} \{ \mathbf{M}^{\mathbf{T}} \} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{n}} = \mathbf{E} \{ \mathbf{M}^{\mathbf{T}} \} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{n}} = \mathbf{E} \{ \mathbf{M}^{\mathbf{T}} \} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{n}} = \mathbf{E} \{ \mathbf{M}^{\mathbf{T}} \} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{n}} = \mathbf{E} \{ \mathbf{M}^{\mathbf{T}} \} \text{ is the noise covariance matrix}$ $\mathbf{W}_{\mathbf{n}} = \mathbf{E} \{ \mathbf{M}^{\mathbf{T}} \} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{n}} = \mathbf{E} \{ \mathbf{M}^{\mathbf{T}} \} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{n}} = \mathbf{W}_{\mathbf{n}} = $	$\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ estimator matrix w $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{NMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{NMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} \mathbf{r}$ $\mathbf{W}_{\mathbf{NMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \mathbf{P}^{\mathbf{H}} \mathbf{P}^{\mathbf{H}} \mathbf{R}_{\mathbf{M}} \mathbf{r}$ $\mathbf{W}_{\mathbf{NMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \mathbf{P}^{\mathbf{H}$	$\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} \begin{bmatrix} \mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}^{-1}$ $\mathbf{W}_{\mathbf{\gamma}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}}\mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{\gamma}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{\gamma}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}}\mathbf{P}^{\mathbf{H}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} \end{bmatrix}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{E}\{\mathbf{W}\}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf{H}} + \mathbf{E}_{\mathbf{M}}\mathbf{P}^{\mathbf$	$\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{W}
$\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{V} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} W$	$\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W}_{\text{MMSE}} = \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\text{H}} \left[\mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\text{H}} + \mathbf{K}_{\boldsymbol{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\text{minimum estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{K}_{\boldsymbol{\gamma}} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the error correlation matrix $\mathbf{K}_{\boldsymbol{\alpha}}$ $\mathbf{K}_{\boldsymbol{\alpha}} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the noise covariance matrix $(\cdot)^{\text{u}}$ is the conjugate transpose $(\cdot)^{\text{u}}$ is the conjugate transpose $\mathbf{W}_{\text{minimum estimation error}.$	$\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{l}$ $\mathbf{W}_{\mathbf{P}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{l}$ $\mathbf{W}_{\mathbf{P}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{l}$ $\mathbf{W}_{\mathbf{P}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{l}$ $\mathbf{W}_{\mathbf{P}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \mathbf{N}$ $\mathbf{W}_{\mathbf{P}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \mathbf{P}^{\mathbf{H}} \mathbf{P}^{$	$\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{l}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{l}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{l}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{l}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}}$
$\gamma_{i} = W_{i} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = W_{i} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} \mathbf{r}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{P} \mathbf{r}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{P} \mathbf{r}$ \mathbf{W}_{i} \mathbf{r} $\mathbf{P} \mathbf{r}$ $\mathbf{P} \mathbf{P} \mathbf{P}$ $\mathbf{P} \mathbf{P} \mathbf{r}$ $\mathbf{P} \mathbf{P} \mathbf{P}$ $\mathbf{P} \mathbf{P} \mathbf{P}$ $\mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P}$ $\mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} $	$\gamma_{i} = \mathbf{W}_{i} \mathbf{T}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1}$ $\mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1}$ $\mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1}$ $\mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \text{ filter.}$ $\mathbf{W}_{i} = \mathbf{E} \{ \gamma' \} \text{ is the error correlation matrix}$ $\mathbf{W}_{i} = \mathbf{E} \{ \gamma' \} \text{ is the noise covariance matrix}$ $\mathbf{W}_{i} = \mathbf{E} \{ \gamma' \} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{W}_{i} \text{ is the noise transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} = $	$\gamma_{i} = \mathbf{W}_{i} \mathbf{T}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{P}^{H} \mathbf{E} \mathbf{H}_{i}$ $\mathbf{W}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix W}$ $\mathbf{W}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \mathbf{H}_{i} \mathbf{E} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$	$\gamma_{i} = \mathbf{W}_{i} \mathbf{T}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{in} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{W}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the error correlation matrix $\mathbf{K}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the conjugate transpose $(.)^{u}$ is the conjugate transpose $(.)^{u}$ is the conjugate transpose $\mathbf{W}_{i} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$
$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{\Gamma}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{\Gamma}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{W}}_{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{D}}^{H} + \mathbf{K}_{i}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{D}}^{H} + \mathbf{K}_{i}$ $\mathbf{W}_{\mathbf{D}}^{H} = \mathbf{W}_{\mathbf{D}}^{H} \mathbf{E}_{\mathbf{D}}^{H} + \mathbf{K}_{i}$ $\mathbf{W}_{\mathbf{D}}^{H} = \mathbf{W}_{\mathbf{D}}^{H} \mathbf{E}_{\mathbf{D}}^{H} + \mathbf{K}_{i}$ $\mathbf{W}_{\mathbf{D}}^{H} = \mathbf{W}_{\mathbf{D}}^{H} \mathbf{E}_{\mathbf{D}}^{H} + \mathbf{W}_{i}$ $\mathbf{W}_{\mathbf{D}}^{H} = \mathbf{W}_{\mathbf{D}}^{H} \mathbf{E}_{\mathbf{D}}^{H} + \mathbf{W}_{i}$ $\mathbf{W}_{\mathbf{D}}^{H} = \mathbf{W}_{\mathbf{D}}^{H} \mathbf{E}_{\mathbf{D}}^{H} \mathbf{E}_{\mathbf{D}}^{H} + \mathbf{W}_{i}$ $\mathbf{W}_{\mathbf{D}}^{H} = \mathbf{W}_{\mathbf{D}}^{H} \mathbf{E}_{\mathbf{D}}^{H} \mathbf{E}_{\mathbf{D}}^$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{W}}_{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{W}_{i} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{W}_{i} \mathbf{P}^{\mathrm{H}} \mathbf{P}^{\mathrm{H}} \mathbf{W}_{\mathbf{MSE}} = \mathbf{W}_{i} \mathbf{P}^{\mathrm{H}} \mathbf{W}_{\mathbf{MSE}} \mathbf{P}^{\mathrm{H}} \mathbf{P}^{\mathrm{H}} \mathbf{W}_{\mathbf{MSE}} \mathbf{P}^{\mathrm{H}} $	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{\Gamma}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{\Gamma}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\frac{A \text{ priori estimates of SNR can be used to construct the satimates of SNR can be used to construct the MMSE filter.$ $\mathbf{W}_{i} = \mathbf{E} \{ \gamma' \} \text{ is the error correlation matrix w}$ $\mathbf{W}_{i} = \mathbf{E} \{ \gamma' \} \text{ is the error correlation matrix}$ $\mathbf{W}_{i} = \mathbf{E} \{ \gamma' \} \text{ is the conjugate transpose}$ $(.)^{"} \text{ is the conjugate transpose}$ $\mathbf{H}_{i} = \mathbf{M}_{i} =$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{W}}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1}$ $\mathbf{W}_{i} = \mathbf{E} \{ \gamma \} \text{ is the error correlation matrix w}$ $\mathbf{W}_{i} = \mathbf{E} \{ \gamma \} \text{ is the conjugate transpose}$ $\{ \mathbf{W}_{i} \text{ is the conjugate transpose}$ $\{ \mathbf{W}_{i} \text{ is the conjugate transpose}$ $\{ \mathbf{W}_{i} \text{ is the conjugate transpose}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{\mu} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{w}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mu} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mu} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mu} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mu} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the error correlation matrix $\mathbf{K}_{r} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the noise covariance matrix $\hat{\mathbf{K}}_{n} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the conjugate transpose $\hat{\mathbf{U}}_{\mathbf{r}}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\}$ $\mathbf{W}_{\mathbf{r}} = \mathbf{E} $	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} \mathbf{H}_{\mathbf{H} \mathbf{I}} \mathbf{I}$ $\mathbf{W}_{\mathbf{M} \mathbf{I} \mathbf{I}$ $\mathbf{W}_{\mathbf{M} \mathbf{I}} \mathbf{I}$ $\mathbf{W}_{\mathbf{M} \mathbf{I}} \mathbf{I}$ $\mathbf{W}_{\mathbf{M} \mathbf{I} \mathbf{I}$ $\mathbf{W}_{\mathbf{M} \mathbf{I} \mathbf{I}$ $\mathbf{W}_{\mathbf{M} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$ $\mathbf{W}_{\mathbf{M} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	$\begin{aligned} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{H} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \end{aligned}$ SAR processing estimates the scattering from each resolution cell and involves with finding the optimal estimator matrix w $\mathbf{W}_{\mathbf{MMSE}} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \end{aligned}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \end{aligned}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \end{aligned}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \end{aligned}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \end{aligned}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \end{aligned}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{W}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \end{aligned}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{W}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I} \end{aligned}$ $\mathbf{W}_{\mathbf{MMSE}} \mathbf{H} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	$\dot{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\dot{\gamma} = \mathbf{W}\mathbf{r}$ $\dot{\gamma} = \mathbf{W}\mathbf{r}$ $\dot{\gamma} = \mathbf{W}\mathbf{r}$ $\dot{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{W} $$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{w} $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} $\mathbf{W} \mathbf{SE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W} \mathbf{MSE} \text{ filter.}$ $\mathbf{W} \mathbf{MSE} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{SE} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{SE} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} = \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{W}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} $
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W} $\mathbf{F} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} $$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{H} \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{w} $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{W}_{\mathbf{MSE}} \mathbf{P}_{\mathbf{H}} \mathbf{P}_{$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{w} $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\mathbf{T}} = \mathbf{F}_{\mathbf{T}} \mathbf{W}_{\mathbf{T}} \mathbf{P}_{\mathbf{T}} \mathbf{P}_{\mathbf{T}} = \mathbf{W}_{\mathbf{T}} \mathbf{P}_{\mathbf{T}} $
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\mathbf{W}}$ \mathbf{W} \mathbf	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{w}} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{V} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{V} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{V} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{V} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} W$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{WMSE}} = \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} \mathbf{I} \mathbf{E} \mathbf{E} \left[\mathbf{P} \mathbf{K}_{\mathbf{Y}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{WSE}} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{E} \left[\mathbf{W}_{\mathbf{Y}} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \left[\mathbf{W}_{\mathbf{Y}} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W}MMSE = \mathbf{K}\mathbf{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}MMSE = \mathbf{K}\mathbf{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}MMSE = \mathbf{K}\mathbf{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}MSE = \mathbf{F}\left\{ \gamma \right\}$ is the error correlation matrix w $\hat{\boldsymbol{\zeta}}_{i} = \mathbf{E}\left\{ \gamma \right\}$ is the noise covariance matrix $\hat{\boldsymbol{\zeta}}_{i}$ is the noise covariance matrix $\hat{\boldsymbol{\zeta}}_{i}$ is the noise covariance matrix $\hat{\boldsymbol{\zeta}}_{i}$ is the conjugate transpose $\hat{\boldsymbol{\zeta}}_{i}$ $\mathbf{W}MSE = \mathbf{E}\left\{ \gamma \right\}$
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{H} \mathbf{W} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{U} \mathbf{I} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{I} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ \mathbf{w} $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \{ \mathbf{W} \} \text{ is the error correlation matrix} \mathbf{K}_{\alpha} = \mathbf{E} \{ \mathbf{W} \} \text{ is the error correlation matrix} \mathbf{K}_{\alpha} = \mathbf{E} \{ \mathbf{W} \} \text{ is the conjugate transpose}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{w} $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} $\mathbf{W} \mathbf{R} \mathbf{E}$ $\mathbf{H} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{E}$ $\mathbf{H} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} R$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} 1^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} 1^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} 1^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1} 1^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{M}} \right]^{-1}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \mathbf{E} \mathbf{filter}.$ $\mathbf{W}_{\mathbf{\gamma}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{W}_{\mathbf{\gamma}} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{w} $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{\sim} \mathbf{I}$ \mathbf{W} $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{\sim} \mathbf{I}$ \mathbf{W} $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{\sim} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{\sim} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{\sim} \mathbf{I}$ $\mathbf{W}_{\mathbf{MMSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{\sim} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \mathbf{P}^{\mathrm{H}} \mathbf{P}^{\mathrm{H}} \mathbf{H}_{n} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \mathbf{P}^{\mathrm{H}} \mathbf{P}^{\mathrm{H}} \mathbf{H}_{n} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \mathbf{P}^{\mathrm{H}} \mathbf{H}_{n} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{I} \mathbf{P}^{\mathrm{H}} \mathbf{H}_{n} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{W}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{H}_{n} \mathbf{P}^{\mathrm{H}} \mathbf{H}_{n} \mathbf{I}$ $\mathbf{W}_{\mathbf{MSE}} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \mathbf{H}_{n} \mathbf{H}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{w} $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{v}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\mathbf{v}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $\hat{\mathbf{v}}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\hat{\mathbf{v}}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\hat{\mathbf{v}}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\hat{\mathbf{v}}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{w} $\mathbf{W} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{r} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{r}$ $\mathbf{W} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{r} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{r}$ $\mathbf{W} = \mathbf{F} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix w}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{a} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{W} = \mathbf{W} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{W} = \mathbf{W} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{W} = \mathbf{W} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix}$ $\mathbf{W} = \mathbf{W} = \mathbf{W} = \mathbf{W} + \mathbf{W} = \mathbf$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{W} \mathbf{W} \mathbf{M} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{Y} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1} \mathbf{I}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\mathbf{w}}$ \mathbf{W} \mathbf{M} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ \mathbf{H} $\mathbf{P} \text{ is the error correlation matrix w}$ \mathbf{W} \mathbf{M} \mathbf{M} $\mathbf{E} = \left\{ \mathbf{W}^{T} \right\}$ $\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ \mathbf{H} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} $\mathbf{E} \text{ filter.}$ \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} $\mathbf{E} \text{ filter.}$ \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} $\mathbf{E} \text{ filter.}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ \mathbf{H} \mathbf{P} \mathbf{W} $\mathbf{P}^{H} = \mathbf{K}_{\eta} \mathbf{P}^{H} = \mathbf{K}_{\eta}$ $\mathbf{P}^{H} = \mathbf{W}$ \mathbf{W} $\mathbf{W} = \mathbf{W}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ \mathbf{H} $\mathbf{P} \text{ is the error correlation matrix w}$ \mathbf{W} \mathbf{W} $\mathbf{E} = \{ \mathcal{W} \}$ is the noise covariancematrix $\hat{\zeta}_{i} \text{ is the conjugate transpose}$ \mathbf{F} \mathbf{U} $$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}\mathbf{M}\mathbf{S}\mathbf{E} filter.$ $\mathbf{V}^{*} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{W}\mathbf{M}\mathbf{S}\mathbf{E} filter.$ $\mathbf{V}^{*} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix } \mathbf{W}\mathbf{M}\mathbf{S}\mathbf{E} filter.$ $\mathbf{V}^{*} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix } \mathbf{W}\mathbf{W}\mathbf{S}\mathbf{E} filter.$ $\mathbf{V}^{*} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix } \mathbf{W}\mathbf{W}\mathbf{S}\mathbf{E} filter.$ $\mathbf{V}^{*} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix } \mathbf{W}\mathbf{W}\mathbf{S}\mathbf{E} filter.$ $\mathbf{V}^{*} = \mathbf{E} \begin{bmatrix} \gamma \mathbf{V} \end{bmatrix} \text{ is the error correlation matrix } \mathbf{W}\mathbf{W}\mathbf{S}\mathbf{E} filter.$ $\mathbf{W} = \mathbf{W}\mathbf{W}\mathbf{W}\mathbf{S}\mathbf{E} filter.$ $\mathbf{W} = \mathbf{W}\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{W}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ \mathbf{H} \mathbf{P} \mathbf{W} \mathbf{P} \mathbf{W} \mathbf{H} \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W} \mathbf{M} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ \mathbf{W} $\mathbf{P} = \mathbf{E} \{ \mathbf{M} \}$ is the error correlation matrix $\zeta_{i} = \mathbf{E} \{ \mathbf{M} \}$ is the noise covariance matrix $(\cdot)^{u}$ is the conjugate transpose \mathbf{P} \mathbf{H} $\mathbf{P} = \mathbf{P}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ \mathbf{H} $\mathbf{P} i \text{ is the error correlation matrix w}$ \mathbf{W} \mathbf{W} \mathbf{H} $\mathbf{F} i \text{ if the moles of SNR can be used to construct the MMSE filter.$ \mathbf{W}
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1} \mathbf{J}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1} \mathbf{J}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1} \mathbf{J}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}\mathbf{W}\mathbf{W}\mathbf{E} = \mathbf{W}\mathbf{P}^{H} + \mathbf{W}\mathbf{P}^{H} + \mathbf{W}^{H} = \mathbf{W}\mathbf{P}^{H} = \mathbf{W}\mathbf{P}^{$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ \mathbf{H} $\mathbf{P} i \text{ filter.}$ $\mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H}$ $\mathbf{H} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P}^{H} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H}$ $\mathbf{H} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P}^{H} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{\gamma}$ $\mathbf{H} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P}^{H} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P}^{H} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P}^{H} \mathbf{P} \mathbf{H}_{\gamma}$ $\mathbf{H} \mathbf{P} \mathbf{H} \mathbf{P} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} P$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W} \mathbf{M} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ \mathbf{H} $\mathbf{P} i \text{ filter.}$ \mathbf{M} \mathbf{M} \mathbf{M} $\mathbf{E} \text{ filter.}$ \mathbf{M} \mathbf{M} \mathbf{M} $\mathbf{E} \text{ filter.}$ \mathbf{M} \mathbf{M} $\mathbf{E} \text{ filter.}$ \mathbf{W} $\mathbf{P} \text{ is the error correlation matrix w}$ \mathbf{V} \mathbf{U} U	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M} \mathbf{M} $\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} \mathbf{P} $$
$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{n} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W} $$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}PRE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}PRE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}PRE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}PRE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}PRE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}PRE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}PRE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}PRE = \mathbf{W}PRE = \mathbf$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W}	$\dot{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\dot{\gamma} = \mathbf{W}$ \mathbf{W}
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{v} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix w}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} \text{ is the conjugate transpose}$ $\mathbf{U}_{i} \text{ is the conjugate transpose}$ $\mathbf{U}_{i} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{PII} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{PII} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{PII} = \mathbf{W}_{PII} \mathbf{E} \left[\mathbf{P} \mathbf{W}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{PII} = \mathbf{W}_{PII} \mathbf{E} \left[\mathbf{P} \mathbf{W}_{\gamma} \mathbf{P}^{H} + \mathbf{W}_{n} \right]^{-1}$ $\mathbf{W}_{PII} = \mathbf{W}_{PII} \mathbf{E} \mathbf{E} \left\{ \mathbf{W}_{\gamma} \mathbf{P}^{H} + \mathbf{W}_{n} \right\}$ $\mathbf{W}_{PII} = \mathbf{W}_{\gamma} \mathbf{E} \left\{ \mathbf{W}_{\gamma} \mathbf{E} \mathbf{E} \left\{ \mathbf{W}_{\gamma} \mathbf{E} \mathbf{E} \mathbf{E} \left\{ \mathbf{W}_{\gamma} \mathbf{E} \mathbf{E} \mathbf{E} \left\{ \mathbf{W}_{\gamma} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \right\}$ $\mathbf{W}_{\gamma} \mathbf{E} \mathbf{E} \left\{ \mathbf{W}_{\gamma} \mathbf{E} \mathbf{E} \mathbf{E} \left\{ \mathbf{W}_{\gamma} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{PH} = \mathbf{W} \mathbf{E}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH}$ $\mathbf{W}_{PH} = \mathbf{W}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH}$ $\mathbf{W}_{PH} = \mathbf{W}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH}$ $\mathbf{W}_{PH} = \mathbf{W}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH} \mathbf{E}_{PH}$ $\mathbf{W}_{PH} = \mathbf{W}_{PH} \mathbf{E}_{PH} $
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{n} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}MSE = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W}PRE = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W}PRE = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W}PRE = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W}PRE = \mathbf{K}_{Y} \mathbf{P}^{H} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M} $\mathbf{F} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} $\mathbf{F} = \mathbf{E} \begin{bmatrix} \mathbf{W} \end{bmatrix}$ $\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ \mathbf{W} \mathbf	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M} \mathbf
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}MSE = \mathbf{K}_{i}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}MSE filter.$ $\mathbf{W}Pi + \mathbf{K}_{i} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}Pi + \mathbf{W}Pi + W$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{W} $\mathbf{W}MMSE = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}MMSE = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{p}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} = \mathbf{K}_{\gamma} \mathbf{p}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \mathbf{J}^{-1}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \mathbf{F}_{i} \mathbf{J}^{-1}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \mathbf{E}_{i} \mathbf{R}_{i}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \mathbf{E}_{i} \mathbf{R}_{i}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \mathbf{E}_{i} \mathbf{R}_{i}$ $\mathbf{W} \mathbf{H} \mathbf{W} \mathbf{E} \mathbf{E} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \mathbf{R}_{i} \right]^{-1}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \mathbf{E}_{i} \mathbf{R}_{i}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \mathbf{R}_{i} \mathbf{R}_{i}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \mathbf{R}_{i} \mathbf{R}_{i}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \mathbf{R}_{i} \mathbf{R}_{i}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{i} \mathbf{R}_{i} \mathbf{R}_{i$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}MSE = \mathbf{K}\gamma \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}MSE filter.$ $\mathbf{W}MSE = \mathbf{K}\gamma \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W}PRSE filter.$ $\mathbf{W}MSE filter.$ $\mathbf{W}PRSE filter.$ $\mathbf{W}PRSE$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{v} \mathbf{W} $\mathbf{MMSE} = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{F}	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{H} \mathbf{E}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} \mathbf{filter}.$ $\mathbf{W} \mathbf{MSE} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} \mathbf{filter}.$ $\mathbf{W} \mathbf{MSE} \mathbf{filter}.$ $\mathbf{W} \mathbf{MSE} \mathbf{filter}.$ $\mathbf{W} \mathbf{WSE} \mathbf{W} \mathbf{WSE} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} W$
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} \text{ filter.}$ $\mathbf{W} \mathbf{MSE} \text{ filter.}$ $\mathbf{W} \mathbf{MSE} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{SE} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} \mathbf{MSE} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{v}} \mathbf{P}^{H} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W} \text{ priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{V}_{\mathbf{v}} = \mathbf{E} \{ \gamma \mathbf{V} \} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{W} \text{ is the noise covariance matrix } \mathbf{W} \text{ between noise and clutter.}$ $(.)^{u} \text{ is the conjugate transpose}$ $\mathbf{H} \text{ uge computational load involved due to inverse}$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{V}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W}_{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\hat{\boldsymbol{\zeta}}_{i} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\hat{\boldsymbol{\zeta}}_{i} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the onise covariance matrix } \mathbf{W}$ $\hat{\boldsymbol{\zeta}}_{i} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\hat{\boldsymbol{\zeta}}_{i} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the onise covariance matrix } \mathbf{W}$ $\hat{\boldsymbol{\zeta}}_{i} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the onise covariance matrix } \mathbf{W}$ $\hat{\boldsymbol{\zeta}}_{i} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the onise covariance matrix } \mathbf{W}$ $\hat{\boldsymbol{\zeta}}_{i} = \mathbf{W} \mathbf{W} = \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the onise covariance matrix } \mathbf{W} \text{ is the onise covariance matrix } \mathbf{W} \text{ is the onise covariance matrix } \mathbf{W} \text{ is the conjugate transpose} \mathbf{W} \text{ is the onion of involved due to inverse}$ $\hat{\boldsymbol{\zeta}}_{i} = \mathbf{W} = \mathbf{W} \mathbf{W} = \mathbf{W} = \mathbf{W} \mathbf{W} = $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1} \mathbf{h}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \left[\mathbf{I} \mathbf{E} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{h}$ $\mathbf{W} \mathbf{H} \mathbf{M} \mathbf{N} \mathbf{S} \mathbf{E} \left[\mathbf{I} \mathbf{E} \mathbf{E} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} H$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} \mathbf{MSE} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} \text{ filter.}$ $\mathbf{W} \mathbf{MSE} \text{ filter.}$ $\mathbf{W} \mathbf{MSE} \text{ filter.}$ $\mathbf{W} \mathbf{WSE} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} W$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W} \mathbf{W} \mathbf{M}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \mathbf{E} \mathbf{P}^{H} \mathbf{E} \mathbf{P}^{H} \mathbf{E} \mathbf{P}^{H} \mathbf{I}$ $\mathbf{W} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \mathbf{E} \mathbf{E} \mathbf{E}^{H} \mathbf{P}^{H} \mathbf{E} \mathbf{E}^{H} \mathbf{E} \mathbf{E}^{H} \mathbf{E} \mathbf{E}^{H} \mathbf{E} \mathbf{E}^{H} \mathbf{E}^{H} \mathbf{E} \mathbf{E}^{H} \mathbf{E}^{H$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} + \mathbf{K}_{H} \mathbf{J}^{-1} \mathbf{r}$ $\mathbf{W} \mathbf{H} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$ $\mathbf{W} \mathbf{H} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$ $\mathbf{W} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} r$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1}$ $\mathbf{v} \text{ priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{V} \text{ are error correlation matrix w}$ $\mathbf{V} \text{ are error correlation matrix w}$ $\mathbf{V} \text{ is the noise covariance matrix}$ $\hat{\mathbf{V}} = \mathbf{E} \{ \mathbf{Y}' \} \text{ is the conjugate transpose}$ $\hat{\mathbf{V}} \text{ is the conjugate transpose}$ $\hat{\mathbf{U}} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{r}$ $\mathbf{v}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix w}$ $\mathbf{v}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $\hat{\mathbf{v}}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\hat{\mathbf{v}}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\hat{\mathbf{v}}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W} \mathbf	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W}
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} = \mathbf{r}$ $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} = \mathbf{r}$ $\mathbf{P} = \mathbf{r}$ $\mathbf{W} = \mathbf{r}$ $\mathbf{P} = \mathbf{P} = \mathbf{P}$ $\mathbf{P} = \mathbf{P} = \mathbf{P} = \mathbf{P}$ $\mathbf{P} = \mathbf{P} = \mathbf{P} = \mathbf{P}$ $\mathbf{P} = \mathbf{P} = P$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{in} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{W}_{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{in} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{W}_{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{in} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{W}_{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{in} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{W}_{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{in} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{W}_{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{in} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{W}_{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{in} \mathbf{P}^{H} + \mathbf{K}_{in} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{W}_{MSE} = \mathbf{K}_{i} \mathbf{P}^{H} \mathbf{W}_{in}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{W}_{in} \mathbf{W}_{in}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{W}_{in} \mathbf{W}_{in}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{W}_{in} \mathbf{W}_{in} \mathbf{W}_{in}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{W}_{in} \mathbf{W}_{$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{r}$ $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{v}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix w}$ $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} = \mathbf{W} = \mathbf{W} \mathbf{R}$ $\mathbf{W} = \mathbf{W} = \mathbf{W} = \mathbf{W} = \mathbf{W} \mathbf{R}$ $\mathbf{W} = \mathbf{W} $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{w}_{i}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W}
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{h}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{h}_{i} \mathbf{h}_{i}$ $\mathbf{W}_{i} = \mathbf{H}_{i} \mathbf{h}_{i}$ $\mathbf{W}_{i} = \mathbf{H}_{i} \mathbf{h}_{i}$ $\mathbf{H}_{i} = \mathbf{H}_{i} = \mathbf{H}_{i$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{Piori} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{W}_{i} = \mathbf{F} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix w}$ $\mathbf{W}_{i} = \mathbf{F} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $\mathbf{W}_{i} = \mathbf{F} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\hat{\mathbf{U}}_{i} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \left\{ \mathbf{W}_{i} \text{ is the conjugate transpose} \mathbf{W}_{i} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \left\{ \mathbf{W}_{i} \text{ is the conjugate transpose} \mathbf{W}_{i} \text{ is the conjugate transpose} \mathbf{W}_{i} \text{ is the conjugate transpose} \mathbf{W}_{i} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} = \mathbf{r}$ $\mathbf{W} = \mathbf{R}$ $\mathbf{W} = \mathbf{R}$ $\mathbf{W} = \mathbf{R}$ \mathbf{R} $\mathbf{W} = \mathbf{R}$ \mathbf{R} $\mathbf{W} = \mathbf{R}$ \mathbf{R}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} = \mathbf{r}$ $\mathbf{W} = \mathbf{r}$ $\mathbf{W} = \mathbf{r}$ $\mathbf{W} = \mathbf{r}$ \mathbf{r} $\mathbf{W} = \mathbf{r}$ \mathbf{r} $\mathbf{W} = \mathbf{r}$ \mathbf{r} $\mathbf{W} = \mathbf{r}$ \mathbf{r} $\mathbf{R} = \mathbf{r}$ \mathbf{r} $\mathbf{R} = \mathbf{r}$ $\mathbf{R} = \mathbf$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{H} = \mathbf{v}$ $\mathbf{v}_{H} = $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{F} \mathbf{H} \mathbf{F}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{N} \mathbf{E} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\mathbf{y}} \mathbf{P}^{H} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{N} \mathbf{N} \mathbf{E} \mathbf{f} = \mathbf{K} \mathbf{V} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\mathbf{y}} \mathbf{P}^{H} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{I}$ $\mathbf{W} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} r$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} = \mathbf{W} = W$
$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W} $$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} \mathbf{w} $$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{v} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{v} = \mathbf{W} \mathbf{r}$ $\mathbf{v} = \mathbf{r}$ $\mathbf{r} = \mathbf{r}$ \mathbf	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{\mu} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K} \mathbf{v} \mathbf{P}^{\mu} \left[\mathbf{P} \mathbf{K}_{\mu} \mathbf{P}^{\mu} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{V}_{MMSE} = \mathbf{K} \mathbf{v}_{\mu} \mathbf{P}^{\mu} \left[\mathbf{P} \mathbf{K}_{\mu} \mathbf{P}^{\mu} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{V}_{i} = \mathbf{F} \left\{ \gamma \mathbf{v} \right\} \text{ is the error correlation matrix w}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \mathbf{v} \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \mathbf{v} \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \mathbf{v} \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \mathbf{v} \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \mathbf{v} \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \mathbf{v} \right\} \text{ is the conjugate transpose}$
$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W}	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ \mathbf{W} $\mathbf{W} \mathbf{MSE} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{J}^{-1}$ \mathbf{W} $\mathbf{W} \mathbf{MSE} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{J}^{-1}$ $\mathbf{W} = \mathbf{W} \mathbf{F} \mathbf{I} \mathbf{I} \mathbf{t} \mathbf{c}.$ $\mathbf{W} = \mathbf{F} \mathbf{F} \mathbf{M} \mathbf{NSE} \mathbf{F} \mathbf{I} \mathbf{I} \mathbf{t} \mathbf{c}.$ $\mathbf{W} = \mathbf{F} \mathbf{F} \mathbf{I} \mathbf{I} \mathbf{E}.$ $\mathbf{W} = \mathbf{F} \mathbf{V} \mathbf{P}^{H} \mathbf{F} \mathbf{M} \mathbf{NSE} \mathbf{F} \mathbf{I} \mathbf{I} \mathbf{t} \mathbf{c}.$ $\mathbf{W} = \mathbf{F} \mathbf{F} \mathbf{V} \mathbf{P}^{H} \mathbf{F} \mathbf{M} \mathbf{NSE} \mathbf{F} \mathbf{H} \mathbf{E}.$ $\mathbf{W} = \mathbf{F} \mathbf{V} \mathbf{P} \mathbf{H} \mathbf{F} \mathbf{M} \mathbf{NSE} \mathbf{F} \mathbf{H} \mathbf{E}.$ $\mathbf{W} = \mathbf{F} \mathbf{V} \mathbf{V} \mathbf{P} \mathbf{H} \mathbf{F} \mathbf{M} \mathbf{NSE} \mathbf{F} \mathbf{H} \mathbf{E}.$ $\mathbf{W} = \mathbf{F} \mathbf{W} \mathbf{V} \mathbf{E} \mathbf{H} \mathbf{E} \mathbf{E}.$ $\mathbf{W} = \mathbf{W} \mathbf{W} \mathbf{SE} \mathbf{E} \mathbf{H} \mathbf{E}.$ $\mathbf{W} = \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{H} \mathbf{E}.$ $\mathbf{W} = \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} = \mathbf{W} \mathbf{r}$ \mathbf{v}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{v}_{eight} \text{ rector is a compromise between noise and clutter.}$ $\mathbf{v}_{i} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{v}_{eight} \text{ vector is a compromise between noise and clutter.}$ $\mathbf{v}_{i} \text{ is the noise covariance matrix}$ $\mathbf{v}_{i} \text{ is the conjugate transpose}$ $\mathbf{v}_{i} \text{ is the conjugate transpose}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{v} \mathbf{h} \mathbf{r} r	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{W} = \mathbf{W} \mathbf{R} \mathbf{E} \text{ filter.}$ $\mathbf{V} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{W} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{V} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{W} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{W} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{W} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{W} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{W} = \mathbf{W} = \mathbf{E} \left\{ \gamma \mathbf{V} \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{W} = \mathbf{W} = \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} + \mathbf{W} = \mathbf{W} + \mathbf{W} +$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{V}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{V}_{i} = \mathbf{F} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix w}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the correlation matrix}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{V}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{v} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{F} \mathbf{W} \mathbf{F}
$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{H}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{H}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{H}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{H}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{H}$ $\mathbf{W}_{MSE} \text{ filter.}$ $\mathbf{W}_{result} = \mathbf{W}_{result} \mathbf{P}_{result} = \mathbf{W}_{result} = \mathbf{W}_{result} \mathbf{P}_{result} = \mathbf{W}_{result} \mathbf{P}_{result} = \mathbf{W}_{result} = \mathbf{W}_{result} = \mathbf{W}_{result} \mathbf{P}_{result} = \mathbf{W}_{result} $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\mathbf{W}}$ $\hat{\mathbf{M}}$ \mathbf{M} $\mathbf{E} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1} \mathbf{I}$ \mathbf{W} W	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} \mathbf{W} \mathbf{W} \mathbf{M} \mathbf{M} $\mathbf{F} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{r}$ \mathbf{F} \mathbf{P} \mathbf{W} \mathbf{F}	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} \mathbf{MSE} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{v}} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W} \mathbf{MSE} \text{ filter.}$ $\mathbf{v} = \mathbf{E} \{ \boldsymbol{\gamma}^{T} \} \text{ is the error correlation matrix } \mathbf{w}$ $\mathbf{v} = \mathbf{E} \{ \boldsymbol{\gamma}^{T} \} \text{ is the error correlation matrix} = \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\boldsymbol{v}}_{i} = \mathbf{E} \{ \boldsymbol{\gamma}^{T} \} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{v}}_{i} = \mathbf{E} \{ \boldsymbol{\gamma}^{T} \} \text{ is the error correlation matrix} = \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\boldsymbol{v}}_{i} = \mathbf{E} \{ \boldsymbol{\gamma}^{T} \} \text{ is the error correlation matrix} = \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\boldsymbol{v}}_{i} = \mathbf{E} \{ \boldsymbol{\gamma}^{T} \} \text{ is the error correlation matrix} = \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\boldsymbol{v}}_{i} = \mathbf{E} \{ \mathbf{W}^{T} \} \text{ is the error correlation matrix} = \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\boldsymbol{v}}_{i} = \mathbf{E} \{ \mathbf{W}^{T} \} \text{ is the error correlation matrix} = \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\boldsymbol{v}}_{i} = \mathbf{E} \{ \mathbf{W}^{T} \} \text{ is the error correlation matrix} = \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\boldsymbol{v}}_{i} = \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\boldsymbol{v}}_{i} = \mathbf{W} \mathbf{W} \mathbf{E} \mathbf{E} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\mathbf{W} = \mathbf{W} \mathbf{W} \mathbf{E} \text{ filter.}$ $\hat{\mathbf{W} = \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W}$
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{v} $\mathbf{W}MSE = \mathbf{K}\gamma \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}\gamma \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ \mathbf{W} \mathbf{W} $\mathbf{W}MSE = \mathbf{K}\gamma \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ \mathbf{W} $$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{v} $\hat{\mathbf{w}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ \mathbf{v} \mathbf{v} \mathbf{w}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1} \mathbf{I}$ \mathbf{W} \mathbf
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{v} \mathbf{v} \mathbf{r}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}_{PIOT} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}_{PIOT} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}_{PIOT} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}_{PIOT} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}_{PIOT} = \mathbf{W}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}_{PIOT} = \mathbf{W}_{\gamma} \mathbf{P}_{\gamma} \mathbf{P}_{\gamma} = \mathbf{E} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W}_{\gamma} \mathbf{P}_{\gamma} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\gamma} \end{bmatrix} \text{ is the error correlation matrix w} \\\mathbf{W}_{\gamma} = \mathbf{E} \begin{bmatrix} \mathbf{W}_{\gamma} \end{bmatrix} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{v} $\mathbf{W}MSE = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P}\mathbf{K}_{\gamma}\mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\frac{1}{2}A priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{v}_{i} = \mathbf{E}\{\gamma'\} \text{ is the error correlation matrix }$ $\hat{\mathbf{v}}_{i} = \mathbf{E}\{\gamma'\} \text{ is the correlation matrix }$ $\hat{\mathbf{v}}_{i} = \mathbf{E}\{\gamma'\} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{i} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{i} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1}$ $\mathbf{v}_{i} = \mathbf{F}_{i} \mathbf{V}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1}$ $\mathbf{v}_{i} = \mathbf{F}_{i} \mathbf{V}^{H} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{i} = \mathbf{F}_{i} \mathbf{V}^{H} = \mathbf{V}\mathbf{r}$ $\mathbf{v}_{i} = \mathbf{F}_{i} \mathbf{V}^{H} = \mathbf{V}\mathbf{r}$ $\mathbf{v}_{i} = \mathbf{F}_{i} \mathbf{V}^{H} = \mathbf{r}$ $\mathbf{v}_{i} = \mathbf{r}$ \mathbf{v}_{i
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P}\mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\mathbf{W}MSE \text{ filter.}$ $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P}\mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\mathbf{W} = \mathbf{W}\mathbf{R}^{-1} \mathbf{E} \mathbf{H} \mathbf{R}^{-1} \mathbf{E} \mathbf{R}^{-1} \mathbf{E} \mathbf{R}^{-1} \mathbf{R}^$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\mathbf{V}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{P}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the error correlation matrix $\mathbf{C}_{i}^{*} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the conjugate transpose $(.)^{u}$ is the conjugate transpose $(.)^{u}$ is the conjugate transpose $(.)^{u}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{v} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{F} \mathbf{W} \mathbf{F} \mathbf{F} \mathbf{W} \mathbf{F}	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{V}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{W}_{MSE} \text{ filter.}$ $\mathbf{V}_{i} = \mathbf{E}\{\gamma'\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{E}\{\gamma'\} \text{ is the onise covariance matrix } \mathbf{W}_{i} = $
$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the error correlation matrix } \mathbf{W}_{i}$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the conjugate transpose (ulter interference (clutter + noise) (\mathbf{W}_{i} + \mathbf{W}_{i})$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the conjugate transpose (\mathbf{W}_{i} = \mathbf{W}_{i})$ $\hat{\gamma}_{i} = \mathbf{E} \left\{ \gamma_{i}^{i} \right\} \text{ is the conjugate transpose (\mathbf{W}_{i} = \mathbf{W}_{i})$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{i} \mathbf{P}_{H} \left[\mathbf{P}_{i} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ \mathbf{W}_{i} $\mathbf{W}_{i} = \mathbf{F}_{i} \left[\mathbf{P}_{i} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{i} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}_{i} \left[\mathbf{P}_{i} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E}_{i} = \mathbf{W}_{i} \mathbf{E}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E}_{i} \mathbf{E}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i}$ $\mathbf{W}_{i} = \mathbf{E}_{i} \mathbf{W}_{j} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i}$ $\mathbf{W}_{i} = \mathbf{E}_{i} \mathbf{W}_{j} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i}$ $\mathbf{W}_{i} = \mathbf{E}_{i} \mathbf{W}_{j} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i}$ $\mathbf{W}_{i} = \mathbf{E}_{i} \mathbf{W}_{j} \mathbf{E}_{i} \mathbf{E}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{W} $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1}$ \mathbf{W} $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{F} \mathbf{P} \mathbf{F} \mathbf{V} \mathbf{P} \mathbf{H} + \mathbf{K}_{\mathbf{n}} \end{bmatrix}^{-1}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{W} \mathbf{W} \mathbf{S} \mathbf{E} \mathbf{H} \mathbf{E} \mathbf{U}$ $\mathbf{W} \mathbf{W} \mathbf{S} \mathbf{E} \mathbf{H} \mathbf{U}$ $\mathbf{W} \mathbf{S} \mathbf{E} \mathbf{U} \mathbf{U}$ $\mathbf{W} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{r}$ $\mathbf{W}_{i} = \mathbf{F}_{i} \mathbf{F}_{i} = \mathbf{F}_{i} \mathbf{F}_{i}$ $\mathbf{W}_{i} = \mathbf{F}_{i} = \mathbf{F}_{i} \mathbf{F}_{i}$ $\mathbf{W}_{i} = \mathbf{F}_{i} = \mathbf{F}_{i} = \mathbf{F}_{i} \mathbf{F}_{i}$ $\mathbf{W}_{i} = \mathbf{F}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\mathbf{W}_{i} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\mathbf{W}_{i} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E} \text{ filter.}$ $\mathbf{W}_{i} = \mathbf{E} \left\{ \gamma \right\} \text{ is the error correlation matrix w}$ $\mathbf{W}_{i} = \mathbf{E} \left\{ \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \text{ is the conjugate transpose}$	$\hat{\gamma}_{,i} = \mathbf{w}_{,i}^{,\mu} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{W} $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{\mu} \begin{bmatrix} \mathbf{P} \mathbf{K}_{,\mu} \mathbf{P}^{\mu} + \mathbf{K}_{,\mu} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{V} \mathbf{P}^{\mu} \begin{bmatrix} \mathbf{P} \mathbf{K}_{,\mu} \mathbf{P}^{\mu} + \mathbf{K}_{,\mu} \end{bmatrix}^{-1} \mathbf{r}$ $\mathbf{W} = \mathbf{W} \mathbf{R} \mathbf{E} \mathbf{f} \mathbf{H} \mathbf{r}.$ $\mathbf{W} = \mathbf{E} \{ \mathbf{W} \} \mathbf{r} \mathbf{R} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} r$
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{v} \mathbf{w} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} $\mathbf{F} = \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{H}} \right]^{-1}$ \mathbf{W}	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\mathbf{\hat{\gamma}} = \mathbf{W}$ \mathbf{W}	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} = \mathbf{W} \mathbf{r}$ \mathbf{v} $\mathbf{W} = \mathbf{W} \mathbf{r}$ $\mathbf{W} = \mathbf{F} \mathbf{r}$ $\mathbf{W} = \mathbf{r}$
$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}SE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}SE = \mathbf{F}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} \mathbf{W} $\mathbf{W}SE = \mathbf{F}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}SE = \mathbf{F}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}SE = \mathbf{F}_{\gamma} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{P}^{H} + \mathbf{K}_{H} = \mathbf{W}$ \mathbf{W} $\mathbf{W}SE = \mathbf{F}_{\gamma} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{P}^{H} + \mathbf{K}_{H} = \mathbf{W}$ \mathbf{W} $\mathbf{W}SE = \mathbf{F}_{\gamma} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{P}^{H} + \mathbf{K}_{H} = \mathbf{W}$ \mathbf{W} $\mathbf{W}SE = \mathbf{F}_{\gamma} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{P}^{H} + \mathbf{K}_{H} = \mathbf{W}$ \mathbf{W} $\mathbf{W}SE = \mathbf{F}_{\gamma} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{P}^{H} + \mathbf{K}_{H} = \mathbf{W}$ \mathbf{W} $\mathbf{W} = \mathbf{W}$ $\mathbf{W} = W$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{v}} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{W} \mathbf{F}	$\hat{\gamma}_{i} = \mathbf{w}_{j}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{v} \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{v} \mathbf{W}
$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{K}_{\gamma} \mathbf{P}^{H} \mathbf{E} \mathbf{P}^{H} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{W} $\mathbf{W}MSE = \mathbf{W}^{T} \mathbf{P}^{H} \mathbf{E} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{P}^{H} + \mathbf{K}_{H} \mathbf{P}^{H} \mathbf{P}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ \mathbf{v} \mathbf{w}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ \mathbf{W}
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{w} $\hat{\mathbf{r}} = \mathbf{W}\mathbf{r}$ \mathbf{w} $\hat{\mathbf{r}} = \mathbf{W}\mathbf{r}$ \mathbf{w} $$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} $	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{\text{H}} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{\text{H}} \mathbf{r}$ $\mathbf{W}_{\text{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{\text{H}} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{\text{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\text{H}} = \mathbf{W}_{\text{H}} \mathbf{E}$ $\mathbf{W}_{\text{H}} = \mathbf{W}_{i}^{\text{H}} \mathbf{E} \mathbf{R}_{i}^{\text{H}} \mathbf{R}_{i}^{\text{H}} \mathbf{R}_{i}^{\text{H}}$ $\mathbf{W}_{\text{MSE}} = \mathbf{K}_{i}^{\text{H}} \mathbf{P}^{\text{H}} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{\text{H}} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W}_{\text{H}} = \mathbf{W}_{\text{H}} \mathbf{E} \text{ filter.}$ $\mathbf{W}_{\text{H}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $(j)^{\text{H}} \text{ is the noise covariance matrix}$ $(j)^{\text{H}} \text{ is the conjugate transpose}$ $\mathbf{W}_{\text{H}} = \mathbf{W}_{\text{H}} = \mathbf{W}_{\text{H}} \mathbf{E} \text{ interference} (\text{clutter +noise}).$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{v} $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{v}
$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\hat{\boldsymbol{\gamma}} = \mathrm{E} \left\{ \gamma \right\} \text{ is the error correlation matrix w}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathrm{E} \left\{ \gamma \right\} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathrm{E} \left\{ \gamma \right\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathrm{E} \left\{ \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} \text{ is the conjugate transpose}$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{\mu} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K} \mathbf{P}^{\mu} \left[\mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mu} + \mathbf{K}_{\boldsymbol{\mu}} \right]^{-1}$ $\frac{1}{2} \mathbf{F} \left[\mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mu} + \mathbf{K}_{\boldsymbol{\mu}} \right]^{-1}$ $\frac{1}{2} \mathbf{F} \left[\mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mu} + \mathbf{K}_{\boldsymbol{\mu}} \right]^{-1}$ $\frac{1}{2} \mathbf{F} \left[\mathbf{P} \mathbf{K}_{\boldsymbol{\gamma}} \mathbf{P}^{\mu} + \mathbf{K}_{\boldsymbol{\mu}} \right]^{-1}$ $\frac{1}{2} \mathbf{F} \left\{ \mathbf{M} \mathbf{N} \mathbf{SE} \right\} \text{ filter.}$ $\frac{1}{2} \mathbf{F} \left\{ \mathbf{M}^{\mu} \mathbf{SE} \right\} \text{ is the error correlation matrix}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{M}^{\mu} \right\} \text{ is the conjugate transpose}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{M}^{\mu} \mathbf{SE} \right\} \text{ is the conjugate transpose}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{M}^{\mu} \mathbf{E} \right\} \text{ is the conjugate transpose}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{M}^{\mu} \mathbf{E} \right\} \text{ is the conjugate transpose}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{M}^{\mu} \mathbf{E} \right\} \text{ is the conjugate transpose}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{M}^{\mu} \mathbf{E} \right\} \text{ is the conjugate transpose}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{M}^{\mu} \mathbf{E} \right\} \text{ is the conjugate transpose}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\frac{1}{2} \mathbf{P} \mathbf{i} \mathbf{P} \mathbf{W}_{i}$ $\frac{1}{2} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \int_{i}^{-1} \mathbf{H}_{i} \mathbf{P}^{H} \mathbf{H}_{i}$ $\frac{1}{2} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \int_{i}^{-1} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \int_{i}^{-1} \mathbf{H}_{i} \mathbf{P} \mathbf{W}^{H} \mathbf{E} \text{ filter.}$ $\frac{1}{2} = \mathbf{E} \left\{ \gamma \gamma \right\} is the error correlation matrix is the noise covariance matrix is the noise of the noise covariance matrix is the noise$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{P}_{i} \mathbf{H}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i}$
$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{*}{=} E\{ \boldsymbol{\gamma}^{H} \}$ is the noise covariance matrix $\stackrel{*}{_{i}} = E\{ \boldsymbol{\gamma}^{H} \}$ is the noise covariance matrix $\stackrel{*}{_{i}} = E\{ \boldsymbol{\gamma}^{H} \}$ is the conjugate transpose $\stackrel{*}{_{i}} = \mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{W}_{i} $ $\stackrel{*}{=} \mathbf{W}_{i} = \mathbf$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{W}_{i} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\stackrel{1}{\rightarrow} = \mathbb{E} \left\{ \gamma \right\} \text{ is the error correlation matrix } $ $\stackrel{1}{\rightarrow} = \mathbb{E} \left\{ \gamma \right\} \text{ is the error correlation matrix } $ $\stackrel{1}{\rightarrow} = \mathbb{E} \left\{ \gamma \right\} \text{ is the conjugate transpose}$ $\stackrel{1}{\rightarrow} \text{ is the conjugate transpose}$ $\stackrel{1}{\rightarrow} \text{ Huge computational load involved due to inverse}$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{\mu} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}$ $\hat{\boldsymbol{\gamma}} = \mathbf{F} \left\{ \gamma \hat{\boldsymbol{\gamma}} \right\}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \left\{ \gamma \hat{\boldsymbol{\gamma}} \right\}$ $\hat{\boldsymbol{\gamma}$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1} \mathbf{r}$ $\frac{1}{i} \mathbf{F} \mathbf{K}_{j} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1} \mathbf{r}$ $\frac{1}{i} \mathbf{F} \mathbf{K}_{j} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1} \mathbf{r}$ $\frac{1}{i} \mathbf{F} \mathbf{K}_{j} \mathbf{P}^{H} \mathbf{F} \mathbf{R}_{i} \mathbf{r}$ $\frac{1}{i} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{r}$ $\frac{1}{i} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{r}$ $\frac{1}{i} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{r}$ $\frac{1}{i} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{r}$ $\frac{1}{i} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} F$
$\begin{split} \hat{\gamma}_{i} &= \mathbf{w}_{i}^{\mu} \mathbf{r} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{W} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{W} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{W} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{W} \\ \mathbf{MMSE} \\ &= \mathbf{K} \\ \mathbf{\gamma} \\ \mathbf{P} \\ \mathbf{H} \\ \mathbf{MMSE} \\ &= \mathbf{K} \\ \mathbf{P} \\ $	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} \begin{bmatrix} \mathbf{F} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1} \mathbf{I}$ $\stackrel{\text{estimator matrix w}}{\text{estimator matrix w}}$ $\stackrel{\text{estimator matrix w}}{\text{estimator matrix w}}}$ $\stackrel{\text{estimator matrix w}}{\text{estimator matrix w}}}$ $\stackrel{\text{estimator matrix w}}{\text{estimator matrix w}}}$ $\stackrel{\text{estimator matrix w}}{\text{esult is minimum estimation error}}$ $\stackrel{\text{estimator matrix w}}{\text{esult is minimum estimation error}}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{H} = \mathbf{F}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{H} = \mathbf{W} \mathbf{N} \mathbf{E} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{H} \mathbf{P} \mathbf{H} \mathbf{R} \mathbf{H} H$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{Y}\mathbf{P}^{H} \left[\mathbf{P}\mathbf{K}_{Y}\mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\overset{1}{}_{r} = \mathbf{E}\left\{ \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\overset{2}{}_{r} = \mathbf{E}\left\{ \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\overset{2}{}_{r} = \mathbf{E}\left\{ \gamma \right\} \text{ is the conjugate transpose}$ $\overset{3}{}_{r} = \mathbf{E}\left\{ \gamma \right\} \text{ is the conjugate transpose}$ $\overset{3}{}_{r} = \mathbf{E}\left\{ \gamma \right\} \text{ is the conjugate transpose}$
$\hat{\boldsymbol{\chi}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\chi}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\chi}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\chi}} = \mathbf{W}_{i}^{H} \mathbf{h}_{i}$ $\hat{\boldsymbol{\chi}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{\text{estimator matrix w}}{\text{estimates of SNR can be used to construct the MMSE filter.}$ $\stackrel{\text{estimator matrix w}}{\stackrel{\text{estimator matrix w}}{\text{in the noise covariance matrix}}$ $\stackrel{\text{estimator matrix w}}{\stackrel{\text{estimator matrix w}}{\text{is the noise covariance matrix}}$ $\stackrel{\text{estimator matrix w}}{\stackrel{\text{estimator matrix w}}{\text{is the noise covariance matrix}}$ $\stackrel{\text{estimator matrix}}{\stackrel{\text{old the recorrelation matrix}}{\text{is the noise covariance matrix}}$ $\stackrel{\text{estudt is minimum estimation error.}}{\stackrel{\text{estudt to involved due to inverse}}{\text{estudt is minimum estimation arror.}}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{i} \mathbf{P}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{i} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E}_{i} \{\boldsymbol{\gamma}_{i}\} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E}_{i} \{\boldsymbol{\gamma}_{i}\} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E}_{i} \{\boldsymbol{\gamma}_{i}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E}_{i} \{\mathbf{M}_{i}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E}_{i} \{\mathbf{M}_{i}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E}_{i} \{\mathbf{M}_{i}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E}_{i} \{\mathbf{M}_{i}\} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{1}{} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \int_{-1}^{-1} \mathbf{r}$ $\stackrel{1}{} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \int_{-1}^{-1} \mathbf{P} \mathbf{R}^{H} \mathbf{P}^{H} \mathbf{R}^{H} \mathbf{R}^{H}$ $\stackrel{1}{} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \int_{-1}^{-1} \mathbf{P} \mathbf{R}^{H} \mathbf{R}^$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}\mathbf{r}$ $\mathbf{P}^{H} + \mathbf{K}_{H} \int_{0}^{1} \mathbf{r}$ $\mathbf{P}^{H} = \mathbf{F} \mathbf{r}$ $\mathbf{P}^{H} = \mathbf{P}^{H} = \mathbf{r}$ $\mathbf{P}^{H} = \mathbf{P}^{H} = $
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}$ $\hat{\boldsymbol{\gamma}} p^{H} + \mathbf{K}_{H}$ $\hat{\boldsymbol{\gamma}}^{T} = \mathbf{K} \mathbf{v} p^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K} \mathbf{v} p^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K} \mathbf{v} p^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K} \mathbf{v} p^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K} \mathbf{v} p^{H} (\mathbf{P} \mathbf{H} + \mathbf{K}_{H})$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{ \mathcal{M} \} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{ \mathcal{M} \} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\nu}} = \mathbf{E} \{ \mathbf{W} \} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \text{ is the conjugate transpose}$	$\hat{\boldsymbol{\chi}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\chi}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\chi}} = \mathbf{W}$ $\hat{\boldsymbol{\chi}} $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K} \mathbf{r}$ $\mathbf{MMSE} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{r} \mathbf{R}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{MMSE} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{r} \mathbf{R}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{MMSE} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{r} \mathbf{R}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{MMSE} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{r} \mathbf{R}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{MMSE} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K} \mathbf{r} \mathbf{R}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{MMSE} = \mathbf{K} \mathbf{r} \mathbf{P}^{H} \mathbf{R} \mathbf{R}^{H} R$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\frac{1}{2} \mathbf{h} priori \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{ \boldsymbol{\gamma}^{T} \} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{ \boldsymbol{\gamma}^{T} \} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{ \boldsymbol{\gamma}^{T} \} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{ \mathbf{M}^{T} \} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{ \mathbf{M}^{T} \} \text{ is the conjugate transpose}$
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{\text{H}} \mathbf{\Gamma}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{\text{H}} \mathbf{\Gamma}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{\text{H}} \mathbf{\Gamma}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{\text{H}}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{\text{H}}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{\text{H}}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{\text{H}} \mathbf{H}_{i}^{\text{H}} \mathbf{H}_{i}^{\text{H}}$ $\stackrel{1}{\rightarrow} \mathbf{H}_{i}^{\text{H}} \mathbf{H}_{i}^{\text{H}} \mathbf{H}_{i}^{\text{H}} \mathbf{H}_{i}^{\text{H}}$ $\stackrel{1}{\rightarrow} \mathbf{H}_{i}^{\text{H}} \mathbf{H}_{i}^{\text{H}} \mathbf{H}_{i}^{\text{H}} \mathbf{H}_{i}^{\text{H}}$ $\stackrel{1}{\rightarrow} \mathbf{H}_{i}^{\text{H}} \mathbf{H}_{i}^{H$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{h}_{i}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{\mathbf{M}}{=} \mathbf{H}_{i} \mathbf{M} \mathbf{N} \mathbf{E} \text{ filter.}$ $\stackrel{\mathbf{M}}{=} \mathbf{H}_{i} \mathbf{P}_{i} \mathbf{H}_{i}$ $\stackrel{\mathbf{M}}{=} \mathbf{E} \left\{ \gamma \right\} \text{ is the error correlation matrix }$ $\stackrel{\mathbf{W}}{=} \mathbf{E} \left\{ \gamma \right\} \text{ is the conjugate transpose}$ $\stackrel{\mathbf{M}}{=} \mathbf{H}_{i} \text{ uptional extinction and interference (clutter + noise).}$ $\stackrel{\mathbf{M}}{=} \mathbf{H}_{i} \text{ uptional extinuation error.}$ $\stackrel{\mathbf{M}}{=} \mathbf{H}_{i} \text{ uptional extinuation error.}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{h}\mathbf{r}$ \mathbf{h}	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{v}_{i} = \mathbf{K}_{i}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P}\mathbf{K}_{i}\mathbf{P}^{H} + \mathbf{K}_{i} \end{bmatrix}^{-1}$ $\mathbf{v}_{i} = \mathbf{F}_{i}\left[\mathbf{P}\mathbf{K}_{i}\mathbf{P}^{H} + \mathbf{K}_{i}\right]^{-1}$ $\mathbf{v}_{i} = \mathbf{E}_{i}\left[\mathbf{P}\mathbf{K}_{i}\mathbf{P}^{H} + \mathbf{K}_{i}\right]^{-1}$ $\mathbf{w}_{i} = \mathbf{E}_{i}\left[\mathbf{V}_{i}\right]$ $\mathbf{v}_{i} = \mathbf{E}_{i}\left[\mathbf{V}_{i}\left[\mathbf{V}_{i}\right]$ $\mathbf{v}_{i} = \mathbf{E}_{i}\left[\mathbf{V}_{i}\left[\mathbf{V}_{i$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{E} \{ \gamma' \}$ is the error correlation matrix $\hat{\gamma}_{i} = \mathbf{E} \{ \gamma' \}$ is the onise covariance matrix $\hat{\gamma}_{i} = \mathbf{E} \{ \gamma' \}$ is the conjugate transpose $\hat{()}^{"}$ is the conjugate transpose $\hat{()}^{"}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{n} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}r$ \mathbf{w} $$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{v} $\mathbf{MMSE} = \mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{H} \left[\mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ \mathbf{v} $\mathbf{P}_{H} = \mathbf{P}_{H} \mathbf{r}$ \mathbf{v} $\mathbf{P}_{H} = \mathbf{F}_{H} \mathbf{r}$ $\mathbf{P}_{H} = \mathbf{P}_{H} \mathbf{r}$ $\mathbf{P}_{H} = \mathbf{P}_{H} = \mathbf{P}_{$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{v} $\hat{\boldsymbol{\gamma}} = \mathbf{F}\mathbf{r}$ $\mathbf{v}_{i} = \mathbf{r}$ $\mathbf{v}_$
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K} \mathbf{v} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\frac{1}{2} P \mathbf{I} \mathbf{r} \mathbf{V} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\frac{1}{2} P \mathbf{I} \mathbf{F} \mathbf{V} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix} = \mathbf{V} \mathbf{V} \mathbf{P} \mathbf{U} \mathbf{r}$ $\frac{1}{2} P \mathbf{I} \mathbf{F} \mathbf{V} \mathbf{P}^{H} \mathbf{H} \mathbf{R} \mathbf{N} \mathbf{E} \mathbf{F} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{r}$ $\frac{1}{2} P \mathbf{I} \mathbf{F} \mathbf{V} \mathbf{P}^{H} \mathbf{H} \mathbf{R} \mathbf{N} \mathbf{E} \mathbf{F} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{r}$ $\frac{1}{2} P \mathbf{I} \mathbf{F} \mathbf{V} \mathbf{P}^{H} \mathbf{H} \mathbf{R} \mathbf{N} \mathbf{E} \mathbf{F} \mathbf{I} \mathbf{I} \mathbf{E} \mathbf{r}$ $\frac{1}{2} P \mathbf{I} \mathbf{I} \mathbf{F} \mathbf{R} \mathbf{P} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} R$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\overset{1}{}_{\gamma} = \mathbf{E} \left\{ \gamma \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\overset{2}{}_{\gamma} = \mathbf{E} \left\{ \gamma \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\overset{2}{}_{\gamma} = \mathbf{E} \left\{ \gamma \right\} \text{ is the conjugate transpose}$ $\overset{3}{}_{\gamma} = \mathbf{E} \left\{ \gamma \right\} \text{ is the conjugate transpose}$ $\overset{3}{}_{\gamma} = \mathbf{E} \left\{ \gamma \right\} \text{ is the conjugate transpose}$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{v} = \mathbf{K}\mathbf{r}$ $\mathbf{v} = \mathbf{K}\mathbf{r} \mathbf{p}^{H} [\mathbf{P}\mathbf{K}_{\mathbf{v}}\mathbf{P}^{H} + \mathbf{K}_{H}]^{-1}$ $\mathbf{v} = \mathbf{F}[\mathbf{r}]^{-1} \mathbf{r}$ $\mathbf{v} = \mathbf{F}[\mathbf{r}]^{-1} \mathbf{r}$ $\mathbf{v} = \mathbf{F}[\mathbf{r}]^{-1} \mathbf{r}$ $\mathbf{v} = \mathbf{F}[\mathbf{r}]^{-1} \mathbf{r}$ $\mathbf{v} = \mathbf{r}$ $\mathbf{r} = \mathbf{r} \mathbf{r}$ $\mathbf{v} = \mathbf{r} \mathbf{r}$ $\mathbf{v} = \mathbf{r} \mathbf{r}$ $\mathbf{r} = \mathbf{r} \mathbf{r}$ $\mathbf{r} = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$ $\mathbf{r} = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}\mathbf$
$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{H}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\hat{\gamma}_{i} = \mathbf{E}_{i} \{\gamma_{i}\}$ $\mathbf{P}_{i} = \mathbf{E}_{i} = \mathbf{E}_{i} \{\gamma_{i}\}$ $\mathbf{P}_{i} = \mathbf{E}_{i} = \mathbf{E}_$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\hat{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the error correlation matrix $\hat{\mathbf{r}}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the noise covariance matrix $\hat{\mathbf{r}}_{i}$ is the noise covariance matrix $\hat{\mathbf{r}}_{i}$ $\hat{\mathbf{r}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{i}\mathbf{P}^{H} [\mathbf{P}\mathbf{K}_{i}\mathbf{P}^{H} + \mathbf{K}_{i}]^{-1}$ $\hat{\mathbf{v}} = \mathbf{E}\{\boldsymbol{\gamma}^{H}\}$ is the error correlation matrix $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E}\{\boldsymbol{\gamma}^{H}\}$ is the noise covariance matrix $\hat{\boldsymbol{\gamma}}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E}\{\boldsymbol{\gamma}^{H}\}$ is the conjugate transpose $\hat{\boldsymbol{\gamma}}_{i}$ $\hat{\boldsymbol{\gamma}}_$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} \mathbf{P}^{H} + \mathbf{K}_{H} \int_{i} \mathbf{h}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{\boldsymbol{\gamma}^{H}\} \text{ is the error correlation matrix w}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{\boldsymbol{\gamma}^{H}\} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{\boldsymbol{\gamma}^{H}\} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{\boldsymbol{\gamma}^{H}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{\mathbf{W}^{H}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{\mathbf{W}^{H}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \{\mathbf{W}^{H}\} \text{ is the conjugate transpose}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\mathbf{v}} = \mathbf{W} = \mathbf{W}$ $\hat{\mathbf{v}} = \mathbf{W} = \mathbf{W}$ $\hat{\mathbf{v}} = \mathbf{W} = \mathbf{W} = \mathbf{W}$ $\hat{\mathbf{v}} = \mathbf{W} = \mathbf{W} = \mathbf{W} = \mathbf{W}$ $\hat{\mathbf{v}} = \mathbf{W} = \mathbf{W} = \mathbf{W} = \mathbf{W} = \mathbf{W}$ $\hat{\mathbf{v}} = \mathbf{W} = \mathbf{W} = \mathbf{W} = \mathbf{W} = \mathbf{W} = \mathbf{W}$ $\hat{\mathbf{v}} = \mathbf{W} = $	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{H} \mathbf{r}$ \mathbf{R}	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ \mathbf{v} $\mathbf{MMSE} = \mathbf{K}_{i}\mathbf{P}^{H} \left[\mathbf{P}\mathbf{K}_{j}\mathbf{P}^{H} + \mathbf{K}_{in} \right]^{-1}$ \mathbf{v}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{v} $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{v} \mathbf{w} \mathbf{r}
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{v}} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{v}} = \mathbf{W}\mathbf{r}$ \mathbf{w} $\hat{\mathbf{v}} = \mathbf{F} \mathbf{v} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1} \mathbf{r}$ \mathbf{w} w	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{W}}_{i} = \mathbf{W}_{i}$ $\hat{\mathbf{W}}_{i} = \mathbf{W}_{i}$ $\hat{\mathbf{W}}_{i} = \mathbf{W}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{W}}_{i} = \mathbf{H}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{H}}_{i} = \mathbf{H}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{H}}_{i$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{v} \mathbf{w} \mathbf{r}	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ \mathbf{v} $\hat{\mathbf{r}} = \mathbf{W}\mathbf{r}$ \mathbf{v} \mathbf{w} $\mathbf{r} = \mathbf{E} \{\gamma_{i}\}$ $\mathbf{F} \mathbf{R}_{i} \mathbf{P}^{H} + \mathbf{K}_{in}]^{-1}$ \mathbf{w}
$\begin{split} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{\ \mathbf{I}} \mathbf{r} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{W}_{i}^{\ \mathbf{I}} \mathbf{r} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{W}_{i} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{K}_{i} \mathbf{P}^{\text{H}} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{K}_{i} \mathbf{P}^{\text{H}} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{K}_{i} \mathbf{P}^{\text{H}} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{E}_{i} \\ \hat{\boldsymbol{\gamma}}^{\ \mathbf{J}} \\ \hat{\boldsymbol{\gamma}} \\ \boldsymbol$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{h}_{i}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E}_{i} \mathbf{M}_{i} \mathbf{h}_{i} \mathbf{h}_{i} \mathbf{h}_{i}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E}_{i} \mathbf{M}_{i} \mathbf{h}_{i} \mathbf$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} [\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{H}]^{-1}$ $\stackrel{1}{}_{i} = \mathbf{F}_{i} \mathbf{P}_{i} \mathbf{F}_{i} \mathbf{P}_{i}$ $\stackrel{1}{}_{i} = \mathbf{E}_{i} \mathbf{M}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{P}_{i}$ $\stackrel{1}{}_{i} = \mathbf{E}_{i} \mathbf{M}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\stackrel{1}{}_{i} = \mathbf{E}_{i} \mathbf{M}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\stackrel{1}{}_{i} = \mathbf{E}_{i} \mathbf{M}_{i} \mathbf{F}_{i} F$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} P \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H}$ $\frac{1}{2} P \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} + \mathbf{K}_{H}$ $\frac{1}{2} P \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} + \mathbf{K}_$
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\hat{\boldsymbol{\gamma}} = \mathrm{E} \left\{ \gamma \hat{\boldsymbol{\gamma}} \right\}$ is the error correlation matrix $\hat{\boldsymbol{\gamma}}_{i} = \mathrm{E} \left\{ \gamma \hat{\boldsymbol{\gamma}} \right\}$ is the noise covariance matrix $\hat{\boldsymbol{\gamma}}_{i}$ $\hat{\boldsymbol{\gamma}}_{i}$ $\hat{\boldsymbol{\gamma}}_{i}$ is the conjugate transpose $\hat{\boldsymbol{\gamma}}_{i}$ $\boldsymbol{$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{W}_{ij} \text{ priori estimates of SNR can be used to construct the matrix w estimates of SNR can be used to construct the mass is the noise error correlation matrix (i)^{u} is the conjugate transpose (i)$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} [\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{H}]^{-1}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E} \{\gamma_{i}\} \text{ is the error correlation matrix w}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E} \{\gamma_{i}\} \text{ is the error correlation matrix w}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E} \{\gamma_{i}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E} \{\gamma_{i}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E} \{\gamma_{i}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E} \{\gamma_{i}\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{E} \{\gamma_{i}\} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = $
$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{M}}_{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\text{resolution cell and involves with finding the optimal resolution resolution cell and involves with finding the optimal resolution cell and involves with finding the optimal resolution resolutic resolution res$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{K}_{i} \mathbf{P}_{i} \left[\mathbf{P}_{i} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\frac{1}{2} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\frac{1}{2} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\frac{1}{2} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\frac{1}{2} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\frac{1}{2} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\frac{1}{2} \mathbf{P}_{i} P$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{K}_{i}^{H} \mathbf{P}_{i}^{H} \left[\mathbf{P} \mathbf{K}_{i}^{H} \mathbf{P}_{i}^{H} + \mathbf{K}_{i}^{H} \right]^{-1}$ $\stackrel{\mathbf{M}}{} \text{ stimator matrix w}$ $\stackrel{\mathbf{M}}{} = \mathbf{E}_{i}^{H} \mathbf{M}_{i}^{H} \mathbf{I} \mathbf{E}_{i}^{H} \mathbf{L}_{i}^{H} \mathbf{L}_{i}^{H}$ $\stackrel{\mathbf{W}}{} = \mathbf{E}_{i}^{H} \mathbf{M}_{i}^{H} \mathbf{I} \mathbf{E}_{i}^{H} \mathbf{L}_{i}^{H} \mathbf{L}_{$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\frac{1}{2} P \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{2} P \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} = \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{2} P \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} = \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{\gamma} + \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{\gamma} + \mathbf{K}_{\gamma}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\stackrel{\mathbf{M}}{=} \mathbf{E} \left\{ \gamma \mathbf{M} \right\}$ is the error correlation matrix $\hat{\mathbf{v}} = \mathbf{E} \left\{ \gamma \mathbf{M} \right\}$ is the conjugate transpose $\hat{\mathbf{v}} = \mathbf{E} \left\{ \gamma \mathbf{M} \right\}$ $\hat{\mathbf{v}} $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{MSE} = \mathbf{K}_{Y}\mathbf{P}^{H} \left[\mathbf{P}\mathbf{K}_{Y}\mathbf{P}^{H} + \mathbf{K}_{H}\right]^{-1}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the error correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the error correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the correlation matrix w}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{\mu} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{W} = \mathbf{W}r$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\hat{\boldsymbol{\gamma}} = \mathrm{E} \{ \gamma \} \text{ is the error correlation matrix } \mathbf{W}$ $\hat{\boldsymbol{\gamma}} = \mathrm{E} \{ \gamma \} \text{ is the error correlation matrix } \mathbf{H}_{n} = \mathrm{E} \{ \gamma \} \text{ is the noise covariance matrix } \mathbf{H}_{n} = \mathrm{E} \{ \gamma \} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}}_{n} = \mathrm{E} \{ \gamma \} \text{ is the conjugate transpose}$
$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma}_{i}^{H} + \mathbf{K}_{i}^{H} \Big]^{-1} \mathbf{r}$ $\hat{\gamma}_{i}^{H} = \mathbf{K}_{i}^{H} \mathbf{P}_{i}^{H} + \mathbf{K}_{i}^{H} \Big]^{-1} \mathbf{r}$ $\hat{\gamma}_{i}^{H} = \mathbf{E} \{\gamma_{i}^{H}\} \text{ is the error correlation matrix w}$ $\hat{\gamma}_{i}^{H} = \mathbf{E} \{\gamma_{i}^{H}\} \text{ is the error correlation matrix}$ $\hat{\gamma}_{i}^{H} = \mathbf{E} \{\gamma_{i}^{H}\} \text{ is the conjugate transpose}$ $\hat{\gamma}_{i}^{H} \text{ is the conjugate transpose}$ $\hat{\gamma}_{i}^{H} \text{ is the conjugate transpose}$ $\hat{\gamma}_{i}^{H} = \mathbf{E} \{\gamma_{i}^{H}\} \text{ is the conjugate transpose}$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{P}_{i} \mathbf{H}_{i} \mathbf{H}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{P}_{i} \mathbf{H}_{i} \mathbf{H}_{i}$ $\mathbf{W}_{i} = \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i}$ $\mathbf{H}_{i} = \mathbf{H}_{i} = \mathbf{H}_{i} \mathbf{H}_{i}$ $\mathbf{H}_{i} = \mathbf{H}_{i} = \mathbf{H}_{i}$ $\mathbf{H}_{i} = \mathbf{H}_{i} = \mathbf{H}_{i}$ $\mathbf{H}_{i} = \mathbf{H}_{i} = \mathbf{H}_{i$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{\ n} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\mathbf{h} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K} \mathbf{v} \mathbf{P}^{\text{H}} \left[\mathbf{P} \mathbf{K} \mathbf{v} \mathbf{P}^{\text{H}} + \mathbf{K}_{\text{H}} \right]^{-1} \mathbf{I}$ $\mathbf{estimator matrix w}$ $\mathbf{estimator matrix w$ $\mathbf{estimator matrix w}$ $estimator matrix w$ $\mathbf{estimator water matrix w$ $\mathbf{estimator matrix w$ $\mathbf{estimator matrix w$ $\mathbf{estimator water with the two water with the two water water water water with where we water water with the two water we water water water we water water we water water water water water we water water$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}$
$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma}_{i}^{H} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\hat{\gamma}_{i}^{H} = \mathbf{E} \left\{ \gamma \right\}$ is the error correlation matrix $\hat{\gamma}_{i}^{H} = \mathbf{E} \left\{ \gamma \right\}$ is the correlation matrix $\hat{\gamma}_{i}^{H}$ $\hat{\gamma}_{i}^{H}$ is the conjugate transpose $\hat{\gamma}_{i}^{H}$ $\hat{\gamma}_{i}^{H}$ is the conjugate transpose $\hat{\gamma}_{i}^{H}$ $\hat{\gamma}_{i}^{H}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{\ \mu} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{\ \mu} \mathbf{r}$ $\mathbf{W}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu}$ $\mathbf{W}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu}$ $\mathbf{W}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu}$ $\mathbf{W}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu}$ $\mathbf{W}_{i}^{\ \mu} \mathbf{r}_{i}^{\ \mu}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{\ n} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{v}} = \mathbf{K}_{\gamma} \mathbf{P}^{\ n} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\ n} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\frac{1}{\epsilon} p \operatorname{Frither.}$ $\frac{1}{\epsilon} \frac{1}{\epsilon} \frac{p \operatorname{Frither.}}{\epsilon}$ $\frac{1}{\epsilon} \frac{p \operatorname{Frither.}}{\epsilon}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}$ $\hat{\boldsymbol{\gamma}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\mathbf{w}} = \mathbf{W}$ $\hat{\mathbf{W} = \mathbf{W}$ $\hat{\mathbf{W} = \mathbf{W}$ $\hat{\mathbf{W} = \mathbf{W}$ $\hat{\mathbf{W} =$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{\ \mu} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{MSE} = \mathbf{K}_{\gamma}\mathbf{P}^{\mu} \left[\mathbf{P}\mathbf{K}_{\gamma}\mathbf{P}^{\mu} + \mathbf{K}_{\mu}\right]^{-1}$ $\overset{1}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the error correlation matrix } \mathbf{W}$ $\overset{2}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the error correlation matrix } \mathbf{W}$ $\overset{3}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the conjugate transpose}$ $\overset{3}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the conjugate transpose}$ $\overset{4}{}_{\gamma} = \mathbf{E}\left\{\gamma\gamma\right\} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{K}_{i}^{H} \mathbf{P}_{i}^{H} + \mathbf{K}_{i}^{H}$ $\hat{\gamma}_{i}^{H} = \mathbf{K}_{i}^{H} \mathbf{P}_{i}^{H} + \mathbf{K}_{i}^{H} + \mathbf{K}_{i$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{\mu}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{\mu} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mu} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimation error.$ $\mathbf{H} priori estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of such as the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct the most estimates of SNR can be used to construct to the most estima$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{w}} = \mathbf{E} \{ \gamma \} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{w}} =$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{W}}_{i} = \mathbf{W}_{i} [\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{in}]^{-1}$ $\frac{1}{2} \mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{in}$ $\frac{1}{2} \mathbf{P} \mathbf{K}_{in}$ $\frac{1}{2} P$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{\mu} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{\mu} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{\mu} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mu} + \mathbf{K}_{n} \right]^{-1}$ $\overset{+}{=} E\{\gamma\gamma\} \text{ is the error correlation matrix }$ $\overset{+}{=} E\{\gamma\gamma\} \text{ is the error correlation matrix }$ $\overset{+}{=} E\{\gamma\gamma\} \text{ is the conjugate transpose}$ $\overset{+}{(\cdot)^{\mu}} \text{ is the conjugate transpose}$ $\overset{-}{(\cdot)^{\mu}} \text{ is the conjugate transpose}$
$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{\Gamma}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{\Gamma}$ $\hat{\mathbf{M}}_{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\stackrel{*}{\rightarrow} = E \left\{ \gamma \gamma \right\}$ is the error correlation matrix $\stackrel{*}{,} = E \left\{ \gamma \gamma \right\}$ is the conjugate transpose $\hat{(\cdot)}^{H}$ is the conjugate transpose $\hat{(\cdot)}^{H}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\frac{1}{\rho} \mathbf{K}_{\gamma} \mathbf{p}^{\mu} + \mathbf{K}_{n}$ $\frac{1}{\rho} \mathbf{I}_{i} \mathbf{F}_{n}$ $\frac{1}{\rho} \mathbf{E}_{i} \mathbf{I}_{i} \mathbf{E}_{i}$ $\frac{1}{\rho} \mathbf{E}_{i} \mathbf{F}_{n}$ $\frac{1}{\rho} \mathbf{E}_{i} \mathbf{E}_{i} \mathbf{E}_{i}$ $\frac{1}{\rho} \mathbf{E}_{i$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{\mu}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{\mu}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} \left[\mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{F}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} \left[\mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} \left[\mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{F}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} \left[\mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}} \right]^{-1} \mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{F}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} \mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{F}_{\mathbf{\gamma}}\mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{F}_{\mathbf{\gamma}}\mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{F}_{\mathbf{\gamma}}\mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{r}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}^{-1}$ $\stackrel{*}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix w}$ $\stackrel{*}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix w}$ $\stackrel{*}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\stackrel{*}{\rightarrow} \text{ is the conjugate transpose}$ $\stackrel{*}{\rightarrow} \text{ Huge computational load involved due to inverse}$
$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{\Gamma}$ $\hat{\boldsymbol{\gamma}} = \mathbf{F}_{i}^{H} \mathbf{\Gamma}_{i}^{H} \mathbf{\Gamma}_{i}^{H} \mathbf{\Gamma}_{i}^{H} \mathbf{\Gamma}_{i}^{H}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E}_{i}^{H} \mathbf{\Gamma}_{i}^{H} \mathbf$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\frac{1}{\rho} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{\rho} \mathbf{I}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{\rho} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{\rho} \mathbf{I}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{\rho} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{\rho} \mathbf{I}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{\rho} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{\rho} \mathbf{I}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{\rho} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{\rho} \mathbf{I}_{i} \mathbf{F}_{i} \mathbf{F}_{$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{i}\mathbf{P}^{H} + \mathbf{K}_{in} \int_{-1}^{-1} \mathbf{r}$ $\mathbf{W} = \mathbf{F}_{i}\mathbf{P}^{H} + \mathbf{K}_{in} \int_{-1}^{-1} \mathbf{r}$ $\mathbf{W} = \mathbf{F}_{i}\mathbf{P}^{H} + \mathbf{K}_{in} \int_{-1}^{-1} \mathbf{F}_{i}\mathbf{P}^{H} + \mathbf{F}_{in} \int_{-1}^{-1} \mathbf{F}_{in} + \mathbf{F}_{$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} \left[\mathbf{P}\mathbf{K}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} + \mathbf{K}_{\mathbf{n}}\right]^{-1} \mathbf{r}$ $(\mathbf{M}\mathbf{MSE} = \mathbf{F}_{\mathbf{\gamma}}\mathbf{P}^{\mathbf{H}} \mathbf{P}^{\mathbf{H}} $
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\mathbf{w}} $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{K}_{i} \mathbf{P}^{H} [\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i}]^{-1}$ $\frac{1}{2} \mathbf{F}_{i} \mathbf{P}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{2} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{P}_{i} + \mathbf{K}_{i}$ $\frac{1}{2} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{P}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{2} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{P}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{2} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{P}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{2} \mathbf{F}_{i} \mathbf{F}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{\mu} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{\mu} \mathbf{r}$ $\hat{\boldsymbol{\gamma}}_{i} = \mathbf{K}_{i}^{\mu} \mathbf{P}_{i}^{\mu} + \mathbf{K}_{i}^{\mu} \right]^{-1}$ $\stackrel{1}{}_{i} = \mathbf{F}_{i}^{\mu} \mathbf{P}_{i}^{\mu} \mathbf{r}$ $\stackrel{1}{}_{i} = \mathbf{F}_{i}^{\mu} \mathbf{P}_{i}^{\mu} P$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{K}_{i}^{H} \mathbf{P}_{i}^{H} \left[\mathbf{P} \mathbf{K}_{i}^{H} \mathbf{P}_{i}^{H} + \mathbf{K}_{i}^{H} \right]^{-1}$ $\stackrel{\text{estimator matrix w}}{=} \mathbf{E} \left\{ \gamma \gamma \right\}$ is the noise covariance matrix $\hat{\boldsymbol{\gamma}}_{i}^{H} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the noise covariance matrix $\hat{\boldsymbol{\gamma}}_{i}^{H}$ is the conjugate transpose $\hat{\boldsymbol{\gamma}}_{i}^{H}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i} \mathbf{h}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i} \mathbf{h}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i} \mathbf{h}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{H}_{i} \mathbf{h}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{H}_{i} \mathbf{h}_{i$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i}$ $\mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i}$ $\mathbf{W}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i}$ $\mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{E}$ $\mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{W}_{i} = \mathbf{W}_{i} \mathbf{W}_{i} = \mathbf{W}_{i}$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1} \mathbf{I}$ $\mathbf{MMSE} \text{ filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the mMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the mMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the mMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the mMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the mMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the mMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the mMSE filter.}$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the matrix w$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the matrix w$ $\mathbf{H} \text{ priori estimates of SNR can be used to construct the matrix w$ $\mathbf{H} priori estimates of SNR can be used to construct the matrix w the matrix w matrix w matrix w matrix w the matrix w the matrix w matrix $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{Y} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{"} + \mathbf{K}_{n} \right]^{-1}$ $\overset{1}{\rightarrow} Piriori \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\overset{-}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix w}$ $\overset{-}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\overset{-}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\overset{-}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\mathbf{w}} $	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\gamma} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{(4)}{\rightarrow} \mathrm{Eflitet}.$ $\overset{(-))}{\rightarrow} \mathrm{Ef} \left\{ \gamma / \right\} \mathrm{is the error correlation matrix}$ $\overset{(+))}{\rightarrow} \mathrm{Ef} \left\{ \gamma / \right\} \mathrm{is the error correlation matrix}$ $\overset{(+))}{\rightarrow} \mathrm{Ef} \left\{ \gamma / \right\} \mathrm{is the conjugate transpose}$ $\overset{(-))}{\rightarrow} \mathrm{is the conjugate transpose}$ $\overset{(-))}{\rightarrow} \mathrm{Efliter}.$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\mathbf{H}_{i} = \mathbf{W}_{i}$ $\mathbf{H}_{i} = \mathbf{H}_{i}$ $\mathbf{H}_{i} = \mathbf$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\stackrel{1}{\rightarrow} \mathbf{F} interver equation (1) = 100 \text{ matrix } \mathbf{W}$ $\stackrel{2}{\rightarrow} = \mathbf{E} \left\{ \gamma \mathbf{Y} \right\} \text{ is the error correlation matrix}$ $\stackrel{2}{\rightarrow} = \mathbf{E} \left\{ \gamma \mathbf{Y} \right\} \text{ is the conjugate transpose}$ $\stackrel{2}{\rightarrow} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the conjugate transpose}$ $\stackrel{3}{\rightarrow} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\} \text{ is the conjugate transpose}$
$\hat{\gamma}_{,} = \mathbf{w}_{,}^{\mu} \mathbf{r}$ $\hat{\gamma} = \mathbf{E}_{,}^{\mu} \mathbf{P}_{,\mu}^{\mu} [\mathbf{P} \mathbf{K}_{,\mu} \mathbf{P}^{\mu} + \mathbf{K}_{,\mu}]^{-1}$ $\hat{\gamma}_{,\mu}^{\mu} = \mathbf{E}_{,\mu}^{\mu} \mathbf{P}_{,\mu}^{\mu} \mathbf{R}_{,\mu}^{\mu} \mathbf{R}_{,\mu}^{\mu}$ $\hat{\gamma}_{,\mu}^{\mu} = \mathbf{E}_{,\mu}^{\mu} \mathbf{P}_{,\mu}^{\mu} \mathbf{R}_{,\mu}^{\mu} \mathbf{R}_{,\mu}^{\mu}$ $\hat{\gamma}_{,\mu}^{\mu} = \mathbf{E}_{,\mu}^{\mu} \mathbf{P}_{,\mu}^{\mu} \mathbf{R}_{,\mu}^{\mu} \mathbf{R}_{,\mu}^{\mu}$ $\hat{\gamma}_{,\mu}^{\mu} = \mathbf{E}_{,\mu}^{\mu} \mathbf{P}_{,\mu}^{\mu} \mathbf{R}_{,\mu}^{\mu} \mathbf{R}_{,\mu$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{w}}_{i} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{F} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\frac{1}{2} \mathbf{E} \left\{ \mathbf{F} \mathbf{K}_{\gamma} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{M}}_{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{-}{}_{i} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the error correlation matrix $, = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the noise covariance matrix $(\cdot)^{H}$ is the conjugate transpose $(\cdot)^{H}$ is the conjugate transpose $(\cdot)^{H}$	$\begin{split} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{\mathbf{n}} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W}_{i}^{\mathbf{n}} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \mathbf{W} \mathbf{M} \mathbf{SE} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{n}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{n}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{M} \mathbf{M} \mathbf{SE} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{n}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathbf{n}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{H} \mathbf{P} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{H} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{H} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{H} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{W}^{\mathbf{e}} = \mathbf{E} \{ \gamma ' \} \text{ is the error correlation matrix } \mathbf{u}^{\mathbf{e}} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{W}^{\mathbf{e}} \text{ is the noise covariance matrix} \\ \mathbf{H}^{\mathbf{e}} = \mathbf{E} \{ \gamma ' \} \text{ is the conjugate transpose} \\ \mathbf{H}^{\mathbf{e}} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{W}^{\mathbf{e}} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{W}^{\mathbf{e}} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{W}^{\mathbf{e}} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{W}^{\mathbf{e}} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{W}^{\mathbf{e}} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{W}^{\mathbf{e}} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.} \\ \mathbf{W}^{\mathbf{e}} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} $
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{w}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{\circ}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma^{2} \right\} \text{ is the error correlation matrix}$ $\stackrel{\circ}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma^{2} \right\} \text{ is the correlation matrix}$ $\stackrel{\circ}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma^{2} \right\} \text{ is the correlation matrix}$ $\stackrel{\circ}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma^{2} \right\} \text{ is the conjugate transpose}$ $\stackrel{\circ}{\rightarrow} (.)^{"} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{M}}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\frac{1}{2} \mathbf{F}_{i} \mathbf{P}_{i} \mathbf{r}$ $\frac{1}{2} \mathbf{F}_{i}^{H} \mathbf{F}_{i} \mathbf{F}_{i}^{H} \mathbf{F}_{i} \mathbf{F}_{i}^{H} F$	$\begin{split} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{"}\mathbf{r} \\ \hat{\gamma} &= \mathbf{W}_{i}^{"}\mathbf{r} \\ \hat{\gamma} &= \mathbf{W}\mathbf{r} \\ \hat{\gamma} &= \mathbf{W}\mathbf{r} \\ \hat{\mathbf{M}} &= \mathbf{W}\mathbf{r} \\ \mathbf{M}\mathbf{MSE} &= \mathbf{K}_{\gamma}\mathbf{P}^{"} \begin{bmatrix} \mathbf{P}\mathbf{K}_{\gamma}\mathbf{P}^{"} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{M} & \text{priori estimates of SNR can be used to construct the MMSE filter.} \\ \mathbf{M} &= \mathbf{E}\{\gamma\gamma\} \text{ is the error correlation matrix} \\ \hat{\mathbf{e}} &= \mathbf{E}\{\gamma\gamma\} \text{ is the error correlation matrix} \\ \hat{\mathbf{e}} &= \mathbf{E}\{\gamma\gamma\} \text{ is the conjugate transpose} \end{aligned}$	$\begin{split} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{\ \mathbf{n}} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W}_{i}^{\ \mathbf{n}} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\mathbf{M}} \mathbf{R} \mathbf{r} \\ \hat{\mathbf{M}} \mathbf{R} \mathbf{r} \\ \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} &= \mathbf{H} \mathbf{P} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \mathbf{H} \mathbf{H} \mathbf{M} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} H$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"}\mathbf{r}$ $\hat{\mathbf{v}} = \mathbf{E}_{i}^{"}\mathbf{v}^{"}\mathbf{r}$ $\hat{\mathbf{v}} = \mathbf{E}_{$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{M}} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{W} = \mathbf{W}_{i} \mathbf{E} \text{ filter.}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{W} = \mathbf{W}_{i} \mathbf{W}$	$\begin{split} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{H} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W}_{i}^{H} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\mathbf{M}} \mathbf{m} \mathbf{E} \\ \hat{\mathbf{M}} &= \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \\ \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{E} \text{filter.} \\ \mathbf{M} \mathbf{M} \mathbf{N} \mathbf{E} \text{filter.} \\ \mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{W} \mathbf{P} \mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \\ \mathbf{H} \mathbf{P} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} H$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{K}_{\mathbf{r}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{r}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1}$ $\stackrel{\mathbf{H}}{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{r}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1}$ $\stackrel{\mathbf{H}}{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{r}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1}$ $\stackrel{\mathbf{H}}{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{r}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1}$ $\stackrel{\mathbf{H}}{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} \mathbf{P}^{\mathrm{H}} \mathbf{r} \mathbf{P}^{\mathrm{H}} \mathbf{r} \mathbf{P}^{\mathrm{H}} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} $
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{\ \mathbf{n}} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{\ \mathbf{n}}$ $\hat{\gamma} = \mathbf{W}_{i}^{\ \mathbf{n}}$ $\hat{\gamma} = \mathbf{W}_{i}^{\ \mathbf{n}}$ $\hat{\gamma} = \mathbf{W}_{i}^{\ \mathbf{n}} \mathbf{r}$ $\hat{\gamma} = \mathbf{E}_{i}^{\ \mathbf{n}} \mathbf{P}^{\text{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\text{H}} + \mathbf{K}_{n} \right]^{-1}$ $\stackrel{\text{estimator matrix w}}{\overset{\text{estimator matrix w}}{\text{estimator would we $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\frac{1}{\rho} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{\rho} \mathbf{I}_{i} \mathbf{F}_{i} \mathbf{I}_{i} \mathbf{F}_{i}$ $\frac{1}{\rho} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{\rho} \mathbf{H}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{\rho} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n}$ $\frac{1}{\rho} \mathbf{H}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{\rho} \mathbf{E}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{\rho} \mathbf{E}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{F}_{i}$ $\frac{1}{\rho} \mathbf{E}_{i} \mathbf{F}_{i} $	$\begin{split} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{"}\mathbf{r} \\ \hat{\gamma} &= \mathbf{W}_{i}^{"}\mathbf{r} \\ \hat{\gamma} &= \mathbf{W}_{i}^{"}\mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \\ \hat{\gamma} &= \mathbf{W} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{K}_{\gamma} \\ \mathbf{P}^{"} \\ \mathbf{P} \\ \mathbf{K}_{\gamma} \\ \mathbf{P}^{"} + \mathbf{K}_{n} \\ \end{bmatrix}^{-1} \\ \mathbf{M} \\ \mathbf{P} \\ \mathbf{K}_{\gamma} \\ \mathbf{P}^{"} \\ \mathbf{F} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{K} \\ \mathbf{H} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{K} \\ \mathbf{H} \\ \mathbf{K} \\ \mathbf{H} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{K} \\ \mathbf{H} \\ \mathbf{M} \\ $	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\mathbf{MMSE} filter.$ $\mathbf{MMSE} filter.$ $\mathbf{MMSE} filter.$ $\mathbf{W} eight vector is a compromise between noise and clutter.$ $\mathbf{W} eight vector is a compromise between noise and clutter.$ $\mathbf{W} eight vector is a compromise between noise and clutter.$ $\mathbf{W} is the conjugate transpose$ $\mathbf{H} uge computational load involved due to inverse$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma}_{i} = \mathbf{F}_{i}^{H} \mathbf{p}^{H} \left[\mathbf{P} \mathbf{K}_{i}^{H} \mathbf{p}^{H} + \mathbf{K}_{i}^{H} \right]^{-1}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E}_{i}^{H} \gamma^{P} \mathbf{i} = \mathbf{E}_{i}^{H} \gamma^{P} \mathbf{i} + \mathbf{K}_{i}^{H}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E}_{i}^{H} \gamma^{P} \mathbf{i} = \mathbf{E}_{i}^{H} \gamma^{P} \mathbf{i} + \mathbf{K}_{i}^{H}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E}_{i}^{H} \gamma^{P} \mathbf{i} = \mathbf{E}_{i}^{H} \mathbf{i} = \mathbf{E}_{i$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{M}}_{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the onise covariance matrix } \mathbf{w}$ $\overset{-}{}_{\tau} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose } \mathbf{w}$	$\begin{split} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{"} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W}_{i}^{"} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \\ \hat{\gamma} &= \mathbf{W} \\ \hat{\gamma} &= \mathbf{W} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{K} \\ \mathbf{V} \\ \mathbf{P} \\ \mathbf{H} \\ \mathbf{P} \\ \mathbf{K} \\ \mathbf{P} \\ \mathbf{H} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{K} \\ \mathbf{H} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{K} \\ \mathbf{M} $	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} \mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{1}{\mathbf{P}} \mathbf{r}$ $\overset{2}{\mathbf{P}} \mathbf{r}$ $\overset{2}{\mathbf$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\stackrel{\mathbf{M}}{=} \mathbf{E}_{i}^{H} \mathbf{\gamma}^{H} \mathbf{i}$ $\stackrel{\mathbf{M}}{=} \mathbf{E}_{i}^{H} \mathbf{i}$ $\stackrel{\mathbf{M}}{=} $	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\stackrel{\bullet}{=} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\stackrel{\bullet}{=} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\stackrel{\bullet}{=} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\stackrel{\bullet}{=} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\stackrel{\bullet}{=} \mathbf{H}_{\psi} \mathbf{D} \mathbf{E} \mathbf{E} \left\{ \mathbf{W} \right\} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} \mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{K}_{i} \mathbf{P}^{H} [\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i}]^{-1}$ $\frac{1}{i} \mathbf{P} \mathbf{i} \mathbf{r}$ $\frac{1}{i} \mathbf{P} \mathbf{r}$ $\frac{1}{i} \mathbf{r}$ $$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\mathbf{H}_{i} \mathbf{r}$ \mathbf{R} $\mathbf{H}_{i} \mathbf{r}$ \mathbf{R}
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\mathbf{r}}$ $\hat{\mathbf{M}} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1}$ $\overset{1}{}_{i} = \mathrm{E} \left\{ \gamma \gamma \right\}$ is the error correlation matrix $\overset{i}{}_{i} = \mathrm{E} \left\{ \gamma \gamma \right\}$ is the conjugate transpose $(.)^{"}$ is the conjugate transpose $(.)^{"}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\stackrel{\bullet}{\rightarrow} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{n} \mathbf{S} \mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{w}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\stackrel{\bullet}{\rightarrow} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$	$\begin{split} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{\ H} \mathbf{r} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{W}_{i}^{\ H} \mathbf{r} \\ \hat{\boldsymbol{\gamma}} &= \mathbf{W} \mathbf{r} \\ \mathbf{MMSE} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}^{\mathrm{I}} \\ \mathbf{MMSE} &= \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}^{\mathrm{I}} \\ \mathbf{MMSE} \text{ filter.} \\ \mathbf{H} &= \mathbf{M} \mathbf{MSE} \text{ filter.} \\ \mathbf{H} \text{ mMSE} \text{ filter.} \\ \mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.} \\ \mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.} \\ \mathbf{H} \text{ mMSE} \text{ filter.} \\ \mathbf{W} \text{ estimates of SNR can be used to construct the mose and construct the mMSE filter.} \\ \mathbf{H} \text{ is the error correlation matrix} \\ \mathbf{W} \text{ estimates of SNR can be used to construct the mose and construct the mMSE filter.} \\ \mathbf{W} \text{ estimates of SNR can be used to construct the mose and construct the mose and construct the mMSE filter.} \\ \mathbf{W} \text{ estimates of SNR can be used to construct the mose and construct the mose and construct the mose covariancematrix} \\ \mathbf{W} \text{ estimates of SNR can be used to construct the mose and construct the mose covariancematrix} \\ \mathbf{W} \text{ estut is minimum estimates of SNR can be used to construct (construct the conjugate transpose).} \\ \mathbf{W} \text{ estut is minimum estimation error.} \\ \mathbf{W} \text{ estut is minimum estimation error.} \\ \mathbf{W} \text{ estut and involved due to inverse} \\ \mathbf{W} \text{ estut and involved due to inverse} \\ \mathbf{W} \text{ estut and involved due to inverse} \\ \mathbf{W} \text{ estut and involved due to inverse} \\ \mathbf{W} \text{ estut and inverse} \mathbf{W} \text{ estimation and inverse} \\ \mathbf{W} \text{ estimates and inverse} \\ \mathbf{W} \text{ estimates and inverse} \\ \mathbf{W} \text{ estimates and inverse} \mathbf{W} \text{ estimates and inverse} \\ \mathbf{W}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{MSE} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{H} + \mathbf{K}_{\mathbf{n}} \right]^{-1}$ $\text{resolution cell and involves with finding the optimal resolution resolutic resolution resolutic resoluti$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} \mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\frac{1}{2} \mathbf{F} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{M} \mathbf{M} \mathbf{N} \mathbf{S} \mathbf{E} \text{ filter.}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\frac{1}{2} \mathbf{E} \left[\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{M}}_{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{\circ}{\mathbf{H}} = \mathbf{F}_{i}^{H} \mathbf{\gamma}^{H} \mathbf{r}$ $\overset{\circ}{\mathbf{H}} = \mathbf{F}_{i}^{H} \mathbf{r}$ $\overset{\circ}{\mathbf{H}} \mathbf{r}$ $\overset{\circ}{\mathbf{H}} = \mathbf{F}_{i}^{H} \mathbf{r}$ $\overset{\circ}{\mathbf{H}} \mathbf{r}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{1}{\rightarrow} \mathbf{P}^{i} \mathbf{r}$ $\stackrel{1}{\rightarrow} \mathbf{F}_{i} \mathbf{r}$ $\stackrel{1}{\rightarrow} \mathbf{r}$ $\stackrel{1}{\rightarrow} \mathbf{F}_{i} \mathbf{r}$ $\stackrel{1}{\rightarrow} \mathbf{F}_{i} \mathbf{r}$ $\stackrel{1}{\rightarrow} \mathbf{F}_{i} \mathbf{r}$ $\stackrel{1}{\rightarrow} \mathbf{r}$ 1
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"}$ $\hat{\gamma} = \mathbf{W}_{i}^{"}$ $\hat{\gamma} = \mathbf{W}_{i}^{"}$ $\hat{\mathbf{M}}_{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\stackrel{\text{estimator matrix w}}{\stackrel{\text{estimator matrix w}}{\text{estima$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} \mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{*}{=} \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $\overset{*}{=} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $\overset{*}{=} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\overset{*}{=} \text{ Huge computational load involved due to inverse}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{H}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{H} \mathbf{P} \mathbf{i} \mathbf{r} \mathbf{r} \mathbf{r}$ $\mathbf{r} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix } \mathbf{W}$ $\mathbf{H} \mathbf{R} \mathbf{F} \mathbf{filter}.$ $\mathbf{F} \mathbf{R} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} r$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{1}{\rightarrow} Piiori estimates of SNR can be used to construct the MMSE filter.$ $\stackrel{-}{\rightarrow} = E\{\mathcal{M}\}$ is the error correlation matrix $\stackrel{-}{\rightarrow} = E\{\mathcal{M}\}$ is the noise covariance matrix $\stackrel{-}{,}$ $\stackrel{-}{=} if\{\mathcal{M}\}$ is the conjugate transpose $\stackrel{-}{,}$ $\stackrel{-}{=} Huge computational load involved due to inverse$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\hat{\mathbf{M}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix} \qquad $	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{M}\mathbf{P}iori \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{W} = \mathbf{E}[\mathbf{M}'] \text{ is the error correlation matrix}$ $\hat{\gamma} = \mathbf{E}[\mathbf{M}'] \text{ is the conjugate transpose}$ $\mathbf{M}\mathbf{R} = \mathbf{E}[\mathbf{M}] \mathbf{E} \mathbf{R} + \mathbf{R}_{H} = \mathbf{R}_{\mu}\mathbf{R} = \mathbf{R}_{\mu}\mathbf{R} + \mathbf{R}_{\mu}\mathbf{R}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} \mathbf{M} \mathbf{S} \mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1} \mathbf{I}$ $\mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.}$ $\mathbf{H} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}$ $\mathbf{W} \mathbf{e} \mathbf{P} \mathbf{H} \mathbf{E} \mathbf{F} \mathbf{H} \mathbf{E}$ $\mathbf{H} \mathbf{P} \mathbf{H}_{\gamma} \mathbf{P}^{H} $	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{\ \mathbf{H}} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{\ \mathbf{H}} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{n} \right]^{-1} \mathbf{r}$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the model of the model term of $
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} = \mathbf{K}\mathbf{r} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{R} \end{bmatrix}^{-1} \mathbf{h}$ $\hat{\mathbf{M}} = \mathbf{K} \mathbf{r} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{R} \end{bmatrix}^{-1} \mathbf{h}$ $\hat{\mathbf{M}} = \mathbf{K} \mathbf{r} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{R} \end{bmatrix}^{-1} \mathbf{h}$ $\hat{\mathbf{M}} = \mathbf{K} \mathbf{r} \mathbf{P}^{\mathrm{H}} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{R} \end{bmatrix}^{-1} \mathbf{h}$ $\hat{\mathbf{M}} = \mathbf{K} \mathbf{r} \mathbf{r} \mathbf{r}$ $\hat{\mathbf{H}} = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{w} = \mathbf{F}\mathbf{r}$ $\mathbf{w} = \mathbf{r}$ \mathbf{r} $\mathbf{w} = \mathbf{r}$ \mathbf{r} $\mathbf{w} = \mathbf{r}$ \mathbf{r} $\mathbf{r} = \mathbf{r}$ \mathbf{r} $\mathbf{r} = \mathbf{r}$ \mathbf{r} $\mathbf{r} = \mathbf{r}$ \mathbf{r}	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{MMSE}^{H} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the MMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the mMSE filter.$ $\mathbf{H} priori estimates of SNR can be used to construct the moleculation matrix with the moleculation matrix with the moleculation matrix with the moleculation error.$ $\mathbf{H} priori estimate to moleculation error.$ $\mathbf{H} priori estimate to moleculation error.$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{1}{\rightarrow} P_{i} row results of SNR can be used to construct the MMSE filter.$ $\overset{-}{\rightarrow} = \mathbf{E} \{\gamma\gamma\} \text{ is the error correlation matrix w}$ $\overset{-}{\rightarrow} = \mathbf{E} \{\gamma\gamma\} \text{ is the error correlation matrix w}$ $\overset{-}{\rightarrow} = \mathbf{E} \{\gamma\gamma\} \text{ is the conjugate transpose}$ $\overset{-}{\rightarrow} = \mathbf{E} \{\gamma\gamma\} \text{ is the conjugate transpose}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{MSE} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1}$ $\stackrel{\text{estimator matrix w}}{\overset{\text{estimator w}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{H} \mathbf{r}$ \mathbf{r} r	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{H}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{H}\mathbf{P}iori \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{H}\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \mathbf{R}_{i}$ $\mathbf{H}\mathbf{P} \mathbf{R}_{i} \mathbf{P}^{H} \mathbf{R}_{i} \mathbf{R}_{i}$ $\mathbf{H}\mathbf{R}_{i} \mathbf{R}_{i} \mathbf{R}_{i} \mathbf{R}_{i} \mathbf{R}_{i} \mathbf{R}_{i} \mathbf{R}_{i} \mathbf{R}_{i}$ $\mathbf{H}\mathbf{R}_{i} \mathbf{R}_{i} \mathbf{R}_{$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{1}{\rightarrow} Piiori estimates of SNR can be used to construct the MMSE filter.$ $\overset{-}{\rightarrow} = \left[\gamma \gamma \right]$ is the error correlation matrix $\overset{-}{\rightarrow} = \left[\gamma \gamma \right]$ is the conjugate transpose $\overset{-}{\rightarrow} = \mathbf{W} \mathbf{r}$ $\overset{-}{\rightarrow} = \mathbf{F} \left\{ \gamma \gamma \right\}$ is the conjugate transpose $\overset{-}{\rightarrow} = \mathbf{F} \left\{ \gamma \gamma \right\}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{MSE} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\mathbf{\gamma}} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1}$ $\text{resolution cell and involves with finding the optimal resolution resol$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{H} \mathbf{P} \mathbf{H} \mathbf{NMSE} \text{ filter.}$ $\mathbf{H} \mathbf{P} \mathbf{H} \mathbf{P} \mathbf{H} \mathbf{P} \mathbf{H}_{n}$ $\mathbf{H} \mathbf{P} \mathbf{H} \mathbf{P} \mathbf{H}_{n} \mathbf{P} \mathbf{H}_{n} \mathbf{P} \mathbf{H}_{n} \mathbf{P} \mathbf{H}_{n}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \left\{ \gamma \mathbf{\gamma} \right\} \text{ is the error correlation matrix}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \left\{ \gamma \mathbf{\gamma} \right\} \text{ is the conjugate transpose}$ $\hat{\boldsymbol{\gamma}} = \mathbf{E} \left\{ \gamma \mathbf{M} \right\} \text{ is the conjugate transpose}$ $\mathbf{H} \mathbf{U} \mathbf{E} \text{ computational load involved due to inverse}$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P}\mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} \text{ filter.}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} \text{ filter.}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} \text{ filter.}$ $\mathbf{W} = \mathbf{F}\left\{\gamma\gamma\right\} \text{ is the error correlation matrix } \mathbf{w}$ $\mathbf{W} = \mathbf{F}\left\{\gamma\gamma\right\} \text{ is the conjugate transpose}$ $\mathbf{W} = \mathbf{F}\left\{\gamma\mathbf{M}\right\} \text{ is the conjugate transpose}$ $\mathbf{W} = \mathbf{F}\left\{\gamma\mathbf{M}\right\} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{1}{\mathbf{r}} Priori \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\overset{-}{\mathbf{r}} = \mathbf{E} \{\gamma\gamma\} \text{ is the error correlation matrix } \mathbf{w}$ $\overset{-}{\mathbf{r}} = \mathbf{E} \{\gamma\gamma\} \text{ is the error correlation matrix}$ $\overset{-}{\mathbf{r}} = \mathbf{E} \{\gamma\gamma\} \text{ is the conjugate transpose}$ $\overset{-}{\mathbf{r}} \text{ is the conjugate transpose}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{MSE} = \mathbf{K} \mathbf{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\stackrel{\bullet}{=} \mathbf{E} \left\{ \gamma \gamma^{2} \right\} \text{ is the error correlation matrix}$ $\stackrel{\bullet}{=} = \mathbf{E} \left\{ \gamma \gamma^{2} \right\} \text{ is the error correlation matrix}$ $\stackrel{\bullet}{=} = \mathbf{E} \left\{ \gamma \gamma^{2} \right\} \text{ is the conjugate transpose}$ $\stackrel{\bullet}{=} \text{ Huge computational load involved due to inverse}$	$\hat{\boldsymbol{\gamma}}_{i} = \boldsymbol{w}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \boldsymbol{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W} \mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{H} \mathbf{P} \mathbf{I} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} r$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ \mathbf{r} $\mathbf{h} \mathbf{r}$ \mathbf{r}	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1}$ $\overset{1}{\mathbf{M}} \mathbf{P} \mathbf{r} \mathbf{r} \mathbf{r}$ $\overset{2}{\mathbf{H}} = \mathbf{F} \left\{ \gamma \gamma \right\}$ is the error correlation matrix $\mathbf{r}^{\prime} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the conjugate transpose $(.)^{```}$ is the conjugate transpose $(.)^{```}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}$ $\hat{\mathbf{M}} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{\mathrm{H}} + \mathbf{K}_{\mathrm{H}} \right]^{-1}$ $\stackrel{\text{resolution cell and involves with finding the optimal estimator matrix w}{\text{estimator matrix w}}$ $\stackrel{\text{estimator matrix w}}{= \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $\stackrel{\text{resolution cell and involves with finding the optimal resolution cell and involves with finding the optimal resolution cell and involves with finding the optimal resolution that \mathbf{W} \text{resolution cell and involves with finding the optimal resolution cell and involves with finding the optimal resolution resolution resolution resolution is the conjugate transpose (.)" is the conjugate transpose (.)" is the conjugate transpose (.)" and the computational load involved due to inverse (.)" is the conjugate transpose (.)" and the computational load involved due to inverse (.)" is the conjugate transpose (.)" and the computational load involved due to inverse (.)" and the computational load involved due to inverse (.)" and the computational load involved due to inverse (.). (.)" is the conjugate transpose (.). (.)" is the conjugate transpose (.). (.)" is the conjugate transpose (.). (.). (.). (.). (.). (.). (.). (.)$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{n} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{n} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{n} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{n} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{MMSE} = \mathbf{K}_{\gamma} \mathbf{P}^{n} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{n} + \mathbf{K}_{n} \right]^{-1}$ $\mathbf{W} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the error correlation matrix $\hat{\mathbf{r}} = \mathbf{E} \left\{ \gamma \gamma \right\}$ is the conjugate transpose $\mathbf{f} = \mathbf{W} \mathbf{R} = \mathbf{E} \left\{ \gamma \mathbf{W} \right\}$ $\mathbf{F} = \mathbf{E} \left\{ \gamma \gamma \right\}$ $\mathbf{W} = \mathbf{E} \left\{ \gamma \gamma \right\}$ $\mathbf{E} = \mathbf{E} \left$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P}\mathbf{K}_{\gamma}\mathbf{P}^{H} + \mathbf{K}_{n} \end{bmatrix}^{-1}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} \text{ filter.}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} \text{ filter.}$ $\mathbf{H}\mathbf{P}\mathbf{H}_{r} \mathbf{P}\mathbf{R}_{r} \mathbf$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{w}} = \mathbf{K}_{Y} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{Y} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\stackrel{\bullet}{\mathbf{MMSE}} = \left[\mathbf{F}_{Y} \mathbf{Y} \right] \text{is the error correlation matrix } \mathbf{W}$ $\stackrel{\bullet}{\mathbf{H}} = \mathbf{F} \{ \gamma \mathbf{Y} \} \text{ is the error correlation matrix}$ $\stackrel{\bullet}{\mathbf{H}} = \mathbf{F} \{ \gamma \mathbf{Y} \} \text{ is the conjugate transpose}$ $\stackrel{\bullet}{\mathbf{H}} \text{ uppe computational load involved due to inverse}$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{w}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $\hat{\mathbf{w}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\hat{\mathbf{w}} = \mathbf{E} \left\{ \gamma \mathbf{w} \right\} \mathbf{v}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{H} \mathbf{P} \mathbf{i} \mathbf{V} \mathbf{r}$ $\mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{\mu} \end{bmatrix}^{-1}$ $\mathbf{H} \mathbf{P} \mathbf{H} \mathbf{P} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} R$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ \mathbf{r} \mathbf{w} \mathbf{r} $$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} M$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{w}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix}$ $\hat{\mathbf{w}} = \mathbf{E} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\hat{\mathbf{w}} = \mathbf{E} \left\{ \gamma \mathbf{w} \right\} \mathbf{v}$	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P} \mathbf{K}_{\gamma}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{H} \mathbf{P} \mathbf{i} \mathbf{V} \mathbf{r}$ $\mathbf{H} \mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{\mu} \end{bmatrix}^{-1}$ $\mathbf{H} \mathbf{P} \mathbf{H} \mathbf{P} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} R$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ \mathbf{r} \mathbf{w} \mathbf{r} $$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} M$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W} \mathbf{r}$ $\hat{\mathbf{w}} = \mathbf{W} \mathbf{r}$ $\mathbf{w} = \mathbf{E} [\mathbf{W}] \mathbf{r}$ $\mathbf{w} = \mathbf{r}$ $\mathbf{v} = \mathbf{r}$ $\mathbf{w} = \mathbf{r}$ $\mathbf{r} = \mathbf{r}$ \mathbf{r} $\mathbf{w} = \mathbf{r}$ $\mathbf{r} = \mathbf{r}$ \mathbf{r} $\mathbf{w} = \mathbf{r}$ \mathbf{r} $\mathbf{w} = \mathbf{r}$ \mathbf{r} $\mathbf{r} = \mathbf{r}$ \mathbf{r} $\mathbf{r} = \mathbf{r}$ \mathbf{r} $\mathbf{r} = \mathbf{r}$ \mathbf{r} $\mathbf{r} = \mathbf{r}$ \mathbf{r} \mathbf{r} $\mathbf{r} = \mathbf{r}$ \mathbf{r} \mathbf{r} $\mathbf{r} = \mathbf{r}$ \mathbf{r} r	$\hat{\boldsymbol{\gamma}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\hat{\boldsymbol{\gamma}} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{\eta} \right]^{-1} \mathbf{I}$ $\mathbf{H} \mathbf{P} \mathbf{I} \mathbf{R}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{\eta}$ $\mathbf{H} \mathbf{R}_{H} \mathbf{R}_{H} \mathbf{R}_{H} \mathbf{R}_{H}$ $\mathbf{H} \mathbf{R}_{H} \mathbf{R}_{H} \mathbf{R}_{H} \mathbf{R}_{H} \mathbf{R}_{H} \mathbf{R}_{H}$ $\mathbf{H} \mathbf{R}_{H} \mathbf{R}_{H}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $esolution cell and involves with finding the optimal estimator matrix w$ $estimator matrix w$ $-\mathbf{F}_{i} \left[\mathbf{P}_{i} \mathbf{V}_{i} \mathbf{P}^{"} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{M}_{i} \mathbf{F}_{i} \mathbf{F}_{i} \mathbf{r}$ $-\mathbf{F}_{i}^{T} \mathbf{P}_{i} \mathbf{F}_{i} \mathbf{P}_{i} \mathbf{r}$ $-\mathbf{F}_{i}^{T} \mathbf{P}_{i} \mathbf{F}_{i} \mathbf{P}_{i} \mathbf{r}$ $-\mathbf{F}_{i}^{T} \mathbf{P}_{i} \mathbf{F}_{i} \mathbf{r}$ $-\mathbf{F}_{i}^{T} \mathbf{P}_{i} \mathbf{r}$ $-\mathbf{F}_{i}^{T} r$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{W} \text{ estimates of SNR can be used to construct the MMSE filter.}$ $\mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{SE} \text{ filter.}$ $\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} $
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{w}}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{w}}_{i} = \mathbf{E}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{w}}_{i} = \mathbf{r}$ $\hat{\mathbf{w}}_{i$	$\hat{\gamma}_{i} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{n} \right]^{-1} \mathbf{I}$ $\mathbf{H} \mathbf{P} \mathbf{i} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} r$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{M} \mathbf{SE} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{be} \operatorname{used} \operatorname{to} \operatorname{construct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{estimates} \operatorname{of} \operatorname{SNR} \operatorname{can} \operatorname{to} \operatorname{truct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{Friori} \operatorname{sign} \operatorname{to} \operatorname{truc} \operatorname{truct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{truc} \operatorname{sign} \operatorname{truc} \operatorname{truc} \operatorname{truc} \operatorname{truct}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{truc} \operatorname{truct} \operatorname{truc} \operatorname{truc}$ $\frac{-4}{n} \operatorname{Friori} \operatorname{truc} \operatorname{truc} \operatorname{truc} \operatorname{truc} \operatorname{truc} \operatorname{truc}$ $\frac{-4}{n} \operatorname{truc} tru$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\mathbf{M}} \mathbf{r}$ $\hat{\mathbf{M}} \mathbf{r}$ $\mathbf{M} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\mathbf{M} \mathbf{MSE} \text{ filter.}$ $\mathbf{M} \mathbf{MSE} = \mathbf{K}_{\gamma} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\mathbf{H} \mathbf{P} \mathbf{M} \mathbf{NSE} \text{ filter.}$ $\mathbf{H} \mathbf{P} \mathbf{R} \mathbf{P} \mathbf{R} \mathbf{P} \mathbf{R} \mathbf{P} \mathbf{R} \mathbf{P} \mathbf{R} \mathbf{R} \mathbf{R}$ $\mathbf{P} \mathbf{R} \mathbf{P} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} \mathbf{R} R$
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{M}} \mathbf{M} \mathbf{E} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{H} \right]^{-1}$ $\stackrel{*}{\mathbf{H}} \mathbf{P} \mathbf{M} \mathbf{M} \mathbf{E} \text{ filter.}$ $\stackrel{*}{\mathbf{H}} \mathbf{P} \mathbf{H}_{i} \mathbf{E} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{P} \mathbf{H}_{i} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{H}_{i} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{H}_{i} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{H}_{i} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i} \mathbf{H}_{i}$ $\stackrel{*}{\mathbf{H}} \mathbf{H}_{i} \mathbf{H}_$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}$ $\hat{\mathbf{M}} = \mathbf{W}_{i}$ $\hat{\mathbf{M}} = \mathbf{W}_{i}$ $\hat{\mathbf{M}} = \mathbf{W}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{M}}_{i} = \mathbf{K}_{i} \mathbf{P}_{i} \mathbf{h}_{i} \mathbf{h}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{M}}_{i} = \mathbf{K}_{i} \mathbf{P}_{i} \mathbf{h}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{M}}_{i} = \mathbf{K}_{i} \mathbf{P}_{i} \mathbf{h}_{i} \mathbf{h}_{i}$ $\hat{\mathbf{H}}_{i} \mathbf{h}_{i} \mathbf$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\mathbf{MMSE}^{H} = \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i}^{H}$ $\mathbf{MMSE}^{H} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{H} + \mathbf{K}_{i}^{H} \right]^{-1}$ $\mathbf{MMSE}^{H} = \mathbf{K}_{i}^{H} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{r}$ $\mathbf{MMSE}^{H} = \mathbf{K}_{i}^{H} \mathbf{P}^{H} \mathbf{P}^{H} \mathbf{r}$ $\mathbf{W}_{i} = \mathbf{F} \left\{ \gamma \gamma \right\} \text{ is the error correlation matrix w}$ $\mathbf{W}_{i} = \mathbf{F} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{F} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{F} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$ $\mathbf{W}_{i} = \mathbf{F} \left\{ \gamma \gamma \right\} \text{ is the conjugate transpose}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{i} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{"} + \mathbf{K}_{j} \right]^{-1}$ $\stackrel{\mathbf{M}}{\mathbf{MMSE}} = \mathbf{K}_{j} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{"} + \mathbf{K}_{j} \right]^{-1}$ $\stackrel{\mathbf{M}}{\mathbf{mMSE}} = \mathbf{K}_{j} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{"} + \mathbf{K}_{j} \right]^{-1}$ $\stackrel{\mathbf{M}}{\mathbf{mMSE}} = \mathbf{K}_{j} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{"} + \mathbf{K}_{j} \right]^{-1}$ $\stackrel{\mathbf{M}}{\mathbf{mMSE}} = \mathbf{K}_{j} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{"} + \mathbf{K}_{j} \right]^{-1}$ $\stackrel{\mathbf{M}}{\mathbf{mMSE}} = \mathbf{K}_{j} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{"} + \mathbf{K}_{j} \right]^{-1}$ $\stackrel{\mathbf{M}}{\mathbf{mMSE}} = \mathbf{K}_{j} \mathbf{P}^{"} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{"} + \mathbf{K}_{j} \right]^{-1}$ $\stackrel{\mathbf{M}}{\mathbf{mMSE}} = \mathbf{K}_{j} \mathbf{P}^{"} $
$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\mathbf{w}}_{i} = \mathbf{K}_{i} \mathbf{P}^{H} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{H} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{\mathbf{w}}{\mathbf{H}} \mathbf{H}_{i}^{H} \mathbf{R}_{i}^{H} = \mathbf{H}_{i}^{H} \mathbf{R}_{i}^{H}$ $\stackrel{\mathbf{w}}{\mathbf{H}} \mathbf{H}_{i}^{H} \mathbf{H}_{i}^{H} \mathbf{H}_{i}^{H} \mathbf{H}_{i}^{H}$ $\stackrel{\mathbf{w}}{\mathbf{H}} \mathbf{H}_{i}^{H} \mathbf{H}_{i}^$	$\begin{split} \hat{\gamma}_{i} &= \mathbf{W}_{i}^{H} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W}_{i}^{H} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \hat{\gamma} &= \mathbf{W} \mathbf{r} \\ \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \end{bmatrix} \mathbf{r} \mathbf{K}_{\gamma} \mathbf{P}^{H} + \mathbf{K}_{\mu} \end{bmatrix}^{-1} \mathbf{I} \\ \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.} \\ \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{S} \mathbf{E} \text{ filter.} \\ \mathbf{e} = \mathbf{E} \{ \gamma \gamma \} \text{ is the error correlation matrix } \\ \mathbf{e} = \mathbf{E} \{ \gamma \gamma \} \text{ is the conjugate transpose} \\ \mathbf{e} \text{ is the conjugate transpose} \end{aligned}$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{H} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\hat{\gamma} = \mathbf{W}\mathbf{r}$ $\mathbf{M}\mathbf{M}\mathbf{S}\mathbf{E} = \mathbf{K}_{\gamma}\mathbf{P}^{H} \begin{bmatrix} \mathbf{P}\mathbf{K}_{\gamma}\mathbf{P}^{H} + \mathbf{K}_{H} \end{bmatrix}^{-1}$ $\mathbf{M}\mathbf{P}\mathbf{I}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}\mathbf{r}r$	$\hat{\gamma}_{i} = \mathbf{w}_{i}^{"} \mathbf{r}$ $\hat{\gamma} = \mathbf{W}_{i}^{"} \mathbf{r}$ $\hat{\mathbf{r}} = \mathbf{K}_{i} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{i} \mathbf{P}^{"} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{\mathbf{M}}{\mathbf{MMSE}} = \mathbf{K}_{i} \mathbf{P}^{"} \left[\mathbf{P} \mathbf{K}_{j} \mathbf{P}^{"} + \mathbf{K}_{i} \right]^{-1}$ $\stackrel{\mathbf{M}}{\mathbf{H}} \mathbf{P}^{"} \mathbf{E} \mathbf{F}_{i}^{T} \mathbf{P}^{"} \mathbf{E} \mathbf{E} \mathbf{F}_{i}^{T} \mathbf{P}^{"} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$

S

an Filtering	Specific Equations	$\gamma(l) = \mathbf{A}(l) \gamma(l-1) + \mathbf{u}(l)$ $\mathbf{r}(l) = \mathbf{P}(l) \gamma(l-1) + \mathbf{n}(l)$ $\mathbf{r}(l) = \mathbf{P}(l) \gamma(l-1) + \mathbf{n}(l)$ $\mathbf{A}(l) \text{ is taken to be an identity matrix}$ $\mathbf{A}(l) \text{ is taken to be an identity matrix}$ $\mathbf{Generally assumed that scattering coefficients}$ are approximately constant with respect to time, space and frequency Radar Measurements are segmented $\gamma(l) = \gamma(l-1) + \mathbf{u}(l)$	ß
Kalma	General Equations	State Equation y(l) = A(l) y(l-1) + w(l) Measurement Equation z(l) = H(l) y(l) + v(l) z(l) = Signal Vector y(l) = State Transition Matrix w(l) = Process Noise w(l) = Process Noise z(l) = Measurement Vector H(l) = Matrix of Constants	Information and Telecommunication Technology Center

Kalman Filter Implementation

Measurement vector **r** is divided into L segments. Image estimate is determined as :

 $\hat{\gamma}(l/l) = \gamma(l-1/l-1) + \mathbf{G}(l)\mathbf{v}(l)$

from innovation **v**: $\mathbf{v}(l) = \mathbf{r}(l) - \mathbf{P}(l)\hat{\gamma}(l-1/l-1)$ from Kalman Gain G : $\mathbf{G}(l) = \mathbf{K}_{\gamma}(l/l-1)\mathbf{P}(l)^{\mathrm{H}} \left[\mathbf{P}(l)\mathbf{K}_{\gamma}(l/l-1)\mathbf{P}(l)^{\mathrm{H}} + \mathbf{K}_{n}(l)\right]^{\mathrm{H}}$

Update Error Covariance $\mathbf{K}_{\gamma}(l/l) = [\mathbf{I} - \mathbf{G}(l)\mathbf{P}(l)]\mathbf{K}_{\gamma}(l/l-1)$ and applied to next iteration

Iterative implementation of MSME

- Process noise is neglected
- Innovation is the new information available in the latest measurement
- Kalman Gain is computed so as to minimize the MSE, and is based on orthogonal principle
- Initially, measurement error due to ambiguities and clutter dominates. in the final stages noise dominates

10

Matched Vs. Kalman filter

Matched Filter Estimate

Kalman Filter Estimate

Single Point Target

- Matched Filter unable to resolve range and Doppler Ambiguities
 - Kalman Filter gives Optimal Estimate

Kalman Filtering Process for a Real Scenario

General SAR Image

13

S

Accuracy of Estimate vs. L

1

 $\mathbf{K}_{\gamma}(0) = \sigma_{\gamma}^2 \mathbf{I}$

 σ_{γ}^2 is the expected value of $\left|\gamma\right|^2$ -Accuracy of estimate same as MMSE

•Why is there no improved accuracy?

 Assumption: Scattering Coefficients are approximately constant with time.

Difficult to simulate this variation

 In real time scenarios, there will be improvement if modeled optimally

ferent			T	ູ
KF for dif IS	fect the	er ? X is not be target	uc target tial condition	
Developed Condition	onditions af	Kalman Filte triance matri	o represent t enario? different init	16
nce of the] Initia	s the initial c	ence of the ne error cova initialized t	surement score	
Converger	>How does	converge	and mea	ttion and immunication ology Center
A CONTRACT OF A				Informe

Convergence vs. Estimation Error

Estimation error vs. the percentage of measurement vector processed

 Error covariance matrix is computed based on the Measurement correlation matrix

Optimal Initialization

Solution to Problem1

Only Diagonal Elements are considered

Original Image

KF Estimate

Estimate for L = 100Modified KF

- >Only diagonal points are defined in the Error Covariance Matrix
- obtained from a target pixel is uncorrelated > Physical representation: Reflectance to other target pixels.
- are considered in the error covariance matrix implementation so that only diagonal points ▶It is possible to modify the KF

2

Information and Telecommunication Technology Center

Solution to Problem 2

Tradeoff offered between accuracy and reduced computational load

>Difficulty level!

>Non linear processing Errors!

Problem 3: Processing Time

SAR processing Time

Proposed Solutions

> Sequential Estimation

> Parallel Processing

Sequential Estimation

Estimation error vs. the percentage of measurement vector processed for different target scattering scenarios

- Is it possible to quantify the accuracy of the estimate in terms of a parameter in the KF?
- Can this parameter be used for all target scenarios?
- Different Scattering Characteristics
- How does the NMSE vary for the above scattering scenarios

32

Information and Telecommunication Technology Center

Solution for Problem 3

Tradeoff offered between accuracy and processing speed

Matrix multiplications speed increased using parallel processing

Solution offered for huge matrix sizes

) Inverse using Kalman Filter	Covariance Matrix and computation load	/ and processing speed	g
Summary	omputational Load due tc nplementation of MMSE	ons involving Huge Error ffered between accuracy	ocessing Time)ffered between accuracy .ocessing	36
A STATE OF S	Problem 1: Huge Cc Solution: Iterative in	Problem 2: Operatio Solution: Tradeoff o	Problem 3: Huge Pro Solution: Tradeoff C Parallel Pr	Information and Telecommunication Technology Center

