Design of a Space-Based Internet Emulation System

Masters Thesis Defense
Sujit R. Baliga
11/18/2002

Committee:
Dr. Gary J. Minden (Chair)
Dr. Joseph B. Evans
Dr. Victor Frost
Organization

- Objectives
- Strategies
- Architecture
- Components
- Routing
- Testing and Results
- Future Work
Objectives for SBI

- **What**
 - Earth-Observation satellites participate in an IP network in space
 - Able to network with other satellites and ground stations
 - Emulation testbed to observe and evaluate characteristics of SBI

- **Why**
 - Receive real-time data from satellites
 - Eliminate on-board data recorders
 - Avoid use of proprietary protocols and expensive hardware

- **How**
 - Earth-Observation Satellites capable of originating, relaying and terminating traffic
 - Specialized high-speed relay satellites to provide extended capacity
 - Internetworking for coordinated, continuous data collection
Emulation Strategies

- Emulate the satellite network environment
 - Link Delays
 - Error rates

- Real-time system
 - Works with real-time offset

- Inter-node data traffic
 - Validates network routes
 - Models actual satellite traffic

- Modular system
 - Facilitates replacement of entire modules
 - For evaluating various algorithms and packages in routing, orbit computations
The SBI Emulation System

- Controlling and monitoring emulation software
- Routing programs for generating network topology
- Instrument scheduling for data traffic generation
- Nodes capable of sourcing, relaying and sinking data
- Networks for transmission of control signals and data traffic
- Software for orbital computations, satellite propagation and data traffic generation
- User interface
Architecture

- Emulation Manager
- Operations Node
- Common Nodes
- Networks
- External Software
Components

- **Common Nodes**
 - Represent satellites and ground stations
 - Generates data according to satellite traffic models, routes data

- **Networks**
 - Management Network
 - Includes EM and Nodes
 - Control commands, Node status, Network updates
 - Data Network
 - Node inter-connections
 - SBI data traffic

- **External Software**
 - Satellite ToolKit
 - Satellite propagation, Orbital computations, Graphical output
 - Netspec
 - Data traffic generator
Emulation Manager

- I/O Interface
- Node Communication
- Node Information
- STK Interface
I/O Interface

Input
- XML File
 - Satellite Orbital Data, Ground Station Position
 - Node Interface Data
 - Satellite Instrument Data

Output
- 2-Dimensional Earth projection view
- 3-Dimensional Globe view
- Network Status
 - Network Routes
 - Interface Information - Data transfer rates
 - Link Information - Bandwidth, delay, BER
- Instrument Status
 - Instrument Data
Node Communication

- **Operations Node Interface**
 - Receives and processes requests for node information
 - Satellite position, node access times and distance

- **Operations Channel Interface**
 - Receives routes and scheduling information from Operations Node
 - Updates emulation information
 - Transmits to destination nodes

- **Node Manager**
 - Sets up, controls and monitors the nodes
Node Information

- Stores information regarding nodes
 - Satellite, Ground station data
 - Positional parameters, interface and instrument data
 - Node Interface data
 - Bandwidth
 - Instrument data
 - Data type, rate, source and destination

- Computes Statistics
 - Network access times
STK Interface

- Establishes TCP connection to STK
- Receives node information and propagates satellites
- Receives route information and displays network routes
- Receives requests from Operations Node Interface
 - Satellite parameters and position
 - Node access times and distances
 - Emulation time
- Transmits data back to requesting module
Operations Node

- **Attributes**
 - Initializes, stores data and mediates between EM and other Operations Node modules

- **Routing**
 - Generates route updates and transmits to all SBI nodes

- **Scheduling**
 - Generates schedules for satellite instruments
Operations Node Routing

- Route Interface
- Access Module
- Topology Generation
- Route Generation
Routing Program

- **Route Interface**
 - Stores node information on startup
 - Event handler - Sets off an alarm for each event
 - Initializes link costs for topology computations

- **Access Module**
 - Provides link access and node distance information during topology computations
 - Receives information from Emulation Manager

- **Topology Generator**
 - Generates network topology

- **Route Generator**
 - Translates topology into routes in terms of node interfaces
 - Transmits routes to all nodes in the system
Routing in a Satellite Network
Data Termination Interfaces

- Routes change constantly
- Routes to data source and sink also change
- Static interface needed for source/sink
- Use “dummy interface” as data source and sink
- Need extra route to reach dummy interface
Problems

- **LEO satellites**
 - Move typically at > 25000 km/hr
 - At 800 km altitude, have ~15 minute window of transmission to a ground station

- **Satellite network changes**
 - Rapidly and regularly in order of minutes

- **Conventional terrestrial routing**
 - OSPF, RIP
 - Extensive computations on satellites
 - Involve information transfer between nodes
 - Becomes obsolete soon in a satellite network
Strategies

- Exploit predictability, regularity of satellite orbits
- Satellite mobility
 - Routing protocol oblivious to mobility
 - Can be processed as regular static network
- Centralized routing is good option
 - Can be computed on ground station
 - Less processing on the part of satellites
 - Saves on satellite power budget
 - Less computing hardware onboard
 - Hardware cannot be upgraded in orbit
- Two protocols recommended
 - DT-DVTR
 - Virtual Node
Protocols

- Discrete Time-Dynamic Virtual Topology Routing
 - Link activation/deactivation occurs at discrete times
 - Network assumed static in intervals
 - Topology computed for static network
 - Can be computed offline and transmitted to satellites

- Virtual Node
 - Fixed virtual network
 - Routes remain the same, satellites move
 - Each satellite hands over routing information to the next satellite
 - Ideally suited for constellations
Routing in SBI

- Uses DT-DVTR approach
- Gain/Loss of line-of-sight termed an Event
- Events occur at discrete times
- Network assumed static between events
- Events clubbed together to avoid overload
- Extended spanning tree algorithm used to compute topology over static network
- Routes transmitted to all nodes over Management Network
Routing in SBI

- Node characterized by number of interfaces
- Interface simulates a transceiver
- Number of links constrained by interfaces
- Compute topology – Limit number of links
Routing Algorithm

- Link costs
 - Costs based on link distances

- Minimum Spanning Trees
 - Compute shortest paths to each node in the network
 - Assures that every node in network is connected

- Link Limiting
 - For each node, \#links > \#interfaces?
 - Remove least-used links for that node

- Re-compute spanning trees
 - To regenerate complete network topology
Example Topology

- 6 nodes
- 3 interfaces on each node
- Link costs shown
Generating Topology
Link Limiting

- Remove least-used links
 - Least likely to affect the network
 - Alternate paths found by re-running MST
 - If tie, remove link with higher cost

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Link Usage

Links to be removed:

1-6, 3-4, 3-1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>9</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>-</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Cost Matrix
Second Iteration
Testing

- Tests conducted with user-drawn scenarios
- Nine Node Polar Satellite Scenario
 - Eight satellites in polar orbit
 - Facility at North Pole
- Twenty Five Node Scenario
 - Eight satellites in equatorial orbit
 - Sixteen in two orbits of 60 degree inclination
 - Facility at Goddard
- Tested for
 - Route updates
 - Scenario continuity
 - Data traffic movement
Results
Results

- Route changes shown
- Rly2 and Rly3 initially connected to facility
- Rly3 and Rly4 next
- Rly4 and Rly5 finally
Future Work

- Higher number of nodes
 - LEO constellations have tens of nodes
- Complex routing algorithms
 - Handling QoS
 - Multiple redundant routes
- Distributed Routing
 - More intelligent nodes
Summary

- A system which can be used to evaluate the feasibility and performance in an Earth-orbital environment of
 - Satellite constellation topologies
 - Satellite transport protocols
 - Satellite routing protocols
- A system which provides
 - Scalability and repeatability
 - Good match to the real world system
 - Cost-effective in terms of money and time
Questions?