A Prototype Implementation for Dynamically Configuring Node-Node Security Associations using a Keying Server and the Internet Key Exchange

Suresh Krishnaswamy

Thesis Defense for the Degree of Master of Science in Computer Science University of Kansas

Committee:
Dr. Joseph B. Evans (Chair)
Dr. Gary J. Minden
Dr. W. Perry Alexander
Motivation

• Security in Active Networks is complex
 – Many participating entities
 – Complex Threat Model

• Need for an acceptable short term solution
 – End-to-End Security
 – Hop-by-Hop Security

• Our Prototype

 “Design a framework for Hop-by-Hop security, maintaining enough flexibility to allow its use by a larger community”
Organization

• Components
• Design
• A Sample Topology using our prototype
• Discussion of Results
• Conclusions and Future Work
Prototype Components

- Component choices are motivated by
 - Layer where we should place security services
 - Network Layer - IPSec
 - Authentication framework possible in this layer
 - DNSSEC
 - Keying mechanism
 - IKE
The IPSec Framework

- AH/ESP Protocols
- Components
- Outbound Processing
- Inbound Processing
 - Transport
 - Tunnel

IP Hdr IPSec IP Hdr Upper Data ESP Trailer

Department of Electrical Engineering
and Computer Science
Framework Overview

- Three basic components
 - Auth Server (ASV)
 - DNSSEC
 - Keying Server (KSV)
 - Key Mgmt. Module (KMM)
 - Extension of the IKE daemon

- Protocol
 - Node Registration
 - IKE set-up + Authentication
 - IPSec SA Installation
Setting-up DNSSEC

• BIND 9.2
• DNSSEC server
 – Sign the Zone File
 – Send SIG RRs along with the Query Response
• Security Aware Resolver
 – Check the Signatures
 • Configure the trusted-keys
• Applications just have to check the RRSET_VALIDATE flag
Integrating IKE

• FreeSWAN Implementation
 – Enhanced “pluto” to use it as the Keying Server
 – Enhanced the “whack” command-set
 • Add/Delete Link
 • Add/Delete Group
 • Node Register
Information Packaging

- ISAKMP messages
- Payloads
 - 13 distinct types
- Payload Chaining
 - Using the “Next Payload” field
 - Last payload is 0
Notification Message

- Defined during an “Informational Exchange”
- Notification data depends on the Notify message type
- We define 4 new Notify Message types
 - `KEYEXCHANGE_REGISTER = 32769`
 - `KEYEXCHANGE_DELETE = 32770`
 - `KEYEXCHANGE_ACK = 32768`
 - `KEYEXCHANGE_ALARM = 32771`
KLIPS Processing

• Outbound processing using “eroutes”
 – Every physical interface has its own virtual counterpart
 • e.g. eth0 = ipsec0

• AH and ESP registered as new protocols for inbound processing
Installing Security Associations

• Multicast considerations
 – SPI cannot be Receiver-Specific anymore
 • Let the Key-Server distribute the SPI values
 – We cannot synchronize the Replay Counters
 • Keep Replay-Protection OFF
Multicast Key Distribution

• Problem areas in Secure Multicast
 – Group Key Management
 – Source Authentication
 – Member Revocation

• We focus on the member revocation problem
Logical Key Hierarchy (LKH)

• Secured Removal with Transmission and Storage Efficiency
• No more than one server required
• Benefits
 – Cost of storage and transmissions scale well
 – Subgroups possible
 – Resistant to collusion
Integrating LKH

• LKH Tree Design
 – All members at the leaf
 – We use a B+ tree
• Define a new ID for every multicast group member
• Update-messages are signed using the KSV private key
So… is our Security-Association “Secure” now?

NO!
Integrating the Packet Filter

• The Inbound SPD problem
 – Is this IP packet missing any AH/ESP headers?
 – Packets containing no IPSec headers (maybe spoofed??) are still accepted as valid

• IPChains
 ipchains -A input -d $ME -s $PEER -p 50 -j ACCEPT
 ipchains -A input -d $ME -s $PEER -p 51 -j ACCEPT
 ipchains -A input -d $ME -s $PEER -i $IF -j DENY

• Integrate this with IKE
Sample Topology

POLICY auth
TRANS-TYPE=AH
LIFE-SEC=100
LIFE-KBYTE=10000
END_POLICY

POLICY enc
TRANS-TYPE=ESP
LIFE-SEC=100
LIFE-KBYTE=10000
END_POLICY

GRP 224.0.1.5, POLICY=auth
MEMBERS
testnode2
testnode3
testnode5
testnode6
END_GRP

LINK
testnode1 <=> testnode3, KEY=0:0, POLICY=auth
testnode3 <=> testnode4, KEY=0:0, POLICY=auth
testnode1 => testnode2, KEY=0:0, POLICY=auth
testnode2 => testnode1, KEY=0:0, POLICY=enc
testnode3 => testnode6, KEY=0:0, POLICY=auth
END_LINK
Testing

– Testing DNSSEC

– We trust FreeSWAN to provide us reliable implementation of the Security Association

– We check if the receiving application received the packet properly after it was afforded IPSec protection
 • Simple client-server to test reachability
 • Log the packet filter output to check encapsulation

– Testing Secure Multicasts
 • Update Messages sent during Revocation
Timing Evaluation

• Some observations are expected
 – DNSSEC Timing ? 2.5 ms
 – Round-Trip Timing
 • Without IPSec ? 0.58 ms
 • With IPSec ? 1.2 ms
• More interesting evaluation is that of the key update channel
Key Update Channel Evaluation

• What do we want to compare?
• How we performed the test
 – Configure a multicast group containing all members
 – Register all these members to maximize the potential re-key messages
 – Revoke every member one-by-one to trigger any updates
 – Perform the same operation - this time using Explicit Keying
 – Repeat the tests for different orders of the B+ tree
Key Update Channel Evaluation

Multicast Member Revocation

- Explicit Keying
- LKH Order=1
- LKH Order=2
- LKH Order=3

Testnode Number

Time in ms
Summary

• In this thesis we have successfully built in and/or integrated
 – Support for Source Authentication (DNSSEC)
 – Authentication, Integrity, Confidentiality (IPSec)
 – A keying framework (IKE + LKH)
Future Work

- Configuration Mechanism lacks a GUI
- Optimize the multicast key distribution mechanism (LKH+, OFT)
- Extending the framework to work between KSV domains
 - Key management and SA arbitration