A Prototype Implementation for Dynamically Configuring Node-Node Security Associations using a Keying Server and the Internet Key Exchange

Suresh Krishnaswamy

Thesis Defense for the Degree of *Master of Science* in Computer Science University of Kansas

> Committee: Dr. Joseph B. Evans (Chair) Dr. Gary J. Minden Dr. W. Perry Alexander

Motivation

- Security in Active Networks is complex
 - Many participating entities
 - Complex Threat Model
- Need for an acceptable short term solution
 - End-to-End Security
 - Hop-by-Hop Security
- Our Prototype

"Design a framework for Hop-by-Hop security, maintaining enough flexibility to allow its use by a larger community"

- Components
- Design
- A Sample Topology using our prototype
- Discussion of Results
- Conclusions and Future Work

Prototype Components

- Component choices are motivated by
 - Layer where we should place security services
 - Network Layer IPSec
 - Authentication framework possible in this layer
 - DNSSEC
 - Keying mechanism
 - IKE

The IPSec Framework

- AH/ESP Protocols
- Components
- Outbound Processing
- Inbound Processing
- IPSEC Modes
 - Transport
 - Tunnel

Framework Overview

- Three basic components
 - Auth Server (ASV)
 - DNSSEC
 - Keying Server (KSV)
 - Key Mgmt. Module (KMM)
 - Extension of the IKE daemon
- Protocol
 - Node Registration
 - IKE set-up + Authentication
 - IPSec SA Installation

Setting-up DNSSEC

- BIND 9.2
- DNSSEC server
 - Sign the Zone File
 - Send SIG RRs along with the Query Response
- Security Aware Resolver
 - Check the Signatures
 - Configure the trusted-keys
- Applications just have to check the RRSET_VALIDATE flag

Integrating IKE

- FreeSWAN Implementation
 - Enhanced "pluto" to use it as the Keying Server
 - Enhanced the "whack" command-set
 - Add/Delete Link
 - Add/Delete Group
 - Node Register

Information Packaging

- ISAKMP messages
- Payloads
 - 13 distinct types
- Payload Chaining
 - Using the "Next Payload" field
 - Last payload is 0

7		15 		23
		Initiato	or Cookie	
		Respon	der Cookie	
Next payload	Major Version	Minor Version	Exchange type	Flags
		Messa	age ID	
		Morcao	ie Length	

(a) The ISAKMP header

(b) The ISAKMP Generic Header

Notification Message

- Defined during an "Informational Exchange"
- Notification data depends on the Notify message type
- We define 4 new Notify Message types
 - KEYEXCHANGE_REGISTER = 32769
 - KEYEXCHANGE_DELETE = 32770
 - KEYEXCHANGE_ACK = 32768
 - KEYEXCHANGE_ALARM = 32771

KLIPS Processing

- Outbound processing using "eroutes"
 - Every physical interface has its own virtual counterpart
 - e.g. eth0 = ipsec0
- AH and ESP registered as new protocols for inbound processing

Installing Security Associations

- Multicast considerations
 - SPI cannot be Receiver-Specific anymore
 - Let the Key-Server distribute the SPI values
 - We cannot synchronize the Replay Counters
 - Keep Replay-Protection OFF

Multicast Key Distribution

- Problem areas in Secure Multicast
 - Group Key Management
 - Source Authentication
 - Member Revocation
- We focus on the member revocation problem

Logical Key Hierarchy (LKH)

- Secured Removal with Transmission and Storage Efficiency
- No more than one server required
- Benefits
 - Cost of storage and transmissions scale well
 - Subgroups possible
 - Resistant to collusion

Integrating LKH

- LKH Tree Design
 - All members at the leaf
 - We use a B+ tree
- Define a new ID for every multicast group member
- Update-messages are signed using the KSV private key

So... is our Security-Association "Secure" now ?

NO!

Integrating the Packet Filter

- The Inbound SPD problem
 - Is this IP packet missing any AH/ESP headers?
 - Packets containing no IPSec headers (maybe spoofed??) are still accepted as valid
- IPChains

ipchains -A input -d \$ME -s \$PEER -p 50 -j ACCEPT ipchains -A input -d \$ME -s \$PEER -p 51 -j ACCEPT ipchains -A input -d \$ME -s \$PEER -i \$IF -j DENY

• Integrate this with IKE

Sample Topology

END LINK

Testing

- Testing DNSSEC
- We trust FreeSWAN to provide us reliable implementation of the Security Association
- We check if the receiving application received the packet properly after it was afforded IPSec protection
 - Simple client-server to test reachability
 - Log the packet filter output to check encapsulation
- Testing Secure Multicasts
 - Update Messages sent during Revocation

Timing Evaluation

- Some observations are expected
 - DNSSEC Timing ? 2.5 ms
 - Round-Trip Timing
 - Without IPSec ? 0.58 ms
 - With IPSec ? 1.2 ms
- More interesting evaluation is that of the key update channel

Key Update Channel Evaluation

- What do we want to compare ?
- How we performed the test
 - Configure a multicast group containing all members
 - Register all these members to maximize the potential rekey messages
 - Revoke every member one-by-one to trigger any updates
 - Perform the same operation this time using Explicit Keying
 - Repeat the tests for different orders of the B+ tree

Key Update Channel Evaluation

LKH ORDER = 3

Summary

- In this thesis we have successfully built in and/or integrated
 - Support for Source Authentication (DNSSEC)
 - Authentication, Integrity, Confidentiality (IPSec)
 - A keying framework (IKE + LKH)

Future Work

- Configuration Mechanism lacks a GUI
- Optimize the multicast key distribution mechanism (LKH+, OFT)
- Extending the framework to work between KSV domains
 - Key management and SA arbitration

