XML Classification

Swathy Giri Masters Thesis Defense Nov 15th 2004

> Committee: Dr.Susan Gauch Dr.John Gauch Dr.Douglas Niehaus

Outline

- Motivation
- Goals
- Related Work
- Data Sets
- System Design
- Evaluation Metric
- Evaluation Experiments
- Predicting Valuable Fields
- Conclusions
- Future Work

Motivation

- HTML is used to represent documents on WWW
 - Data + formatting information
- Organization and Querying
 - Automatic text-classification techniques- Ignore most formatting information
- Migration towards XML for data representation
 - Data + Metadata (Characteristics of data)
 - Metadata referred to as Tags, Field- data (content) within a Tag
- Need for Efficient Organization and Querying techniques

Goals

Develop a classifier for XML documents
 Individual fields

Weighted combination of fields

 Confirm our hypothesis that fields matter, some fields matter more than others

- Develop an algorithm to predict valuable fields a priori
- Validate the algorithm on previously unseen collection

Structure of an XML doc.

<?xml version = "1.0"?> <THESIS> <AUTHOR> Swathy Giri </AUTHOR> <TITLE> XML Classification </TITLE> <DETAILS> Classification of XML documents based on content </DETAILS> <DATE> November 15 2004 </DATE> </THESIS>

Related Work

- "Classification and Intelligent Search on XML " Norbert Fuhr, Gerhard Weikum
 - Considers structure of XML documents
 - Evaluation under progress
- "A belief networks-based generative model for Structured Documents. An application to the XML Categorization "- Ludovic Denoyer, Patrick Gallinari
 - Considers both structure and content

Related Work ..(Cont.)

- "XRules: An Effective Structural Classifier for XML Data" -Mohammed J. Zaki, Charu C. Aggarwal
 - Uses Structural rules

Data Sets

- 2 Data sets, manually created
- 160 documents per data set from 4 categories
- 40 documents/category
- Training 30 documents per category
- Testing- 10 documents per category
- Data Set 1
 - Collected from <u>www.bbc.com</u> and <u>www.rediff.com</u>
 - Categories- News, Business, Health and Science
 - Used for initial experiments

Data Sets ... (Cont.)

- Data Set 2
 - Information about companies from WWW
 - Categories- Hardware, Technology, Advertising and Cosmetics
 - Used for validation of our algorithms

Overall System Design

Training Phase -Goals

- Build representative vocabulary for each category
- Train on each field separately
- Train on document as a whole (baseline)

Training Phase- Splitter Module

 Collect sample text from training documents for each category, for each field

Training Phase..(Cont.)- Indexer Module

- Index each category's representative text
- Stores word/weight pairs per category for fast categorization

Figure 5: Indexing Process

Classification Phase- Goals

 Match new document to best category based on matches between document vocabulary and category vocabulary (created during indexing in the training phase)

Classification Phase- Splitter Module

Break each test document into fields for separate categorization

Classification Phase..(Cont.)- Classification Module

- Classifies each test document field separately
- Output: Category ID and weight for top N matches

Classification Result- Sample

Results of classification for a test document: cos_31.xml.cat Category ID Weight 1.000000 2 0.851478 4 3 0.633892 0.281207 1

Classification Phase ... (Cont.) - Fusion Module

- Goal- Combine the results of the per field categorizers to a single results list
- Weighted sum of categorizer results for each field per test document

weight_category_i = $\sum_{j=1}^{m}$ field_weight_j * category_weight_i

Evaluation Metric

- Classification result for each test document compared with 'truth'
- Position in which 'truth' value appears in the result list is located
- Percentage of test documents for whom truth value occurs as top match and in 2nd, 3rd and 4th is calculated.

Evaluation Experiments(DS1)

Experiment 1- Classification with single fields

- Hypothesis
 - Using certain fields will yield better results than using full-text for classification.
- Procedure
 - Classifiers trained on content of each of the fields
 - Test documents classified on each of the classifiers
- Baseline
 - Test documents classified using a full-text classifier

- Discussion
 - Fields that perform well- Details
 - Characteristics
 - Large number of tokens
 - Variability in content
 - Fields performing badly- Publication Date, Language, and Copyright
 - Characteristics
 - High percentage of numbers
 - Very few tokens
 - Repetition of a small set of words

- Experiment 2- Combination of fields for classification
 - Hypothesis
 - Using a combination of fields will perform better than full-text and individual fields for classification
 - weighting fields differently can also improve classification accuracy
 - Procedure
 - All possible weights (summing up to 1.0) generated
 - Every test document classified by each non-zero weighted classifier
 - Results combined using fusion module

- Baseline- Full-text classifier
- Results

# non-zero feilds	BaseLine	1 field (Details)	2 fields	3 fields	4 fields	5 fields
% accuracy at	90%	92.5%	92.5%	95 %	95 %	87.5 %
top match						

- Discussion
 - Combination producing best result with 3 fields
 - Details 0.6 Link - 0.2
 - LINK 0.2
 - Title 0.2
 - Adding 1 more field did not improve accuracy
 - Adding more than 1 field decreased accuracy

- Conclusions
 - Characteristics of well-performing fields
 - Large number of tokens
 - High variability in content
 - Less percentage of numbers compared to text

Predicting Valuable Fields

- Goals
 - Design an algorithm that would help to decide fields that would prove useful for classification
 - We have used a back-fit approach by trying to make the algorithm predict the fields helpful for Data Set 1
 - Key-Characteristics-# tokens, Variability and % of numbers

Predicting Valuable Fields - Algorithm

- Step1: Calculate # of tokens, Variability, and % of numbers for each field across all the documents in the collection using formulae:
 - # of tokens in Field T_i = Total number of words in T_i
 - Variability for Field T_i = Number of unique words in Field T_i

of tokens in T_i

% of numbers in Field T_i = Total number of numbers in T_i

Total number of characters in T_i

Predicting Valuable Fields - Analysis of DS1

		$\langle \rangle$							\frown
Row	Characteristics	PubDate	Copyright	Creator	Link	Title	Language	Description /	Details
1	# of tokens	242	26	241	311	1554	5496	6319	135929
2	Normalized Score # of tokens	0.0016	0.0002	0.0016	0.0021	0.0104	0.0366	0.0421	0.9055
3	Variability	0.128	0.077	0.008	0.013	0.714	0.075	0.378	0.172
4	% of numbers	37.23%	/ 0.00%	0.00%	0.00%	0.64%	18.20%	0.79%	0.52%
		\bigcirc							\searrow
5	# tokens Score	0.01	0.00	0.01	0.02	0.08	0.29	0.34	7.24
6	Variability Score	4	3	1	5	8	2	7	б
7	% of numbers Score	1	8	8	8	4	2	3	5
8	Total Score	5.04	11.00	9.04	13.05	12.25	4.88	11.01	32.73

Step2: Calculate Normalized # of tokens
 score by using formula

of tokens score T_i=# of tokens for field T_i * # of Fields

 $\sum_{i=1}^{n} \# \text{ of tokens } T_i$

(Scores will be in the range 1 to # of fields)

 Step3: Calculate Variability score and % of numbers score by using formulae

Predicting Valuable Fields - Algorithm..(Cont.)

- Variability score- rank order the fields by variability and score the most variable field as " 8" and the least variable field as "1"
- % of numbers score- rank order the fields by their % of numbers and score the highest percentage as "1" and the lowest as "8".

Predicting Valuable Fields - Analysis of DS1

Row	Characteristics	PubDate	Copyright	Creator	Link	Title	Language	Description	Details
1	# of tokens	242	26	241	311	1554	5496	6319	135929
2	Normalized Score # of tokens	0.0016	0.0002	0.0016	0.0021	0.0104	0.0366	0.0421	0.9055
3	Variability	0.128	0.077	0.008	0.013	0.714	0.075	0.378	0.172
4	% of numbers	37.23%	0.00%	0.00%	0.00%	0.64%	18.20%	0.79%	0.52%
		$\langle \rangle$							$\langle \ \rangle$
5	# tokens Score	0.01	0.00	0.01	0.02	0.08	0.29	0.34	7.24
6	Variability Score	4	3	1	5	8	2	7	б
7	% of numbers Score	1	8	8	8	4	2	3	5
			/						
8	Total Score	5.04	11.00	9.04	13.05	12.25	4.88	11.01	32.73
9	Relative Score	0.05	0.11	0.09	0.13	0.12	0.05	0.11	0.33

- Step4: Calculate Total score and Relative score using formulae
 - Total score for T_i = 3 * # of tokens score + Variability score + % of numbers score
 - **Relative score** for $T_i = Total Score for T_i$

 $\sum_{i=1}^{n}$ Total score for T_i

Predicting Valuable Fields - Algorithm..(Cont.)

- Step5: Calculate the threshold (TH) value using formula
 - TH (for relative score) = $\sum_{i=1}^{n}$ Total score for T_i

of fields * 100

- Apply it to the **Relative score** of every field to determine whether or not the field will be included for classification.
- Step6: Finally, calculate the Weights for each field selected in the previous step, using the formula

Weight $T_i =$ Relative score T_i

Sum of Relative scores of fields above TH

Predicting Valuable Fields - Analysis of DS1

•									
Row	Characteristics	PubDate	Copyright	Creator	Link	Title	Language	Description	Details
1	# of tokens	242	26	241	311	1554	5496	6319	135929
2	Normalized Score # of tokens	0.0016	0.0002	0.0016	0.0021	0.0104	0.0366	0.0421	0.9055
3	Variability	0.128	0.077	0.008	0.013	0.714	0.075	0.378	0.172
4	% of numbers	37.23%	0.00%	0.00%	0.00%	0.64%	18.20%	0.79%	0.52%
5	# tokens Score	0.01	0.00	0.01	0.02	0.08	0.29	0.34	7.24
6	Variability Score	4	3	1	5	8	2	7	6
7	% of numbers Score	1	8	8	8	4	2	3	5
		\square							\frown
8	Total Score	5.04	11.00	9.04	13.05	12.25	4.88	11.01	32.73
9	Relative Score	0.05	0.11	0.09	0.13	0.12	0.05	0.11	0.33
10	Weights	\° /	0	0	0.2	0.2	0	0	0.0

Table 7: Analysis of characteristics of fields in DS1

Validating the algorithm on DS2

DS2 has 10 fields and documents have been selected from 4 different categories, information about companies

(Name, url, HQ Location, BRLocation, Product, Service, Date Visited, Creator, HQPhone, BR Phone)

• Fields Selected and weights using the algorithm :

Product	Service		
0.5	0.5		
Best combination using	Brute-force:		
Product	Service		
0.6	0.4		
0.4	0.6		

Validating the algorithm on DS2

 Accuracy obtained with combination generated by the algorithm

82.5%

- Accuracy obtained with Baseline(full-text)
 65 %
- Accuracy obtained with combinations generated by brute-force algorithm 85 %

Validating the algorithm on DS2

Thus, performance of our system is

- 25 % better (17.5 % absolute improvement) than our baseline system
- within 0.03 % (2.5 % absolute degradation) of the best combination found by the brute-force method

Conclusions

- Selected fields can be used to improve classification
- Characteristics of useful fields have been identified
- Algorithm to identify useful fields presented

Future Work

Extension to multiple Schemas

- Normalizing participating schemas
- Automating field selection
 - Key-pieces available
- Further Validation
 - Larger data sets
 - Larger schema
 - Real-world data sets