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Abstract 

 

As the number of XML documents on the WWW grows, there arises a need for a 

classification system for these XML documents that would make organization and 

querying more effective. This is the goal of our system that classifies XML documents 

based on their content. Experiments that evaluate the results of the classifier and an 

algorithm that can be used as the basis for classification for a previously unseen XML 

data set have also been outlined. Our system is shown to yield better results than a full-

text classifier. 
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Chapter 1- Introduction 
 

 1.1. Motivation 

 

The eXtensible Markup Language (XML) is becoming one of the most convenient ways 

to represent and transport data on the World Wide Web (WWW). Some of the features of 

XML that are causing such interest are: its self-describing nature; its capability to 

represent database schemas or object-oriented hierarchies; and the separation of 

formatting specifications from actual data. 

 

Currently, the bulk of documents on the WWW are in HTML. Automatic text-

classification techniques are used to help the organization and querying of these 

collections. This migration towards XML for data representation suggests that we might 

soon encounter a huge collection of XML documents on the Web. Thus, there arises the 

need to formulate techniques to classify these documents so that search for information 

on the Web can be made more efficient and effective.  

 

Since XML documents are also text documents, a natural tendency would be to use 

standard information retrieval methods for classification in which each document is 

treated as a bag of words [1]. Alternative classification techniques consider only the 

structure of the XML document and are based on the premise that the presence of a 

particular kind of structural pattern in an XML document is related to its likelihood of 

belonging to a particular class (category) [1]. These methods ignore the content of the 

fields altogether. Thus, they are appropriate for classifying documents that differ by 

 
 
 

 



    

schema rather than content. In order to work, they also require that field names be 

meaningful and be shared across schemas. 

 

In our approach, we have built a system that explores the use of XML-tagged data, but 

we classify on the basis of the tag contents (we have referred to the tag contents in this 

document as fields) rather than the structure. This system would work for the 

classification of XML documents that are marked up to the same schema or similar 

schemas that can be migrated to a common subset. 

 

1.2 Goals 

 

The goals of this project are,  

1) To develop a system that aids in performing classification based on  

a. Individual fields 

b. Weighted combination of fields 

2) Confirm our hypothesis that when classifying XML documents, fields matter and 

some fields matter more than others.  

3) Arrive at a heuristic that can be used to select on weight fields for classification  

a priori. 

4) Validate the field-weighting heuristic on previously unseen collection of XML 

documents. 

 

 
 
 

 



    

Chapter 2- Related Work 

In this chapter, we review existing work on plain text classification and XML 

classification. Section 2.1 outlines existing text categorization algorithms. Section 2.2 

describes the basic features and benefits of XML documents and Section 2.3 provides a 

brief description of work that has been conducted in the XML classification domain. 

 

2.1. Text Categorization 

 

Text Categorization is the assignment of text documents to predefined categories/classes. 

There are 2 phases involved in this process: training and classification. In the training 

phase, sets of documents belonging to each category are used to create representations of 

the categories. The classification phase deals with comparing these representations with a 

new document in order to assign the new document to one or more categories. There are 

a wide range of algorithms that can be used to perform text categorization, including 

support vector machines (SVM) [8], k-nearest neighbor classification (kNN) [4], neural 

networks [7], linear least squares fit mapping (LLSF) [19], naïve bayes classification 

(NB) [5] and the vector space method [9]. [3] compares the performance of all these 

classification systems and concludes that SVM and kNN significantly outperform all 

other classifiers and NB underperforms all other classifiers. 

 

In kNN classification [4], given a test document the system finds the k nearest neighbors 

among the training documents. A similarity score between a document and all other 

documents are calculated. These scores are sorted by values and the top k matches are 

 
 
 

 



    

found. The categories to which each of the top k matches (neighbors) belong are already 

known. If more than one neighbor belongs to the same category then their scores are 

added up to get an overall score for the category. Finally these scores for each category 

are ranked to obtain an estimate of the document belonging to each of the categories. 

 

A typical NB Classifier [5] uses the joint probabilities of words and categories to 

estimate the probabilities of categories given a document. It makes an assumption that the 

conditional probability of a word given a category is assumed to be independent from the 

conditional probabilities of other words given that category. 

 

[7] describes a neural network approach to classification, wherein text is first 

transformed into a feature vector representation. This process requires an appropriate 

choice of features to use in feature vectors. Feature vectors that are derived from relevant 

texts of a particular category form the training examples for that category. Next, an 

automated learning algorithm learns the necessary association knowledge from the 

training examples to build a classifier for each category. 

 

SVM is a machine-learning algorithm that treats learning as an optimization problem [8]. 

Every document used for training is represented as a vector. For each category, each 

training document either belongs to its positive class or negative class. The learner then 

attempts to find a boundary that achieves the best separation between these two classes. 

When a new document arrives, it is categorized by calculating its distance from the 

boundary. 

The linear least squares fit mapping [19] attempts to automatically learn a multivariate 

 
 
 

 



    

regression model from a training set of documents and their categories. The training data 

are represented as input/output vectors representing words/categories respectively and a 

linear least-square fit is solved on these training pairs to obtain a matrix of word-category 

regression coefficients. A document that is to be categorized utilizes these coefficients to 

obtain a list of weighted categories to which it belongs. 

 

In our project, we make use of the classifier created for the KeyConcept project [9]. It 

uses a vector space model for classification. In the vector space approach, a document is 

treated as a vector of weighted terms. The weight of each term in a document is 

calculated by using the formula  

)/log( kjkjk DOCFREQnFREQWEIGHT ×=  [10]  

Where, WEIGHTik  - is the weight of term k in document i, 

FREQik – is the frequency of the word k in document i, 

n- is the number if documents in the collection, and 

DOCFREQk – is the number of documents in which k occurs. 

This function embodies the intuitions that (i) the more often a term occurs in a document, 

the more it is representative of its content, and (ii) the more documents a term occurs in, 

the less discriminating it is [11]. 

Thus, for each category, a set of pre-classified documents is used during the training 

phase to determine words that are representative of the category. Essentially, each 

category is represented by a vector that is the centroid of the training documents for that 

category. When a new document arrives, it is assigned to one or more of the categories 

depending on the terms it contains. The similarity between the document vector and the 

category centroids are calculated using the cosine similarity measure equation and the 

  
 
 



    

document is assigned to the N most similar categories. 

 

2.2. XML - Basics and Benefits 

XML is a standard, simple, self-describing way of encoding both text and data so that 

content can be processed with relatively little human intervention and exchanged across 

diverse hardware, operating systems, and applications [12]. XML was originally 

developed from the need to improve the functionality of web technologies through the 

use of a more flexible and adaptable means to identify information [13]. It is also known 

as a meta-language, since it holds both information (data) and description about the 

information (meta-data). These characteristics make XML a beneficial tool in many 

applications. 

2.2.1. Structure of XML documents 

 

 An XML document contains text and format markup. The format markup can be either 

plain fields or fields containing 1 or more attributes. Figure 1 shows a sample XML 

document. 

 
<company_info> 
<location>Lawrence,KS</location> 
<phone type=”voice”>785-345-6785</phone> 
<type> Computer Hardware </type> 
</company_info> 

 

 

 

 Figure 1- A sample XML document 

 

  
 
 



    

  
 
 

An XML document should conform to the well formedness constraints [14].  This means 

that in order to be well-formed, the XML document should conform to the XML syntax 

rules that require them to follow proper nesting, have a unique opening and closing field 

that contains the whole XML document, and follow proper case for all the fields (XML is 

case sensitive). A valid XML document is one that is well formed as well as conforms to a 

DTD (Document Type Definition) or a XML Schema. These contain a set of rules that 

define what fields can appear in a XML document and also the structure of XML 

documents.  

2.2.2. Benefits of XML 

[13] outlines the benefits of XML that make it an effective solution for the design of a 

wide range of applications and web services. 

 Simplicity 

Information coded in XML is easy to read for humans and understand, and easy 

for computers to process. 

 Openness  

XML is a W3C standard, endorsed by software industry market leaders. 

 Extensibility  

There is no fixed set of fields. New fields can be created, as they are needed.  

 Self-description  

In traditional databases, data records require schemas set up by the database 

administrator. Because they contain meta-data in the form of fields and attributes, 

XML documents can be stored without such definitions XML also provides a 



    

  
 
 

basis for author identification and versioning at the element level. Any XML field 

can possess an unlimited number of attributes such as author or version. 

 Supports multilingual documents and Unicode  

XML is appropriate for the international applications. 

 Facilitates the comparison and aggregation of data  

The tree structure of XML documents allows documents to be compared and 

aggregated efficiently, element-by-element. 

 Can embed multiple data types  

XML documents can contain any possible data type - from multimedia data 

(image, sound, video) to active components (Java applets, ActiveX). 

 Can embed existing data  

Mapping existing data structures like file systems or relational databases to XML 

is simple. XML supports multiple data formats and can cover all existing data 

structures. 

2.3. XML Classification 

Due to the increasing proportion of XML documents on the web, attempts are being 

made to design categorization algorithms for XML documents in order to make 

information organization and search more effective. In this section we review a few 

techniques that have been developed for the classification of XML documents. 

 

[1] proposes a classification technique using hierarchical taxonomies. These are 



    

  
 
 

essentially concept hierarchies that arrange concepts into a tree-like structure for better 

abstraction [16]. Each node in the tree would be a priori populated with a number of 

prototypical documents derived from user bookmarks, surf trails, and other profiling 

information. These documents serve as training data for the classifier. The project follows 

a two-step paradigm, known as focused crawling, that interleaves crawling and 

classification. A focused crawl starts with the training documents for each of the 

taxonomy’s categories as seeds and then traverses a small fraction of the Web linked 

from these training documents. The collected documents are then classified and either 

added to one or more categories when the classification test is positive or discarded if no 

string match is found. 

 

When a new document arrives, a top-down procedure is used for classification. Starting 

from the root of the taxonomy, for each category considered a support vector machines 

classifier using a supervised learning algorithm, is invoked and it returns a yes-or-no 

decision and a confidence measure of the decision. When the document fits with more 

than 1 category, either the one with highest confidence measure is chosen or the 

document is classified into multiple categories. Then the classification proceeds with the 

children of the categories to which the document is added. 

 

This project is implemented in a prototype focused crawler called BINGO! (for 

bookmark-induced gathering of information). Experiments to evaluate the benefits of the 

system for classifying XML documents are being carried out. 

 

A belief networks-based generative bayesian model is used by [18] to categorize XML 



    

  
 
 

documents. This technique considers both the structure and the content information 

contained in XML documents. The approach represents a structured document as a 

Directed Acyclic Graph (DAG) wherein each node of the graph represents a structural 

entity of the document, and each edge represents a hierarchical relation between the two 

entities (for example, a paragraph is included in a section, two paragraphs are on the 

same level of the hierarchy, etc). This representation leads to the existence of three types 

of information in a document: the logical structure represented by the arcs of the DAG, 

the label information, and the textual information.  A Bayesian network model is 

constructed with the components for computing the structural and textual probability.  A 

final belief network is built by combining both the components.  A machine learning 

approach is used and the model parameters for each category are learned from a pre-

classified training set of representative documents. This model is then used to predict the 

probabilities that a new document will belong to a particular category and the best match 

is chosen. This model was originally designed for documents belonging to a single DTD 

but has been slightly modified to classify documents from more than 1 unknown DTD’s. 

The researchers evaluated their system using the webKB collection [17] of documents 

and transformed them into XML documents belonging to 6 categories and have used a 

naïve bayes model as a baseline system. They have obtained an increase of approximately 

3% by using the belief network classifier.  

 

[20] discusses a structural classifier for XML documents termed as XRules. A set of 

structural rules are constructed in the training phase by identifying a set of representative 

structural patterns for each category. It is based on the premise that the presence of a 

particular kind of structural pattern in an XML document is related to its likelihood of 



    

  
 
 

belonging to a particular category. During classification, all the rules relevant to each 

new document are identified and the statistics from all the matching rules are combined 

to predict the most likely category for each document. This classifier has been evaluated 

for both real (constructed from Log reports) and synthetic (constructed by a data 

generation program simulating website browsing behavior) data sets and has been 

compared to a traditional vector space classifier and an association based classifier [21]. 

They have shown that XRules outperforms both the classifiers; its accuracy is 2-4 % 

better when evaluated for the real datasets and about 20% better for synthetic datasets. 

 

 

 

 

 

 

 

 

 

 

 



    

  
 
 

Chapter 3- Implementation Details 

 

In this section, we review our pilot work and provide implementation details for our 

project. Section 3.1 provides an overview of the KeyConcept project, that we have 

adapted according to our requirements, and Section 3.2 explains the system architecture 

in detail.   

 

3.1. KeyConcept Overview 

 

As the number of available Web pages grows, users experience increasing difficulty 

finding documents relevant to their interests. One of the underlying reasons for this is that 

most search engines find matches based on keywords, regardless of their meanings. To 

provide the user with more useful information, we need a system that includes 

information about the conceptual frame of the queries as well as its keywords. This is the 

goal of KeyConcept, a search engine that retrieves documents based on a combination of 

keyword and conceptual matching. Documents are automatically classified to determine 

the concepts to which they belong. When a query is given, the concept to which it 

belongs can either be specified explicitly or can be determined by a user profile. 

 

3.1.1. KeyConcept Categorizer 

Figure 1 shows the indexing process in KeyConcept. It is comprised of two phases: 

classifier training and collection indexing. During classifier training, a fixed number of 

sample documents for each concept are collected and merged, and the resulting 



    

superdocuments are preprocessed and indexed using the vector space model. This 

essentially represents each concept by the centroid of the training set for that concept. 

During collection indexing, new documents are indexed using a vector-space method to 

create a traditional word-based index. Then, the document is classified by comparing the  

 

 

Figure 2: Indexing in KeyConcept 

 

document vector to the centroid for each concept. The similarity values thus calculated 

are stored in the concept-based index. 

 

In our project, we have extended the KeyConcept categorizer to classify XML documents 

using all or some fields or ignoring the XML structure altogether. These extensions were 

implemented as a set of wrappers around the KeyConcept classifier.  

 

 

 

  
 
 



    

  
 
 

 

3.2. Implementation 

3.2.1. Overview 

 

The basic hypothesis of our project is that we might obtain better results when we 

classify XML documents paying attention to the contents of some fields more than the 

others. To test this hypothesis, we have designed a XML classifier that first splits the 

XML documents during the training phase into N documents, where N is the number of 

fields in a document, in which each of the documents contains the content of a single 

field from the main XML document. The next step in the training phase is to train the 

classifier and build indexes with the content from each of the fields separately. The 

indexes created in this phase are then used to classify test documents in the classification 

phase, after they go through the same splitting process as the training documents. As a 

baseline system for our experiments, we classified the full XML documents using the 

unmodified KeyConcept classifier, ignoring the document structure grouping all content 

together. Figure 3 shows the overall system architecture.  

 

 

 

 

 

 

 



    

 

 

Figure 3: System Architecture 

 3.2.2. Training phase 

Splitter Module  

This module splits the fields in the document and creates a new document for every field 

in the main XML document. The module has been written in Perl and uses a special 

XML module in Perl called XML: TWIG. It takes as input the name of a directory that 

contains one sub-directory per category containing the XML training documents for that 

category. The module creates a new directory for every field per category containing 

training documents that contain the data for that particular field alone. These new training 

directories are later used by the indexer module, to create separate indexes of each for the 

fields. 

 

  
 
 



    

Figure 4: Splitting Process 

 

Figure 4 represents the splitting process accomplished by the splitting module. Each 

XML document contains a subset of m fields; hence the resulting directories for each 

field may or may not have a document depending on whether or not that particular field 

was present in the original XML document. 

 

  
 
 



    

  
 
 

 

Indexer Module 

 

We have used the indexer designed for the KeyConcept project for this module. 

KeyConcept uses the vector space model discussed in section 2.1 for classification of 

documents. The training documents belonging to the same category are combined into a 

superdocument, which is considered representative of documents for that category. The 

result of the indexing process is an inverted index that stores words extracted from the 

input files and also stores statistical information about them.  There are three files that 

combine to form an inverted index of a collection of documents. They are the dictionary 

file (dict), the postings file (post) and the documents file (docs). The dictionary file stores 

the word, its IDF (inverse document frequency) and a pointer to the first occurrence of 

the word in the postings file. The postings file stores the number of times a word has 

occurred in a document. The documents file stores the mapping between the document id 

and each word contained in the dictionary and the postings file. Finally we have 

normalized the results by the length of the document (stored in the documents file). 

 

The inputs to the indexer are the output files from the splitter module. Figure 5 shows the 

diagrammatic representation of the inputs and outputs for the indexer module. 

 

 

 

 



    

 

Figure5: Indexing Process 

 

 

 

  
 
 



    

 

3.2.3. Classification phase 

Splitter Module 

The splitter module for the classification phase is the same that is used in the training 

phase with the only difference being that full XML test documents are given as input to 

the splitter and it splits them in the same way as the training documents, creating a new 

file for every field in each of the test documents. The output documents from this module 

are used for classification. 

 

 

Figure 6: Splitting Process –test documents 

 

 

 

 

  
 
 



    

 

 

Classification Module 

This module makes use of the inverted index created on a per field basis in the training 

phase to classify the split test documents. This module has to be invoked for the set of 

test documents for each field and the path of the appropriate inverted index also has to be 

specified. The new documents are then compared to the inverted index and the top k 

concepts and their weights are determined for every test document. The output of the 

classifier module is a file containing the list of Category ID’s and the corresponding 

weights per test document. This list is sorted by weight to obtain the most relevant 

categories. k can be specified to the module depending on how many concepts with 

which we would like a document to be associated.  

 

 

  
 
 



    

  
 
 

 

 

Fusion Module 

The fusion module is used in our project to perform a weighted combination the results 

obtained from the classification module. This is done to see if combinations of the results 

obtained from a subset of fields yield a better result for the classification problem than 

classifying with respect to each of the fields in isolation. The inputs to the fusion module 

are the result files from the classification module, a path_configuration file that contains 

the list of directories that contain the results from classification with respect to each field, 

and a weights_configuration file that has a list of possible weights that need to be applied 

to the classification results with respect to each field. The output of this module is also a 

list of category ID’s and weights for every test document sorted by weights. 



    

 

 Figure8: Fusion Process 

  
 
 



    

  
 
 

 The combined weights for each category i are obtained by performing the following 

calculation: 

 

combined_weight i =  (W1 * field1_weight i ) + (W2 * field2_weight i ) + 

…………………. + (Wm * fieldm_weight i ) 

Where, 

 W1, W2,…….,Wm are weights given to each of the m fields in the schema. 

 

Normalization of the weights is carried out on a per document (field) basis before 

combining them by dividing them by the top weight of every result file from the 

classification module. Thus, each field has a contribution of 0…1.0. 



    

  
 
 

Chapter4- Experimental Procedure and Results 

Section 4.1 of this chapter deals with the data sets used in our project. The evaluation 

metric is explained in Section 4.2 and Section 4.3 outlines the evaluation experiments 

performed on data set 1.  

 

4.1. Data Sets 

 

We have created two data sets, each containing a set of 160 XML documents, each using 

a consistent but distinct XML schema. One of these sets has been used for 

experimentation and the other for validation purposes. The documents in each set belong 

to 4 different categories, with 40 documents per category. 30 documents per category 

have been used for training and 10 documents from each category have been used for 

testing. 

 

Data set 1 (DS1) contains news articles collected from two websites, www.bbc.com and 

www.rediff.com. The schema for this data set is shown in Figure 9. We created the 

schema to capture the important aspects of the content from these websites. News, 

Business, Science and Health are the categories from which we downloaded between 

January 2003 to March 2003. These documents were then manually annotated with the 

tags from the schema that were appropriate for the documents. Figure 10 shows a sample 

document from this data set. DS1 was used in our initial experiments to determine which 

fields were most useful for categorization. 



    

  
 
 

 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified"> 
  <xs:element name="rss"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element ref="pubdate"/> 
        <xs:element ref="copyright"/> 
        <xs:element ref="creator"/> 
        <xs:element ref="language"/> 
        <xs:element maxOccurs="unbounded" ref="item"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="pubdate" type="xs:string"/> 
  <xs:element name="copyright" type="xs:NCName"/> 
  <xs:element name="creator" type="xs:string"/> 
  <xs:element name="language" type="xs:string"/> 
  <xs:element name="item"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element ref="title"/> 
        <xs:element ref="description"/> 
        <xs:element ref="link"/> 
        <xs:element ref="details"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="title" type="xs:string"/> 
  <xs:element name="description" type="xs:string"/> 
  <xs:element name="link" type="xs:anyURI"/> 
  <xs:element name="details" type="xs:string"/> 
</xs:schema> 
 
 

Figure 9: XML schema for DS1 

 

 

 

 



    

  
 
 

 

<rss> 
<pubdate>3rd September 2003</pubdate> 
<copyright>Rediff</copyright> 
<creator>Swathy Giri</creator> 
<language>Eng-United States</language> 
<item> 

<title>Budget opens party battle lines</title> 
<description>Gordon Brown is set to defend Budget plans to shed 40,000 Whitehall jobs 

so he can provide more schools cash.</description> 
<link>http://news.bbc.co.uk/go/click/rss/0.91/public/-

1/hi/uk_politics/3521716.stm</link> 
<details>Delivering his eighth Budget, the chancellor froze a range of taxes and claimed 

the UK was enjoying its longest period of economic growth since the Industrial Revolution.  
People over 70 will get a one-off Â£100 to help cope with council tax rises, while 
primary schools each get Â£55,000 for school improvements and secondary schools get 
Â£180,000. </details> 

</item> 
<item> 
        <title>Oil prices surge to 13 year high</title> 
        <description>The price of crude oil has increased to its highest level since October 1990 as 
terrorism fears continue to worry the market.</description> 
        <link>http://news.bbc.co.uk/go/click/rss/0.91/public/-/1/hi/business/3521952.stm</link> 
       <details> US crude oil prices have reached their highest level since 1990 as ongoing global 
terrorism fears continue to put an upward pressure on the market.  
With last week's events in Spain still fresh in the mind of traders, the price of New York's 
benchmark light sweet crude surged 70 cents to $38.18. This is the highest figure since 16 
October 1990 - more than 13 years ago in the run up to the first Gulf War. The upward pressure is 
also being driven by concern of low US stocks. Production targets It is at this time of the year that 
America usually stockpiles both crude oil and petrol ahead of its main consumption season in the 
summer. Yet a number of recent official US government reports have said that stocks are 
currently at historic lows.  
       </details>  
  </item> 
</rss> 

Figure 10: A sample XML document from DS1 

 

Data set 2 (DS2) contains information about four different categories of companies on the 

WWW, i.e., Hardware, Technology, Advertising and Marketing, and Cosmetics. We 

created the schema for this data set, shown in Figure 11, to capture important aspects of 

the content. As in the case of DS1, the web pages collected about companies in these 

categories were manually annotated with XML tags. Figure 12 shows a sample XML 



    

  
 
 

document from DS2. We used DS2 for validation of the algorithms we developed based 

upon experiments with DS1. 



   
<?xml version="1.0" encoding="UTF-8"?> 

 

  
 
 

Figure 11: XML schema for DS2 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified"> 
  <xs:element name="company"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element ref="name"/> 
        <xs:element ref="url"/> 
        <xs:element ref="headquarters"/> 
        <xs:element ref="branch"/> 
        <xs:element ref="products"/> 
        <xs:element ref="services"/> 
        <xs:element ref="datevisited"/> 
        <xs:element ref="creator"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="name" type="xs:string"/> 
  <xs:element name="url" type="xs:anyURI"/> 
  <xs:element name="headquarters"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element ref="location"/> 
        <xs:element ref="phone"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="branch"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element ref="location"/> 
        <xs:element ref="phone"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="products"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element maxOccurs="unbounded" ref="product"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="product" type="xs:string"/> 
  <xs:element name="services"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element maxOccurs="unbounded" ref="service"/> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
  <xs:element name="service" type="xs:string"/> 
  <xs:element name="datevisited" type="xs:string"/> 
  <xs:element name="creator" type="xs:string"/> 
  <xs:element name="location" type="xs:string"/> 
  <xs:element name="phone" type="xs:string"/> 
</xs:schema> 
 



    

  
 
 

<company> 
 <name>Allegis Corp. </name> 
 <url>http://www.allegiscorp.com/jsp/displayTypes.jsp?cat=HVAC--Hardware</url> 
 <headquarters> 
   <location>Allegis Corporation,P.O. Box 49007,Minneapolis, MN 55449  
</location> 
  <phone>1-866-378-7550</phone> 
  </headquarters> 
  <products> 
   <product>Ball Bearing Drawer Slides </product> 
  <product>Casters </product> 
  <product>Door Assists </product> 
  <product>Folding Steps </product> 
  <product>Handle </product> 
  <product>Heavy Duty Drawer Slides </product> 
  <product>Hooks </product> 
  <product>Latches - Hasps  </product> 
  <product>Multi-Point Handles and Latches  </product> 
  <product>Non-Skid Abrasive  </product> 
  <product>Quarter Turn Latches  </product> 
  <product>Rubber Feet  </product> 
 </products> 
 <services> 
  <service>Engineering Application Assistance</service>  
  <service>Reusable Packaging </service> 
  <service>Kitting</service> 
  <service>MRP Programs </service> 
  <service>Electronic Data Interchange (EDI) </service> 
  <service>Same Day Shipments </service> 
  <service>In-Plant Process Management</service>  
  <service>Product Engineering Capabilities </service> 
  <service>JIT/Kanban System </service> 
  <service>Potential In-Plant Personnel </service> 
  <service>Monthly Summary Invoicing  </service> 
  <service>Consolidated Deliveries </service> 
  <service>Electronic Funds Transfer </service> 
  <service>Parts Standardization  </service> 
 </services> 
 <datevisited>09th August 2004</datevisited> 
 <creator>Swathy Giri</creator> 
</company> 
 

Figure 12: Sample XML document DS2 

 

 



    

  
 
 

4.2. Evaluation metric 

 
We evaluated the classifier accuracy by comparing the classifier results for each test 

document with ‘truth’. The category from which the test document was selected should, 

ideally, be the category assigned to it by the classifier. The classifier produces a list of 

category id’s and weights, sorted in decreasing order of weights. Since the total number 

of categories in our experiment is 4, this list can contain a maximum of 4 values. The 

evaluation algorithm compares the truth-value for each document to the classifier result 

and finds the position at which the truth-value appears. Our evaluation metric calculates 

the percentage of test documents for whom the classifier has the truth-value as the top 

match, and in 2nd, 3rd and 4th. These values are represented cumulatively, reporting 100% 

for the 4th place (assuming all documents are classified). 

 

4.3. Evaluation experiments with DS1 

 

The goal of this experiment was to evaluate the effect of different XML fields on 

classification accuracy. In order to evaluate the hypothesis that some fields provide better 

classification than others, we compared the classification accuracy of a classifier trained 

on individual fields with one that ignored the XML markup altogether. Thus, the baseline 

for our experiments was a classifier trained and tested on the full-text documents. Once 

we had determined the relative accuracy of classifiers using individual fields, we then 

evaluated weighted combinations of the fields. 

 

 



    

  
 
 

 

4.3.1. Experiment 1- Classification with single fields 

 

Hypothesis: Classifying based on the contents of certain fields individually will provide 

better results than classifying on the contents of the whole document, and fields will vary 

on how well they can be used for classification. 

Procedure:  We classified the test documents (10 documents per category) from DS1 

using classifiers trained on contents of each of the fields (30 documents per category 

from DS1) separately. The results obtained from the classifier were compared to our 

baseline system. 

Setting up a baseline: We chose the vector space categorizer developed for the 

KeyConcept (KC) project [9] as our baseline system. The KeyConcept indexer was 

trained using the training documents from DS1 (30 per category) after which test 

documents from DS1 were classified. Full-text documents were used for training and 

classification for the baseline. 

Results: Table 1 summarizes the results for each classification run and figure 13 provides 

a graphical representation of the results.  



    

Table1: Classification accuracy for full-text vs individual fields 

Individual Fields 
 

Fields 

 

ALL Pub 

date 
Copyright Creator Link Title Language Description Details 

% matches at #1 90 25 25 27.5 27.5 55 65 70 92.5 

%matches at # 2 97.5 65 52.5 50 52.5 72.5 65 90 97.5 

%matches at # 3 97.5 77.5 72.5 75 72.5 77.5 67.5 97.5 97.5 

%matches at # 4 100 100 97.5 100 97.5 80 100 100 100 
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Figure 13: Classification accuracy for full-text vs individual fields 

  
 
 



    

  
 
 

 

Discussion: From this, we conclude that a single field, Details (92.5% accuracy), 

performs as well or better than the full-text of the document (90%). We observe great 

variability between fields. The worse performing fields, for example, Publication Date, 

Language, and Copyright, produce only 25% accuracy at the top match. The Details field 

has a large number of tokens, the highest number of tokens compared to all other fields in 

DS1, variability in the content from one document to another, and a very low percentage 

of numbers compared to text. In contrast, fields that yielded poor classification results 

contained a higher ratio of numbers/date, or had little or no variability in their contents. 

The Title, Link and Description fields did not perform as well as the Details fields, since 

they had fewer tokens, however they did better than the other fields and we relate this to 

variability in their content.  

4.3.2. Experiment 2- Classification with combination of fields  

 

Hypothesis: Classifying documents based on a combination of fields can yield a better 

result than classifying documents on a single field separately. Weighting fields differently 

can also improve classification. 

Procedure: To verify this, we generated all possible combinations of field weights 

ranging 0.0 to 1.0 in steps of 0.2, that summed up to a total weight of 1.0 were generated. 

Each test document was then classified by each non-zero weighted classifier, and the 

results were combined using the fusion module discussed in Section 3.2.3. 

Setting up a baseline:  We used the same vector-space classifier as in Experiment 1 as a 

baseline for this experiment. 



    

Results: Table 2 shows the evaluation of the top matches from the results obtained for 

the experiment. Combinations that provided the highest accuracy among all combinations 

with 2, 3, 4 and 5 fields have been listed. We did not examine combinations of more than 

5 fields because this would approach the baseline. 

Table 2: Results of experiment 2 on DS1 

# non-zero feilds None 1 field 2 fields 3 fields 4 fields 5 fields 

% accuracy at 

top match 

90% 92.5% 92.5% 95% 95% 87.5% 

 

 

We will now present the data in more detail, for each number of fields used. Table 3 

shows all the weight combinations that produced the highest accuracy (92.5%) for 2 

fields. Similarly Table 4 shows all the weight combinations that produced the highest 

accuracy (95 %) with 3 fields, Table 5 shows all the weight combinations that produced 

the highest accuracy (95 %) with 4 fields and Table 6 shows all the weight combinations 

that produced the highest accuracy (87.5 %) with 5 fields. 

 

PubDate Copyright Creator Link Title Language Description Details 

 0.0  0.0 0.0 0.0 0.0 0.0 0.2 0.8 

0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.8 

0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.8 

0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.8 

0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.8 

  
 
 



    

  
 
 

0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.6 

0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.2 

0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.6 

Table3: Combinations with 2 fields providing highest accuracy  

PubDate Copyright Creator Link Title Language Description Details 

 0.0  0.0 0.0 0.2 0.2 0.0 0.0 0.6 

0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.6 

0.0 0.2 0.4 0.0 0.0 0.0 0.0 0.4 

Table4: Combinations with 3 fields providing highest accuracy 

 

 

PubDate Copyright Creator Link Title Language Description Details 

 0.0  0.0 0.2 0.2 0.0 0.2 0.0 0.4 

0.0 0.2 0.0 0.0 0.0 0.2 0.2 0.4 

0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.4 

0.0 0.4 0.0 0.2 0.0 0.2 0.0 0.2 

0.0 0.4 0.2 0.0 0.0 0.2 0.0 0.2 

Table5: Combinations with 4 fields providing highest accuracy  

 

PubDate Copyright Creator Link Title Language Description Details 

 0.0  0.0 0.0 0.2 0.2 0.2 0.2 0.2 

0.0 0.0 0.2 0.0 0.2 0.2 0.2 0.2 

0.0 0.0 0.2 0.2 0.2 0.0 0.2 0.2 

0.0 0.2 0.0 0.2 0.2 0.0 0.2 0.2 



    

  
 
 

0.0 0.2 0.2 0.0 0.2 0.0 0.2 0.2 

Table6: Combinations with 5 fields providing highest accuracy  

 

Discussion: The results show that combinations of 3 and 4 fields produced the best 

results. Further analysis reveals that the combinations that included the Details field with 

one or more of Title field, the Description field and/or the Link field performed well. 

Adding the other fields did not contribute to improving the classification.  

 

 

 

 

4.3.3. Conclusions 

In order to be able to select and weight fields for XML documents where truth is not 

known, we need a mechanism to identify useful fields a priori. From our observations, 

we list the following characteristics of well-performing fields: 

 

o Fields that have a large number of tokens should be included. 

o Fields with higher variability in their content should be included.  

o Fields that have dates/numbers in their content are not helpful for 

classification. 

 

Chapter 5 provides a detailed description of an algorithm that can be used to predict 

valuable fields for classification. 



    

  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5-Predicting Valuable Fields for XML Classification 

 

The goal of this chapter is to perform a detailed analysis of the content of fields in DS1 

and design an algorithm based on the characteristics of fields that improved classification 

results. We want to see if this algorithm can be used to predict valuable fields for a 

previously unseen document collection, producing better results for classification than 

that obtained from a full-text classifier. Section 5.1 provides a detailed analysis of the 

field characteristics for DS1, Section 5.2 evaluates the analysis results from Section 5.1 

on a previously unseen data set DS2, Section 5.3 outlines an experiment performed on 

DS2 to verify the predictions, and finally Section 5.4 discusses how close the results were 



    

  
 
 

to our predictions. 

 

5.1 Analysis of DS1 

We performed a detailed analysis of the contents of the fields in DS1 in order to design 

an algorithm that can be used to choose the most valuable fields and their weights, given 

any new XML data set. From the results we obtained from our experiments in Chapter 4, 

we found that fields Link, Title, and Details when combined with weights 0.2, 0.2, and 

0.6, provided the highest accuracy for classification. We have used this information to 

design an algorithm that would predict these fields and weights for DS1. Table 7 provides 

the analysis of each of the fields. We considered 3 different characteristics for each of the 

fields across all the documents in the collection DS1, i.e. the number of tokens, 

variability in content, and the percentage of numbers.  

 

 

Row Characteristics PubDate Copyright Creator Link Title Language DescriptionDetails

1 # of tokens 242 26 241 311 1554 5496 6319 135929

2 Normalized Score # of 

tokens 
0.0016 0.0002 0.0016 0.0021 0.0104 0.0366 0.0421 0.9055

3 Variability 0.128 0.077 0.008 0.013 0.714 0.075 0.378 0.172 

4 % of  numbers 37.23% 0.00% 0.00% 0.00% 0.64% 18.20% 0.79% 0.52%

          

5 # tokens Score 0.01 0.00 0.01 0.02 0.08 0.29 0.34 7.24 

6 Variability Score 4 3 1 5 8 2 7 6 

7 % of numbers Score 1 8 8 8 4 2 3 5 



    

          

8 Total Score 5.04 11.00 9.04 13.05 12.25 4.88 11.01 32.73 

9 Relative Score 0.05 0.11 0.09 0.13 0.12 0.05 0.11 0.33 

10 Weights 0 0 0 0.2 0.2 0 0 0.6 

                  Table 7: Analysis of characteristics of fields in DS1 

 

We determined the characteristics by using the following formulae: 

 

# of tokens in Ti = Total number of words in Field Ti for all documents. (1) 

 

Variability for Ti =   Number of unique words in Ti for all documents (2) 

                                # of tokens in Ti  

  
 
 

 

% of numbers in Ti =        Total number of numbers in Ti   (3) 

                      Total number of characters in Ti 

 

Once we obtained these values for all the fields in the collection, we assigned a score to 

each characteristic for every field in the range of 1..8 (the number of tags). The scores 

were assigned as follows: 

 

# of tokens score - We calculate the % of tokens that occur in a given field and multiply 

that by the number of fields. 

 

 % of tokens Ti  =          # of tokens for field Ti     (4) 



    

       Σi
n

=1  # of tokens Ti

After we obtained the % of token score, we multiplied it by 8 (# of fields in DS1), to 

obtain the overall score for # of tokens. 

i.e, # of tokens score for Ti  = % of tokens Ti * 8    (5) 

 

Variability score- We rank ordered the fields by variability and scored the most variable 

field as “ 8” and the least variable field as “1”. Thus, higher variability led to a higher 

score.   (6) 

 

% of numbers score- Since we would live to exclude fields with a higher % of numbers, 

we rank ordered the fields by their % of numbers and scored the highest percentage as 

“1” and the lowest as “8”. (7) 

 

Total score for Ti = 3 * # of tokens score + Variability score + % of numbers score (8) 

 

Since the results from Experiment 1 on DS1 showed that the best results occurred when 

the Details field was highly weighted, and Details is the clear winner on the # of tokens 

score, we have weighted the # of tokens score 3 times more than the other fields 

 

 

Relative score for Ti =                 Total Score for Ti                    (9) 

      Σi
n
=1   Total score for Ti

The fields that gave the best result for DS1 were Details, Link and Title. Thus, we fixed a 

  
 
 



    

threshold (TH) value using the formula, 

TH (for relative score)   =  Σi
n
=1   Total score for Ti          (10) 

                                     # of tags * 100                  

 that gave us a value of  0.120 for the relative score for field selection since this would 

yield our desired set of fields. We next need to assign weights to the fields. To do this we 

re-normalize using the total score of the selected fields, rather than all the fields. 

  
 
 

  

Weight Ti (for fields with Relative score above TH) =      Relative score Ti                (11) 

                                                   Sum of Relative scores of fields above TH 

 

Weight Ti (for fields with Relative score below TH) = 0 

 

Finally, all the weights were rounded to one digit precision. Applying the above 

procedure to DS1 gave us the following result: 

Link, Title and Details are the valuable fields for classification with weights 0.2, 0.2 and 

0.6. This is the set of weights that produced the best results for Experiment 2 for DS1. 

Thus this algorithm can “select” weights for accurate classification for DS1. 

 

We can summarize the above procedure to obtain an algorithm that can be used to predict 

valuable fields and weights, for any given data set as follows: 

 

5.1.1 Algorithm to predict valuable fields: 

 



    

  
 
 

Step1: Calculate # of tokens, Variability, and % of numbers for each field across all 

the documents in the collection using formulae 1,2 and 3 respectively.[Rows 1,3,4 of 

Table 7] 

Step2: Calculate Normalized # of tokens score by using formula 4.[Row 2, Table 7] 

Step3: Calculate # of tokens score, Variability score and % of numbers score by using 

formulae 5,6 and 7 respectively.[Row 5,6 and7, Table 7] 

Step4: Calculate Total score and Relative score using formulae 8 and 9 

respectively.[Rows 8,9, Table 7] 

Step5: Calculate the threshold (TH) value using formula 10, and apply it to the Relative 

score of every field to determine whether or not the field will be included for 

classification.  

Step6: Finally, calculate the Weights for each field with Relative score above TH using 

formula 10 and assign 0 weights to all other fields.[Row 10, Table 7] 

 

 

5.2 Evaluating DS2 with Algorithm from Section 5.1.1 

 

The algorithm described in the previous section was designed with knowledge of what 

fields produced good results. It now remains to show that the same algorithm can be used 

to predict field weights for a new data set that produces higher classification accuracy 

than full-text classification. Applying the algorithm from Section 5.1.1 to DS2, predicts 

fields Product and Service, each with a weight of 0.5. The detailed analysis of the 

characteristics of DS2 is shown in Table 8. 



    

  
 
 

 

Characteristics 
Name url 

HQ 

Location

BR 

Location
Product Service

Date  

Visited 
Creator 

HQ 

Phone 

BR 

Phone 

# of tokens 385 550 914 99 2134 759 360 240 338 34 

Normalized Score 

# of tokens 
0.0662 0.0946 0.1572 0.0170 0.3671 0.1306 0.0619 0.0413 0.0581 0.0058 

Variability 0.618 0.305 0.639 0.919 0.568 0.623 0.058 0.008 0.763 1.000 

%of  numbers 0.23% 0.22% 24.67% 19.40% 0.47% 0.13% 44.44% 0.00% 99.11% 100.00%

           

# tokens Score 0.53 0.76 1.26 0.14 2.94 1.04 0.50 0.33 0.47 0.05 

Variability Score 5 3 7 9 4 6 2 1 8 10 

% of numbers 
Score 

7 8 4 5 6 9 3 10 2 1 

Total Score 13.59 13.27 14.77 14.41 18.81 18.13 6.49 11.99 11.40 11.14 

Relative Score 0.10 0.10 0.11 0.11 0.14 0.14 0.05 0.09 0.09 0.08 

Weights 0 0 0 0 0.5 0.5 0 0 0 0 

Table 8: Analysis of characteristics of fields in DS2 

 

Where, 

HQ- Head quarters and BR- Branch 

 

5.3. Experiment 3- predicting the valuable fields for DS2 

 

Hypothesis: Combining fields Product and Service each with weight 0.5, as predicted by 

our algorithm, will yield a better result for classification than a full-text classifier for 



    

  
 
 

DS2. 

Procedure:  To verify if our predictions were correct, we classified the test documents 

from DS2 using classifiers trained on the fields Product and Service separately and 

combined the results with the weight of 0.5 for each field using the fusion module as 

discussed in Section 3.2.3.  

Setting up a baseline: We chose the same vector space categorizer as our baseline 

system. The indexer was trained using the training documents from DS2 (30 per 

category), after which 10 test documents from DS2 were classified. Full-text documents 

were used for training and classification for the baseline. 

Results: The combination predicted by our algorithm yielded an accuracy of 82.5 % 

whereas our full-text baseline system yielded an accuracy of 65 %. 

Discussion: From the results, we conclude that our system performs 25 % better (17.5 % 

absolute improvement) than our baseline system. For comparison, we used the brute force 

method to find which fields provide the highest accuracy for DS2 and we found that the 

Product and Service combination with weights 0.6 and 0.4 respectively (or vice versa) 

yielded the highest accuracy of 85 %. Thus our prediction algorithm performed within 

0.03 % (2.5 % absolute) of the best combination found by the brute-force method. 

Conclusions:  The results show that by using our algorithm for predicting valuable fields 

and their weights, we obtained an accuracy of 82.5 %, which is considerably higher than 

our baseline (65%) and very close to the best accuracy (85%). Thus, our hypothesis is 

true and our algorithm can be used to predict combination of fields and their weights that 

will provide an improved accuracy. 



    

  
 
 

Chapter 6- Conclusions and Future Work 

 

6.1. Conclusions 

 

We have presented the idea of content-based classification for XML documents and have 

shown that, due to the characteristics of the content of fields, some can be used to 

improve classification over that achievable with full-text. We identified characteristics of 

the most useful fields and developed an algorithm that can be used to predict useful fields 

and their weights for new XML data sets.  

 

6.2. Future Work 

 

Although the thesis provides a good insight to the classification of XML documents using 

a content-based approach, there are many avenues that can be explored to further improve 

classification of XML documents. A few possible suggestions are discussed in this 

section. 

6.2.1 Extension to multiple Schemas 

 

 This system currently works on a single XML schema but it could be extended to work 

on multiple schemas. One possible approach to achieve this would be to normalize all the 

participating schemas to a generic schema and then perform classification. We could also 

try to include Tag structure along with content for classification. 

 



    

  
 
 

6.2.2 Automating field selection 

 

Although we have provided an algorithm that predicts the fields that would be useful for 

classification and their weights, we have not implemented it. We have key pieces for this 

algorithm implemented such as calculating the # of tokens, % of numbers and variability, 

that can be used to automate the entire algorithm. 

6.2.3 Further Validation 

 

The data sets we have used in our project are not large. So to further validate our results, 

larger data sets can be used. Also data sets that have a larger schema can be used since 

the schema for the data sets we have used for testing had a maximum of 10 tags. We were 

unable to find real XML data sets for validation. Hence, testing our algorithm with a real 

world data set also remains as part of the possible future work.  
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